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ABSTRACT 

 

 

 

Burlon, Drew C.  M.S., Department of Neuroscience, Cell Biology and Physiology, 

Wright State University, 2009. The Presynaptic Regulation of Isolated Neonatal Rat 

Carotid Body Type I Cells by Histamine.  

 

 

 It has been previously shown that Carotid Body Type I cells have the ability to 

synthesize, package and release histamine in response to hypoxia, thereby contributing to 

the modulation of respiration within the rat.  Here, isolated neonatal rat carotid body type 

I cells were used to identify the presynaptic effects of histamine and the specific receptor 

subtypes that modulate them.  Although all four histamine receptor subtypes are 

expressed on the type I cells, and preliminary data showed promising results, further data 

proved that the activation of these receptors with histamine or selective agonists caused 

no rise in intracellular calcium ([Ca
2+

]i) and histamine did not augment calcium entry.  

Thus activation of histamine receptors on type I cells is unlikely to provide a presynaptic 

positive feedback mechanism during chemotransduction and any excitatory role 

attributed to the actions of histamine is likely to come from a postsynaptic effect on the 

carotid sinus nerve (CSN). 

 

Some of the data from this thesis have been accepted for publication in the journal 

Respiratory Physiology and Neurobiology: 

 

Burlon, D. C., Jordan, H. L. & Wyatt, C. N. (2009) Presynaptic regulation of isolated 

neonatal rat carotid body type I cells by histamine. Resp. Physiol and Neurobiol. 168, 

218-223 
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CHAPTER I 

INTRODUCTION 
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Why do we need to breathe? Is it an important function?  What controls our 

breathing?   

Ever since oxygen became a freely accessible molecule on planet earth, organisms 

have been using it to fuel cellular respiration.  Cellular respiration, or the process of using 

oxygen to produce ATP in mitochondria, is what allowed life to flourish and diversify on 

earth.  Because of oxygen’s role as the final electron acceptor in the electron transport 

chain, single as well as multi cellular organisms have the ability to increase their energy 

production.  In animals, respiration is the process through which oxygen is exchanged in 

the lungs for carbon dioxide, a byproduct of cellular respiration.  By inhaling air into our 

lungs, oxygen is delivered to the blood stream.  The blood then transports oxygen to all 

the cells of the body, and allows for cellular respiration to take place.  This fundamental 

process is pivotal for human life to exist as we know it. 

For millennia man has known breathing, or respiration, was integral for survival. 

What was not known however, were the structures and processes involved with the 

control of our breathing.  Toward the beginning of the 20
th

 century breathing was 

discovered to be influenced by specialized organs that sensed changes in the composition 

of the body fluids (PO2, PCO2, or [H
+
]), which reflect O2 demands and CO2 production 

(Heymans, 1930; Gonzalez et al., 1994).  These organs were designated the peripheral 

arterial chemoreceptors. Later, during the middle of the century chemoreceptor sites 

within the brain also began to be identified  (Leusen, 1950a, b).  The work in this thesis is 

concerned with neurotransmission within the peripheral arterial chemoreceptors, in 

particular the carotid bodies of the rat and the role of histamine in their function. 
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LITERATURE REVIEW 
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General Anatomy 

The carotid bodies are the primary peripheral arterial chemoreceptors for the 

control of respiration in the human body. They are sensitive to fluctuations in blood gas 

as well as pH.  Any change in blood gas homeostasis, such as hypoxia, hypercapnia, or 

acidosis are sensed by the carotid bodies which then release neurotransmitters. This 

results in the increased activity of the carotid sinus nerve (CSN) which innervates the 

respiratory centers of the brain, causing increased breathing movements thereby returning 

arterial PO2, PCO2 and pH to normal physiological levels. 

   Located at the bifurcation of the common carotid artery, in humans carotid 

bodies are about the size of a grain of rice and about 1mg in weight.  Although very 

small, the carotid body receives the highest perfusion of blood, per gram of tissue, of any 

organ in the body.  Blood is delivered to the carotid bodies from multiple branches of 

both the internal and external carotid arteries, and perfused through the organ by an 

extensive network of capillaries. Venous drainage of the carotid bodies is completed 

through both the internal and external jugular veins (Fig 1A).  Innervation of this 

particular organ is accomplished by two major nerves.  The first is the afferent portion of 

the carotid sinus nerve (CSN), a branch of cranial nerve IX or glossopharyngeal nerve, 

and second is the efferent ganglioglomerular nerve from the superior cervical ganglion 

(SCG).  The carotid bodies particular location not only allows the organ to sample blood 

that has recently passed through the lungs and heart, but allows it to relay what it senses 

directly to the brain allowing respiratory changes to be made extremely rapidly.   

The carotid body contains two major types of cells (Fig 1B).  The type I cells are 

responsible for sensing reductions in blood PO2, pH and increases in PCO2 (Buckler & 
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Vaughan-Jones, 1994b, a).  Once changes are detected, the type I cell begins to release 

neurotransmitter. This release of neurotransmitter then evokes increased firing of the 

carotid sinus nerve which ultimately innervates cells of the commissural subnucleus of 

the solitary tract in the brainstem (Finley & Katz, 1992) and causes an increase in 

respiration, such that blood gases are returned to physiological levels (Gonzalez et al., 

1994).  Until recently it was thought that the type II cell was glial in function and acted as 

‘physiological glue’ to adhere the tissue together.  However, recent research has 

demonstrated a more complex role for the type II cells. They have been found to have 

neuroprogenitor or stem cell-like properties. Under chronic hypoxia carotid bodies 

undergo hyperplasia and hypertrophy (Bee et al., 1986). It is now known that the Type II 

cells are capable of division and formation of type I cells under chronic hypoxic 

conditions (Pardal et al., 2007). 
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Fig 1. Structure and ultrastructure of the carotid body. A, Shows the local anatomy of the 

carotid body (CC, common carotid; EC, external carotid; IC, internal carotid). B. Shows 

the cellular ultrastucture of a glomoid (cluster of type I and II cells) within the carotid 

body (CSN, carotid sinus nerve). Reproduced from  Pardal et al (2007). 
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History 

The carotid bodies role as a chemosensory organ, and not a gland, was first 

identified by De Castro (De Castro, 1928).  Proving that fibers from the carotid sinus 

nerve were sensory and not secretomotor, De Castro postulated that the carotid bodies 

function was to detect changes in the chemical composition of the blood and that special 

cells within the carotid body were the sensors (De Castro, 1928; Gonzalez et al., 1994).  

This postulate was later confirmed by Corneille J. F. Heymans, who won the Nobel Prize 

in Physiology or Medicine in 1938 with his ingenious work on canines.  By performing 

experiments on the isolated head of a canine (Fig 2) Heymans was able to show  the 

carotid body’s mediation of hyperventilation due to decreases in PO2, pH, or increases  in 

PCO2 (Heymans, 1930).  In Fig. 2, dog A was subjected to periods of hypoxia resulting in 

an increase in respiratory rate in dog B.  This elegantly conducted research was pinnacle 

in defining the carotid body as the primary peripheral chemoreceptor.   
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Fig 2. This figure portrays the isolation of the canines head, connected with anastamoses 

to the isolated trunk of another animal.  Arterial blood from dog A passes into the 

common carotid arteries of dog B below the level of the carotid bifurcation. Hypoxic gas 

given to dog A resulted in increased breathing movements in Dog B as hypoxaemic blood 

stimulated the carotid bodies of dog B. 
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Chemotransduction by the carotid body 

 

It is currently accepted that the basic mechanism of carotid body 

chemotransduction is that hypoxia, or a decrease in blood oxygen, and hypercapnia, an 

increase in blood CO2, inhibit K+ channels in the type I cell membranes leading to 

depolarization, voltage-gated Ca2+ entry and neurotransmitter release (Iturriaga & 

Alcayaga, 2004). However, type I cells release a wide variety of neurotransmitters in 

response to chemostimuli and the mechanisms by which these neurotransmitters regulate 

the output of the CSN are complex, exhibiting marked inter (and intra-) species 

differences (Shirahata et al., 2007). Furthermore, both excitatory and inhibitory 

neurotransmitters are released in a tightly regulated manner by type I cells in response to 

chemostimuli with the overall response of the CSN being determined by the balance of 

excitation and inhibition. Indeed, modulation of the balance of excitatory to inhibitory 

neurotransmitter release has been proposed to underpin, in part, plasticity of the carotid 

body during chronic hypoxic conditions (Prabhakar, 2006).  

Most recently it has been demonstrated that histamine plays a role in arterial 

chemoreception (Dutschmann et al., 2003), being synthesized and released in response to 

hypoxia by carotid body type I cells (Koerner et al., 2004). Moreover, application of 

histamine receptor 1 and 3 agonists to locally perfused carotid bodies mimicked the 

chemoreceptor reflex evoked by cyanide (a potent chemostimulant (Heymans et al., 

1931)) in a decerebrate rat preparation by increasing phrenic nerve output (Lazarov et al., 

2006). However, the precise mechanism by which histamine acted at the level of the type 
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I cells was not examined. An investigation of the role of histamine at the level of the type 

I cell is the focus of this thesis. 

