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Acceleration of Image Analyst Training With Transcranial Direct Current 
Stimulation 
 

R. Andy McKinley, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 
Lindsey McIntire, Nathaniel Bridges, and Charles Goodyear, Infoscitex Corporation, Dayton, Ohio
Michael P. Weisend, Wright State Research Institute, Dayton, Ohio  
 
Humans today are routinely and increasingly presented with vast quantities of data that challenge their capacity 
for efficient processing. To restore the balance between man and machine, it is worthwhile to explore new 
methods for enhancing or accelerating this capacity. This study was designed to investigate the efficacy of 
transcranial DC stimulation (tDCS) to reduce training time and increase proficiency in spatial recognition using a 
simulated synthetic aperture radar (SAR) task. Twenty-seven Air Force active duty members volunteered to 
participate in the study. Each participant was assigned to 1 of 3 stimulation groups and received two, 90-min 
training sessions on a target search and identification task using SAR imagery followed by a test. The tDCS anode 
was applied to site F10 according to the 10 –20 electro-encephalographic electrode convention while the cathode 
was placed on the contralateral bicep. Group 1 received anodal tDCS at 2 mA for 30 min in the first training 
session and sham tDCS in the second session. Group 2 received the stimulation conditions in the opposite order. 
Group 3 did not receive stimulation at all. Results showed that participants receiving training plus tDCS attained 
visual search accuracies ~25% higher than those provided with sham stimulation or no stimulation. However, a 
corresponding performance improvement was not found in the first training session for the change detection 
portion of the task. This indicates that experience with the imagery is important in the tDCS-elicited performance 
improvements in change detection. 

 
Keywords: learning, noninvasive brain stimulation, cognitive performance, tDCS, military 
 

The advent of the information age brought with it a daunting demand for increasing processing 
power, speed, and data storage. As technological advances continue at an accelerated rate to meet these 
demands, the information processing abilities of the human operator interacting with these computational 
systems has remained constant. That is to say the cognitive baseline of the operator (e.g., working memory 
capacity, speed of processing, andrate of learning) has not significantly changed. Consequently, the human is 
quickly becoming outpaced by information throughput and overwhelmed with the sheer volume of data 
generated by the systems they control. Resultantly, scientists and engineers are currently seeking cognitive 
enhancement technologies to help alleviate the mismatch between human limitations and computation system 
capabilities (Chief Scientist Air Force, 2010; Nelson, 2007; McKinley, Bridges, Walters, & Nelson, 2012). 

System automation has been one of the most popular solutions to improving efficiency and 
reducing cognitive workload on the human operator. However, there are some tasks that are not well suited 
for computer control given the current state of the artificial intelligence and computational logic. For 
example, computer automation cannot perform complex decision making regarding the appropriate use of 
lethal force or target recognition. In the latter, researchers have been trying to provide a reliable 
technology or methodology for automatic target recog- nition for over 20 years (Mishra, & Mulgrew, 2010; 
Ahlberg, Klasen, Gronwall, Ulvklo, & Jungert, 2003), but no approach currently exceeds human target 
recognition abilities. As a result, image analysis in Air Force intelligence, surveillance, and reconnaissance 
(ISR) missions remains a largely human endeavor. With the high demand for ISR in modern warfare, a large 
number of human analysts are needed to process the imagery gathered with airborne assets. In the face of 
exponentially increasing demand, it has become exceedingly difficult to train enough image analysts. As a 
potential remedy, we propose a change in the existing paradigm that incorporates technological 
advancements in neuroscience to improve learning and shorten training times. 
 One such rapidly developing neuroscience tool is transcranial DC stimulation (tDCS). Originally 
developed for treatment of neurological disorders such as Parkinson’s disease, major depressive disorder, 
schizophrenia, stroke, dementia, chronic pain, and so forth, tDCS offers a method of augmenting neural 
activity in a way that may benefit human operator performance. The tDCS technology is simple, easy to 



 

apply, and relatively inexpensive, lending itself to application-oriented science. In particular, there is 
growing evidence that tDCS can enhance cognitive skills in healthy, normal humans. Decision making 
(Fecteau, Pascual-Leone et al., 2007; Fecteau, Knock, 2007), working memory (Fregni et al., 2005), implicit 
learning (Kinc- ses, Antal, Nitsche, Bártfai, & Paulus, 2004), probabilistic learning (Hecht, Walsh, & Lavidor, 
2010), visual search (Bo- lognini, Fregni, Casati, Olgiati, & Vallar, 2010), visuomotor coordination (Antal et 
al., 2004), language learning, (Flöel, Rösser, Michka, Knecht, & Breitenstein, 2008), picture naming (Sparing, 
Dafotakis, Meister, Thirugnanasambandam, & Fink, 2008), motor skill acquisition (Reis et al., 2009) are all 
improved with tDCS. For a complete review of these cognitive enhancement studies, see McKinley et al. 
(2012). Typically, tDCS uses a current regulator to provide between 1 and 2 mA of electric current between 
positive (anode) and negative electrodes (cathode) and into the brain. tDCS modifies neuronal resting 
potential; elevating neuronal excitability in brain regions effected by the anode and depressing excitability 
near the cathode (Paulus, 2003; Priori, 2003). For a more thorough description of the principles and physics 
related to tDCS, see Wagner, Valero-Cabre, and Pascual-Leone (2007). 

