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ABSOLUTELY CONTINUOUS JACOBI OPERATORS 

STEEN PEDERSEN 

(Communicated by David R. Larson) 

ABSTRACT. We show (among other results) that a symmetric Jacobi matrix 
whose diagonal is the zero sequence and whose super-diagonal hn > 0 satisfies 
h2n-1 = h2n, hk ? hk+l and 0 < b < h2k+2 < hk has purely absolutely -k?1 - k pueyaslty 
continuous spectrum when considered as a self-adjoint operator on e2 (N). 

1. INTRODUCTION 

The Jacobi operators considered in this paper are operators H acting on the 
Hilbert space Y2 (N) with the inner product 

00 

(01V)) = E 0t(n)V)(n). 
n=1 

The operator H is determined by a sequence h = (hn) hn > 0 and its action on a 
vector f2 C 2(N) is determined by 

(1.1) (HIVi)(n) hn-I)(n - 1) + hnV9(n + 1). 

If (n = (n))00 is a sequence in some vector space, then set ,n = (n) = 0 if n=~1 
n < 0. 

The domain of H is the maximal domain D(H) ={f/ C p2(N): Hb C e2(N)}. 
We will impose conditions on h ensuring that H is the closure of its restriction to 
the minimal domain f,(N), the sequences with finite support. 

There has recently been considerable interest in the study of spectral properties 
of Jacobi matrices; see e.g., [dMS98], [dMS99], [Cla96], [DP97], [JMOO], [JN99a], 
[JL99], [KLOO], [LS99]. Many more references can be found in the recent book 
[TesOO]. 

As advertised in the abstract, the aim in this note is to prove 

Theorem 1.1. If H is determined by a sequence hk > 0, satisfying nZ is bounded, 
h2n_1l= h2n, and 

(1.2) h2n < h2n+2 < n+l h2n to 

then the spectral mneasure for H Z's purely absolutely continuous. 
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The condition h2n-1 h 2n > 0 implies that H is essentially self-adjoint on the 
set of finite sequences (see [DP98]), so there is a unique spectral measure associated 
to H. 

Theorem 1.1 extends results from [DP98] where we proved the result when 
h2,,- = h2n = n. Theorem 1.1 is not a consequence of results by Janas and Naboko 
(e.g. [JN99a], [JN99b]); their bounded variation conditions are not compatible with 
h2n_ = h2n even when h2n = n. The situation where h2n1= h2n = n + g(n) and 
g(n) is bounded is of interest because it is known [HL78], [DP97] that if h 1- oc, n k 
then H has pure point spectrum. It is also a boundary case in another sense; see 
Section 4 below. 

This paper began as an attempt to use Mourre's conjugate operator method (e.g., 
[Mou8l], [CFKS87]) in the context of Jacobi operators determined by a sequence 
hn with h2n-1 = h2n. Let an be a sequence of real numbers, and let A be the 
skew-symmetric Jacobi operator determined by 

(1.3) (AV)) (n) =-an1 (n - 1) + a0/(n + 1). 

The case where the double commutator [[H, A], A] is bounded is the simplest case 
in which one could hope to use Mourre's method. It is easy to see that if the double 
commutator [[H, A], A] is bounded, then A must be bounded. If A is bounded, then 
the method used in [DP98] (and in earlier papers by the authors of that paper) is 
superior to Mourre's method. Positivity of [H, A] is required in a weaker sense 
by the method from [DP98I. We will therefore use the method from [DP98]. The 
method from [DP98] is an extension due to Dombrowski of a commutator method 
developed by Putnam [Put67]. See Section 2. 

This paper is motivated by a desire to extend the results from [DP98] to the case 
where h2r-l = h2n = n + g(n) and g(n) is of order less than one in the sense that 
En = '(n) is bounded. Writing cn 1 + En, we have h2n = n cn, where cn :4 0. At 
this point the only condition imposed on cn is cn :4 0; further conditions will be 
imposed below. 

2. THE COMMUTATOR METHOD 

This section will summarize Dombrowski's commutator method as it is currently 
understood. We will first state the method in an abstract form and then give some 
typical special cases. In particular, we will show that the method is stronger than 
what [JMOO] might lead one to believe. The focus will be on the case where (as in 
(1.1)) the matrix of the Jacobi operator H has zero diagonal with respect to the 
canonical basis for Y2(N). 