 

Role of the Type I cell as a Chemoreceptor 

It is now widely accepted that the Type I, or glomus cells, are the main 

chemosensory elements within the carotid body (Verna et al., 1975) and the work by 

Fricke Pietruschka on isolated Type I cells (Pietruschka & Acker, 1985) has allowed 

researchers to explore further into how these cells respond to changes in the partial 

pressure of oxygen. 

  Throughout the past couple of decades research has shown that hypoxic inhibition 

of different K
+
 channels within the Type I cells was crucial for chemotransduction to 

occur (Lopez-Barneo et al., 1988; Stea & Nurse, 1991; Wyatt & Peers, 1995).  Although 

the exact K
+
 channel is different from species to species, the general mechanism of 

transduction was the same. A hypoxic event causes the closure, or inhibition, of K
+
 

channels leading to depolarization, calcium influx through voltage-gated calcium 

channels (Buckler & Vaughan-Jones, 1994b), and the eventual neurotransmitter release 

(Gonzalez et al., 1994).  Although this general mechanism is agreed upon, the actual 

process behind how these K
+
 channels are inhibited continues to be a heated topic for 

debate.  Carotid body researchers are constantly theorizing about what the exact 

mechanism is behind the hypoxic closure of these channels.  

The Mitochondrial Hypothesis 

Mitochondria are involved with the process of oxidative phosphorylation.  When 

oxygen is delivered to the cell through the blood stream, mitochondria use it to produce 
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energy.    It has been shown that application of inhibitors of the mitochondrial electron 

transport chain (ETC)
 
or mitochondrial uncouplers to the carotid body increase the 

afferent activity of
 
the carotid sinus nerve (Mills & Jobsis, 1972).  Therefore, inhibiting 

oxidative phosphorylation will cause in increase in the amount of neurotransmitters 

released from the type I cell further stimulating the carotid sinus nerve.  This proposal 

was supplemented by research finding
 
that hypoxia and cyanide, an inhibitor of 

mitochondrial complex
 
IV, lead to a rise in intracellular Ca

2+
 in dispersed, isolated, 

glomus
 
cells (Duchen & Biscoe, 1992a, b). Further research conducted on the carotid 

body has shown that hypoxia may signal via a cascading chain of events.  Decreasing the 

amount of oxygen a cell has available may ultimately decrease the amount of ATP that 

mitochondria can produce. In most cells oxygen has to be dropped to extremely low 

levels before oxidative phosphorylation is inhibited. However, this is not the case in the 

carotid body and physiologically relevant levels of hypoxia will cause inhibition of Type 

I cell mitochondrial oxidative phosphorylation (Duchen & Biscoe, 1992a, b).  A decrease 

in ATP production could trigger a mechanism that might cascade down to membrane 

bound potassium channels, cause them to close, and thus depolarize the cell (Varas et al., 

2007).  Another model of a mitochondrial cascade mechanism hypothesizes that by 

decreasing the amount of ATP production the ATP/AMP ratio will be reduced (Wyatt & 

Evans, 2007).  This in turn would elicit a response from an enzyme, AMP-activated 

protein kinase (AMPK), which couples to the potassium channels resulting in their 

closure (see Fig. 3). Research testing this hypothesis is ongoing (Wyatt et al., 2007).  
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Fig 3.  Schematic showing the AMPK theory in detail. Hypoxia inhibits ATP production 

by mitochondria. Adenylate kinase converts rising levels of ADP to ATP and AMP 

causing AMP levels to rise. AMPK is activated and inhibits the ‘O2-sensitive’ K
+
 

channels leading to Ca
2+

 influx and neurotransmitter release.
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The Membrane Hypothesis: 

During a hypoxic event the type
 
I cell depolarizes, causing an influx of Ca

2+
 

through voltage-gated Ca
2+ 

channels leading to release of transmitters, and afferent nerve
 

activation (Gonzalez et al., 1994).  This was believed to happen through the direct 

inhibition of K
+
 channels within the membranes of type I cells (Lopez-Barneo et al., 

1988).   

Although there is a huge variety of K
+
 conductance channels within the 

membrane of the Type I cell (Patel & Honore, 2001) there seems to be several classes of 

more concern and importance than the others.  One class is the large-conductance Ca
2+

- 

activated K
+
 channels also known as BKCa channels (Lahiri et al., 2005).  The research 

conducted on these channels has shown their importance in the hypoxic response of type 

I cells (Peers, 1990).  The BKCa channels are thought to help control, or regulate, the 

excitatory hypoxic response of type I cells by  closing during hypoxic membrane 

depolarization perhaps to sustain and prolong this depolarization (Lahiri et al., 2005; 

Peers & Wyatt, 2007). Importantly, this occurs despite the rise in [Ca
2+

]i that would 

activate the  BKCa channels 

 To determine how hypoxia modulates BKCa channels the patch-clamp method 

was performed on individual type I cells.  Many different types of experiments were 

performed on individual type I cells (Wyatt & Peers, 1995; Lewis et al., 2002) and each 

showed that hypoxia alone could not directly inhibit the BKCa channels in isolated 

patches.  Data showed that a cytoplasmic intermediary, one that is coupled to BKCa 

channels as well as chemically sensitive to drops in tissue O2, was also involved in the 

excitatory hypoxic response within type I cells.  However, there is also conflicting 
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evidence indicating that hypoxia can inhibit BKCa in isolated patches (Riesco-Fagundo et 

al., 2001). This issue remains unresolved. 

 A second class of oxygen-sensitive potassium channels in type I cells are 

background K
+
 - channels, specifically those resembling TASK (TWIK-related Acid 

Sensing K
+
) background channels.  These channels show biophysical and 

pharmacological similarity to both  TASK-1 and TASK-3 potassium channels and are 

consequently termed TASK-like background channels (Buckler et al., 2006) as their 

molecular identity remains unknown.  It has been shown that inhibition of these channels 

by hypoxia (Buckler, 1997; Buckler et al., 2000) leads to membrane depolarization, 

calcium entry (Buckler & Vaughan-Jones, 1998; Wyatt & Buckler, 2004) and eventual 

neurotransmitter release (Ortega-Saenz et al., 2003).  Inhibition of oxidative 

phosphorylation in type I cells has also been shown to inhibit these leak conductances 

(Wyatt & Buckler, 2003, 2004).  Applying known metabolic inhibitors to type I cells has 

been shown to mimic the response to hypoxia and in the presence of maximal 

concentrations of mitochondrial inhibitors hypoxia has no effect on the TASK-like 

current (Buckler et al., 2006). This shows that the effects of mitochondrial inhibition and 

hypoxia on TASK-like background potassium channels are not additive, but mutually 

exclusive (Wyatt & Buckler, 2004; Buckler et al., 2006), meaning, in order to generate 

the effects of hypoxia, mitochondrial metabolism must be active.  Whether or not 

mitochondrial inhibition is directly coupled to background potassium channels is still a 

hot topic for debate, but what is known is that TASK- like background K
+
 - channels play 

a central role in initiating the response of isolated type I glomus cells to a number of 

chemostimuli (Buckler et al., 2006).   
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Neurotransmission within the rat carotid body 

The carotid body is the key peripheral chemoreceptor for respiratory regulation 

within mammals.  It accomplishes this task by communicating with other type I cells, as 

well as the CSN, through the use of neurotransmitters.  The type I cell, for its size, has an 

enormously large nucleus capable of manufacturing a seemingly endless array of 

neurotransmitters, both excitatory and inhibitory.  The excitatory neurotransmitters work 

both pre and post-synaptically (see Fig. 4), enhancing afferent nervous transmission to 

the brain and thereby increasing respiratory rate and tidal volume.  Inhibitory 

neurotransmitters work pre-synaptically binding to receptors present on the membrane of 

the type I cells.  These neurotransmitters work by decreasing the amount of excitatory 

neurotransmitter released, thus providing a negative feedback mechanism.  Both types of 

neurotransmitters give the carotid body the ability to shape and refine its response to 

perturbations in blood gases.  The next part of the introduction will discuss several of the 

major neurotransmitters released by type I cells and their functions relating to respiratory 

regulation. 
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Fig 4.  Schematic showing neurotransmission within a glomoid in the carotid 

body. The blue arrows show how neurotransmitters may act postsynaptically on the carotid 

sinus nerve, presynaptically on the type I cell that has released the transmitter and also on 

other type I cells within the glomoid.
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Excitatory Neurotransmitters: Post Synaptic 

ACh and ATP – Acetylcholine and the co-release of ATP 

Acetylcholine (ACh), already known to be an excitatory neurotransmitter released 

from the pre-synaptic terminals of motor neurons, has been linked to play an excitatory 

role in the modulation of breathing within the carotid body (Eyzaguirre & Zapata, 1968; 

Gonzalez et al., 1994).  ATP, a molecule used for energy, has also been shown to exhibit 

abilities as an extracellular signaling molecule within the central nervous system 

(Burnstock, 1997).  Together, ACh and ATP are released from type I glomus cells of the 

carotid body in response to changes in blood chemistry (Zhang et al., 2000).  ATP then 

activates purinergic receptors of the afferent fibers of the carotid sinus nerve, increasing 

the rate of respiration during a hypoxic response.   