To accelerate learning of specific objects and their subtle differences, it is important to identify the 
appropriate node(s) in the brain network that are active during training. Tanji and Hoshi (2008) describe the 
function of the ventral-lateral prefrontal cortex (VLPFC) and assert it is primarily involved with encoding and 
retrieval of all types of sensory information including visual (Tanji & Hoshi, 2008). In addition, the VLPFC is 
active during selection and comparison of the visual information in support of decision-making processes 
related to object identification. Recently, Clark et al. (2012) attempted to accelerate learning of threat 
detection within simulated urban warfare scenes. They demonstrated that tDCS over the right VLPFC can 
significantly accelerate encoding and retrieval of threatening objects, providing initial evidence that perhaps 
military training could benefit from such an intervention. Falcone, Coffman, Clark and Parasuraman (2012) 
discovered these enhancements remain 24 hours after initial training. We attempted to expand on this 
research by evaluating the influence of tDCS on performance in other types of threat assessment tasks. In 
addition, we added a no-stimulation control group to gain a better understanding of the standard 
learning curve in military recruits. 

Method 
Design
 
 This study utilized a one-factor mixed-subjects design. The factor evaluated was “group” (i.e., stimulation 
type) with the change in a’ as the dependent variable. The factor “group” was tested between subjects and 
included three levels: participant group that received anodal stimulation (2 mA for 30 min) in the first session and 
sham (2 mA for 30 seconds) in the second (AS), group that received sham stimulation in the first session and 
anodal stimulation in the second session (SA), and the group that received no stimulation at all in either session 
(Control). Study participants were randomly divided into these three groups. To test whether anodal tDCS 
facilitated learning when provided in the first training session, a one-way ANOVA was conducted using “group” as 
the factor and the change in a’ from baseline to Test 1 as the dependent variable. Next, we were interested in 
whether anodal tDCS facilitated learning after some training had already been provided. To answer this question, 
we conducted a one-way ANOVA using “group” as the factor and the change in a’ from Test 1 to Test 2 as the 
dependent variable. Finally, we tested whether the timing of the stimulation (i.e., provided early or late in the 
training) had an effect on the final performance levels. This was done using a one-way ANOVA with “group” as the 
factor and the change in a’ from baseline to Test 2 as the dependent variable. 
 
Participants 

 A total of 39 active-duty right-handed Air Force military members from Wright Patterson Air Force 
Base volunteered to participate in this study. Participants were dismissed if they had evidence of any of the 
following: a neurological diagnosis, a psychological diagnosis, psychological hospitalization, hospitalization for 
surgery/illness within 6 months of participation, taking of psychotropic medications, a shot in the left arm 
within 1 week of participation (i.e., flu, allergy, pain), nonremovable metal or tattoos around the head, 
uncorrectable vision impairments, pregnant or could become pregnant, smoking, treatment for drug/ alcohol 
within 6 months of participation, head injury within 30 days of participation, history of any of the 



 

following: learning difficulty, frequent headaches, attention deficit, severe head injury, seizures, fainting, 
migraine headaches, high blood pressure, diabetes, or heart disease. The participants were also screened 
for experience with analysis of Synthetic Aperture Radar imagery. Those that were not naïve to the task were 
not permitted to participate in the study. Of the 39 individuals that enrolled, 12 were dismissed because 
they met one or more of the study exclusion criteria. The remaining 27 (21 male, 6 female) were divided into 
three groups: anodal-sham (n = 9), sham-anodal (n = 10), and control (n = 8). All participants received $20/hr 
as compensation for their time if they participated in an off-duty status and a souvenir coin. 
 
Apparatus 

 Transcranial DC stimulation was delivered with a MagStim (Whiteland, Wales, U.K.) DC stimulator. In 
place of the standard wet sponge electrodes that are delivered with the unit, custom silver/silver chloride 
electroencephalography (EEG) electrodes were utilized (see Figure 1). Both the anode and cathode each 
consisted of five of these EEG electrodes arranged in a circular pattern, as designed by the Mind Research 
Network (Petree et al., 2011). Each of the electrodes was 1.6 cm in diameter and was spaced 0.75 cm from 
the center and 0.1 cm apart as measured from the outer edge of the electrode to the outer edge of the 
neighboring electrodes to either side. With the 2 mA current divided evenly among the five electrodes, the 

estimated current density was 0.199 mA/cm2. The anode was centered over F10 in the 10 –20 EEG system, 
and the cathode was placed on the contralateral bicep. Electrodes were secured using medical bandages, and 
connectivity was ensured using highly conductive gel (SignaGel, Parker Laboratories, Fairfield, NJ). 

 To estimate the distribution of current in the brain, the electrode test configuration was evaluated in 
our finite element model. Only the head and neck were included in the anatomical data that was segmented 
to create the finite element model for visualizing cur- rent distributions. The extracephalic cathode was 
simulated with five electrodes arrayed across the skin at the back of the neck. To incorporate accurate 
geometry of the brain and inhomogeneities in the head model, the Finite Element Method (FEM) was employed 
to simulate the distribution of electric current due to tDCS (Bangera, 2008; Bangera et al., 2010). The 
following steps de- scribe the methodology to generate the highly realistic FEM model. 

