
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2010

A Structured ASIC Approach to a Radiation Hardened by Design A Structured ASIC Approach to a Radiation Hardened by Design

Digital Single Sideband Modulator for Digital Radio Frequency Digital Single Sideband Modulator for Digital Radio Frequency

Memories Memories

Thomas B. Pemberton
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Electrical and Computer Engineering Commons

Repository Citation Repository Citation
Pemberton, Thomas B., "A Structured ASIC Approach to a Radiation Hardened by Design Digital Single
Sideband Modulator for Digital Radio Frequency Memories" (2010). Browse all Theses and Dissertations.
349.
https://corescholar.libraries.wright.edu/etd_all/349

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/349?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

A STRUCTURED ASIC APPROACH TO A RADIATION HARDENED BY

DESIGN DIGITAL SINGLE SIDEBAND MODULATOR FOR DIGITAL RADIO

FREQUENCY MEMORIES

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Engineering

By

Thomas B. Pemberton
B.S.C.E, Wright State University, 2008

2010
Wright State University

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

June 11, 2010

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY Thomas B. Pemberton ENTITLED A Structured ASIC Approach
to a Radiation Hardened by Design Digital Single Sideband Modulator for Digital
Radio Frequency Memories BE ACCEPTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF Master of Science in Engineering.

John M. Emmert, Ph.D.
Thesis Director

Kefu Xue, Ph.D.
Department Chair

Committee on Final Examination

John M. Emmert, Ph.D.

Ray E. Siferd, Ph.D.

Saiyu Ren, Ph.D.

Stephen L. Hary, Ph.D.

John A. Bantle, Ph.D.
Vice President for Research and Graduate Studies
and Interim Dean of Graduate Studies

Abstract

Pemberton, Thomas B. M.S. Egr., Department of Electrical Engineering, Wright State
University, 2010. A Structured ASIC Approach to a Radiation Hardened by Design
Digital Single Sideband Modulator for Digital Radio Frequency Memories.

Digital Radio Frequency Memories (DRFM) are widely used as modules in digi-

tal signal processing. These modules can provide several forms of signal manipulation

and storage capabilities. With single event effects caused by environmental radiation

the need for a radiation hardened DRFM is increased. Typical radiation hardening

involves the use of specialized foundries utilizing proprietary CMOS libraries that

are expensive to build or adding lead packages around a chip that is expensive and

add weight to the chip. An alternative radiation hardening technique is to utilize a

radiation hardened by design library. This library includes digital gates that have

been hardened by the use of guard rings, reverse body bias or other methods. With

the use of the hardened library, commercial synthesis tools can create a structural

Verilog output from the behavioral VHDL design. The radiation hardened by de-

sign circuit will be larger than a non-hardened design, but can be fabricated using

standard foundries.

This research also takes advantage of current advancements of commercially

available software and designs that have led to a structured ASIC approach for fab-

ricating a design. This structured ASIC approach fabricates a design in two stages.

The first stage is the transistor and bottom metal layers with the second stage being

the top metal layers. Silicon wafers can be fabricated in bulk using the first stage of

uncommitted logic with separate top metal layer masks applied to commit the logic

to a specific design. A radiation hardened by design standard cell library was used

to create the Structured ASIC standard cells and will allow production of radiation

hardened circuits with a short design time.

iii

For this research, a generic frequency shifting DSSM is proposed that targets a

radiation hardened by design Structured ASIC to deliver performance in processing

as well as radiation hardening at both the transistor level and gate level. This re-

search produces a parameterizable DSSM VHDL design that can be easily modified to

produce a DSSM with various signal processing and storage capabilities with minimal

modifications. The designed DSSM was tested on an FPGA board for prototyping,

but was ultimately targeted for the radiation hardened by design structured ASIC.

The design created through this research was compared to a non-hardened DSSM

using a similar CMOS process for area, power, speed and Spur Free Dynamic Range.

iv

Table of Contents
Page

I. Introduction . 1
1.1 Motivation . 1
1.2 Research Goal . 2
1.3 Research Approach . 2

1.3.1 Testing and Analysis 2

1.4 Document Organization 3

II. Background and Theory . 4

2.1 Aspects of a Digital Radio Frequency Memory 4

2.1.1 Electronic Warfare 4
2.1.2 Importance of Bandwidth in a DRFM 5

2.2 Modulators . 6
2.2.1 Analog Single Sideband Modulator 8

2.2.2 Digital Single Sideband Modulator 9

2.3 Hilbert Transform Theory 12

2.3.1 Digital Hilbert Filter 13

2.4 Radiation Hardening . 15

2.4.1 Total Ionizing Dose 16

2.4.2 Single-Event Upset 16

2.4.3 Single-Event Transient 17

2.4.4 Single-Event Latchup 17

2.4.5 Increasing Radiation Hardness in Digital Circuits 18

2.5 Structured ASIC . 23
2.6 Digital Radio Frequency Memory Designs 25

III. Methodology . 27

3.1 I/Q Creation using Digital Hilbert Filter 28

3.2 Design Flow . 29

3.3 MatlabR© Simulations . 29
3.4 VHDL . 30
3.5 Digital Hilbert Filter . 31

3.6 Digital Mixer . 32

3.6.1 Wallace-Tree Multiplier 33

3.6.2 Carry Look-Ahead Adder 34

3.7 Shifting Frequency Generation 35

3.8 VHDL Implementation 37

v

Page

3.8.1 VHDL Simulation 39
3.9 FPGA Implementation 39

3.10 Structured ASIC Implementation 40

IV. Analysis and Results . 45

4.1 Choosing Parameters for Best Performance 45

4.2 MatlabR© Simulation Description 46

4.3 FPGA Testing Description 46

4.3.1 FPGA Test Parameters 46
4.3.2 FPGA Test Setup 47

4.4 Structured ASIC Testing Description 48

4.5 MatlabR© Floating-Point Simulation Results 50

4.6 Fixed-Point Simulation Results 50
4.6.1 Hardware Test Case #1 51

4.6.2 Hardware Test Case #2 51

4.6.3 Hardware Test Case #3 54

4.6.4 Hardware Test Case #4 56

4.6.5 Hardware Test Case #5 57

4.6.6 Hardware Test Case #6 59

4.6.7 Hardware Test Case #7 59

4.6.8 Hardware Test Case #8 62

4.7 FPGA Test Results . 62
4.8 Results . 65
4.9 Comparison . 68

4.9.1 Design Parameter Effects 68

4.9.2 S-ASIC Versus FPGA 72
4.9.3 Hardened Versus Non-Hardened DSSM 74

V. Conclusions . 76
5.1 Lessons Learned . 76
5.2 Future Work . 77

5.2.1 Filterbank Approach 77

5.2.2 Pipelined Digital Hilbert Filter 77

5.2.3 Signal Storage and Retrieval System 79

Appendix A. MatlabR© Simulations and Comparison Scripts 80

A.1 MatlabR© Floating-Point DSSM Simulation 80

A.2 MatlabR© Fixed-Point DSSM Simulation 80
A.3 MatlabR© Floating-Point vs. Fixed-Point DSSM Simulation 82