Theorem 2.1. Let H be a self-adjoint operator on a Hilbert space 'H and let Vb0 C 
'H. Let I be a open interval. Suppose there exists a bounded operator A on 'H and 
a constant b > 0 so that 

(2.1) (A E(A/)oH E(A)?/o) - (H E(A)go0A*E(A)g0) > bllE(A)bo l4 

for all bounded subintervals A of I. Then the restrictzion of the spectral mea- 
sure Poo0(.) := JE(.)fbol12 to the interval I is absolutely continuous with respect to 
Lebesgue measure on I. 



JACOBI OPERATORS 2371 

Proof of Theorem 2.1. Let pj(3) := lE(3)'ol12 be the scalar spectral measure as- 
sociated to V)o. Denote Lebesgue measure by m. We will show that 

(2.2) A (0) <_ Cm(p) 

for all Borel subsets / of the interval I. 
The vector E(A)>bo is in the domain of H since A is bounded. Let A be the 

mid-point of A. Then 

(A E(A)>boJH E(A)fbo) -(H E(A>),olA*E(A)>bo) 

= (A E(A)/oI (H - A)E(A)/o) - ((H - A) E(A>),OIA* E(A)>/o) 

< 11AE(A)0l I (H - A)E(A)boll + (H - A)E(A)Woll IIA*E(A)>oll 

< rn(A)11A1J 11E(A)>/o 12) 

where the last inequality used IIA* = A and 

11(H - A)E(A)~bo l < 'Tm(A)I E(A)bo ll. 

Hence b IE(A) bo 12 < m(A)IIA I. Since a Borel set can be approximated by a 
disjoint union of open intervals, we get (2.2) for all Borel subsets 3 of I. nl 

Below, we will write ([H, A]01q,) as shorthand for (AO Hb) - (HOIA*f.) for all 
? and 9b in the domain of H. 

In this paper we will only use skew-adjoint bounded operators A, i.e., only A's 
satisfying A* = -A will be used. More precisely, A will be given by (1.3) for 
suitable an's. 

When considering Jacobi operators as in (1.1) we will use o = 61 as the first 
canonical basis vector for e2 (N) without further mention. The vector 81 is a cyclic 
vector for a Jacobi operator, hence in this case, Theorem 2.1 leads to absolute 
continuity. 

A different modification of Putnam's Theorem is proved in [JMOOI. Their version 
also allows H to be unbounded; it is closer to Putnam's Theorem in that it requires 
([H, A]/b I+) > 0 for all fb 74 0. Note that (2.1) may hold even if ([H, A]l bIb) < 0 for 
some ,6 : 0. This will be the case in the proof of Theorem 1.1 below. 

The Mourre method requires that ([H, A]E(I)/ )E(I)>) > blIE(I)> 112 for all 
,6 e '. In (2.1) we only need b = E(A)>bo for subintervals A of I. On the other 
hand the Mourre method allows A to be unbounded. 

The 4th power in (2.1) is explained by the proof of Corollary 2.2 below. 
Dombrowski's choices for A are motivated by considering H to be the real part 

of a weighted shift S and choosing A to be closely related to the imaginary part of 
S. In this paper it is shown that different choices for A may work better in certain 
circumstances. 

Corollary 2.2. Let h, be a positive sequence and suppose H given by (1.1) is a 
selfadjoint operator. Suppose there exists a bounded sequence an of real numbers 
such that either: 

(i) k1,1 > 0 kn,n > 0, and kn,nkn+2,n+2 > kn,n+2 or 
(ii) kn,n+2 > 0, 2k1,1 > kl,3 and 2kn,n > kn,n-2 + kn,n+2. 

Then H has purely absolutely continuous spectrum. Here kn,n := hnan- hn-lan_ 
and kn+2,n = kn,n+2 := hn+ian - hnan+1. 
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Proof. Let A be any bounded interval and let A be given by (1.3). Let 8n e f2(N) 

be the sequence with a 1 in the nth position and zeros everywhere else. Hence, 

(6n)n'=l is the canonical basis for ?2(N). 
Let K [H, A] = HA - AH and let xn (E(A)8118dn). Then 

K;n = kn,n-28n-2 + 2kn,n6n + kn,n+28n+2. 

This is the reason for the choice of subscripts in kn,n and kn,n+2 in the statement 
of this corollary. 