(1) Segmentation of the head volume: A combination of high- resolution PD (proton density) weighted 
and T1 weighted MRI from the subject was utilized in the segmentation process. The segmentation 
procedure was semiautomated and multistep. Automatic segmentation of gray matter, white matter, 
and subcortical structures was obtained from T1 images using Freesurfer (Dale, Fischl, & Sereno, 
1999; Fischl et al., 2002). Segmentation and labeling of the ventricles and subcortical structures was 
based on a statistical method (Fischl et al., 2002). The subcortical structures were lumped into one 
tissue type. The head volume was segmented into the 20 tissue types (15 unique materials): white 
matter (WM), gray matter (GM), subcortical, cerebrospinal fluid (CSF), cerebellum GM, cerebellum 
WM, ventricles, skull, diploe/spongy bone, fat, muscle, sinuses (frontal, sphenoid, ethmoid, and 
maxillary), air pockets near ear, sagittal sinus, spinal cord, teeth, optic chiasm, blood, eyes, and scalp. 

 
 
 



 

 
 

Figure 1.    tDCS electrode configuration. 
(2) Discretization into small elements from segmented volume: Tetrahedral elements were chosen to 

mesh the highly folded pattern of the brain due to its relative ease in representing complex 
geometries. AMIRA is used for mesh generation from the labeled and segmented head volume 
(Visualization Sciences Group, 2007). 

(3) Solution using an efficient solver: ABAQUS, a suite of powerful engineering simulation programs, 
was used as the FEM solver (Dassault-Systèmes, 2007). ABAQUS also provided the ability to create 
realistic models of the stimulating electrodes used during tDCS. ABAQUS/Standard solved the 
Poisson’s equation using the variational method to obtain an approximate solution for electrical 
potential and current density inside the head volume for a given tDCS configuration. 
 

 The estimated distribution of current flow using our new electrodes is depicted in Figure 2. The peak 
current concentrations were found in the posterior portion of the inferior frontal gyrus (i.e., VLPFC), right 
posterior lateral occipitotemporal gyrus, right uncus, right parahippocampal gyrus, and the right posterior 
orbitofrontal cortex. There is lesser but potentially effective current concentration in the left uncus, left 
posterior supraorbital cortex, and bilaterally medial occipital cortices. 

 
Stimuli: Synthetic Aperture Radar (SAR) Target Learning Task 

A visual search task was developed by the Mind Research Network and vetted through Image Analyst 
(IA) instructors from the Air Force’s Air Education and Training Command (AETC) as a realistic representation of 
the training procedures employed for IA training. The task was developed with the Neurobehavioral Systems 
Presentation software (Albany, CA). It provided a circular red or blue reticle with which participants moved to 
identify targets in synthetic aperture radar (SAR) images of terrain with buildings and vehicles. There were a 
total of three different kinds of targets that could be present in the images including a T-62 tank, an SA-6 surface-
to-air missile launcher, and an SA-8 surface-to-air missile launcher. Each target could appear in six different 
orientations. The images were created by SAR imagery experts at Sandia National Laboratories in cooperation 
with MRN staff; thus, the locations, orientations, and numbers of targets in each image were known. All 
images came from the publically available MSTAR SAR database (http://cis.jhu.edu/data.sets/MSTAR/). The 
images were 1,200 X 1,600 pixels and the reticle was 160 pixels in diameter. Images were displayed on a 
standard 17-inch monitor with participants seated 32 in. from the screen (as measured from nasion to the 
center on the computer screen). In addition, the SAR images included distracters, vehicles that appeared 
similar to the target vehicles, to increase the difficulty of the task. The task was completed in five sessions; 
Baseline, Training 1, Test 1, Training 2, and Test 2 (see Figure 3). Baseline, Test 1, and Test 2 each consisted 
of 100 targets in approximately 50 images whereas the training sessions contained 200 targets in 
approximately 100 im- ages. There were 1, 2, or 3 targets per image. Each test required 18 



 
 
 

  
Figure 2.    Finite element model of estimated current distribution in the brain. 

 
 

to 30 minutes depending on the speed of the subjects’ responses. Training 1 and Training 2 consisted of two 
sessions of 200 targets presented in approximately 100 images. All responses were made using a mouse in the 
right hand. Again, there were 1, 2, or 3 targets per image. Each training session lasted approximately 90 minutes. 

During the three testing sessions, Baseline, Test 1, and Test 2, participants moved the reticle until a 
candidate target was encircled and clicked the left button to mark it. With the mouse click potential labels for 
the image appeared around the reticle. After the image label was selected the reticle returned to the center of 
the screen and left the previously selected target marked with a circle. The participant could then make 
additional selections. The participant continued to mark targets until all candidate targets were marked to 
their satisfaction. At this point the participant clicked the mouse button in the center of the screen and 
selected next to begin the change detection part of the trial. During change detection, the reticle appeared in 
the center of the screen. The participant scanned the previous target locations for the addition, deletion, 
rotation, movement, or exchange of a target vehicle. Moving the reticle over the target location and clicking 
the mouse button marked the changed item. Each of the four types of change (addition/deletion, rotation, 
movement, and exchange of a target vehicle) was equally probable. There were six possible orientations, 
each in 60-degree increments relative to north (i.e., 0, 60, 120, 180, 240, 300, and 360). In the case of 
movement, the possible new positions were equally distributed into the four quadrants of the screen. 
Additionally, there was always exactly one change per trial. If during any part of the trial, the participant made 
no selections for 15 seconds, the next image or phase of the trial was presented. 

 



 

  
Figure 3.    Synthetic aperture radar task training and testing sessions. 