Through the use of pharmacology as well as electrophysiology the effects of ACh 

and ATP on postsynaptic afferent neurons have been studied.   When the carotid body is 

at rest, random spikes of depolarization occur in the CSN (Rong et al., 2003), but the 

cause of these resting spikes of depolarization was unknown.  Many neurotransmitter 

antagonists have been used to quiet these spikes, but nothing has provided conclusive 

results (Rong et al., 2003).  To determine the mechanism behind these spikes researchers 

in Colin Nurse’s group investigated the role of ACh (a carotid body neurotransmitter that 

had fallen out of favor over the previous 15 years) and ATP in a novel type I cell-petrosal 

ganglion co-culture experiment (Zhang et al., 2000). 

Through the use of pharmacological reagents such as suramin (ATP receptor 

antagonist) and mecamylamine (neuronal nicotinic Ach receptor antagonist), it was 

proven that both ATP and ACh played a role in carotid bodies response to hypoxia 
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(Zhang et al., 2000).  In the normal control group recordings, random spiking in the 

petrosal neurons would occur throughout the testing period, but when hexamethonium or 

mecamylamine were applied ( nicotinic ACh receptor blockers) the spontaneous activity 

was partially and reversibly repressed (Zhang et al., 2000).  As for ATP, when suramin 

was applied ( P2 purinoceptor blocker) a partial suppression of spontaneous activity also 

occurred, even to those previously suppressed by mecamylamine (Zhang et al., 2000).  

To demonstrate that the spontaneous synaptic events arose principally from co-release of 

ACh and ATP from Type I cells, both blockers were tested.  The result was an almost 

complete abolishment of random spiking during the perfusion of suramin plus 

mecamylamine.  As for when the cells were perfused with a hypoxic solution, the same 

results occurred.  When each of the different blockers were applied there was a 

significant decrease in the firing in petrosal neurons (Zhang et al., 2000). 

   

ATP – Adenosine Tri-phosphate: Main excitatory neurotransmitter within the carotid 

body 

Until recently, using antagonists to stop afferent impulses delivered from the CB, 

due to hypoxia, has produced conflicting results (Rong et al., 2003).  To determine the 

effects of ATP on purinergic P2X receptors subtypes within the carotid body (specifically 

P2X2 and P2X3), plethysmography as well as electrophysiology were used.  Knock-out 

mice of P2X2
-/-

, P2X3 
-/-

 and P2X2/P2X3
Dbl-/-

 were created and experimented on using the 

above experimental techniques.   

Plethysmography, or the use of pressure to determine changes in the respiration of 

an animal, was used first to determine the effects of hypoxia on knock-out mice as well 
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as their wild type littermates. Each group of knock-out mice as well as their wild type 

littermates were subjected to differing concentrations of O2 starting at 21% O2 and 

decreasing to 7.5% O2.  For the wildtype (WT) mice, a noticeable increase in respiratory 

rate as well as tidal volume were observed and recorded.  Of the knockouts only the P2X2 

and double knockout showed significant results as compared to the WT using the student 

t-test.  The results showed that removal of the P2X2 receptor subtype resulted in an 

attenuation of the ventilatory response to hypoxia (Rong et al., 2003). 

In experiments involving electrophysiology, an intact carotid body – carotid sinus 

nerve preparation (Rong et al., 2003) was used to study discharges from the afferent 

fibers of the carotid sinus nerve.  Pharmacological studies were performed on this model 

using solutions of ATP as well as a stable analog α,βmetATP.  In each of these 

experiments it was shown that ATP and its stable analog caused an immediate spike in 

discharge within the WT animals followed by a sustained increase for about 72-120 sec 

(Rong et al., 2003).  As for the knock-outs; the P2X2
-/-

 knockout showed a rapid increase 

to only ATP which lasted for only about 5 sec; P2X3
-/-

 did not show a rapid spike in 

discharge, but a sustained response after application of about 60sec; and the double 

knock-out showed no rapid increase and a very mild sustained response (Rong et al., 

2003).   

These results show that ATP is acting on both receptors in different ways.  The 

P2X3 receptors are more easily desensitized and are what create the initial burst of 

afferent discharge, where P2X2 receptors stay open longer allowing for discharges to 

continue over a longer period of time. 
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It is interesting to note that ATP can also activate purinergic P2Y receptors on the 

type I cells (Xu et al., 2005). Activation of these receptors inhibited excitation in the type 

I cells and therefore served to slow or reduce the release of neurotransmitter. 

Consequently ATP can act as both an excitatory post synaptic transmitter and an 

inhibitory presynaptic inhibitor. 

 

Excitatory Neurotransmitters: Pre- synaptic  

5-HT: Seratonin 

Paracrine and autocrine methods of cellular communication have been shown to 

help regulate the release of neurotransmitters within the carotid body (Zhang et al., 

2003).  The monoamines (dopamine and serotonin) are a particular group of 

neurotransmitters released from the carotid body (Gonzalez et al., 1994) that act pre-

synaptically on type I glomus cells(Zhang et al., 2003; Carroll et al., 2005).    

 Serotonin, has been linked to the regulation of excitatory post-synaptic 

neurotransmitter secretion, ATP and ACh, from carotid body type I glomus cells (Zhang 

et al., 2003).  Serotonin works in a paracrine/autocrine method binding to  

5-HT receptor sites present on type I cell membranes.  During periods of normoxia, 

serotonin is released to create a stable resting membrane potential between adjacent cells.  

Working through a G-protein coupled receptor, 5-HT2a, serotonin utilizes the second 

messenger, protein kinase C, to phosphorylate K
+
 channels (TASK-like), closing them, 

resulting in a slight depolarization of the cell (Zhang et al., 2003).  It has also been shown 

that during a hypoxic event, serotonin is released creating a positive feedback 

mechanism.  This results in a further depolarization of the cell and an enhanced 
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production, and release, of both excitatory post-synaptic neurotransmitters (Zhang et al., 

2003).  Therefore, serotonin helps to both regulate, as well as help exacerbate the 

responses to chemostimuli perceived by the type I glomus cells.   

 

Inhibitory Neurotransmitter: Pre-Synaptic 

Dopamine 

Of the two monoamines studied under carotid body physiology, dopamine has 

been studied in the greatest detail (Zhang et al., 2003).  This is because of the potential 

involvement of dopamine in neonatal fatality or sudden infant death syndrome.  At birth 

the carotid body chemoreceptors have very low sensitivity to hypoxia and tend to become 

more sensitive after a couple of days, a process called resetting (Carroll et al., 2005).  

Although the mechanisms of resetting are unknown, research has suggested the 

involvement of dopamine as a neuromodulator during this process (Carroll et al., 2005).    

Similar to 5-HT, dopamine seems to be working through both paracrine and autocrine 

cellular communication methods.  But, unlike 5-HT, dopamine acts as an inhibitory 

neurotransmitter, decreasing the amount of ATP and ACh released to the afferent fibers 

of the carotid sinus nerve (Carroll et al., 2005). 

 Dopamine acting via D2 receptors in the carotid body of both mice and rats has 

been shown to inhibit the effects of hypoxia, resulting in a decrease in the ventilatory 

response (Carroll et al., 2005; Prieto-Lloret, 2007).  Dopamine receptor 

agonist/antagonists, as well as transgenic mice have been used to study this.  In 

experiments using D2 receptor agonists (quinpirole) and antagonists (sulpiride), it was 

consistently shown that during periods of hypoxia, if dopamine is present, a decrease in 
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intracellular calcium concentration will occur (Carroll et al., 2005).  This decrease in 

intracellular calcium is correlated with a decrease in neurotransmitter release from the 

carotid body (Gonzalez et al., 1994).     

 On the contrary, in D2 knockout mice there was not a significant decrease in 

ventilation as compared to their wildtype litter mates when both were subjected to 

periods of increasing hypoxia (Prieto-Lloret, 2007).  These observations lead to
 
the 

general conclusion that D2 receptors contribute but are
 
not essential to CB function or 

hypoxia transduction and play
 
a role in modulating or shaping the secretory response to 

hypoxia (Prieto-Lloret, 2007). 

 

Evidence for Histamine as excitatory neurotransmitter within the Carotid Body 

  Because biogenic amines have been found to contribute so greatly with 

respiratory modulation and control, researchers began wondering if histamine was also 

involved.  It was recently found that Type I cells contain histamine and have the 

machinery to synthesize, store, and release it during periods of hypoxia (Koerner et al., 

2004) indicating a potentially significant role in arterial chemoreception. 

 In type I cells it was shown that histamine decarboxylase, the histamine 

biosynthesis enzyme necessary for the formation of histamine, was present (Koerner et 

al., 2004).  In this same study it was also shown that the packaging materials necessary 

for vesicular transport of histamine were also present.  Histamine requires vesicular 

monoamine transporters VMAT1 and VMAT2 in order to be released from the cell. Both 

of these were found using antibodies directed against both transporters (Koerner et al., 
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2004).  This would suggest that type I cells have the capability to produce as well as 

release histamine if required.   