A.4 MatlabR© Comparison Script 85

A.5 Dynamic Range Helper Function 86

vi

Page

Appendix B. VHDL Source Code and Simulation Testbench Files . . 88

B.1 DSSM VHDL File . 88

B.2 VHDL Design Testbench 90

Bibliography . 94

vii

List of Figures
Figure Page

2.1. High-Level Overview of DRFM 5

2.2. Nyquist Frequency Bands . 5

2.3. Baseband RF Signal . 8

2.4. RF Signal Modulated using DSM 8

2.5. RF Signal Modulated using SSM 9

2.6. Analog SSM Structure . 10

2.7. Symmetry Exploitation of Quarter-Wave Technique 11

2.8. Analytical Hilbert Coefficients (|x| ≤ 100) 13

2.9. Digital Hilbert Filter with 33 Taps 14

2.10. Digital Hilbert Filter Frequency Response Using 256-pt FFT

(Normalized X-Axis to fs) . 15

2.11. Corruption of a N-MOS Transistor by SEU 17

2.12. Parasitic BJTs in MOSFET . 18

2.13. Parasitic Connections in CMOS Transistor 18

2.14. MOSFET Configurations . 20

2.15. Reverse Body Bias Voltage Versus Transistor Threshold Voltage 20

2.16. CMOS Inverter on P Substrate 21

2.17. Two-Thirds Voting Circuit using NAND2 gate 22

2.18. Basic Temporal Latch Idea . 23

2.19. Distributed Logic and Memory Structure with Basic Logic Cell

[31] . 24

2.20. Interconnections Between Gates 25

2.21. DRFM System Including Antennas, ADCs and DACs 26

3.1. DSSM Created During this Research 27

3.2. Digital Hilbert Filter Design 28

viii

Figure Page

3.3. Optimized Hilbert Filter Design 28

3.4. Design Flow . 29

3.5. Xilinx Software Used In VHDL Development 31

3.6. Digital Mixer . 32

3.7. Digital Mixer With Additional Control Circuitry 33

3.8. ROM Storing One−Fourth of the Cosine Waveform with 256

Samples . 35

3.9. ROM-Based DDS Structure . 36

3.10. Full Length Cosine Waveform Generated by DDS 36

3.11. Four Separate Cosine Waveforms Using Four Different Scaling

Values . 36

3.12. VHDL File Dependency . 38

3.13. Xilinx FPGA Used In Testing 40

3.14. Structured ASIC DSSM Design 42

3.15. S-ASIC DSSM Placement from PAR Program 44

4.1. FPGA Test Setup . 47

4.2. FPGA Test Setup Components 48

4.3. FPGA FUSE interface . 49

4.4. MatlabR© Floating Point Simulation, fin = 10.35 MHz and fc =

3.33 MHz . 50

4.5. Case #1 with fin = 10.25 MHz and fc = 3.33 MHz 52

4.6. Case #1 Frequency Sweep, fin = 500 kHz to 33 MHz and fc =

73 kHz to 9.338 MHz in Increments of (a) 500 and 73 kHz and

(b) 4.055 and 2.328 MHz . 52

4.7. Case #2 with fin = 10.25 MHz and fc = 3.33 MHz 53

4.8. Case #2 Frequency Sweep, fin = 500 kHz to 33 MHz and fc =

73 kHz to 9.338 MHz in Increments of (a) 500 and 73 kHz and

(b) 4.055 and 2.328 MHz . 54

4.9. Case #3 with fin = 10.25 MHz and fc = 3.33 MHz 55

ix

Figure Page

4.10. Case #3 Frequency Sweep, fin = 500 kHz to 33 MHz and fc =

73 kHz to 9.338 MHz in Increments of (a) 500 and 73 kHz and

(b) 4.055 and 2.328 MHz . 55

4.11. Case #4 with fin = 10.25 MHz and fc = 3.33 MHz 56

4.12. Case #4 Frequency Sweep, fin = 500 kHz to 33 MHz and fc =

73 kHz to 9.338 MHz in Increments of (a) 500 and 73 kHz and

(b) 4.055 and 2.328 MHz . 57

4.13. Case #5 with fin = 10.25 MHz and fc = 3.33 MHz 58

4.14. Case #5 Frequency Sweep, fin = 500 kHz to 33 MHz and fc =

73 kHz to 9.338 MHz in Increments of (a) 500 and 73 kHz and

(b) 4.055 and 2.328 MHz . 58

4.15. Case #6 with fin = 10.25 MHz and fc = 3.33 MHz 60

4.16. Case #6 Frequency Sweep, fin = 500 kHz to 33 MHz and fc =

146 kHz to 9.302 MHz in Increments of (a) 500 and 146 kHz and

(b) 4.055 and 2.345 MHz . 60

4.17. Case #7 with fin = 10.25 MHz and fc = 3.33 MHz 61

4.18. Case #7 Frequency Sweep, fin = 500 kHz to 33 MHz and fc =

36 kHz to 9.374 MHz in Increments of (a) 500 and 36 kHz and

(b) 4.055 and 2.254 MHz . 61

4.19. Case #8 with fin = 10.25 MHz and fc = 3.33 MHz 63

4.20. Case #8 Frequency Sweep, fin = 500 kHz to 33 MHz and fc =

73 kHz to 9.338 MHz in Increments of (a) 500 and 73 kHz and

(b) 500 and 100 kHz . 63

4.21. FPGA Resource Summary Given by Xilinx Synthesis Tool . . . 64

4.22. FPGA Timing Summary Given by Xilinx Synthesis Tool 64

4.23. FPGA Power Estimation Given by Xilinx Synthesis Tool 65

4.24. FPGA Results, fin = 10.25 MHz and fc = 3.33 MHz 65

4.25. Design Parameters vs. Power Comparison 69

4.26. Design Parameters vs. Maximum Clock Frequency Comparison 70

4.27. Design Parameters vs. Resource Utilization Comparison 70

4.28. Design Parameters vs. SFDR Comparison 71

x

Figure Page

4.29. Comparison of Test Cases # 2 and 8 73

5.1. Filterbank DRFM Structure 77

5.2. Pipelined Adder Tree for Hilbert Filter 78

xi

List of Tables
Table Page

2.1. RBB Effects on Transistor Threshold Voltage 21

3.1. Generic User Modifiable Parameters 38

3.2. VHDL Parameter Selections 41

4.1. Design Test Scenarios . 45

4.2. Single Frequency Dynamic Range Results (in dB) 66

4.3. Frequency Sweep Dynamic Range Results 67

4.4. S-ASIC Timing Reports . 68

4.5. S-ASIC Hardware Comparison 69

4.6. FPGA vs. S-ASIC Comparison 73

4.7. FPGA vs. S-ASIC Comparison With Compensation 74

4.8. Hardened vs. Non-Hardened DSSM Comparison 74

xii

List of Abbreviations
Abbreviation Page

DRFM Digital Radio Frequency Memory 1

EW Electronic Warfare . 1

EM Electromagnetic . 1

ECM Electronic Countermeasure 1

RF Radio Frequency . 1

IC Integrated Circuit . 1

ASIC Application Specific Integrated Circuit 1

S-ASIC Structured ASIC . 1

DSSM Digital Single Sideband Modulator 2

VHDL Very High Speed Integrated Circuit Hardware Description

Language . 2

FPGA Field Programmable Gate Array 2

ADC Analog to Digital Converter 2

DAC Digital to Analog Converter 2

SFDR Spur Free Dynamic Range 2

PAR Place and Route . 3

PCB Printed Circuit Board . 4

BPF Bandpass Filter . 4

LPF Low-pass Filter . 4

DSM Double Sideband Modulator 6

SSM Single Sideband Modulator 6

VCO Voltage Controlled Oscillator 9

DC Direct Current . 9

DSSM Digital Single Sideband Modulator 9

IO Input/Output . 10

xiii

Abbreviation Page

DDS Direct Digital Synthesizer 10

IP Intellectual Property . 11

ROM Read-Only Memory . 11

RAM Random Access Memory 11

IIR Infinite Impulse Response 12

FIR Finite Impulse Response 13

CMOS Complimentary Metal Oxide Semiconductor 15

Rad Radiation Absorbed Dose 15

SI International System of Units 15

TID Total Ionizing Dose . 16

SEE Single-Event Effects . 16

SEU Single-Event Upset . 16

SET Single-Event Transient . 16

SEL Single-Event Latchup . 16

MOSFET Metal Oxide Semiconductor Field Effect Transistor 16

MBU Multiple-Bit Upset . 16

SEFI Single-Event Functional Interrupt 16

BJT Bi-Polar Junction Transistor 17

RBB Reverse Body Bias . 19

SOI Silicon-On-Insulator . 19

SRAM Static Random Access Memory 19

TSMC Taiwan Semiconductor Manufacturing Company 19

ECC Error Checking and Correction 21

CRC Cyclic Redundancy Check 22

DFF D-Type Flip Flop . 24

GaAs Gallium Arsenide . 25

MMIC Monolithic Microwave IC 25

HDL Hardware Description Language 30

xiv

Abbreviation Page

WTM Wallace-Tree Multiplier 33

CSA Carry Save Adder . 33

CLA Carry Look-Ahead Adder 33

RCA Ripple Carry Adder . 34

PCI Peripheral Component Interconnect 39

STA Static Timing Analysis . 43

GDSII Graphic Data System II 43

FFT Fast Fourier Transform . 47

xv

Acknowledgements

I would first like to thank God for giving me all of the abilities that I possess. Next

I would like to thank my parents for always encouraging me and giving me all the

support that I could ever ask for. A big thanks to my wonderful wife for putting up

with the long hours of work on this thesis and all of the continued support that she

gives. I would like to give thanks to my thesis committee: Dr. Marty Emmert, Dr.

Ray Siferd, Dr. Saiyu Ren and Dr. Steve Hary. Also, a thanks to the New Electronic

Warfare Specialists Through Advanced Research by Students (NEWSTARS) program

for sponsoring my research.

Thomas B. Pemberton

xvi

A Structured ASIC Approach to a Radiation Hardened

by Design Digital Single Sideband Modulator for Digital

Radio Frequency Memories

I. Introduction

In the aerospace industry a Digital Radio Frequency Memory (DRFM) can serve

many purposes in an Electronic Warfare (EW) environment. A DRFM can manip-

ulate the Electromagnetic (EM) spectrum by modifying the frequency of a captured

signal. This signal can also be captured, stored and then re-transmitted with or with-

out any modifications and used as a part of an Electronic Countermeasure (ECM)

system.

1.1 Motivation

In the aerospace field, a DRFM can be used for various purposes to modify an

incoming Radio Frequency (RF) signal. Since the DRFM will be operating in the EW

environment, the DRFM will be exposed to different amounts and types of radiation

effects. In the aerospace industry, the added cost of radiation hardening an Integrated

Circuit (IC) can be substantial. Few foundries exist that can create a hardened by

process IC which not only drives up cost but also increases the design cycle due to

long fabrication times. Another approach to hardening an IC is a by design approach

that takes advantage of several techniques to mitigate radiation effects in an IC. This

radiation hardening by design approach can potentially save money versus the by

process approach, but for fabrication on a Application Specific Integrated Circuit

(ASIC) the cost can be substantial if the number of devices is low. To minimize

the cost of a hardened by design ASIC, a similarly designed IC can be created on a

Structured ASIC (S-ASIC). Implementing a design on a structured ASIC allows for

quick design cycles and fabrication times with a much lower cost due to the shared cost

of the fabrication. Adding in a radiation hardened by design standard cell library to

1

the S-ASIC further advances the technology to provide a low cost radiation hardened

design that can be quickly fabricated. The S-ASIC provides a lower cost alternative

than a normal ASIC and with the radiation hardening by design library used for the

digital cells used in the design, provides a low cost radiation hardened IC.

1.2 Research Goal

The goal of this research is to design, implement and test a radiation hardened

by design Digital Single Sideband Modulator (DSSM). This design will feature param-

eterizable bit widths for the design as well as a parameterizable filter length to exploit

different spectral purity versus clock frequency trade offs. The design will be designed

using Very High Speed Integrated Circuit Hardware Description Language (VHDL)

and will be targeted to an S-ASIC as well as prototyped on a Field Programmable

Gate Array (FPGA). The prototyping on the FPGA will allow for further analysis of

the overall DRFM design before the addition of the radiation hardened library.

1.3 Research Approach

This research will focus on the DSSM for a DRFM as well as radiation effect mit-

igation. The DSSM in this research will assume a suitable radiation hardened Analog

to Digital Converter (ADC) and Digital to Analog Converter (DAC) are available for

use. This research will focus on utilizing a radiation hardened by design digital stan-

dard cell library to synthesis a parameterizable DSSM for fabrication. This DSSM

design will be primarily focused on the S-ASIC, but will be prototyped on a FPGA.

1.3.1 Testing and Analysis. The DSSM designed through this research will

be tested for Spur Free Dynamic Range (SFDR) as well as power consumption, maxi-

mum clock frequency and area. The design will be simulated as well as prototyped on

an FPGA to study the effects of different hardware scenarios such as the input and

output bit widths as well as the filter lengths and shifting frequency resolution. The

testing on the FPGA was performed on a Virtex FPGA demo board which included

2

on board ADC and DAC modules. The DSSM simulations includes floating-point

as well as fixed-point simulations to provide functionality testing as well as behav-

ioral design, post-synthesis and post-Place and Route (PAR) simulations achieved

using a Cadence RTL Compiler, ViAsic ViaPath PAR tool and the Cadence SimVi-

sion simulation suite. Also included is a comparison of the DSSM designed through

this research to a DSSM created using a similar, but non-hardened, library for any

improvement or declination in area, speed, power and dynamic range.

1.4 Document Organization

This thesis document is organized into five chapters. Chapter 1 provides a

brief introduction to the thesis, the motivation behind the research and the scope of

the research. Chapter 2 gives a detailed background on the theory and aspects of

the research that may not be readily known by the reader. Chapter 3 provides the

methodology taken during this research. This chapter provides a detailed description

from the mathematical properties used in the design to the hardware design itself.