 



 

 During the training sessions, Training 1 and Training 2, the target items and response requirements 
were identical to the testing sessions. However, unlike the testing sessions, the software delivered feedback 
about the participants’ target choices. When an incorrect selection was made, a red X appeared in the reticle 
to indicate that the item in the reticle was not a target of interest. After the red X was presented, the reticle 
would return to the center of the screen so the subject could make additional selections. Participants continued 
making selections until the correct target was selected or the 15-s time limit was reached. When all the 
targets had been correctly marked, or the maximum time of 15 seconds had been reached, the image would 
be presented for an additional 15 seconds with the incorrect selections surrounded by a red circle and the 
correct targets labeled and highlighted with a yellow circle. This provided feedback to the participant and 
permitted them time to study the image and targets. At the end of each trial, the participant was prompted to 
find something that had changed in the image. The same image would then be presented to the participant 
with one of the targets modified in some fashion. Possible changes included a target moving to a new 
location, a target rotating into a new orientation, the removal of a target, or the target changing from one target 
type to another (i.e., a T-62 replaced with an SA-6). Again, participants controlled a reticle and depressed the left 
mouse button when it encircled the target that had been changed. As before, a red X would appear if the 
selection was incorrect and the reticle would return to the center of the screen. Participants continued 
making selections until the correct target was selected or the 15-s time limit was reached. As in the “target 
selection” portion of the task, participants were provided with a feedback screen for 15 seconds with the 
correct and incorrect selections highlighted. 
 From this task we extracted true positives (correct identification of targets), false positives (incorrect 
identification of a nontarget or terrain feature as a target), and false negatives (incorrectly asserting that there 
are no targets or never finding the target within the time limit) in the SAR images. Because the task never 
presents an image that does not contain a target, there are no true negatives (correctly asserting there is no 
target within the image). As a result, the traditional sensitivity analyses (d’) could not be completed. The time 

to complete identification of targets in each image was recorded to 10-5 seconds; the default precision in 
the Neurobehavioral Systems Presentation software. 
 

Procedure 

 All experimental procedures used in the protocol were reviewed by the Wright-Patterson Air Force Base 
Institutional Review Board (IRB). Subjects first provided written informed consent to participate before being 
registered into the study or filling out Initial Screening Questionnaires. These questionnaires gathered 
information regarding their fitness for participation and back- ground. If the participant failed to meet the 
inclusion criteria, they were excluded from participation and no identifiable data was retained. Those that 
did meet the inclusion criteria completed a neuropsychological test including a shortened Wechsler 
Abbreviated Scale of Intelligence and a NEO-Five Factor Inventory (NEO- FFI) personality test administered by a 
trained research associate. The behavioral battery consists of measures of individual differences comprising 
intellectual, personality, working memory, speed of processing and problem solving ability. This testing lasted 
approximately 1 hour. Afterward, subjects were given a short break followed by a short movie clip describing 
the SAR task instructions and tDCS procedures. Next, subjects performed a SAR task test that provided a 
baseline measure of their performance before the subject participated in any training activities. 

 After the baseline test, participants were asked to complete a mood questionnaire. Then the 
participants were assigned to groups; anodal tDCS (2 mA for 30 min) during training session 1 and sham (2 mA 
for 30 sec) during training session 2 (AS) or, the opposite order, sham during training session 1 and anodal tDCS 
during training session 2 (SA). Following group assignment, the tDCS electrodes were affixed to the scalp and 
the training/tDCS paradigms began. A third group of participants, the control group, did not receive tDCS and did 
not wear the electrodes. The research technicians were blind to the tDCS condition by a coded input to the 
stimulator. A few seconds after beginning tDCS, the participants completed a sensation questionnaire that 
asked them to rate sensations of itchiness, heat, pain, and overall discomfort on an 11-pt scale (0 indicating 
no feeling at all, 10 indicating extreme sensation). Next, the participants completed the training sessions of the 



 

SAR task lasting approximately 90 minutes in total. Five minutes after the start of the training, the task would be 
paused and the participant would again fill out the sensation questionnaire. If at any time a sensation rating of 
7 or greater was reported, the tDCS was immediately turned off and study procedures were terminated. The 
subject was evaluated by the medical monitor and released. Those in the control group also filled out the 
sensation questionnaires, even though stimulation was not present. Following the four training sessions a no-
feedback test was completed. Lastly, they completed the mood questionnaire again to ensure there were no 
lingering effects of the stimulation. This indicated the conclusion of the first session. 

After the first session, participants were given a 30-min break. They then repeated the procedures for 
Session 1, with the opposite stimulation condition. Before leaving, the subjects were required to complete an 
Exit Questionnaire to get feedback on their experience participating in the study and a subjective opinion 
about which condition they felt they received anodal tDCS. 

 
Results 

 Because all of the images contained at least one target, there were no trials that would result in the 
correct assertion that a target did not exist (i.e., True Negatives [T-]). For this reason, it is not possible to 
calculate the traditional operator sensitivity measure, known as d’ (Sorkin, 1999). Consequently, a measure 
known as a’ was used as the dependent variable of interest. This is defined as the ratio of all correct target 
selections (true positives [T+]) to the sum of all possible responses including T+, false positives (F+) (i.e., 
incorrect target selections/selecting a nontarget as a target), and false negatives (F-) (i.e., incorrectly 
indicating a target was not present). Performance was compared between participants that received anodal 
stimulation during Training 1 then sham during Training 2 (AS group), participants that received sham 
during Training 1 then anodal stimulation during Training 2 (SA group), and those that received no stimulation 
(control group) for both the target search and change detection portions of the task. 