The reader may verify that 
00 

(K E(A)81 )E(A)81)- E (K E(A)8118m) (8m |E(A)81) 
m=1 

00 

kl,lxl + k2,2x2 + E knxn + kn+2,n+2xn+2 + 2kn,n+2xnxn+2. 

n=1 

Thus it follows from (i) that 

(K E(A\)61 E(A\)61) > kl ,lx x2 kjlII E(A\)6j 114. 

Hence H is purely absolutely continuous by Theorem 2.1. 
Suppose (ii). Let K' be given by 

K'6n = knn-26n-2 - 2kn,nn + kn,n+2?n+2 

and let U be given by U6n = (-l)L 2i8;n; then UKU =-K'. The idea is that 
K' < 0, by a modification of a well-known criterion (e.g., [Ber68], p. 505), and 
therefore K > 0. Mimicking the calculation from the proof of Theorem 2.2 in 
[DP95] it follows that 

00 

(K'V I bf) Z (kn,n-2 - 2knn + kn,n+2)>Vb(n)2 - kn,n+2( (n + 2) -(n))2 
n=1 

00 

< E (knn-2 - 2knn + kn,n+2)V (n)2. 
n=l1 

Setting b = E(A)81 it follows from (ii) and UKU --K' that (KE(A)61 E(A)61) 
> (k1,l - ki,3)x2. Thus H is purely absolutely continuous by Theorem 2.1. LI 

Corollary 2.2(i) is implicit in much of the work by Dombrowski. Corollary 
2.2(ii) has been suspected by Dombrowski and the author for some time; it is a 
generalization of Theorem 1.2 in [JMOO]. 

3. PROOF OF THEOREM 1.1 

Theorem 1.1 is an easy consequence of 

Theorem 3.1. Let h2n-1 = h2n > 0 and let H be determined by (1.1). Sup- 
pose there exists a bounded sequence a2n-1 = a2n such that g(n) := h2na2n- 

h2n-2a2n-2 > 1 and If(n)I < 1, where f((n) := h2n+2a2n - h2na2n+2. Then H 

is self-adjoint on its maximal domain and the spectral measure for H is purely 
absolutely continuous. 
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Proof. It follows from [DP98] that H is essentially self-adjoint, when considered as 
an operator with domain f, the sequences with finite support. We will also denote 
the self-adjoint closure by H. In fact, the closure of H is the adjoint of Hminimal 
and is therefore defined on the maximal domain. 

Fix E> 0. Let A be an open subinterval of the interval (E, 00) 

It is easy to see that H is unitarily equivalent to -H. In fact, -H = UHU where 
U6, = (-1)n1ld. Hence, UE(A)U - E(-A), where E denotes the projection 
valued spectral measure associated to H. It follows that 

00 

0 (E(A)61 E(-A)61) =(E(A)60I UE(A)61)= St-l)k-11 E(A)6116k) 12 

k=1 

and therefore 

(() 
00 

(3.1) E I (E(A\)61 162n-1) 12 = E | (E(A)61 162n) 12. 
n=l n=1 

The equality (3.1) was observed in [DP98], with the same proof. 
The reader may verify that K = [H, A] = HA - AH is given by 

K62n_- = 2g(n)62n-I 

K62n = f (n - 1)62n-2 + f (n)2n+2. 

Let xm (E(A)811em). Then 

00 

(KE(A)61 E(A)61) 5 E (KE(A)811lm) (8mlE(A)81) 
m=1 

00 00 

5: 2g()2n-1 + 2 E f(n)x2nXn+2 
n=1 n=1 

(3.2) ~~~~~00 00 

(3 . 2) > 2 E X2- 2 S 
|X2nX2n+2| 

n=1 n=1 
00 00 

> 254x2 2 - 2 x2~ >2E x2n-1 + X2 -2E x2n 
n=1 n=1 
2 

- 2 

where the last equality used (3.1). Now H81 = h182, and therefore E(A)82 
h71E(A)H81. Using E(A)H > EE(A) and (3.2) it follows that 

(KE(A)81iE(A)81) > |(E(A)1 ihVcEE(A)81) 12. 
2 1~~~~~~~~~~~~~~~~ 

Since (E(A)8iJE(A)81) = flE(A)81f|2 it follows that (2.1) holds with b = 2 
2 h2 

Hence A is absolutely continuous in (E, 0o) by Theorem 2.1. Since E > 0 is arbi- 
trary A is absolutely continuous in (0, oc). Using -H = UHU it follows that A is 
absolutely continuous in (-oo, 0) U (0, oCo). 