Chapter 4 provides the results gathered through each of the simulation and testing

phases. Finally, Chapter 5 discusses the final conclusions drawn from this research as

well as future research projects that can expand upon this research.

3

II. Background and Theory

A DRFM may contain different modules that can modify an incoming digitally

sampled signal using various methods. One method creates a frequency shift

using a DSSM that emulates a Doppler shift in either the positive or negative direction

from the center frequency. This manipulation may either be produced off-line or in

real-time. If the DRFM is to operate in real-time then the datapath needs to either be

pipelined or partitioned and the various filters split to provide high throughput. If the

incoming signal is to be processed off-line then the requirements for the DRFM are not

as stringent and many more features can be added. The key aspects of the DRFM

as it applies to EW and for this research is the bandwidth of the DRFM, storage

space, frequency modulation and targeted platform. Each of these key aspects will

be addressed in this chapter.

2.1 Aspects of a Digital Radio Frequency Memory

2.1.1 Electronic Warfare. When a DRFM is used in an EW application sev-

eral parameters need to be taken into account, one of which is the intended operation

of the DRFM. The DRFM needs to have the supporting structures around it in the

form of an ADC and DAC, as well as a storage medium. Each of these structures can

either be incorporated into a single chip, surface mounted onto a common Printed

Circuit Board (PCB) or connectorized and placed on multiple PCBs. The type of

storage medium is not important to the operation of the DRFM as long as the data

can be stored and retrieved within the desired time requirements. The structure of

the ADC and DAC is also not critical to the DRFM as long as the sampling rates are

sufficiently high to ensure no loss of data and that the bit widths of each are sufficient.

A possible high-level view of a DRFM for the EW environment is shown in

Figure 2.1. This figure shows the optional Bandpass Filter (BPF), which can be used

to select different bands of interest in the RF spectrum. Also included is the Low-pass

Filter (LPF) used to increase the single to noise ratio.

4

ADC LPF Control
Frequency

Shift
DAC

Storage

Medium

BPF

Figure 2.1: High-Level Overview of DRFM

2.1.2 Importance of Bandwidth in a DRFM. The instantaneous RF spec-

trum bandwidth of the DRFM is extremely important. According to Nyquists’ sam-

pling theorem [26] the clock frequency of the ADC that will be sampling the incoming

RF signal must meet Equation 2.1 when the incoming RF signal has a bandwidth of

β. Through the use of this principal, different Nyquist bands can be created based

on the sampling frequency of the ADC, fs, as shown in Figure 2.2.

fS = 2× β (2.1)

Nyquist

Band #1

Nyquist

Band #2

Nyquist

Band #3

Nyquist

Band #4

Nyquist

Band #5

0 Frequencyfs f s 3fs 2fs 5fs
2 2 2

Figure 2.2: Nyquist Frequency Bands

Using the equation for the sampling rate of an incoming RF signal, the ADC

sampling rate must be twice that of the bandwidth of interest. Also, the bandwidth

of interest plays a crucial role in the amount of storage needed when capturing the

incoming RF signal. For instance, if the incoming RF signal has a bandwidth of

interest of β and is sampled at a rate of fS and the ADC has 2N quantization levels,

5

the amount of bit storage needed to store one second of data is given in Equation 2.2,

but can be generalized for any length of time ∆T in seconds as shown in Equation

2.3. Since storage space is not infinitely large, decisions must be made to ensure that

there is ample storage capacity for all signals of interest.

Storage Space = fS ×N (2.2)

Storage Space = fS ×N ×∆T (2.3)

2.2 Modulators

The key focus is the frequency shifting of a received signal. Several modula-

tors exist, each with their own benefits and drawbacks. Two of the most common

analog modulators are the Double Sideband Modulator (DSM) and the Single Side-

band Modulator (SSM). Both modulation techniques uses the trigonometric identity

as shown in Equation 2.4 for multiplying two sinusoidal signals.

cos(u) ∗ cos(v) = 1

2
[cos(u− v) + cos(u+ v)] (2.4)

If you assume a modulation signal m(t), with modulating frequency of fm, equal to

m(t) = cos(2πfmt) (2.5)

and the signal to be modulated is c(t), with a center frequency of fc, equal to

c(t) = cos(2πfct) (2.6)

then the DSM signal is equal to,

m(t) ∗ c(t) = 1

2
[cos(2π(fm − fc)t) + cos(2πfm + fc)t)] (2.7)

6

SSM is different from that of DSM, in which it requires a separate signal that

is 90◦ out of phase relative to the incoming signal. The original signal and the phase

shifted signal are referred to as the I and Q signals. If the I signal has a center

frequency of fc, it would be defined as,

I(t) = cos(2πfct) (2.8)

then the Q signal is defined as,

Q(t) = cos(2πfct + φ) (2.9)

with φ equal to 90◦, the Q signal can be simplified as,

Q(t) = sin(2πfct) (2.10)

The original signal can be constructed as I + jQ with j equal to
√
−1. Now assuming

there are two modulating signals, both with a modulating frequency of fm, then with

m1(t) defined as,

m1(t) = cos(2πfmt) (2.11)

and m2(t) defined as,

m2(t) = sin(2πfmt) (2.12)

the final SSM signal is defined as,

I(t) ∗m1(t) +Q(t) ∗m2(t) (2.13)

which can be expanded into,

cos(2πfct) ∗ cos(2πfmt) + sin(2πfct) ∗ sin(2πfmt) (2.14)

7

This can be further expanded by using the trigonometric identity shown in Equation

2.4,

1

2
[cos(2π(fc − fm)t) + cos(2π(fc + fm)t)] +

1

2
[sin(2π(fc − fm)t)− sin(2π(fc + fm)t)]

(2.15)

While the equations are mathematically correct, it may not be clear what the

output signal appears to be. Assume the input RF spectrum is captured as pictured

in Figure 2.3, then the DSM representation of the shifted signal would be pictured

as shown in Figure 2.4 while the SSM representation is shown in Figure 2.5. As can

be seen from the figures, the SSM is a more efficient representation of the frequency

shifted signal [13, 27]. Since SSM is a more efficient modulation technique, further

description on the SSM structure needs to be looked at.

ω

β

Figure 2.3: Baseband RF Signal

ω

2β 2β

-ω ωm m

Figure 2.4: RF Signal Modulated using DSM

2.2.1 Analog Single Sideband Modulator. An analog SSM involves a few key

components, namely an analog mixer and an analog adder. These two modules will

perform the steps needed to create the single sideband functionality. While the analog

8

ω

ββ

-ω ωm m

Figure 2.5: RF Signal Modulated using SSM

SSM seems simple, several considerations need to be taken into account. First, the

m1(t) and m2(t) signals from Equations 2.11 and 2.12 will need to be created. If the

desired operating environment requires an IC then the sin and cos analog waveforms

need to be created on chip with some form of oscillator. Since the frequency fm

for both m1(t) and m2(t) needs to be adjustable, so does the oscillator. With this

condition the oscillator is then converted into a Voltage Controlled Oscillator (VCO)

that can be added to the IC. The basic idea behind a VCO is to allow the output

frequency (fm in this case) to be linearly adjustable by an input biasing voltage. A

VCO could be created in many different forms, but the concept remains the same.

Along with the VCO consideration there must also be a consideration on the

power levels of each of the components and the Direct Current (DC) operating voltages

for each of the transistors in the circuit. All of the DC operating voltages along with

the layout of the circuit must be created manually which takes a considerable amount

of time. A block diagram outlining the flow of the analog signal through an analog

SSM is shown in Figure 2.6. Since the DRFM is strictly a digital IC, the analog SSM

is not feasible, and a digital approach must be utilized.

2.2.2 Digital Single Sideband Modulator. The Digital Single Sideband Mod-

ulator (DSSM) [9] uses digital versions of the same key components that the analog

SSM requires (a multiplier and an adder), but they will be digital devices. The mul-

tiplier is a digital M-bit multiplier and the adder is a digital N-bit adder, where M

and N may or may not be related. The main difference between the analog SSM and

9

VCO

X

X

+

I

Q

cos

sin

Bias

Phase

Shifter

Figure 2.6: Analog SSM Structure

the DSSM is that the analog SSM allows for a doubling of the bandwidth of interest,

while the DSSM allows for a slower processing frequency. An important design crite-

ria is the sin and cos modulating signals m1(t) and m2(t). One method for creating

these signals would be to create them off chip from an analog signal generator and

use an N-bit ADC to digitize the data for use in the digital multipliers. This method

is not practical as it needs a separate ADC for the sin and cos signals and the analog

signal generator may not be on the IC as would be the optimum approach. Another

approach would be to use a digitizing signal generator and have N Input/Output (IO)

pins connected to the IC. This approach, too, is flawed by the use of an external signal

generator and also flawed by the use of IO pins for the modulating signals. IO pins

on an IC are limited by its size and therefore the IC may not have sufficient available

IO pins to allow multiple input signals with a large number of bits. A novel approach

is to a Direct Digital Synthesizer (DDS) to generate the digital modulating signals.

2.2.2.1 DDS. There are a few different methods for creating a DDS.

The first incorporates a compression algorithm that produces a full wave output

signal based on the signals slope [10]. While this method will be capable of producing

a signal with the desired frequency with great precision, it is not usually capable of

fitting in the amount of area allowed on the IC and therefore another approach must

10

be taken. The simplest approach to create a DDS uses a quarter-wave approximation

technique [33] where one-quarter of a full period is loaded into memory elements

and the desired output signal frequency is obtained by the repeated addressing of

the memory elements. Figure 2.7 shows the symmetry that is exploited in this DDS

method. If the memory elements are read in sequential order to produce region 1,

then reading the elements in reverse order will produce region 2. Regions 3 and 4 are

produced by inverting the results gathered from regions 1 and 2.