Histamine is known to act via specific receptors within the mammalian body.  

These receptors H1, H2, H3, and H4 all act via G-protein coupled second messenger 

systems, but each elicit a different response when triggered.  It has been shown that H1 

and H3 are both present within rat carotid bodies (Koerner et al., 2004; Lazarov et al., 

2006), but it has yet to be shown whether these receptors are present solely on the plasma 

membrane of Type I glomus cells.   

By exposing the carotid body to histamine receptor 1 and 3 agonists, it was shown that 

phrenic nerve activity increased in a working heart-brainstem preparation (Lazarov et al., 

2006).  This would suggest that histamine excites the carotid sinus nerve, increasing 

respiration during a period of hypoxia.  What is not known is whether histamine is acting 

in a presynaptic (on the Type I cells) or postsynaptic fashion (directly on the sinus nerve) 

within the carotid body.  Although not discussed in the Lazarov paper, some of the ways 

histamine could be acting in an excitatory manner are defined in the next few pages. 

 

H1 receptor 

H1 Receptor activation preferentially couples to Gαq leading to stimulation of 

phospholipase C (PLC) which catalyses the hydrolysis of phosphotidylinositol 4,5-

bisphosphate (PIP2) to form inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) 

(Hill et al., 1997). Release of IP3 may cause release of Ca
2+ 

from intracellular stores and 

DAG activates protein kinase C (PKC). This PKC activation may lead to Ca
2+

 dependent 

cAMP accumulation, although Gβγ subunits released from Gq may also contribute to a 
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rise in cAMP. More interestingly it has recently been demonstrated that Gαq may directly 

inhibit TWIK related acid-sensing potassium (TASK) channels by a mechanism that is 

independent of PLC-mediated PIP2 hydrolysis (Chen et al., 2006). PKC activation has 

also been shown to inhibit TASK-1 (Besana et al., 2004). Thus H1 activation alone could 

account for IP3-mediated release of Ca
2+

 from Type I cell stores and TASK channel 

inhibition (by direct G protein interaction and by PKC) leading to depolarization and 

voltage-gated Ca
2+

 entry. This potential ability to modulate TASK is interesting as 

inhibition of TASK-like K
+
 channels has been shown to excite rat Type I cells (Buckler 

et al., 2000). In addition PKC activation inhibits BKCa in rat Type I cells (Peers & 

Carpenter, 1998) and this would sustain any depolarization evoked by histamine. 

 

H2 receptor 

H2 receptor activation preferentially couples to the Gs family of G proteins which 

are positively coupled to adenyl cyclase, causing an increase in cAMP and thus activation 

of protein kinase A (PKA).  A PKA dependent pathway has recently been shown to 

inhibit the TASK-like channels that contribute to setting the resting membrane potential 

in rat carotid body type I cells (Xu et al., 2006; Xu et al., 2007).  Thus a H2 receptor 

mediated rise in cAMP could also lead to TASK channel inhibition, cell depolarization 

and voltage-gated Ca2+ entry.  

 

H3 and H4 receptors 

H3 and H4 receptor activation preferentially couples to the Gi family of G 

proteins which are negatively coupled to adenylate cyclase and would tend to decrease 
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cAMP. This would theoretically oppose the actions of histamine at H2 receptors via 

inhibition of adenylate cyclase and hence inhibition of PKA. Indeed, in general the H3 

receptors are thought of as inhibitory auto receptors (Arrang et al., 1983, 1985). 

However, there are limited reports suggesting that H3 receptor agonists can mobilize Ca2+ 

from intracellular stores (Bongers et al., 2006). 

 

The research conducted in this thesis project utilized isolated carotid body Type I cells 

and not the carotid body as a whole.  This method was used to determine whether 

histamine acts presynaptically on the Type I cells to further excite or inhibit the cell 

during a period of hypoxia.  

 

Summary 

The carotid bodies lies at the bifurcation of the common carotid arteries, usually 

directly adhered to the internal carotid artery.  They are composed of two different types 

of cells: The Type I glomus cell, which is chemosensory in nature, and the Type II cell, 

which is more glial-like.  The Type I cell has the ability to react to changes in blood 

gases, as well as pH.  During an adverse event, such as hypoxia or hypercapnia, the Type 

I cell releases neurotransmitters which act on afferent fibers of the carotid sinus nerve.  

These excitatory messages are sent to the medulla resulting in compensatory ventilatory 

adjustment. 

 Type I cells release many different neurotransmitters when activated by changes 

in blood chemistry.  These neurotransmitters can either be excitatory (increasing 

respiratory rate) or inhibitory (decreasing respiratory rate). Furthermore, released 
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neurotransmitter may work in a presynaptic or postsynaptic fashion.  The focus of the 

research performed in this thesis is on the neurotransmitter histamine.  Histamine 

receptor agonists applied to intact rat carotid bodies have been shown to elicit increased 

firing in the rat phrenic nerve. Thus histamine receptor activation in the rat carotid body 

appears to be excitatory.  The purpose of the work presented in this thesis was to 

determine if histamine could act presynaptically on the type I cells rather than directly on 

the carotid sinus nerve endings. Presynaptic Type I cell excitatory activity would amplify 

the hypoxic response possibly by augmenting the release of identified postsynaptic 

excitatory neurotransmitters such as ATP and Acetylcholine.   
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CHAPTER III 

MATERIALS AND METHODS 
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All studies described in this paper were performed in accordance with protocols 

approved by the Wright State University Institutional Laboratory Animal Care and Use 

Committee (IACUC).These protocols are in accordance with the National Institute of 

Health guide for the care and use of laboratory animals (NIH publications No. 80-23) 

revised 1996. 

 

Dissection and Dissociation of Neonatal Rat Carotid Body Type I Cells 

On each day of experimentation two neonatal Sprague Dawley rats (aged 10-20 

days) were placed into an induction chamber supplied with 4.5% isofluorane and oxygen 

to initially anesthetize and immobilize them.  When unconscious, the rat was removed 

from the induction chamber and its head was carefully placed into a gas mask also 

supplied with the same mixture of anesthetic gas.  Once deemed completely asleep (foot 

pinch withdrawal reflex was absent) the following procedure was performed:  The rat 

was placed on its back with both forelegs and hind legs taped down, reducing any 

movement caused by the procedure.  An initial incision was then made along the breast 

bone to expose the underlying subcutaneous fascia.  In order to expose the common 

carotid artery, salivary glands as well as skeletal muscles laying lateral to the trachea 

were removed with very fine forceps (Moria, Fine Science Tools, USA), being careful 

not to cut or damage any of the surrounding arteries and veins.   

The remaining dissection was done under low magnification using a dissection 

microscope (Omâno, Japan).  Once the common carotid artery became visible, any bits of 

fat and fascia were removed to expose the bifurcation of the common carotid arteries 

external and internal branches.  Removal of both the glossopharyngeal nerve and 
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occipital carotid artery revealed the small carotid body, usually adhered to the internal 

carotid artery (see Fig. 1 in the Introduction).  The organ was then tweezed off very 

carefully, making sure to keep its integrity and placed directly into ice cold, oxygenated, 

Dulbecco’s phosphate buffered saline (DPBS) without Ca2+ (to diminish neurotransmitter 

release) or Mg2+ (Sigma). The rats were then humanely killed by decapitation while still 

deeply anesthetized and disposed of accordingly to Lab Animal Research specifications.  

The organs were then transported to the lab and cleaned of any connective tissue or 

debris under increased magnification on the Omâno dissecting microscope.   

Once cleaned the carotid bodies were then transferred to a digestive enzyme 

solution (0.4mg ml-1 collagenase type I, 220u mg-1 (Worthington Biochemical 

Corporation), 0.2 mg ml-1 trypsin type I, 10,100 BAEE u mg-1 (Sigma) in DPBS with low 

CaCl2 (86 μM) and MgCl2 (350 μM)) for 20 min at 37oC in order to degrade the 

connective tissue holding the organ together.  The carotid bodies were then tweezed apart 

and placed back into the incubator for a further 7 min digestion.  The tissue was then 

removed from the Petri dish and transferred to a test tube using a fire polished, silanized 

(Sigmacote, Sigma), Pasteur pipette; where it was triturated and then centrifuged at 110g 

for 5 min. Cells were resuspended in tissue culture medium (Ham’s F12 (Sigma) 

supplemented with 10% heat inactivated fetal bovine serum (Biowest)), centrifuged again 

for 5 minutes at 110g, resuspended in tissue culture medium and plated onto 22 mm2 

poly-d-lysine coated coverslips for immunocytochemistry or 12 mm diameter poly-d-

lysine (Sigma) coated glass coverslips for imaging. Coverslips were placed in 35mm 

diameter plastic Petri dishes and maintained at 37oC in a humidified, 5% CO2 / air 

incubator. Cells were allowed to adhere to the coverslips for 2 hours and all cells were 
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used for experimentation within 8 hours of plating. Maintaining type I cells in tissue 

culture for longer periods of time results in changes to the physiological properties of the 

type I cells (Tse, 1996). 