 
Target Search 

 Because the stimulation condition changed after the first session for the two stimulation groups, the 
analysis was segregated into three parts with a separate analysis of variance (ANOVA) for each segment. The 
first one-way ANOVA tested whether there was a significant effect of “group” (i.e., stimulation type) from 
baseline to Test 1 with group (AS, SA, or control) as a between-subjects variable and the change in a’ as the 
dependent variable. The results showed a significant effect of “group”, F(2, 24) = 6.07, p = .0074 on a’. The 
means in change of a’ from the ground target search portion of the SAR task are presented in Figure 4. For 
pairwise comparisons of the means within the session test, t tests (pooled error) were conducted with an 
alpha of 0.05. Importantly, these values are the means of the change in a’ from one test to another, rather than 
the mean of a’ at a specific test. The mean change in a’ from the AS group (0.548 ± 0.035) was significantly 
higher from baseline to Test 1 than the control group (0.295 ± 0.070) (p =.0021). The difference in the mean 
change in a’ from baseline to Test 1 in the SA group (0.455 ± 0.045) was also significantly higher than that of 
the control group (p = .0346). There was no difference in the change of a’ between the AS and SA group from 
baseline to Test 1. 

 The second one-way ANOVA tested whether there was a significant effect of “group” (i.e., stimulation 
type) from Test 1 to Test 2 with group (AS, SA, or control) as a between-subjects variable and the change in 
a’ as the dependent variable. The results revealed a significant main effect of “group” on a’, F(2, 24) = 5.45, p 
= .011. Again t tests with pooled error were used to examine differences in the mean change in a’. The 
change in a’ of the AS group (0.446 ± 0.037) was not statistically different than the mean performance of the 
SA group (0.630 ± 0.040) (p = .064), although it was approaching significance. The effect size as measured by 
Cohen’s d for this comparison was a rather high 1.64. Often, values over 0.8 indicate a strong effect; hence we 
believe that the comparison would be statistically significant with more subjects. Further, the mean change in 
a’ for the SA group (0.097 ± 0.023) was significantly higher than the control group (0.001 ±0.038) from Test 1 



 

to Test 2 (p = .021), but the mean for the AS group (-0.018 ± 0.020) was not (p = .63). 
 

 
 

Figure 4.    Target search change in a’ means. 

 The third one-way ANOVA tested whether there was a significant effect of “group” from baseline to 
Test 2 with group (AS, SA, or control) as a between-subjects variable and the change in a’ as the dependent 
variable. Again, the results showed a significant effect of group on the outcome measure, F(2, 24) = 5.36, 
p = .012. Paired t tests with pooled error showed that the both the AS group (0.446 ± 0.037) and the SA 
group (0.552 ± 0.037) had a significantly higher change in a’ when compared to the control (0.296 ± 
0.086; p = .0125 & p = .0059, respectively). The comparison of mean change in a’ between the AS and SA 
group was not significant. 

 A separate analysis was conducted to examine differences in a’ at the testing sessions (means shown in 
Figure 5). A two by three ANOVA was conducted with factors “test” and “group”. “Test” was analyzed within 
subjects with two levels (Test 1 and Test 2). “Group” was tested between subjects with three levels (control, 
SA, and AS). There was a significant interaction between “test” and “group”, F(2, 24) = 5.45, p = .011. For 
pairwise comparisons of the means within the session test, t tests (pooled error) using the means for the 
participants from that session only were conducted with an alpha of 0.05. The mean accuracy of the AS group 
(0.732 ± 0.032) was significantly higher in Test 1 than the control group (0.573 ± 0.038) (p = .0118). The 
difference in the mean of the SA group (0.625 ± 0.046) and that of the AS group approached significance (p = 
.0638). The effect size as measured by Cohen’s d was 0.91 for this comparison. The high Cohen’s d indicates 
there is likely an effect of the stimulation between the SA and AS groups and that the comparison would be 
statistically significant with more subjects. The accuracy means for the control group and SA group did not 
differ significantly in Test 1. 

 In Test 2, the mean a’ of the AS group (0.714 ± 0.035) was not statistically different than the mean 
performance of the SA group (0.721 ± 0.054) (p = .90). However, the mean a’ for both the AS and SA group 
was significantly higher than the control group (0.574 ± 0.036) in Test 2 (p = .041 and p = .028, 
respectively). As a percentage, the mean a’ for the AS and SA groups were 24.3% and 25.6% higher than 
the mean a’ for the control group in Test 2. 
 
Change Detection 

 The analyses described in the Target Search section were repeated for the “change detection” 
portion of the task. The change in a’ means from each group (control, AS, and SA) and test (baseline, Test 1, 
and Test 2) are presented in Figure 6. As in the visual search portion of the SAR task, the first one-way ANOVA 
tested whether there was a significant effect of “group” (i.e., stimulation type) from baseline to Test 1 with 
group (AS, SA, or control) as a between-subjects variable and the change in a’ as the dependent variable. The 
results showed there was no effect of “group”, F(2, 24) = 1.26, p = .3. 

 The second ANOVA tested whether there was an effect of “group” on the change in a’ from Test 1 to 
Test 2. While the results did not show a significant main effect of “group” on the change in a’, the analysis 
suggests the test was approaching significance, F(2, 24) = 3.08, p = .065. Hence, an effect may exist, but 



 

was likely masked due to the low n size. 