1/4 1/2 3/4 1 5/4

Region #1 Region #2 Region #3 Region #4 Region #1

0

1

-1

Figure 2.7: Symmetry Exploitation of Quarter-Wave Technique

Many methods exist for storing the sampled signal in memory elements. If the

architecture being targeted has Intellectual Property (IP) Read-Only Memory (ROM)

or Random Access Memory (RAM), then those can be used to store the sampled

signal. If no IP exists for the targeted architecture, then a gate implementation of the

memory elements can be constructed. The memory element type used is not so crucial,

with the key to producing the desired output signal with the desired modulation

frequency being the addressing of the memory elements and the correction circuitry

on the output after the memory elements have been accessed. The addressing of

the memory elements depends on a few key attributes, one of which is the operating

frequency of the memory elements while the others are the desired output frequency

11

and the addressability of the memory elements. If we assume that the operating

frequency of the memory elements is fo, the desired output frequency is fm and the

memory includes N addressable words, we can define an equation that will produce

the incremental factor for the desired output frequency. The k incremental value is

constrained by,

k ∈ Z
+ (2.16)

The incremental value k is further constrained by the Nyquist sampling theorem such

that there must be at least two samples taken from each quarter-wave and thus has

the constraint of

k < bN
2
c (2.17)

With these constraints, the frequency resolution of the quarter-wave DDS is

defined as a function of the operating frequency fo and the addressability of the

memory elements N. The frequency resolution fr is defined as,

fr =
fo

N
(2.18)

With the incremental factor and the frequency resolution of the DDS defined, the

output frequency fm of the DDS is therefore defined as,

fm = k ∗ fr (2.19)

2.3 Hilbert Transform Theory

The Hilbert Transform [15] is one of the basic building blocks that can be used

in the DSSM to do the frequency shifting as shown previously in Figure 2.1. The

Hilbert Transform creates a +90◦ phase shifted signal relative to the input signal. In

theory, the Hilbert Transform is defined as an Infinite Impulse Response (IIR) Filter.

12

The Analog IIR Hilbert filter coefficients [8] are defined as,

h(x) =

0 : |x| < 1

1
πx

: otherwise
, x ∈ R (2.20)

The IIR Hilbert filter has a frequency response that is given by,

H(f) =

j : f < 0

0 : f = 0

−j : f > 0

(2.21)

With the filter coefficients defined, Figure 2.8 shows what the analytical Hilbert filter

coefficients looks like when plotted.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

A
m

pl
itu

de

Figure 2.8: Analytical Hilbert Coefficients (|x| ≤ 100)

Since the IIR filter does not have a closed form output function based solely on

the inputs, it must be modified into a Finite Impulse Response (FIR) digital filter of

order N.

2.3.1 Digital Hilbert Filter. The key to the digital Hilbert filter is creat-

ing a sample-based filter that approximates the analytical Hilbert filter [14]. The

13

coefficients for the digital Hilbert filter with N+1 filter taps is defined by,

h(n) =

0 : odd n , n ∈ {0, 1, 2, ..., N}
1

π(n−M)
: otherwise ,M = N−1

2

(2.22)

To satisfy the symmetry of the IIR Hilbert filter, the digital Hilbert filter has the

following constraints on the parameter N,

N−1
2

∈ Z

N−1
4

∈ Z

(2.23)

The filter coefficients defined above represent a sampled IIR Hilbert filter with a

defined number of samples. The resulting filter coefficients plot resembles Figure 2.9

with 33 filter taps which satisfies both constraints given in Equation 2.23.

−16 −12 −8 −4 0 4 8 12 16
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Coefficient

A
m

pl
itu

de

Figure 2.9: Digital Hilbert Filter with 33 Taps

The two key elements of the digital Hilbert filter is the length of the filter

and the bit width of the filter coefficients. While the coefficient bit width will help

with precision of the sampled analytical Hilbert filter, the overall Hilbert filter length

determines what the frequency response of the filter resembles. To show an example,

14

Figure 2.10(a) shows the frequency response of a 33 tap digital Hilbert filter while

Figure 2.10(b) shows the frequency response for a 101 tap digital Hilbert filter. It can

easily be seen that with a longer filter, the passband ripple is reduced and has sharper

rolloffs at the edge of the passband. While a longer filter will lead to a better frequency

response, it will also lead to larger resource usage and a slower clock frequency.

0 0.25 0.5 0.75 1
−30

−25

−20

−15

−10

−5

0

5

Frequency

M
ag

ni
tu

de
 (

dB
)

(a) 33 Tap Filter

0 0.25 0.5 0.75 1
−30

−25

−20

−15

−10

−5

0

5

Frequency
M

ag
ni

tu
de

 (
dB

)

(b) 101 Tap Filter

Figure 2.10: Digital Hilbert Filter Frequency Response Using 256-pt FFT (Nor-
malized X-Axis to fs)

2.4 Radiation Hardening

Digital Complimentary Metal Oxide Semiconductor (CMOS) devices are sus-

ceptible to radiation by various sources, whether anticipated or not. The process to

create a digital device that can withstand a certain amount of radiation before corrupt

data decreases the performance of the device is known as radiation hardening. Each

radiation hardened device will have a defined hardness level at which the device can

tolerate a certain amount of radiation without allowing corrupt data to propagate

through the device. The standard unit of a device’s radiation hardness is given in

terms of the Radiation Absorbed Dose (Rad), with 1 Rad equal to the dose of energy

absorbed by 1 gram of material. Also defined is the International System of Units (SI)

unit of gray (Gy) (1Gy = 100 Rad = 1J
1kg

). Many radiation hardened digital devices

are measured in terms of KRads (1 × 103 Rads) and MRads (1 × 106 Rads). The

15

two key radiation effects are known as Total Ionizing Dose (TID) and Single-Event

Effects (SEE), with SEE including multiple categories of effects. The three main

types of SEE are the Single-Event Upset (SEU), Single-Event Transient (SET) and

Single-Event Latchup (SEL). Each of these different types will be discussed further.

2.4.1 Total Ionizing Dose. The TID radiation effect occurs whenever the

dose of radiation felt by the digital circuit becomes high enough that it begins to mod-

ify the operation of a Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

within a digital cell. The effect felt on the MOSFET is a shift in the threshold voltage

needed for the transistor to be turned on [2,5,21]. This shift in the threshold voltage

is caused by particles of radiation energy becoming trapped in the silicon dioxide gate

insulator. The shift in threshold voltage can cause lower slew rates as well as modify

the transition time from high to low voltage (τHL) or low to high voltage (τLH). Both

of these effects are not harmful to the digital device but can cause inaccurate outputs.

2.4.2 Single-Event Upset. The SEU type of SEE radiation effect occurs in

memory devices whenever a single ion interacts with the CMOS transistors in the

device and causes a stored binary bit to flip. The SEU is often called a soft error in

memory devices due to its harmless interaction with the digital devices. The SEU is

caused by an ion striking a portion of a CMOS transistor and adding electrons and/or

holes into the substrate under a transistor [17]. If this increase in electrons or holes

is opposite from the current operation of the transistor, the output of the transistor

will be flipped. A pictorial slice of a CMOS transistor receiving a ion strike is shown

in Figure 2.11.

Due to the layout of most memory devices being a grid, the chances of an ion

strike affecting adjacent transistors is highly likely. Whenever multiple bits flip due to

SEU it is called a Multiple-Bit Upset (MBU). Also, if the affected CMOS transistor

is a part of a memory device that is a sub component of a finite state machine, the

error is called a Single-Event Functional Interrupt (SEFI).

16

n+

PolySi

p+ well

n-substrate

Al

Ion Strike

n+p+

Substrate Contact

Al Al

Figure 2.11: Corruption of a N-MOS Transistor by SEU

2.4.3 Single-Event Transient. A SET occurs when a charge collected from

ionization discharges in the path of the normal circuit output [32]. This spurious signal

is indistinguishable from a normal output and is much harder to detect. The SET

radiation effect also depends on the technology being targeted [3]. As the technology

size reduces, so does the supply voltage. The effects of SET has been shown to

depend on the supply voltage with a much higher transient pulse width in lower

voltage technologies.

2.4.4 Single-Event Latchup. The most harmful of the SEE radiation effects

is the SEL type effect. This effect can cause a circuit to behave incorrectly until the

device is power cycled or could create a high enough current that the device is shorted

and will not function properly again. The SEL type effect is caused by the parasitic

NPN and PNP Bi-Polar Junction Transistors (BJT) inherent in the CMOS process

design [29]. Figure 2.12 shows the corresponding NPN and PNP BJT transistors

created in a simple digital CMOS inverter circuit with the PNP and NPN parasitic

transistors shown as the dashed rectangles. Figure 2.13 shows the corresponding

circuit of the BJT parasitic transistors in the inverter circuit. Depending on which

region of the CMOS device is hit by the radiation strike, one or both of the parasitic

transistors can be turned on, it can either cause an erroneous output or create a high

current scenario that can destroy the device. The erroneous error would be in effect

17

until the device is power cycled and is usually referred to as a hard error if the affected

transistor is part of a memory device.

n+

PolySi

p well

Al

n+p+

Al Al

p+

PolySiAl

p+

Al

n+

Substrate Contact

Al

n-substrate

p+ well

Substrate Contact

Figure 2.12: Parasitic BJTs in MOSFET

p

n

p

n

Figure 2.13: Parasitic Connections in CMOS Transistor

2.4.5 Increasing Radiation Hardness in Digital Circuits. Now that the

causes of radiation effects on a digital circuit are known, the methods to counteract

these effects must be looked at. Several methods also exist to restrict the number

of radiation hits to the IC as well as methods to correct for any sustained radiation

hits. The first set of methods target the digital CMOS standard cells. Within this

set of methods are two main categories to decrease the number of radiation hits at

the gate level and comes from the two ways to harden a device. These categories are

the by process and by design. The by process method seeks to increase the radiation

hardness through specialized CMOS processes while the by design method increases

the radiation hardness by strengthening each cell in the CMOS process library. The

hardened by design category also adds redundancy at the gate level into the most

susceptible portion of the IC or any other strategic placement where erroneous data

18

cannot be allowed to propagate forward through the circuit. Both by design methods

for radiation hardness will be looked at further.

2.4.5.1 Transistor Level Radiation Hardening. At the heart of hard-

ened by design is structurally hardened memory devices and voting circuits. A struc-

turally hardened memory device may employ multiple hardening techniques such as

Reverse Body Bias (RBB) of the N-MOS transistors [23, 24] as well as guard ring

material around each set of P- and N-MOS transistors [4]. Among the other tech-

niques is to utilize a Silicon-On-Insulator (SOI) process or a BJT process. It has been

shown that the SOI process increases the radiation hardness of an IC due to the n-

and p-wells being completely separated [7]. It has also been shown that BJTs have a

much higher tolerance to radiation effects [6]. While both the SOI and BJT processes

have merit, this research targets the standard CMOS process, thus only the RBB and

guard ring techniques will be considered. Both of these techniques create memory

cells, namely Static RAM (SRAM) that will withstand an SEU.

For the RBB technique, the principle idea is to increase the transistor threshold

voltage such that it can withstand a certain amount of TID radiation before the

radiation causes a threshold voltage shift [18]. The driving principle for this shift in

transistor threshold is due to the equation for the transistor threshold voltage given

in Equation 2.24. The values for γ, VTH0
and 2φF are all process dependent variables.