 

Immunocytochemistry 

Coverslips with attached type 1 cells were fixed by immersion in methanol at -

20˚C for 20min.  Cells were then permeablized by 3 x 5min washes with 0.3% triton X-

100 (Sigma) in phosphate buffered saline (PBS).  Cells were given 3 x 5min washes with 

a blocking solution (1% bovine serum albumin, 1% donkey serum, 0.3% triton X-100 in 

PBS) to limit non-specific binding of the specific anti-histamine receptor antibodies.  

All anti-histamine receptor 1˚ antibodies were diluted 1:100 with blocking solution, 

added to the coverslips and incubated at 4˚C for 16 hours.   

The specific selective anti-histamine receptor antibodies for receptors H1R, H2R 

and H4R were rabbit polyclonal antibodies (Santa Cruz Biotechnology: sc20633, sc-

50315, sc-50313) and the selective anti-histamine antibody for receptor H3R was a goat 

polyclonal antibody (Santa Cruz Biotechnology: sc33977).  Cells were also stained with a 

mouse anti-tyrosine hydroxyase antibody (1:2000, Sigma, T1299) to assist identification 

of type I cells. Following incubation with the 1˚ antibodies, coverslips were washed 4 x 

5min with blocking solution and then incubated for 1 hour, at room temperature in the 

dark with 1:200 dilution of Rhodamine Red-X-conjugated affinipure donkey anti-rabbit 

IgG (Jackson Immunoresearch, for H1R, H2R and H4R),  Rhodamine Red-X-conjugated 

affinipure donkey anti-goat IgG 2˚ antibody (Jackson Immunoresearch, for H3R) and 

FITC conjugated donkey anti-mouse IgG 2
o
 antibody (Jackson Immunoresearch, for 



35 

tyrosine hydroxyase).  Coverslips were then washed for 5 x 5min with PBS before being 

inverted and attached to microscope slides with hard setting anti-fade mountant (2.4 g 

Mowiol 4-88, 6 g glycerol, 6 ml H20, 12ml 0.2M Tris buffer pH 8.5, 2,5% diazobicyclo-

octane) containing 4’, 6-diamidino-2-2-phenylindole dihydrochloride (DAPI, 1mg ml-1) 

for visualization of type I cell nuclei. For controls, 1˚ antibody was omitted during this 

procedure. As a further negative control histamine receptor staining was examined in 

undifferentiated NG108-15 cells that were processed in an identical manner to the carotid 

body cells.  

Images were acquired using a DeltaVision microscope system (Applied Precision) 

on an inverted Olympus IX71 microscope with an oil immersion, x63 magnification, 1.4 

n.a. objective and Coolsnap HQ CCD camera (Photometrics). Multiple z-sections (focal 

depth 0.28 μm, z-step 0.25 μm) were taken through individual cells. Images were 

deconvolved on-line via Softworx software (Applied Precision). 

 

Deconvolution Microscopy 

Deconvolution microscopy uses algorithms in order to redistribute out of focus 

light.  When taking pictures of 3D images, such as cells, not all parts of the sample are in 

the same plane.  This can cause the image to become blurred and out of focus.  What 

deconvolution microscopy does is re-route the out of focus light, using specific 

algorithms in order to make all light shine from the same plane.  This creates an image 

that appears to be much brighter, closer and in focus (Fig 5). 

 

  



36 

Fig 5.  Image showing the effect of applying a Deconvolution algorithm to data acquired 

using a conventional light microscope.  The top, blurry image is from raw data and the 

bottom is post-deconvolution. Image taken from http://micro.salk.edu/dv/dv.html 
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Fura-2AM 

Fura-2AM is a molecular probe that is used to determine intracellular calcium 

concentrations through fluorescence. The acetoxymethyl ester portion of this probe 

allows for the molecule to diffuse easily through the plasma membrane of the cell, 

enabling researchers to avoid using more invasive techniques for loading.  Once inside 

the cell, the AM portion is cleaved off by the cell’s esterases and the cell-impermeant 

fluorescent indicator is left behind.  Upon binding Ca
2+

, Fura-2 exhibits an fluorescence 

shift that can be observed by scanning the excitation spectrum between 300 and 400 nm, 

while monitoring the emission at ~510 nm (invitrogen.com).  In these experiments the 

Fura-2 was excited by exposing it to both 340nm and 380nm wavelengths of light while 

monitoring emissions at 510nm.  Calculations made by looking at the ratios of emitted 

light evoked by 340nm/380nm excitation allowed for us to determine the intracellular 

concentration of calcium at specific instances in time (see below): 

 

Thus the measured experimental ratio is directly proportional to the calcium 

concentration within the cell and can be calculated by calibrating the system using a Ca 

ionophore and a 0mM Ca
2+

 solution and a saturating Ca
2+

 solution (typically 5mM). 

Additionally, by using two different wavelengths of light to measure concentration, we 
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automatically canceled out variables such as dye bleaching and cell thickness that can 

result in unwanted artifact (Figure 6). 



40 

Fig 6: Fluorescence emission of Fura-2 at differing wavelengths 

This graph shows the difference in fluorescence of Fura-2 due to excitation wavelength 

and intracellular free-calcium concentration. The dye was excited at both 340 nm and 380 

nm wavelengths of light.  At an intracellular Ca
2+

 concentration of zero, the fluorescence 

given off when excited with 340nm light is less than that at 380nm when viewed at 

510nm.  As intracellular calcium concentrations increase, the fluorescence at each 

wavelength changes such that more light is emitted when excited at 340nm. Image is 

taken from Molecular Probes catalogue and shows responses of Fura-2 to changes in Ca
2+

 

in a cuvette.
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Ca
2+

 imaging 

Cells were visualised with a Nikon TE2000U inverted microscope with a CFI 

super fluor x40 oil immersion objective. Fura-2 was excited with 50 msec exposures to 

340 nm and 380nm light at 0.2 - 0.5 Hz using a Lambda 10- 3 filter wheel (Sutter) and 

emitted fluorescence measured at 510 nm using a CoolSNAP HQ2 CCD camera. Light 

was provided by a Lambda-LS xenon arc lamp (175 watt, Sutter).  Because of the 

extremely high wattage of this lamp, the light was first passed through neutral density 

filters of 0.7 optical densities (Chroma, USA) before reaching the cellular specimens.   

Neutral density filters are capable of decreasing the intensity of light from all 

wavelengths equally, therefore lowering the power of light from the source. Data 

acquisition and analysis was controlled using Metafluor 7.1.2 imaging software 

(Molecular Devices). 340/380 ratio images were generated on-line and time courses 

showing changes in the fluorescence ratio assessed by placing regions of interest over the 

type I cell images (see figure D). Only cells that responded to an 80mM K+ challenge 

(KCl replaced NaCl in equimolar amounts, 80mM KCl was used to evoke maximal Ca2+ 

influx) with a rapid, robust and reversible increase in the fluorescence ratio were selected 

for study.  
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Fig 7:  This figure is a screenshot from the Metafluor acquisition program.  The program 

gives us the ability to select specific regions of interest for data acquisition as indicated 

by the dotted green and red lines. The two pale circles are type I cells excited at 340nm.
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Perfusion of Isolated Type I Cells 

Isolated cells, plated on round coverslips, were placed into the perfusion chamber 

(0.16ml) and washed with HEPES buffered saline solution (34-36˚C) for approximately 

5-7min.  Temperatures were maintained at 34-36
o
C by passing solutions through an in-

line heater (SH-27F, Warner Instruments, USA) which was feedback controlled by an 

automatic temperature controller (TC-344B, Warner Instruments, USA).  

After looking for cells through the Nikon TE2000U inverted microscope with a 

CFI super fluor x40 oil immersion objective, a group of cells were eventually chosen and 

data acquisition began using Metafluor 7.1.2 imaging software.  Metafluor allows the 

researcher to select a specific area of interest within the field of view of the microscope.  

This program then plots the fluorescence intensity given off by the Fura-2 dye, at 510nm 

and converts it to a ratio graphically. Solution changes were accomplished by switching 

the solution inflow to a chamber containing the solution of choice; all solutions were 

perfused by gravity. Solution exchange in the chamber was usually complete within 5 

seconds. 

 

Statistical Analysis 

Data are presented as means ± standard error of the mean. Where appropriate data 

were analyzed using students’ paired t tests, a value of P < 0.05 was considered 

significant. 
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CHAPTER IV 

RESULTS 
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Immunocytochemistry 

We used anti-histamine receptor antibodies to determine the subtypes of 

histamine receptors expressed in isolated neonatal rat type I cells.  All cells tested 

demonstrated strong staining for H1R, H2R, H3R and H4R and cytoplasmic staining for 

tyrosine hydroxylase (Figs. 8 and 9). Each receptor was stained on three different days 

with different cell isolates similar profiles were seen each time. Results are described 

qualitatively rather than quantitatively. 