 

 
 

Figure 5.    Target search accuracy means (a’). 
 

 The final ANOVA suggests there is a main effect of “group”, F(2, 24) = 4.89, p = .016 on the change in a’ 
from baseline to Test 2. For pairwise comparisons of the means within each session test, t tests with pooled 
error were performed. As seen in Figure 6, a significant difference was found between SA group and both 
the AS and control groups. The mean change in a’ of the SA group (0.630 + 0.040) was statistically higher 
than the mean performance of the control group (0.329 + 0.118) (p = .0406). In the comparison between 
the AS and SA group, the variance of subjects for the control group was significantly greater than either the AS 
or SA groups (p≤ .05). This was due in large part to two subjects, both having a relatively high baseline a’ 
(approximately 0.6) and changes from baseline to Test 2 of 0.06 and -0.31. Removing the subject with a -0.31 
change had little effect on the F test of group (p = .0165 with this subject, p = .0169 without); however, the 
paired comparison of AS versus SA was greatly influenced (p = .0637 with this subject, p = .0168 without). 
With this in mind, paired tests within baseline to Test 2 for change detection used t tests, which don’t use 
pooled error. The resulting t test showed the change in a’ for the SA group was significantly higher than that of 
the AS group (p = .0035). 
 As with the target search portion of the task, a two by three ANOVA (mixed design) was conducted 
with factors “test” and “group” to examine differences in a’ at the testing sessions. The a’ means for the change 
detection task are shown in Figure 7. The results suggest a significant main effect of “test” on a’, F(2, 24) = 
28.31, p = .0001. Again, t tests (pooled error) were utilized to examine pairwise comparisons in the means. 
All three groups exhibited significantly higher a’ values in Test 1 when compared to baseline (AS, p = .0001; SA, 
p = .0001; and control, p = .024). Additionally, they all improved significantly in Test 2 when com- pared to 
baseline, (AS, p = .0001; SA, p = .0001, and control, p =.027). Importantly, the SA group was the only one to 
show a statistically significant improvement in accuracy from Test 1 to Test 2 (p = .00012). 
 

Discussion 

 Our study examined the effects of tDCS on learning of targets within static images in an effort 
investigate tools that may accelerate object recognition. By receiving performance feedback during training, 
participants could identify their mistakes and study the SAR images to examine the correct targets more 
thoroughly. Through the training, it was expected that performance in target search would improve, but the 
effects of the tDCS on this learning curve were not known. Our results showed that without stimulation, the 
ability of the participants to correctly identify targets as measured by accuracy (a’) elevated significantly in 
the first session. A comparable increase in the target search portion of the task was not found in the second 



 

training session, indicating their learning rate asymptotically stabilized and there was a diminishing return on 
the training time investment. Examining the relative change in performance between groups from baseline to 
Test 1, we found that both the stimulated group (AS) and sham group (SA) exhibited a significantly greater 
improvement when compared to 
 

 
Figure 6.  Change detection task change in a’ means.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.   Change detection accuracy means (a’).

the nonstimulated group (control). However, inspection of the mean performance achieved at Test 1 (i.e., end 
result of training Session 1), shows the control group’s performance was not statistically different than the SA 
group (see Figure 5). Examining the data, the difference in the slope of the learning curve appears to be driven 
by the relatively higher mean baseline in the control group when compared to the AS and SA groups. While the 
comparison of the learning slopes (i.e., change in a’) between the AS and SA group also did not achieve 
statistical significance, the test was approaching significance. This coupled with the high effect size denoted 
by Cohen’s d show that this effect would likely be significant with a slightly higher n size. Furthermore, the AS 
performed significantly better than the control group at Test 1. Taken together, we can infer that the 
stimulated participants learned significantly more objects while undergoing the same training as their 
nonstimulated counterparts. 

 In session 2, we reversed the stimulation conditions, applying anodal tDCS to the SA group and sham 
tDCS to the AS group. With no additional stimulation in session 2, the AS group did not exhibit further 
performance improvements, which indicates that additional training in the absence of anodal tDCS did not 
significantly improve learning. However, the SA group exhibited a performance improvement that approached 
significance while undergoing anodal tDCS in session 2. Given the large Cohen’s d, we believe there is an effect 



 

that was masked by a small sample size. Importantly, a similar increase was not found in the control or the AS 
groups, both of which did not receive anodal tDCS. When comparing the means at Test 2, the SA group’s 
accuracy (a’) was at the same level as the AS group, which had previously outpaced the SA group by 
approximately 25%. This indicated that stimulation either early in the training or late in the training had 
beneficial effects on object learning. In fact, both groups that received anodal stimulation at some point during 
their training (AS and SA) were performing at accuracy levels approximately 25% higher at the end of session 2 
than that of the participants that did not receive any stimulation during their training. A recent study 
suggested that tDCS applied early in the training (i.e., from novice to intermediate stage) had a larger effect on 
performance than when applied later (i.e., from intermediate to expert stage) (Bullard et al., 2011). While 
our data do not support this conclusion, it is possible that our subjects never attained performance that would 
be considered “expert”. Hence, the participants’ reported herein may have still been in the “early” phase of 
learning which suggests that beneficial tDCS effects on learning would diminish with greater expertise. 
Additional studies would be required to validate this hypothesis. Furthermore, because institutional review 
boards have not yet approved more than 30 min of tDCS in healthy participants per day, it is not known if 
tDCS applied in both training sessions would yield a greater improvement in performance when com- pared 
to tDCS in just one of the sessions. We believe that performance would eventually achieve an asymptote, but 
additional data is needed to verify its existence and then decipher the amount of tDCS required to reach it. 