VTH = VTH0
+ γ(

√

VSB + 2φF −
√

2φF) (2.24)

As an example, the Taiwan Semiconductor Manufacturing Company (TSMC) .18 µm

CMOS process, taught in many universities throughout the United States, has the

following parameters for an N-Type MOSFET:

γ = 0.52 (V 0.5)

VTH0
= 0.356 (V)

2φF = 0.7

19

With the schematic in Figure 2.14(a), the threshold voltage of the N-type MOSFET is

determined by the process dependent VTH0
, while the schematic in Figure 2.14(b) has

a non-zero VSB and thus has a modified threshold voltage. Using the parameters for

the TSMC .18 µm CMOS process and the schematic shown in Figure 2.14(b), Figure

2.15 shows a graphical representation of the VBias effect on the threshold voltage VTH .

Table 2.1 summarizes the RBB effect on the threshold voltage on a limited number

of VBias voltages versus the threshold voltage VTH from Figure 2.15.

V

V

V

VG

S

B

D

(a) Typical Con-
figuration

Bias

V
G

V
S

VB

VD

V
+

-

(b) RBB Configuration

Figure 2.14: MOSFET Configurations

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

|V
Bias

| vs. V
TH

|V
Bias

| (V)

V
T

H
 (

V
)

Figure 2.15: Reverse Body Bias Voltage Versus Transistor Threshold Voltage

20

Table 2.1: RBB Effects on Transistor Threshold Voltage
VBias (V) VTH (V)

0.0 0.356
-0.1 0.386
-0.2 0.4143
-0.3 0.4409
-0.4 0.4663

Lastly, for the guard ring technique, the driving principle is to increase the area

of the substrate contacts to allow for more separation of adjacent digital cells and also

to increase the current capability of the digital cell such that a large energy strike can

be safely discharged without any damage to the transistors in the cell. Figure 2.16

shows a 2D drawing of a CMOS inverter with and without the added guard ring.

A A

n-well

p+

n+

substrate

contact

substrate

contact

(a) Without Guard
Ring

A A

n-well

p+

n+

substrate

contact

substrate

contact

(b) With Guard Ring

Figure 2.16: CMOS Inverter on P Substrate

2.4.5.2 Gate Level Radiation Hardening. There exist various meth-

ods to prevent a possible erroneous output from one transistor to propagate further

through an IC. The key methods for this involve spatial redundancy, error checking

and correction (ECC) and adding temporal redundancy [22]. Each of these methods

will be discussed in further detail.

For spatial redundancy, voting circuits are used to determine the appropriate

output. Many voting circuit techniques exist, but the most common is the simple

21

majority voting circuit, with the simplest two-thirds majority gate shown in Figure

2.17. This circuit provides spatial redundancy in the device datapath that will coun-

teract an SEE. This is due to two of the three redundant cells required to output

erroneous data for the erroneous value to propagate. To increase the hardness of the

device, larger voting circuits such as the three-fifths and four-sevenths may be used

for further redundancy.

Figure 2.17: Two-Thirds Voting Circuit using NAND2 gate

For the ECC method of hardening, there exists several methods for detecting

an error and similarly for correcting an error. The primary method for catching

errors in combinational circuits is the Cyclic Redundancy Check (CRC) category of

error checking. The CRC algorithm involves a specific polynomial chosen based on the

number of bits being presented serially or in parallel and the number of bit errors that

the CRC should detect [19]. The key behind the CRC is in the hamming distance [12]

of the data itself. The larger the hamming distance, the more bit errors that can be

detected, while having a large hamming distance increases the algorithm complexity.

Similarly, there are several methods for error correction algorithms, with the

most famous being the Hamming encoder [25], and others being BCH, Reed-Solomon

22

and Reed-Muller encoding schemes. The key to each of the encoding schemes is to

embed the error correction bits into the data. This increases the total number of

bits needed for storage as well as interconnections between modules. The key to any

error correction circuit is the hamming distance. Just like the CRC error checking,

the larger the hamming distance the more complex the algorithm and also the more

bits needed for the error correction. The simplest Hamming ECC encoding scheme is

the Hamming(7,4), which receives four data bits and encodes three bits for the error

detection and correction. This scheme is capable of correcting a single bit error and

detecting double bit errors.

The temporal latch is a patented design, that implements temporal redundancy.

This technique adds time delays between a digital gate and a memory element that

allows for the correction of SET errors caused by radiation strikes. The time delays

added between the gate and the memory element can be adjusted for different clock

rates and radiation SET target pulse width correction. Figure 2.18 shows the basic

idea behind this technique.

Digital

Gate
Decision

Circuitry

T

T

T

2

N

Figure 2.18: Basic Temporal Latch Idea

2.5 Structured ASIC

Traditionally, ASIC’s are used when power, area and speed are an issue and

FPGA’s are used during prototyping and in situations when there will be low volumes

and there is a need to save cost. ASIC’s provide the best power, area and speed

performance over FPGAs and are limited mainly by the cost of fabrication. FPGA’s,

on the other hand, are drastically cheaper to purchase and come with built-in features

23

for memory and IO communications. An S-ASIC falls somewhere between FPGA’s

and ASIC’s. S-ASICs fall closer to an ASIC in performance and closer to an FPGA

in the design flow and overall structure. The key features of an S-ASIC is that

the layer of transistors and bottom metal layers have been designed and fabricated

with only the top metal layers permitting any changes. The basic structure utilizes

standard digital gates such as AND and OR with a D-type Flip Flop (DFF). These

basic building blocks allow for larger, more complex devices to be created, but at the

cost of more area and power. An FPGA on the other hand may include specialized

IP multipliers, adders and other macro structures for various purposes that can be

synthesized during the design flow that may not be present on the S-ASIC.

As can be seen in Figure 2.19, the basic structure of an S-ASIC is broken up

into rows and columns of logic and memory elements distributed across the die area.

The figure also shows the basic building block of an S-ASIC. The building blocks have

the bottom layers of metal fully routed and allow the top metal layers to be added

so that the unit is connected. This is similar to the way the routing of an FPGA

is accomplished, although the FPGA uses memory elements to assert or un-assert

the connection to the basic units that can be reconfigured by software. The S-ASIC

does not permit any changes after fabrication. Figure 2.20 shows a comparison of the

difference between the FPGA routing and the S-ASIC routing.

Figure 2.19: Distributed Logic and Memory Structure with Basic Logic Cell [31]

24

CM CM

CM CM

CM CM

CM CM

(a) FPGA with Configuration Memories(CM)

Possible

Connection

(b) S-ASIC with Possible Via Connections

Figure 2.20: Interconnections Between Gates

2.6 Digital Radio Frequency Memory Designs

Some of the key features of a DRFM are the abilities to capture part of a RF

spectrum of interest, store digitized samples and then re-transmit an identical copy

of the original spectrum or create a frequency shifted version of the spectrum. Each

of the modules needed to create a DRFM are not unique and can be replaced with

different components depending on the requirements of the system. The ADC, storage

and DAC are needed by the DRFM before any work can be accomplished. As shown

in Figure 2.21, the DSSM is only a small portion of the entire system, but incorporates

the digital processing portion of the system with the mathematical calculations and

control circuitry [28].

Several methods exist in which to create a DRFM from a digital channelized

approach [11, 34] to creating a DRFM on a Gallium Arsenide (GaAs) Monolithic

Microwave IC (MMIC) [20]. While each of these different DRFM systems have their

merits, the target of this research is the DSSM. This DSSM neglects any signal storage

25

ADC DSSM DACLPF
Power

Amplifier
UpconvertDownconvert

Figure 2.21: DRFM System Including Antennas, ADCs and DACs

and retrieval and is targeted for the S-ASIC using a radiation hardened by design

CMOS process.

26

III. Methodology

The DSSM presented in this research represents only a small portion of the overall

DRFM system shown previously in Figure 2.21. This research explores different

hardware utilization scenarios on multiple platforms to demonstrate successful imple-

mentation of the DSSM on an S-ASIC. This research also explores the benefits of

radiation hardening by design and presents a tradeoff from a standard non-hardened

DSSM designed for the IBM 9SLP 90nm CMOS process as a standard ASIC [16].

The key goal of this research was to create semi-generic VHDL source code that could

be modified quickly but still be as area efficient as possible to fit within the bounds

given by the S-ASIC design being targeted.

Since several pieces of the DSSM have been left out during this research a

separate system level view of the DSSM design created during this research is needed.

Figure 3.1 shows the toplevel view of the DSSM designed during this research. Each

of the different modules will be discussed in detail later. The DSSM takes as input an

RF spectrum of interest that has been down-converted to base band and then digitized

and creates the in-phase (I) and quad-phase (Q) signals using a digital Hilbert filter.

It then mixes the I channel with a cos of a given frequency and mixes the Q channel

with a sin of the same frequency, then adds to two products together to create a

signal with a frequency spectrum that resembles Figure 2.5 on Page 9.

Figure 3.1: DSSM Created During this Research

27

3.1 I/Q Creation using Digital Hilbert Filter

The successful operation of the DSSM in this research relies on the digital Hilbert

filter which creates the in-phase (I) and quad-phase (Q) signals from the incoming

digital signal. The digital Hilbert filter discussed in Section 2.3.1 was designed as

shown in Figure 3.2 using a previously developed Hilbert filter template [1]. Since

all of the odd numbered Hilbert coefficients are zero, a more optimized Hilbert was

created as shown in Figure 3.3. This design was accomplished by use of the DFF

memory element for storing 1-bit every clock cycle.

Figure 3.2: Digital Hilbert Filter Design

Figure 3.3: Optimized Hilbert Filter Design

28

3.2 Design Flow

The flow of the DSSM design in this research was targeted at creating a semi-

generic VHDL design file that can be synthesized to an S-ASIC, but many other steps

needed to be taken first. As shown in Figure 3.4, the design flow began with a model

of the algorithm, then moved into the VHDL design and simulated using both the

Cadence SimVision simulation suite and an FPGA. After successful simulations, the

design could be synthesized, placed, routed and then re-simulated to verify correctness

before fabricating the design. Upon receiving the fabricated design, further tests must

then be completed to test its functionality.

Algorithm

Development

VHDL

Coding
Behavorial

Simulation

FPGA

Structured

ASIC

Figure 3.4: Design Flow

3.3 MatlabR© Simulations

Two MatlabR© simulation files were created to demonstrate the operation of the

DSSM, one floating-point and the other a fixed-point representation of the designed

29

DSSM in hardware. Each of the two scripts can be found in Appendix A on page 80.