 

Staining Profiles for Histamine Receptors 

H1 Receptor:  Staining indicated that receptors were targeted to the cell membrane and 

also the cytoplasm (Fig. 8, H1). Little staining was seen in the nuclear space (see Fig 9, 

H1 where DAPI staining has been omitted). 

 

H2 Receptor:  Staining was present at the membrane and throughout the cytoplasm. The 

strongest staining was cytoplasmic (Figs. 8 & 9, H2) and some low level nuclear staining 

could also be observed (Fig. 9, H2). 

 

H3 Receptor:  H3 receptors were very clearly targeted to the type I cell plasma 

membranes (Figs. 8 & 9, H3) with little or no cytoplasmic staining. Nuclear staining 

could be observed in some cells (Fig. 9, H3) but this was variable and not every type I 

cell showed this pattern of distribution (see Fig. 8, H3 for an example where nuclear 

staining was not observed). 
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H4 Receptor:  H4 receptors were also strongly targeted to the type I cell plasma 

membrane (Figs.8 & 9, H4). The H4 receptors also showed some cytoplasmic 

distribution but little or no nuclear staining was observed. 

No staining was observed in control type I cells where 1˚ antibodies were omitted 

see Figs. 8 & 9, Con H1,2,3,4).  Additionally the histamine receptor staining in 

undifferentiated NG108-15 cells was diffuse and of similar intensity to that seen when 

the 1˚ antibodies were omitted (data not shown) indicating that 1˚ antibodies were not 

non-specifically binding to cell membranes. Undifferentiated NG108-15 cells do not 

express histamine receptors (no citations found) and so any staining seen in these cells 

would be as a result of non-specific antibody interactions. 

These results suggest, that in the neonatal rat carotid body, histamine released 

from type I cells may bind presynaptically to 4 histamine receptor subtypes.  All four 

Histamine receptor subtypes showed staining at the plasma membranes. H3 and H4 

receptors showed the clearest membrane targeting followed by H1 and H2 receptors. 

However, variation did occur and an attempt to quantify the staining data could be made 

to try and determine which receptor predominates at the membrane. This work was 

outside the scope of this thesis but is commented on in the discussion.  

Activation of all 4 histamine receptors could engage a multitude of G-protein 

coupled second messenger systems (Gi/o, Gq, and Gs) which could excite or indeed inhibit 

type I cells.  Furthermore, all 4 histamine receptors may signal via modulation of 

intracellular Ca
2+

 [Ca
2+

]i
 
, see introduction.  Therefore we used Fura-2-fluorescent 

imaging to assess the effect of histamine (10μM, 100μM and 300μM) on [Ca
2+

]i  in 

isolated neonatal rat type I cells.   
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Fig 8.  Histamine receptor subtype immunofluorescence in isolated carotid body type I 

cells.  Images show example z-sections taken through the center of type I cells.  The 

fluorescent red color marks places where H1, H2, H3 and H4 receptors were found using 

immunocytochemistry.  The fluorescent blue color represents the nucleus of Type I cells.  

Control images show absence of 2˚ antibody staining when 1˚ antibodies were absent.
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Fig 9.  Type I cells are known to be dopaminergic, therefore containing the enzyme 

tyrosine hydroxylase (develops the precursor to dopamine, DOPA).  The fluorescent 

green color represents the presence of tyrosine hydroxylase.  This stain was used to assist 

in the identification of type I cells. Red staining represents histamine receptor 

localization. Scale bar is 10µm.
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Effect of Histamine on [Ca
2+

]i  

Histamine (100μM) was bath applied to isolated neonatal rat type I cells.  

Histamine’s activity at all 4 receptor sybtypes is similar with pD2 values for histamine at 

H1R, 6.8; H2R, 6.0; H3R, 7.4; and H4R, 6.8.  pD2 values represent the –log10 of the 

dissociation constant for an agonist at its receptor. The pD2 values therefore represent a 

measure of affinity of an agonist for its receptor. Here there is little difference between 

the histamine receptors affinity for histamine. Thus this concentration of histamine 

should not preferentially activate any one receptor and should evoke a robust response 

from all receptors present.  

To make sure the cells we tested were living and viable, only cells that responded 

with rapid, robust and fully reversible responses to 80mM K
+
 were selected for 

experimentation.  100μM histamine was the first concentration applied to the type I cells 

listed above.  100μM histamine was chosen based on the receptors pD2 values.  At this 

concentration based on the pD2 values for this drug, all histamine receptor subtypes 

should be activated strongly.  Of the 34 cells tested, histamine (100μM, 90 seconds) 

evoked a sustained rise in the Fura-2-fluorescence ration in 44.1% of cells or n=15 ( Fig. 

10A, 0.44 ± 0.08 ratio units, P < 0.0001) and the sustained response was usually preceded 

by rapid spiking activity.  Rarely, brief single spike responses with no sustained 

component to histamine at this concentration were observed (11.7 % of cells, Fig. 10B) 

and the remainder of cells showed little or no change in Ca
2+

 in response to a histamine 

challenge ( 37.9% of cells, Fig. 10C).   
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Fig 10.  Various effects of 100μM histamine on type I cell Fura-2 fluorescence ratio.  K 

indicates the time interval 80mM K
+
 solution was perfused over the cells; H is for 

histamine; all scale bars are 3 minutes.  On each graph, histamine was perfused for 90 sec 

and the results were recorded using the program MetaFluor.  A) Graph showing the 

sustained response when exposed to 100μM histamine. B) Example of transient response 

with 100μM histamine. C) Example of non responder with 100μM histamine.  D) Bar 

graph showing the percentage of responders and non responders in 34 cells.
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Dependence of Histamine evoked rise in [Ca
2+

]i on extracellular Ca
2+ 

As mentioned in the introduction histamine could evoke a rise in [Ca
2+

]i by many 

different signaling pathways. H1 and H2 receptor mediated pathways could induce 

depolarization and voltage-gated calcium entry as well as mediating Ca
2+

 release from 

intracellular stores. There are also limited reports that H3 receptors can couple to release 

of intracellular Ca
2+

. Consequently, as the immunocytochemistry data indicated that all 4 

histamine receptors are present on type I cells the source of the rise in [Ca
2+

]i was 

examined. 

To determine if histamine was evoking Ca
2+

 influx from the extracellular solution 

the CaCl2 was removed from the solution and 1mM ethylene glycol-bis(2-aminoethyl)-

N,N,N’,N’-tetra acetic acid (EGTA) was added to chelate any free Ca
2+

 in the 

extracellular solution. Histamine (100µM) was added to cells for 90 seconds and if a 

sustained rise in [Ca
2+

]i was observed then the calcium free extracellular solution was 

perfused over the cells when the peak of the response had been reached.  

Under these conditions removal of extracellular Ca
2+

 partially reversed the 

sustained rise in [Ca
2+

]i  to histamine (100 μM) by 50.9  8.6% (n = 6, P < 0.01, Fig. 11A 

and B). Thus the sustained rise in [Ca
2+

]i is caused by a combination of both Ca
2+

 influx 

and Ca
2+

 release from intracellular stores. 
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Fig 11.    Effects of 100µM histamine on type I cell Fura-2 Fluorescence ratios.  A) 

Example recording showing a sustained response to 100µM histamine followed by the 

removal of extracellular calcium.  This was performed in order to tell whether Ca
2+

 was 

coming from extracellular on intracellular stores.  B) The blue bar represents the amount 

Ca
2+ 

dropped with 0mM Ca
2+ 

as compared to the normal extracellular calcium 

concentration (red).  



58 

  

0

K H 0Ca1.8
(F

/F
)

3
4

0
3

8
0

A

0

0.9

0m M2.5m M

(F
/F

)
34

0
38

0

p<0.01

B

3 Min



59 

Effect of Histamine agonists on [Ca
2+

]i  

In order to identify which histamine receptors were contributing to the rise in the 

Fura-2 ratios observed with histamine we investigated the effects of 4 selective histamine 

receptor agonists on Fura-2 fluorescence in isolated type I cells.   

Bath application of the H1 receptor agonist histamine trifluoromethyl toluidide ( 

HTMT dimaleate, 30 M, 90 seconds) failed to induce a sustained rise in the Fura-2 

fluorescence ratio in all 17 cells tested.  2 cells showed a brief single Ca
2+

 spike however 

the majority of cells 98.2%) showed no response to HTMT dimaleate (Fig. 12).  The 

selective H2 receptor agonist amthamine hydrobromide (30 M, 90 seconds) initiated 

spiking activity in the Fura-2 fluorescence ratio in isolated type I cells with 66.6% (10 

cells from 15 tested) responding with a repeated spiking increase in the Fura-2 

fluorescence ratio (Fig. 13A).  This spiking activity developed into a sustained response 

in 40% of responding cells (Fig. 13B).  