 The results from the change detection portion of the task illustrated that there was no difference in 
performance between any of the study groups following session 1. Though all subjects showed a significant 
improvement from baseline to test two—regardless of stimulation condition, the SA group showed significantly 
greater improvement. This suggests that tDCS only facilitated learning of the recognition of changes in the 
targets when they had some experience with the imagery. In other words, the neural changes associated with 
mastery of the task were not possible until subjects reached a certain level of proficiency. Coffman et al. (2012) 
found similar results noting that tDCS had a much higher effect on object detection for images that were repeated 
than for novel test images. The authors concluded that this phenomenon may have been caused by tDCS-
induced plasticity in brain networks involved with image encoding. Hence, repeated stimuli would generate a 
larger catalog of remembered images to aid in the detection of changes within the image. Expressed 
colloquially, the participants needed to first learn what the targets were before they could accurately identify 
if one had changed in some manner. It is for this reason that we believe tDCS effects interacted with 
experience in the change detection task and not the target search task. Nevertheless, Test 2 results provide 
evidence that tDCS can significantly accelerate the learning process. 

 The sensation values from the stimulation were low with an overall mean value of 1.22 ± 0.25, 
which is lower than corresponding studies with sponge electrodes, and subjects were more effectively blinded 
to the stimulation condition. The increased sensation ratings by the SA group suggest that when given a reference 
point of no stimulation, subjects are more aware of the active condition. Although 60% responded correctly 
when asked which of the two sessions they believed they received anodal stimulation, this result is only slightly 
above random chance. Hence, it could be that they simply achieved a correct response through chance alone. 
This assumption is further supported by the objective performance data. There were no statistical differences in 
task performance between the group receiving sham stimulation (SA) and group receiving no stimulation 
(control) in session 1. This indicates that there was no “placebo effect” in the sham group resulting from the 
transient skin sensations such as tingling, itchiness, or warming typically experienced for the first minute of 
stimulation or from the participants’ possible expectation of improved performance from stimulation. 
Nevertheless, there is still work to be done to perfect the sham condition. 
 Previous work has documented both the acceleration of training and the enhancement of performance 
with tDCS. Straightforward targeting of the motor and visual cortices facilitates motor learning (Nitsche et al., 
2003), visuomotor coordination (Antal et al., 2004), and decreases reaction times (RTs) (Nitsche et al., 2003). 
Similarly, cognitive neuroscience has led to targeting the prefrontal cortex to facilitate working memory 
(Berryhill & Jones, 2012; Fregni et al., 2005; Gladwin, den Uyl, & Wiers, 2012; Teo, Hoy, Daskalakis, & 
Fitzgerald, 2011; Mulquiney, Hoy, Daskalakis, & Fitzgerald, 2011). Not so intuitively, prefrontal TDCS has 
also been reported to speed decision-making toward high-probability events in a probabilistic decision task 



 