The floating-point simulation uses the conceptualized Hilbert transform for generating

the I and Q data then does the mixing with idealized sine and cosine signals to produce

the final DSSM output. This version of the simulation helps to test the operation of

the DSSM under ideal test conditions to verify correct operation. The fixed-point

version of the simulation takes into account the various parameters of the DSSM

such as the ADC and DAC bit widths, ROM size and word bit widths, and the

Hilbert filter length and coefficient bit width. Each of these parameters are defined

at the beginning of the script for easy modification. The addition of the fixed point

parameters allows for different test scenarios based on the different design options

available. An increase in the bit widths of either the Hilbert coefficients or the ADC

will increase the number of gates needed in a digital circuit. Testing the increase in

bit width in a simulation allows for careful calculation of the SFDR of the output as

well as other design goals. A top-level simulation file was also created to allow for

the testing between the floating- and fixed-point versions and displaying the output

spectrum of the DSSM output, which can also be found in Appendix A.

3.4 VHDL

Among the choices of Hardware Description Languages (HDL) for designing the

DSSM from this research were Verilog and VHDL with different styles in each. The

choice was made to go with VHDL since the author is most familiar with VHDL.

Along with VHDL being chosen as the HDL of choice, the Xilinx software was chosen

as the editor of choice. The VHDL source code can be created using a typical word

processor or text editor, but the Xilinx software allowed for syntax highlighting as well

as the option to synthesize to the specific FPGA demo board used for prototyping.

The use of the Xilinx software also allowed for field testing of changes on the FPGA

demo board without further modifications to the code. A figure showing the Xilinx

environment with the DSSM VHDL code is shown in Figure 3.5.

30

Figure 3.5: Xilinx Software Used In VHDL Development

3.5 Digital Hilbert Filter

For the digital Hilbert filter, the construction was simply a behavioral model

of the structure previously shown in Figure 3.3. The Hilbert filter was created as a

variable length and variable width shift register that captures data from the input

on every rising edge of the clock input. Every two outputs of the shift register were

then used in constant multiplication with the Hilbert coeffecients and then summed

to generate the Q output signal. Along with the summation of the multiplication

operations for the Q output, the I output signal was generated directly from the

shift register. Separate VHDL process blocks were written to create the processes

described. These processes create the I and Q signals from the input signal, as a

digital Hilbert filter should. An addition the author made was to include a third

output, a shift register output. This output is simply the last input sample stored

in the variable length shift register which is fed out of the filter entity for use as a

feedback signal to simulate a DRFM memory structure. This addition added only a

31

few additional combinational resources while allowing several additional operations

to be implemented in the DRFM.

3.6 Digital Mixer

The digital mixer is not as complex as the Hilbert filter, but involves several

steps nonetheless. The digital mixing involved multiplying the I signal by a cos

of a given frequency and the Q signal by a sin of the same frequency, then sum

the two results together. Simple as it may be, several considerations were taken

in order for the digital mixer to behave correctly and the output to be the correct

DSSM operation intended. Figure 3.6 shows the basic block diagram of the digital

mixer. After several simulations, it was determined that depending on the relationship

between the incoming signal frequency and the shifting frequency, the output result

could either be an addition or subtraction operation. If certain conditions arise that

either the incoming signal will change or the shifting frequency changes and a certain

operation is desired, separate control circuitry must be implemented in order for this

feature to be available. Figure 3.7 shows the additional circuitry needed to implement

the new features.

Figure 3.6: Digital Mixer

32

Figure 3.7: Digital Mixer With Additional Control Circuitry

3.6.1 Wallace-Tree Multiplier. During the development phase of the DSSM

VHDL design, the opportunity became available to remove control from the Cadence

RTL Compiler for the structure of the signed multipliers used in the digital mixer.

This opportunity arose from the fact that the number of DFFs available on the chip

were limited, but the number of logic cells utilized thus far was approximately 50%.

Since the design would work with whichever signed multiplier was utilized in the

digital mixer and the power and timing of the overall DSSM design was not limited,

the author chose to utilize a Wallace-Tree Multiplier (WTM) for the signed multiplier.

This multiplier was created using a VHDL generator program that the author had

created previously for a separate project. This generator takes into account the input

size of each of the two signed input bit-widths and whether or not each stage of the

adder tree produced would include a pipeline register. For this design, the author

chose to utilize a pipelined 16 × 16-bit signed WTM. The number of stages needed in

this multiplier was limited, so the number of DFFs needed for the pipeline registers

added to the number already used by the Hilbert filter did not occupy every DFF

available in the chip. The Carry Save Adder (CSA) is the key component used in the

WTM as it creates a 3:2 compressor tree down to the bottom level. The bottom level,

which has two 32-bit operands, uses a Carry Look-Ahead Adder (CLA) to perform

the last, large addition with minimal gate delays. The advantage of using the WTM

is that it utilizes a CSA as its building block, which can be optimized for the given

33

architecture and a low propagation delay CLA for the last stage. This WTM also

allows for fast clock frequencies due to the pipeline stages.

3.6.2 Carry Look-Ahead Adder. Since the author chose to utilize more of

the logic cells in the chip for the WTM, the author also decided to utilize a CLA for

the final 32-bit addition in the 16 × 16-bit WTM, as well as the 16-bit addition and

subtraction at the end of the digital mixer. The CLA was created using a separate

VHDL generator created by the author for a separate project. This generator takes

as arguments the bit width of the two inputs. The bit widths for the two inputs

are assumed to be equal. This CLA utilizes a tree structure [30] that constrains the

largest digital CMOS gate to an input size of four and constrains the maximum delay

of each level to be at most three gate delays. This structure not only produces a fast

adder but also constrains the size of the largest CMOS gate. In terms of Big-Oh (O)

notation, the CLA utilized in this design, with bit width of N, has a maximum delay

equal to O(log4(N)) gate delays with the largest single gate delay equal to the delay

of a 4-input AND gate.

The advantage of the decision to utilize the tree structured CLA in the WTM,

as well as the adder and subtractor in the digital mixer, is the low propagation delays

and more efficient utilization of the overall chip area. Due to the chip structure, the

overall chip had minimal DFFs which limited the size of the digital Hilbert filter and

pipeline stages. The CLA, with its completely combinational design, allowed for more

combinational cells in the chip to be utilized without using any DFFs and also without

any performance hit to the overall chip. The other possible adder choice was a Ripple

Carry Adder (RCA) where the carry bit from each addition is propagated through

each stage. The total delay of the RCA with bit width N is O(N). The RCA utilizes

the fewest amount of resources but sacrifices speed. Another possible choice is the full

CLA that looks ahead N-1 bits. The delay for this CLA is O(1) since the lookahead

is done in parallel and each bit is summed in parallel. The actual delay of the circuit

would be greater than one due to the very large gates needed for the lookahead logic.

34

The full CLA also consumes the largest number of resources for the addition. This

tree-based CLA design lies close to the size of the RCA for low resource usage while

being closer to the full CLA for total propagation delay.

3.7 Shifting Frequency Generation

For this DSSM the shifting frequency generation is controlled by an input signal

and quarter-wave ROM-based DDS. The ROM stores samples that represent the

quarter-wave samples of a cos or sin waveform. The full period of the cos or sin

waveform is governed by the internal clock frequency. The input signal, with bit

width NF, selects the appropriate number of samples in the ROM to skip in order to

increase the shifting frequency. Figure 3.8 shows the cos waveform that is generated

if the ROM has its values read to an output in sequential order. Placing a wrapper

around the ROM in order to modify the address before collecting the sample data,

as shown in Figure 3.9, can generate a full length cos waveform as shown in Figure

3.10. By modifying the scaling factor NF above one, the user can selectably generate

different frequencies that will then be used in the DSSM shifting operation. Figure

3.11 shows four separate scaling factors and their associated full length cos waveforms

generated by using the DDS.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Index

M
ag

ni
tu

de

Figure 3.8: ROM Storing One−Fourth of the Cosine Waveform with 256 Samples

35

2

REG REG REG

Address

ROM

255

10 10

8

ADDR COS

SIN

REG

REG

REG

8

8

8 8
16

16

2

-

'1'

+

+

16

16

2

COS_OUT

SIN_OUT

2

SEL

CLK

ROM_SEL

16

16

16

16

16

16

16

16

Figure 3.9: ROM-Based DDS Structure

0 200 400 600 800 1000 1200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time Index

M
ag

ni
tu

de

Figure 3.10: Full Length Cosine Waveform Generated by DDS

0 200 400 600 800 1000 1200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time Index

M
ag

ni
tu

de

x1
x2
x4
x8

Figure 3.11: Four Separate Cosine Waveforms Using Four Different Scaling Values

36

By the use of the quarter-wave ROM-based DDS, different scenarios, such as

using separate ROMs for the cos and sin waveforms or using a single Dual-Port ROM

for both, can be used. There may also be multiple types of ROMs, such as block

SRAM, distributed SRAM or a full synthesized gate implementation of a ROM. The

DSSM operation is not affected by the selection of the ROM used inside of the DDS

as long as each ROM behaves similar in nature to each other and the timing of each

is consistent.

In this research, the DDS designed uses an IP block SRAM from a commercial

company. This block SRAM has a simple ROM operation in which the ROM samples

are pre-loaded into the SRAM and writing to the ROM is forbidden. Along with the

IP ROM, a separate gate implementation of a ROM was created that behaves like a

standard ROM, except the data samples are created using physical gates based on the

address provided. This implementation was added to allow for switching between the

provided IP ROM and a gate implemented ROM with known functionality in order

to test the functionality of the IP ROM. The gate implementation ROM was designed

by the author in VHDL and was synthesized to the S-ASIC design library and can be

clocked at the same frequency as the IP ROM.

3.8 VHDL Implementation

The main focus of the VHDL design was to create a semi-generic design in which

a user can modify certain parameters easily. The parameters that are modifiable by

a user is given in Table 3.1 and gives a description for each parameter. While the NF

parameter can be any integer, it must follow one simple rule based on the size of the

ROMs shown in Equation 3.1.

NF < b log2(# of samples in ROM)

2
c (3.1)

37

Table 3.1: Generic User Modifiable Parameters
Parameter Description

NF
integer number of bits of the shifting frequency

(more bits = higher resolution)
NC integer number of bits of the cosine/sine waveforms

NCO
integer number of bits of the cosine output

(must be <= NC)
NI integer number of bits of the input ADC signal

Other parameters that are not user changeable are the number of taps in the

digital Hilbert filter, the bit width of the digital Hilbert filter coefficients, the ROM

addressability and the bit width of the ROM samples. If either of the two parameters

of the digital Hilbert filter need modified, a new VHDL file for the filter must be

generated using those parameters and that entity would then be used with no other

modifications to the design. If either of the two parameters for the ROM are modified,

several parameters must be checked for possible modification. If the addressability

of the ROM is modified, the NF generic parameter must be modified. If the bit

width of the ROM samples is modified, the NC and NCO generic parameters must be

checked. It is possible for a generating application to be created in which the given

parameters for both the Hilbert filter and the ROM are provided by the user and

VHDL entities are generated for shorter modification times and easy implementation.