The H3 receptor agonist (R)-(-)- -methylhistamine hydrobromide (30nM) 

consistently evoked sustained rises in the type I cell Fura-2 fluorescence ratio of 0.46  

0.06 ratio units (P <0.002, n = 5, Fig. 14)  

The H4 receptor agonist 4-methylhistamine dihydrochloride (1 M) also evoked 

sustained rises in Fura-2 fluorescence ratio of 0.65  0.09 ratio units (P < 0.006, n=4, Fig 

15). 
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Fig 12.  Pharmacological stimulation of the H1 histamine receptor subtype using the H1 

selective histamine agonist, HTMT dimaleate, at a concentration of 30μM.  Bath 

application of the agonist failed to raise intracellular Ca
2+

 concentrations in 17 different 

type I cells.  
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Fig 13.  Pharmacological stimulation of the H2 histamine receptor subtype using the H2 

selective receptor agonist, Amthamine Hydrobromide, at a concentration of 30μM.  Bath 

application of the H2 receptor subtype agonist elicited two different responses in the 

Fura-2 fluorescence ratio. Graphs showing the A) transient response in 10/15 cells and B) 

the transient to sustained response in 4/10 that responded.  5 of the cells did not respond 

at all.  
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Fig 14.  Pharmacological stimulation of the H3 histamine receptor subtype using the H3 

selective receptor agonist, (R) - (-) – α – methylhistamine hydrobromide , at a 

concentration of 30nM.  Bath application of the H3 receptor subtype agonist evoked 

sustained responses in 5 cells with a Fura-2 fluorescence ratio of 0.46 ± 0.06 ratio units.
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Fig 15.  Pharmacological stimulation of the H4 histamine receptor subtype using the H4 

selective receptor agonist, 4 – methylhistamine dihydrochloride, at a concentration of 

1μM.  Bath application of the H4 receptor subtype agonist evoked sustained rises in the 

Fura-2 fluorescence ratio of 0.65 ± 0.09 ratio units. ( P< 0.006, n =4 ).
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Concentration Dependence of Histamine Response 

After observing the Type I cells responses to the histamine (100µM), we began to 

wonder if the type I cell response was dose dependent. Approximately 40% of type I cells 

had not responded to histamine (100 µM).  It appeared that type I cells did respond in a 

dose dependent manner to histamine with 100% of cells responding to histamine 

(300μM, 90 seconds) with a reversible sustained rise in the Fura-2-fluorescence ratio 

(Fig. 16A, 0.69 ± 0.05 ratio units, P < 0,00001, n = 13).  In contrast, of 34 cells tested, 

histamine (100μM, 90 seconds) only evoked a sustained rise in the Fura-2 fluorescence 

ratio in 44.1% of cells (Fig. 16B, 0.44 ± 0.08 ratio uints, P < 0.0001, n = 15) and the 

sustained response was usually preceded by rapid spiking activity.   

However, when the concentration of histamine was reduced it was noticed that at 

a concentration of 10μM and even 0μM histamine a large sustained response continued to 

occur (Fig. 17A, 0.53 ± 0.04 ratio units, n = 5 and Fig. 17B, 0.68 ± 0.09 ratio units, n = 3 

respectively).  Indeed the response to 10 µM was greater than that observed with 100 

µM. The fact that similar responses were seen when control extracellular solution with no 

added histamine was perfused onto the cells suggested that the data being observed were 

artifactual.  
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Fig 16.  Graphs representing dose response experiments performed on individual type I 

glomus cells with no neutral density filter.  A) Bath application of 300μM histamine 

evoked a sustained rise in the Fura-2 fluorescence ratio of 0.69 ± 0.05 ratio units ( p < 

0.00001, n = 13) as compared to the application of B) 100μM histamine which only 

accounted for a rise of 0.44 ± 0.08 ratio units. (p < 0.0001, n = 15 ).
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Fig 17.  Graphs representing dose response experiments performed on individual type I 

glomus cells with no neutral density filter.  A) Bath application of 10μM histamine 

evoked a sustained rise in the Fura-2 fluorescence ratio of 0.53 ± 0.04 ratio units ( n = 13) 

as compared to the application of B) 0μM histamine which accounted for a rise of 0.68 ± 

0.09 ratio units. (n = 3).
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Effects of Histamine and Agonists on [Ca
2+

]i with the addition of a 0.7 

Neutral Density Filter 

 

It was decided to incorporate the use of a neutral density filter in order to dampen 

the suspected harmful effects of ultra violet light in the Ca
2+

 imaging system (see 

discussion).  In order to determine what filter to use a range of filters from 0.6 – 0.9o.d 

(Chroma) were tested.  With each filter only saline was bath applied and the effects were 

recorded from Fura-2 loaded cells.  At the lowest range of 0.6, allowing only 25% light 

transmission, there continued to be noticeable spiking during the saline application 

similar to the results seen previously with H2 receptor agonist (Figs. 18A and B).  A 

higher grade neutral density filter of 0.9 was then applied.  This resulted in the 

eradication of random spiking.  It was also found that a 0.7 (12.5% light transmission) 

neutral density filter eradicated random spiking of type I cells (Fig 18C). 

After discovering that a neutral density filter was capable of decreasing the 

occurrence of random spiking within type I cells, new experiments were conducted 

testing its effects on the suspected artifact found during the initial rounds of 

experimentation.  First a very high concentration of 300μM histamine was bath applied to 

the type I cells for a period of 90 seconds each after the initial 80mM K
+
 stimulus. This 

resulted in 0 out of 20 cells responding to histamine at this concentration (Fig 19).   

Each histamine receptor agonist was then used again to determine their effects on type I 

cells together with the 0.7 neutral density filter.  The first agonist used was the H1 

receptor subtype agonist,  HTMT dimaleate, at a concentration of 30μM.  The agonist 

was bath applied for 90 seconds after the intial potassium stimulus.  Out of 17 cells tested 
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0 responded to the application of the agonist (Fig. 20).  Secondly, the H2 receptor 

subtype agonist, Amthamine Hydrobromide, was used at a concentration of 30μM.  

Again, out of the 6 cells tested 0 responded to the drug at this concentration (Fig. 21).  

Thirdly, the H3 receptor subtype agonist,   (R) - (-) – α – methylhistamine hydrobromide, 

was used again at a concentration of 30nM.  Similar results were found, out of the 6 cells 

tested 0 responded to the drug at this concentration (Fig. 22).   

With the incoroporation of the neutral density filter, no cells responded with a 

sustained or transient response to histamine or the specific agonists.  These data 

demonstrate that histamine as well as selective histamine receptor agonists do not have an 

effect on intracellular calcium in carotid body type I glomus cells.  
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Fig 18.  Neutral density filter selection.  A) and B) 0.6 ND filter was used allowing only 

a 25% transmission of light;  Cells were only subjected to HEPES buffered saline 

solution;  noticeable random spiking still occurred at this density.  C) 0.7 ND filter 

(12.5% transmission) added, and resulted in the eradication of random spiking within the 

isolated cells.
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Fig 19.  Effects of 300μM histamine on type I cells with the incorporation of the 0.7 ND 

filter.  Out of 20 different cells tested, not a single one responded to the bath application 

of 300μM Histamine.  80mM K
+
 was initially perfused over the cells to determine 

whether or not the cells were viable to experimentation.
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Fig 20.  Pharmacological stimulation of Type I cells with the H1 receptor subtype 

agonist, at a concentration of 30µM, with the incorporation of the 0.7 ND filter.  Out of 

17 cells tested, 0 showed a sustained response.  80mM K
+
 was applied both before and 

after application of the agonist.  
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Fig 21.  Pharmacological stimulation of Type I cells with the H2 receptor subtype 

agonist, at a concentration of 30µΜ, with the incorporation of the 0.7 ND filter.  Out of 6 

cells tested, 0 showed a sustained response.  80mM K
+
 was applied both before and after 

application of the agonist. 
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Fig 22.  Pharmacological stimulation of Type I cells with the H3 receptor subtype 

agonist, at a concentration of 30nM, with the incorporation of the 0.7 ND filter.  Out of 6 

cells tested, 0 showed a sustained response.  80mM K
+
 was applied both before and after 

application of the agonist. 
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DISCUSSION 
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Results Summary 

  Through the use of immunocytochemistry it was observed that all 4 histamine 

receptors were present on or around the plasma membrane of carotid body Type I cells.  

During the initial rounds of experimentation it was shown that histamine could play a role 

in the dose dependent excitation of Type I cells, but additional experimentation proved 

that the data gathered were a result of artifact instead.  Following these findings further 

experiments were performed on isolated Type I cells and the data collected showed no 

excitatory effects of histamine on intracellular calcium in Type I cells isolated from 

neonatal rat carotid body. 

 

Despite all the pathways described in the introduction histamine does not appear to 

couple to Ca
2+ 

signaling in type I cells.  Why might this be? 

 

Are the Histamine Receptors Genuinely at the Membrane of Type I cells? 