It remains to show that 0 is not an eigenvalue for H. It was observed in [DP98] 
that this is a consequence of the assumption h2n-1 = h2n. In fact, if 9b C2(N) 
solves Hb = 0, then fb(2n) = 0 and fb(2n - 1) = (_1)n+ll(1); hence 9b 0 and 
therefore 0 is not an eigenvalue for H. D-1 
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Proof of Theorem 1.1. Suppose h2n-1 = h2n= nCn) for n > 0, where cn > 0. Let 
H be the corresponding self-adjoint Jacobi operator determined by (1.1). Let A be 
the skew-symmetric Jacobi operator determined by (1.3) where 

(3.3) a2n-1= a2n = Cn- 1 

Assume cn > b > 0 so that A is bounded. The reader may verify that K [H, A] 
HA - AH is given by 

K62n_ 1I= 282n-1 

K62n = f(n - 1)82n-2 + f(n)82n+2, 
where 

(3.4) f((n) := (n + n1 - C . 
Cn Cn+1 

The choice for an in (3.3) is designed to make K82n-1 = 282n,1) i.e., g(n) 1 for 
all n. 

Now If(n) I 1 is equivalent to 

(3.5) CnCn+l - cn+ n(c -c) < CnCn+ -cn+1 

It is easy to see that (3.5) holds if and only if 

(3.6) cCn < (n + 1) cn+1 and Cn+1 < Cn. 

This is (1.2) up to a change in notation. An application of Theorem 3.1 completes 
the proof. EI 

In the following result we allow the entries in H to be negative. 

Corollary 3.2. Suppose h2n-1 = h2n, h1 :& 0, and h2n+1 = (h n + 1) k I7J n 
If n4 < KnI < 1 and Hnl= I72nI > 0, then H is absolutely continuous. 
Proof. Up to unitary equivalence we may assume that all entries of H are non- 
negative, hence the corollary is a direct consequence of the proof of Theorem 1.1; 
see in particular (3.6). E 

4. CONCLUDING COMMENTS 

4.1. No doubles. We will now state the analogue of Theorem 1.1 in the case where 
the assumption h2n-1 = h2n is removed. 

Theorem 4.1. Let hn > 0 satisfy that nZ is bounded and 

(4.1) hn < hn+1 < n+<hn 

Then H given by (1.1) is self-adjoint on its maximal domain and its spectral mea- 
sure is purely absolutely continuous. 

Proof. It is an immediate consequence of (4.1) that E hn- = oc, hence H is self- 
adjoint by Carleman's criterion. Let Cn - hn . Let f((n) be given by (3.4). It n 
follows as in the proof of Theorem 1.1 that If(n)I < 1. Let A be given by (1.3) 
with an = cn-1. The sequence an is positive and non-increasing, hence bounded. 
The reader may verify that K = HA - AH is given by 

Kn = f(n - 2)8n-2 + 28n + f(n)8n+2. 

Since If(n) I 1 it follows from Corollary 2.2 that the spectral measure for H is 
absolutely continuous with respect to Lebesgue measure. LI 
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Note that h2n-1 = h2n implies C2n-1 2n- and C2n =1. Henlce, Theorem 1.1 
is not contained in this result. 

Theorem 4.1 was proved in [JMOO] with (4.1) replaced by the stronger assumption 

(4.2) n+hn< hn+1 < n+lhn 

The paper [JMOO] compares various approaches to the study of spectral proper- 
ties of Jacobi operators. One of the conclusions reached there is that their version 
of Theorem 4.1 "seem to be quite strong tools for spectral studies. This theorem 
works also for some cases which cannot be studied by subordination methods." 

4.2. The square. In [DP95] the authors suggested studying spectral properties 
of Jacobi matrices whose row sums all are equal to zero. A direct consequence of 
Theorem 1.1 and [DP97] is: 

Theorem 4.2. Suppose hn > 0 satisfies hn < hn+1 and 0 < b < (h+2 < h- . Let 
H be given by 

Mn = hn-1n- (hn-I + hn)8n + hn6n+l 

Then H is self-adjoint on its maximal domain and its spectral measure is purely 
absolutely continuous. 

It follows from the work of Janas and Naboko [JN99a], [JN99b] that if H is given 
by H8n = hn-16n -9nn + hn6n+l and h- = c, then (in many cases) H has purely 
discrete spectrum if c > 2 and purely absolutely continuous spectrum if c < 2. 
Theorem 4.2 is a boundary case because there c= 2. 
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