Figure 3.12 shows the dependency tree for the VHDL design files needed to simulate

and synthesize the DSSM design.

dssm.vhd

mixer.vhd

wtm.vhd cla16.vhd

rom_wrapper.vhd

sinRom2.vhd cosRom2.vhd gen_mux.vhd

hilbert_NT101_NC14.vhd

cla32.vhd csa.vhdadd2.vhd

syn.vhd

gen_mux.vhd

Figure 3.12: VHDL File Dependency

38

The top-level VHDL entity stitches together the DSSM to form the design shown

previously in Figure 3.1 on page 27. The inputs and outputs are easily viewable from

this entity, as are the interconnections between modules. This design was chosen to

allow for quick modifications to the DSSM design without the need for multiple files

to be modified. This structure also allows for different Hilbert filters, mixers and DDS

topologies to be tested without a need to modify the top-level entity.

3.8.1 VHDL Simulation. For simulating the VHDL DSSM design, the

Cadence SimVision simulation suite was used to generate test patterns and write the

associated outputs to a file. The simulation software allows for separate VHDL and

Verilog design files and either a VHDL or Verilog testbench that does the interaction

with the DSSM. The designed testbench was modeled in VHDL and creates a floating-

point representation of an incoming sin waveform, then converts it into a fixed-point

representation based on the number of input bits an ADC would provide. After

providing the clock and input data, the output data is written to separate files for

each stage of the DSSM. These separate files are then loaded into MatlabR© and

their functionality is then verified by the script in Appendix A. Both the DSSM

VHDL design and the synthesized Verilog DSSM design were simulated using the

same simulation testbench that provides identical inputs and control circuitry to test

functionality easily. The VHDL testbench used for the VHDL DSSM design is shown

in Appendix B with the synthesized DSSM design testbench being a variant of the

same VHDL testbench file without any generics.

3.9 FPGA Implementation

For the FPGA DSSM implementation, several considerations were taken into

account before a design was created. The targeted FPGA was a Xilinx FPGA demo

board inside of a desktop PC. The demo board features two 14-bit ADCs and DACs

as well as an external clock input. This demo board was used on the Peripheral

Component Interconnect (PCI) expansion card slot on the desktop PC as shown in

39

Figure 3.13. Since there were two DAC outputs available, it was decided that the Q

output of the Hilbert filter would be sent to one of the DACs and the overall DSSM

output would be sent to the other. This helped in determining the performance of

the Hilbert filter as well as the overall DSSM operation.

Figure 3.13: Xilinx FPGA Used In Testing

3.10 Structured ASIC Implementation

Utilizing a ViAsic ViaPath PAR tool along with a IBM 9LP 90nm CMOS ra-

diation hardened by design standard cell library, on which the S-ASIC was targeted,

the DSSM design was created. This design utilized the VHDL DSSM entities simu-

lated for functionality in the Cadence SimVision simulation suite as well as on the

FPGA, but with a few changes. The FPGA implementation utilized a single IP ROM

from Xilinx that stored the cos and sin samples, while the S-ASIC implementation

utilized a block IP SRAM as well as a gate implementation of a ROM. These changes,

although small, required several modifications as well as several repeated simulations

in order for the simulations to match. Table 3.2 shows the parameters chosen for the

S-ASIC DSSM.

For the DSSM S-ASIC design the smallest size available was a 3mm × 3mm

chip area, thus the approach was to utilize as much of the chip area possible, but

still achieve the fastest clock frequency as possible. For utilizing the most amount of

area on the chip, the design approach was to increase the length of the digital Hilbert

40

Table 3.2: VHDL Parameter Selections
Parameter Value

IO Bits 16
ROM Samples 256
ROM Bit Width 16

Hilbert Filter Length 101
Hilbert Bit Width 14

filter beyond that of the FPGA tests. As previously shown in Figure 3.3, the length

of the filter will increase the number of memory registers, multipliers and adders in

the overall circuit. The limiting factor on the length of the digital Hilbert filter was

the the total number of DFFs. The total number of DFFs in the 3mm × 3mm chip

area were reduced by half based on the number of VCells, and for this chip area, the

total number of DFFs is 4864. An optimum length for the digital Hilbert filter was

found to be 101 filter taps. The optimum number of filter taps was determined by

using Equation 3.2 to utilize approximately 50% of the chip’s available DFFs. Also,

the Hilbert filter length must satisfy Equations 3.3 and 3.4.

Hilbert Length = 50% ×
⌊

Total DFFs - (# of DFFs in Mixer + # of DFFs in DDS)
of input bits from ADC

⌋

(3.2)

(Hilbert Length− 1) mod 2 = 0 (3.3)
(

Hilbert Length− 1

2
mod 2

)

= 0 (3.4)

The S-ASIC chip also had a total of 96 user IO pins. This in contrast to the

Xilinx FPGA, which only had two DACs of 14-bits each, drastically limited the ability

to debug pieces of the DSSM. Since the S-ASIC has many more IO pins available, it

was determined that having an output after each stage of the DSSM process would

deliver the best possible testing approach. This testing approach led to a separate

DSSM design seen in Figure 3.14, which has an output after each stage in the DSSM

process. This design was created using the VHDL design files and synthesized using

the Cadence RTL Compiler using the provided target standard cell library. The

41

synthesis tool transformed the behavioral code in the DSSM VHDL design files into

a structural Verilog file, ignoring the custom IP ROMs and inserting blackboxes for

those entities. Given the Verilog file and the target library, a post-synthesis simulation

was completed using a behavioral VHDL version of the custom IP ROMs created by

the author. The simulation was completed in the same fashion as the original VHDL

design simulation with the only difference being the removal of the generic bit widths

of the input and outputs and the insertion of static bit widths for each input and

output. The results of this simulation is featured in Chapter 4 along with the other

simulations completed.

8

Hilbert

Filter

SI
SD

SO

regOut

I0

I1

S

Z

FC

Mixer

I

Q

COS_INSIN_IN

DRFM_OUT

ADDR

DDS

COS_OUTSIN_OUTADDR_IN

ROM_SEL

ADD_SUB_S

ADC_IN

MUX_S MUX_OUT
HIL_Q_OUT

FC_IN ADD_SUB_S

DRFM_OUT

ROM_COS_OUT

ROM_SEL

16

16

16
16

16

16

16

16

16

16

16

8

CLK_IN

RES

RES

RES_IN

Figure 3.14: Structured ASIC DSSM Design

After the synthesized version of the DSSM had been tested for correctness, the

PAR was then completed on the design using a ViAsic ViaPath PAR tool. The needed

input files were the synthesized DSSM Verilog code and the custom IP ROM Verilog

files generated for the targeted ViAsic ViaPath PAR tool. The program also allowed

for the placement effort, target clock frequency and input and output capacitive loads

to be input as parameters to the PAR program. The ViAsic ViaPath PAR tool would

allocate the area described in the target chip layout file for the bottom layers and

possible via locations. The ViAsic ViaPath PAR tool would then begin to place

the cells into the VCell and add the connections where needed to go between metal

layers. The ViAsic ViaPath PAR tool would also add the clock tree to the chip in the

areas where VCells were utilized and remove clock trees where VCells were idle. Also

42

incorporated into the ViAsic ViaPath PAR tool is a Static Timing Analysis (STA)

program that would check timing on the signal nets as well as the clocking skew

introduced by the clock tree.

After the ViAsic ViaPath PAR tool had finished placing each of the cells in the

design and fully routed the signal nets and clock trees the program output a post-

PAR Verilog file for post-PAR simulations and a Graphic Data System II (GDSII)

file which is needed for the fabrication process. This GDSII file only contained the

top layers of the design and when added with the base GDSII file for the lower metal

layers and transistor layer, the output would be the complete DSSM layout. The final

PAR image produced from the ViAsic ViaPath PAR tool is shown in Figure 3.15 and

shows only the layers that are connected by the vias that were utilized for the DSSM.

The figure also shows the pin locations on the outer edge of the design for the IO

pins utilized. The figure does not show the power and ground pins, nor the power

and ground rails needed for the chip to operate. The low level design structure is a

protected design and thus the author could not provide any additional information

on the chip layout.

Since the structure of the S-ASIC was developed as a multi-project reticle and

the fabrication is still in the qualification phase, the design tape-out date needed to

be modified to reflect completion of each design being fabricated. This pushed the

fabrication start date more than two months behind schedule, and as a result, the

designed DSSM chip will not be available for testing before the completion of this

thesis. Although there will not be any results from the chip itself, the post-PAR

design code has been simulated using the designed filter lengths and bit widths and

is presented along with other simulations in Chapter 4.

43

Figure 3.15: S-ASIC DSSM Placement from PAR Program

44

IV. Analysis and Results

The DSSM designed during this research was created through many simulations.

MatlabR© simulations of the DSSM system allowed for parameters to be chosen

as well as provided feedback on the operation of the DSSM before the final design code

was created. Through each of the simulations, the final design was created based upon

different specifications revolving around the bit widths for each stage of the DSSM.

Along with the MatlabR© simulations, FPGA tests and VHDL simulations ranging

from a behavioral simulation to a post-PAR simulation of the final design code were

performed.

4.1 Choosing Parameters for Best Performance

Modifying the parameters of the DSSM designed in this research can modify

the performance of the overall system, therefore it is in the best interest to test

such hardware configurations for comparison purposes. Table 4.1 shows the different

hardware scenarios that were simulated. The tests were divided into four sections,

that test the effects of three different parameters: IO bit width, Hilbert filter length

and ROM size. The last section involves the testing of the design that was sent for

fabrication, which used a different bit width for Hilbert filter coefficients. Each of the

eight test cases were compared using chip area, power dissipation, maximum clock

frequency and dynamic range.