The limited staining performed in this study showed positive results for all 4 

histamine receptor subtypes, but attempting to assess which receptors were most strongly 

targeted to the plasma membrane was not carried out.  This procedure could have been 

done utilizing a specific program within the deltavision microscope. This program would 

have enabled the calculation of the percentage staining within a micron of the cell 

perimeter, and would have indicated which receptor subtype was the most strongly 

membrane targeted.  However, comparing the staining intensity between antibodies is 

problematic because of different antibodies’ affinities for their receptors.  Although one 

antibody shows a more intense staining pattern around the membrane does not 



87 

necessarily mean it is more present.  The higher signal could just be due to the stronger 

binding potential of that antibody to its specific receptor subtype. 

Although staining for these receptors should be most visible at or around the 

plasma membrane, extensive staining within the cytoplasm as well as the nucleus was 

observed.  One reason could be that the antibodies used for this particular set of 

experiments were of poorer quality than what was anticipated.  An experiment using 

histamine antibodies from a different source and comparing staining patterns could rule 

out this finding. This notwithstanding it has been observed that the staining of ryanodine 

receptors, whose expression is usually restricted to the endoplasmic reticulum, were 

present in the nuclei of cells (Kinnear, 2008).  Therefore the antibodies could be binding 

to premature histamine receptor subtypes before they are transported to the plasma 

membrane from the nucleus. 

From the data collected (Fig. 8 & 9) the receptors showing strongest membrane 

staining appear to be the H3 and H4 histamine receptor subtypes.  However, these 

subtypes are usually thought to be inhibitory when activated, not excitatory (Arrang et 

al., 1983, 1985). However it should be noted that when Lazarov et al injected H3 agonist 

into the carotid body they observed excitation. 

To absolutely confirm the expression of histamine receptor subtypes at the 

membrane of Type I cells antibodies that bind to extracellular epitopes of the receptors 

should be applied to non-permeablised living type I cells. The cells should then be 

washed and fixed. Any membrane staining observed should be due to the presence of 

histamine receptors in the type I cell plasma membrane. 
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Age and species differences 

Age could have been an important factor in why different results were gathered.  

In Lazarov’s experiments where histaminergic agonists stimulated respiration adult rats 

were used instead of the young rats used in ours (10-20 days).  However, previous 

research has shown no significant difference between 10-20 day old animals and adults in 

the hypoxic response of the carotid body (Kholwadwala & Donnelly, 1992).  Also, it has 

been shown that isolated Type I cells isolated from rats of the same age range as that used 

in our study have a mature hypoxic response (Pepper et al., 1995), so age is unlikely to be 

a major influence on whether or not histamine is excitatory. 

Interestingly it has been indirectly shown that histamine is excitatory in carotid 

body Type I cells in cats. Histamine does not appear to stimulate the post synaptic 

petrosal ganglion (Del Rio et al., 2008) but does excite the CSN when injected into the 

carotid body.  Unfortunately this experiment was performed using another species to the 

rat and there are numerous species differences between cat and rat carotid body. The 

parallel experiment using rats has not been performed. Furthermore the recordings in the 

cat were made on the cell bodies of the petrosal ganglion and not their dendrites within 

the carotid body. It is possible that receptors expressed at the cell bodies of petrosal 

ganglion neurons are radically different from those expressed at the postsynaptic 

terminals that type I cells communicate with. No attempt to characterize this has been 

made. 
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Were Cells Damaged by Enzyme Dissociation Process? 

During the dissociation process harsh enzymes, such as trypsin, were used to 

break down the surrounding tissue in order to help free and isolate the carotid body Type 

I cells.  During this process it is possible that the integrity of the proteins that compose 

histamine receptors were compromised resulting in the lack of response when exposed to 

histamine.  If this was the case, then G-protein coupled receptor damage would be the 

cause for the lack of response to histamine application.   

Experiments were performed to determine the integrity of G-protein coupled 

receptors using the muscarinic agonist acetyl-β-methylcholine (100µM).  Previous work 

has shown that muscarinic agonists induce rises in [Ca
2+

]i in neonatal rat type I cells 

(Dasso et al., 1997). This agonist was bath applied to isolated Type I cells and the results 

were recorded using the MetaFluor program.  The resulting data from this experiment 

showed that when the muscarinic agonist was bath applied the cells responded with 

spking rises in [Ca
2+

]i (n = 6). Thus it appears that G-protein coupled receptors, or at least 

muscarinic receptors, were not enzymatically damaged during the dissociation process 

used during this thesis work (Fig. 23).   

 

Does Histamine augment Calcium entry? 

Another possibility for the lack of response to histamine during bath application is 

that it works in an additive fashion, effective only when the cell has already been 

depolarized.  It could be that histamine is amplifying Ca
2+

 influx by regulating voltage 

gated calcium entry (see Introduction).  If histamine did work in an additive fashion, then 
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applying it during a period of depolarization should further increase the effects causing a 

greater spike in the   Fura-2-fluorescence ratio graph. 

An experiment was performed to determine whether or not histamine further 

excited the cell during a depolarizing event.  Type I cells were isolated as before and 

subjected to high levels of potassium.  During these events, histamine (300 µM) was also 

applied and the results were recorded using the MetaFluor program.  The resulting data 

showed that at no point during the application of both the high molarity potassium and 

histamine did the ratios increase, or even change (Fig. 24, n = 6).  This is evidence for 

that histamine does not further amplify Ca
2+

 influx by regulating voltage gated calcium 

entry.   
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Fig 23.  Graph demonstrating functional g-protein coupled muscarinic receptors in the 

plasma membrane of Type I cells.  M represents the amount of time the muscarinic 

agonist was bath applied to the Type I cell.  
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Fig 24. Graph determining whether or not histamine amplifies Ca
2+

 influx by regulating 

voltage gated calcium channels.  80mM K
+
 solution was applied three times.  After the 

first application of potassium, 300µM histamine was bath applied.  During the middle of 

the histamine application high potassium was placed back on to see if there were any 

changes in the fura-2 fluorescence ratio.  The graph clearly shows no significant changes 

to the spikes during or after the application of histamine.  
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What Caused the Artifact? 

 

Ultra Violet Light and Reactive Oxygen Species (ROS) 

 

 The artifact presented itself when our Type I cells were exposed to bright 

Ultraviolet light. Dimming this light by the use of neutral density filters enabled the 

artifact to be titrated out.  The wavelengths of excitatory light used in all the preceding 

experiments were 340nm and 380nm of light.  This puts them into the Ultraviolet A, or 

long wave UV light category.  Although these particular wavelengths are not as harmful 

as shorter wavelength UVB light, when cells are exposed to them for extended periods of 

time cell damage can eventually occur (Orit Bossi, 2008). 

 Reactive oxygen species (ROS) are molecules known to participate in cellular 

damage, oncogenesis, mutagenesis and biological aging (Peter Koncz, 2006).  The effects 

of ROS are determined by the rate of its formation and elimination (Peter Koncz, 2006).  

The major site of ROS production is within the mitochondria.  It has been shown that UV 

light can induce the formation of ROS (Peter Koncz, 2006).  This formation of ROS 

could explain the gradual, slow increase in intracellular Ca
2+

 as the experiment 

progressed, but could not explain why the cell was able to remove the excess calcium 

over a period of time and return to its original baseline Fura-2 Fluorescence ratio.  

It is also possible that the overexposure to UV light was damaging the cellular 

plasma membrane, compromising its integrity and thereby allowing calcium to flow into 

the cell (Maglio, 2005). 
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CHAPTER VI 

 

FUTURE DIRECTIONS 
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 The data collected during this thesis prove there are still many questions left 

unanswered in determining whether or not histamine plays a role in the modulation of 

respiration by the carotid body.  The direction that the lab is going after this thesis is 

looking at whether histamine acts to potentiate hypoxia within the carotid body,  

meaning, that during a hypoxic event, histamine will cause an even greater influx of 

calcium within the type I cell. In this hypothesis, histamine is not acting as a modulator as 

previously thought but as a potentiator, increasing the release of excitatory 

neurotransmitters. Furthermore, it would be interesting to investigate whether histamine 

can potentiate the effects of other excitatory presynaptic neurotransmitters. During a 

hypoxic episode multiple neurotransmitters will be released. It is conceivable that 

histamine alone is not excitatory but in combination with acetylcholine or serotonin 

causes enhanced calcium signaling. The muscarinic receptor subtypes in rat type I cells 

have not been characterized and histamine could, in theory, synergise with the G-protein 

coupled signaling cascades activated by these receptors. 

 It would also be interesting to see if histamine is acting in a negative fashion, 

acting as a sort of double negative.  It could be possible that histamine is inhibiting an 

inhibitory neurotransmitter, thereby increasing the release of excitatory neurotransmitters 

to the post synaptic carotid sinus nerve.  An experiment that could be run to test this is 

applying histamine with a known type I cell inhibitor, such as dopamine, and seeing 

whether or not there is any excitation or attenuated inhibition within the type I cell.    

 Finally, if histamine does not seem to have any excitatory mechanisms 

presynaptically its actions postsynaptically should be investigated. This could be done 

using an intact carotid body, carotid sinus nerve preparation. Selective potent antagonists 
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of the various histamine receptors should be able to determine if any of the postsynaptic 

CSN activity observed during hypoxia is attributable to histaminergic neurotransmission.
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