(Hecht et al., 2010), decrease RT in an implicit associations test (Gladwin, den Uyl, Fregni, & Wiers, 2012), 
facilitate learned inhibition (Ditye, Jacobson, Walsh, & Lavidor, 2012), impair episodic verbal learning (Elmer, 
Burkard, Renz, Meyer, & Jancke, 2009), facilitate classification learning when the prefrontal cortex is 
targeted (Kincses et al., 2004), alter the recall of unpleasant and pleasant pictures (Penolazzi et al., 2010), 
and decrease risk-taking behavior in a gambling task (Fecteau, Knock et al., 2007). It is not clear how these 
tasks are related to prefrontal function except that working memory may be an important component of these 
tasks. 
 The stimulation in the experiments reported herein was also prefrontal with two important 
differences. First, our anode was placed near F10, lateral, anterior, and inferior to the common F3 or F4 frontal 
placements in the papers cited above. Because of its location, the cortical stimulation likely influenced the 
temporal lobe as well as the frontal lobe. Further, models of the F3 or F4 placements have not shown 
significant temporal lobe stimulation (Sadleir, Vannorsdall, Schretlen, & Gordon, 2010; Datta et al., 2009). 
Previous studies show that temporal stimulation facilitates visual learning (Chi, Fregni, & Snyder, 2010), 
facilitates the recall of name/face associations (Ross, McCoy, Wolk, Coslett, & Olson, 2010), and facilitates 
solving insight based problems (Chi & Snyder, 2011). The second important difference in our studies is the use of an 
extracephalic cathode. The cathode, sometimes called the reference or return, was placed somewhere on the 
scalp in all of the studies from other groups, cited above. This is a potential confound since the cathode, 
typically thought to inhibit the underlying cortex, produces cognitive effects (Kincses et al., 2004; Ambrus, 
Antal, & Paulus, 2011; Hammer, Mohammadi, Schmicker, Saliger, & Munte, 2011; Penolazzi et al., 2010). The 
data reported herein are more straightforwardly reportable as the effects being the result of anodal 
stimulation. This extracephalic cathode approach shows consistent, replicable results across multiple 
studies in our lab (Bullard et al., 2011; Clark et al., 2012; Coffman et al., 2012) and others (Falcone et al., 
2012). 
 While the mechanisms responsible for the learning improvements found here cannot be derived 
from the data collected, theories exist that may help explain these phenomena. One possibility is that the tDCS 
current elevated excitability in the VLPFC, which is involved in encoding and retrieving visual information 
regarding the recognition of an object. By pairing the continued elevated activity in this area with the visual 
stimuli, weak synapses related to encoding and retrieving visual objects may have been strengthened, similar 
to the classical conditioning paradigm. Alternatively, sustainment of the elevated activity during the training 
may have served to facilitate activity of the natural reinforcement system via dopamenergic pathways. Because 
participants received feedback on their performance following stimulus presentation, it is reasonable to 
suspect that their reinforcement system would activate (i.e., their brain signaled something good happened 
when correct selections were made). Mirenowicz and Schultz (1994, 1996) showed that the reinforcement 
stimulus is activated primarily by novel stimuli. Once the participant becomes familiar with the task, the 
reinforcement system delivers less dopamine to rein- force encoding of the new information. The dopamine 
release is signaled by the ventral tegmental area, which has projections to the prefrontal cortex (Carlson, 2010). 
Hence, the higher excitability in VLPFC caused by the tDCS may have further stimulated release of dopamine, 
thereby preventing the natural decline of the reinforcement system. This, in turn, would theoretically further 
strengthen neural connections associated with encoding the object identity information. 
 Recently, we found the tDCS over the dorsolateral prefrontal cortex (DLPFC) significantly improved 
performance on a sustained attention (vigilance) task (Nelson, McKinley, Golob, & Warm, 2013; McKinley, 
Nelson, & McIntire, 2010). Because there are many stimuli in the environment completing for attention, 
information that is not attended will likely not be encoded or retained (Desimone, 1996). Given that tDCS 
is not particularly focal (Wagner, Valero-Cabre, & Pascual-Leone, 2007), brain areas close to the target site 
may also receive substantial amounts of current (Sadleir et al., 2010). As a result, it may be the case that 
participants may have received stimulation in the DLPFC as well, which caused improvements in attention. 
Thus, the improvements in learning could have been a direct result of attending to more of the visual stimuli 
during training. 
 Another possibility is that the learning improvements observed in this experiment may have been 
caused by a Hebbian effect due to the increased cortical activity induced through tDCS. Colloquially 
summarized, Hebbian synaptic plasticity can be stated as “cells that fire together wire together.” This Hebbian 



 

mechanism appears to be important in the effect of tDCS on enhanced eyeblink conditioning in the rabbit 
(Márquez-Ruiz et al., 2012). Further, tDCS enhances BDNF dependent synaptic plasticity (Fritsch et al., 2010). 
In the present study, tDCS during training produced a lasting effect on performance 30 –90 minutes after 
stimulation. This effect endures for at least 24 hours (Falcone et al., 2012). Other work in this laboratory 
suggests that the effects of tDCS on excitability return to baseline by 40 min poststimulation. Thus, enhanced 
Hebbian plasticity at least at the 90-min and 24-hr tests could be important in the mechanism of the 
findings reported herein. 
 The complexity of the task used in this experiment undoubtedly involves a relatively large brain 
network. We have not performed cognitive experiments involving control tasks to disambiguate the specific 
effects on performance. One control task that has been evaluated is the stimulation of alternative sites with 
tDCS. Clark et al., (2012) did not find a significant effect when using alternative electrode locations and current 
strengths in a similar threat detection task. The effect is also not equal for all stimuli presented. Coffman et 
al. (2012) show the effect is different for novel and repeated stimuli. Additionally, McKinley et al. (2010) 
showed that tDCS of frontal cortex improved sustained attention. Taken together, one potential hypothesis 
is that enhanced vigilance results in greater time on task and thus improved encoding for specific objects 
presented visually. 

When discussing neuromodulation in healthy individuals to improve cognitive skills, comments on 
ethical concerns are certainly warranted. In fact, a recent article in Wired magazine provided a commentary 
that cautioned the neuroscience community to carefully consider ethics and human safety when applying 
such tools in military contexts (Scott, 2012). As we previously reported in McKinley et al. (2012), we certainly 
agree that such research should proceed with care and that all efforts to protect the safety of the military 
operators should be employed. Because critical missions such as image analysis and target detection are 
essential to preserving lives of fellow soldiers and quite possibly civilians, we submit that interventions such as 
tDCS should be considered as they may become appropriate and indispensable tools when applied in a 
manner conducive to the safety and well-being of the operator. 

 
Conclusions 

 Regardless of the mechanism, the results presented in this study provide additional data that support 
earlier findings of Clark et al. (2012) and Falcone et al. (2012), suggesting tDCS is a valid catalyst for 
accelerating learning of threat detection. These data also indicate that such results are not task specific and 
are robust across tasks testing similar cognitive functions. We have also provided new evidence that tDCS 
given during training greatly enhances target acquisition accuracy over individuals that did not receive any 
stimulation. Lastly, this study has shown that change detection accuracy is not affected by tDCS until 
participants be- come familiar with the task. It should be noted that these results were derived from a 
laboratory, and additional testing is needed to examine whether such methodologies would prove beneficial 
in the operational setting. Additionally, while much improved over the standard “wet sponges,” the electrode 
technology needs further refinement making them less obtrusive and more comfortable in human operators. 
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