Table 4.1: Design Test Scenarios

Case # IO Bits
ROM Hilbert

Bits Storage Size Coefficient Size Filter Length

1 8 8 256 8 101
2 16 16 256 16 101
3 24 24 256 24 101
4 16 16 256 16 33
5 16 16 256 16 153
6 16 16 128 16 101
7 16 16 512 16 101
8 16 16 256 14 101

45

4.2 MatlabR© Simulation Description

For any signal processing design, it is best to begin with a floating-point MatlabR©

simulation to verify correct operation and best case results. Along with a floating-

point MatlabR© simulation created for this research, a fixed-point MatlabR© simulation

was also created. This fixed-point simulation takes into account each of the param-

eters from Table 3.1 on page 38. Also added to this fixed-point simulation was the

bit width of the cos and sin outputs as well as the number of samples stored in

the ROM. Each of the fixed-point parameters can be modified. The floating- and

fixed-point MatlabR© simulation code can be found in Appendix A.

4.3 FPGA Testing Description

The FPGA used in this research for prototyping was a Xilinx FPGA demo board.

This demo board, as previously mentioned, has two 14-bit DACs with a maximum

clock frequency of 105 MHz and two 14-bit ADCs with a maximum clock frequency

of 105 MHz. The FPGA also included Xilinx primitives. The key primitives used in

the FPGA were a dual-port ROM, for the ROM-based DDS, and dedicated signed

multipliers for the digital mixer.

4.3.1 FPGA Test Parameters. Since the number of inputs and outputs

for the FGPA testing were limited, the decision was made to use a constant for the

scaling value used for the shifting frequency generation as well as a constant for the

adder/subtractor, for either a positive or negative frequency shift. The Hilbert filter

Q and DSSM outputs were connected to the two DAC outputs. Due to maximum

bit width limitations of the ADC and DAC of the FPGA, only one modified test case

was tested on the FPGA. The case tested on the FPGA was a modified case #8 with

14-bit IO bit widths, a Hilbert length of 33 taps with 14-bit coefficients and a ROM

size of 256 with 14-bit coefficients. This case accounted for the fewer number of IO

bits allowed by the ADC and DAC and also for faster clocking due to the short Hilbert

46

filter. This case was chosen as test case # 8 was the S-ASIC DSSM design sent for

fabrication.

4.3.2 FPGA Test Setup. The setup for the FGPA testing was created

using the block diagram shown in Figure 4.1, with one signal generator providing

the single-tone input. This output is then connected through a splitter to both the

FPGA ADC input and the digital oscilloscope. The digital oscilloscope used included

a Fast Fourier Transform (FFT) function that would allow the oscilloscope to show

the spectral content. The output of the DSSM was connected to the second channel

on the oscilloscope for comparison with the input signal. The FPGA used resided on

the PCI expansion slot in the Desktop PC, with the image of the complete test setup

shown in Figure 4.2.

FPGA

Desktop PC

Signal Generator

Digital Oscilloscope

Figure 4.1: FPGA Test Setup

Due to the limited inputs and the use of constants for the shifting frequency

generation, different configuration files needed to be generated for each test case.

For each test case the FPGA needed to be reconfigured with the new configuration

file. The software needed to accomplish this reconfiguration was the Nallatech FUSE

software shown in Figure 4.3. This software allowed for the FPGA to be found and

configured via the PCI bus. Also included in the FUSE software are software reset

switches that were used to reset the FPGA. The FUSE software also allowed for the

ADC and DAC clock frequencies to be programmed via software. These values were

47

Figure 4.2: FPGA Test Setup Components

set based on the maximum clock frequency reported in the Xilinx post-PAR timing

analysis.

4.4 Structured ASIC Testing Description

The S-ASIC testing began with the behavioral VHDL simulation using the Ca-

dence SimVision simulation suite. This simulation created a real valued signal, then

converted the signal to an N-bit digitized value, where N is the number of bits of the

assumed ADC for the test case. The simulation also converted each output of the

DSSM to an integer value. This allowed for the data to be loaded into MatlabR© and

processed. The processing accomplished in MatlabR© was an FFT of the output data

to verify the frequency shift as well as determine any spurious signals that were cre-

ated in the DSSM. The behavioral VHDL simulation testbench is shown in Appendix

B.

After the behavioral VHDL simulation was completed the design was synthe-

sized using the provided library for the targeted S-ASIC design. This synthesis step

48

Figure 4.3: FPGA FUSE interface

produced a structural Verilog file. The Cadence RTL Compiler also optimized the

design, so a simulation of this design file is crucial to verify that the Cadence RTL

Compiler optimized the design incorrectly. The synthesized Verilog design file, along

with the model files for the targeted library, were then simulated with a variant of the

VHDL testbench used for the behavioral simulation. The generic bit widths were re-

moved from the VHDL behavioral simulation testbench to produce the post-synthesis

simulation testbench.

Lastly, after the design was fully placed and routed using the ViAsic ViaPath

PAR tool, a post-PAR Verilog design file was generated. This file included the IP

ROM modules and, when coupled with the library files, allowed simulation using the

same approach as the post synthesis Verilog file. This simulation, in theory, should not

differ much from the post synthesis simulation. The only test case for the post-PAR

simulation was hardware test case #8. This test case was the only

49

4.5 MatlabR© Floating-Point Simulation Results

Since the different hardware scenarios have no bearing on the floating-point

simulation version, it will be presented first. The floating-point plot shown in Figure

4.4 has been normalized for a maximum of 0 dB and assumes a sampling frequency of

75.019 MHz. From the plot, the SFDR for the floating-point simulation is 68.56 dB.

0 4.688 9.377 14.066 18.754 23.443 28.132 32.82
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 3.416e+007
Y: −68.56

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

Figure 4.4: MatlabR© Floating Point Simulation, fin = 10.35 MHz and fc = 3.33
MHz

4.6 Fixed-Point Simulation Results

For the fixed point simulations, the goal is to accurately model the DSSM system

after the MatlabR© floating-point simulation. The floating point simulation proves the

functionality of the DSSM, while the fixed-point simulations shows the effects due to

quantization. For test cases 1-7, a MatlabR© fixed point, behavioral and post-synthesis

simulations were completed and are shown for comparison on the following pages. For

test case #8, the DSSM designed using those parameters was the design chosen to

be fabricated and thus allowed for a post-PAR simulation to be completed. The

post-PAR simulation is the closest representation of the S-ASIC design. Each of the

simulation plots shows the power spectrum of the first Nyquist band using a 4096-pt

FFT after applying an appropriate length Hanning window. Additionally each of the

MatlabR© fixed point simulations, behavioral simulations and post-synthesis simula-

tions used an input clock period of 14.5 ns (68.966 MHz) for consistent comparisons.

50

Also completed for the fixed-point simulations were input and shifting frequency

sweeps to show the how the dynamic range is affected. The MatlabR© simulations

were completed with an input frequency sweep from 500 kHz to 37 MHz in 500 kHz

increments, while the behavioral simulations were completed with a smaller subset of

frequencies. At each input frequency the full range of the ROM-based DDS output

frequencies were tested. This frequency sweep varied from test to test based on the

size of the ROM. For the behavioral frequency sweep tests completed, only a select

few input and shifting frequencies were used. Each of the dynamic range plots were

calculated from the power spectrum generated using the same approach as taken for

the single frequency simulations.

4.6.1 Hardware Test Case #1. Test #1 involved the testing of a limited IO

bit width. This test case helps to see what effect an 8-bit input has on the overall

DSSM system. Due to quantization limits, an 8-bit input could see at most a 48

dB dynamic range. Along with the 8-bit input, both the Hilbert filter coefficients

and the ROM sample bit widths for square multipliers throughout the DSSM. The

fixed-point single frequency simulations are shown in Figure 4.5 with the frequency

sweep simulations shown in Figure 4.6.

As can be seen from the single frequency plots, the proposed dynamic range

of the DSSM using this case is less than 40 dB. From the frequency sweep plots

it can be seen that the average dynamic range result is approximately 38 dB. The

single frequency as well as the frequency sweep behavioral simulations matches the

MatlabR© fixed-point simulations. This shows that the designed DSSM matches the

analytical simulation and that the results from the MatlabR© simulations are good es-

timates of the DSSM performance. While the simulations match, an average dynamic

range of less than 40 dB is not ideal and needs to be increased. The IO bit widths

must be increased in order to attain a higher dynamic range.

4.6.2 Hardware Test Case #2. Test case #2 further tested the DSSM system

by increasing the number of input bits to 16. This increase allows the quantization

51

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 3.367e+006
Y: −37.58

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(a) Matlab R© Fixed-Point Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −37.1

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(b) Behavioral Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −37.1

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(c) Post-Synthesis Simulation

Figure 4.5: Case #1 with fin = 10.25 MHz and fc = 3.33 MHz

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

5

10

15

20

25

30

35

40

45

50

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(a) Matlab R© Fixed-Point Simulation

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

5

10

15

20

25

30

35

40

45

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(b) Behavioral Simulation

Figure 4.6: Case #1 Frequency Sweep, fin = 500 kHz to 33 MHz and fc = 73 kHz
to 9.338 MHz in Increments of (a) 500 and 73 kHz and (b) 4.055 and 2.328 MHz

52

limited dynamic range to grow to a maximum of 96 dB. Similar to test case #1, both

the Hilbert coefficients and ROM sample bit widths were equal to 16 to keep the

square multipliers. The fixed-point single frequency simulations are shown in Figure

4.7 with the frequency sweep simulations shown in Figure 4.8.

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 6.886e+006
Y: −43.3

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(a) Matlab R© Fixed Point Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −42.99

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(b) Behavioral Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −42.99

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(c) Post-Synthesis Simulation

Figure 4.7: Case #2 with fin = 10.25 MHz and fc = 3.33 MHz

From the plots, it can be seen that the increase in the IO bit width has increased

the dynamic range of the system by 6 dB in the single frequency simulation. The

average dynamic range found during the frequency sweep simulations was 48 dB for

the MatlabR© simulations and 45 dB for the behavioral simulations. Increasing the IO

bits from 8 to 16 increases the average dynamic range by 8-10 dB. A 10 dB increase

53

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(a) Matlab R© Fixed-Point Simulation

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(b) Behavioral Simulation

Figure 4.8: Case #2 Frequency Sweep, fin = 500 kHz to 33 MHz and fc = 73 kHz
to 9.338 MHz in Increments of (a) 500 and 73 kHz and (b) 4.055 and 2.328 MHz

is substantial and pushes the dynamic range of the DSSM towards 50 dB and making

the modules more useful.

4.6.3 Hardware Test Case #3. Test case #3 took the DSSM one step further

and increased the input bit width to 24. This increase allows the quantization limited

dynamic range to grow to a maximum of 144 dB. Similar to test cases #1 and #2,

both the Hilbert coefficients and ROM sample bit widths were equal to 24 to keep

the signed multipliers square. The single frequency simulations completed are shown

in Figure 4.9, with the frequency sweep simulation shown in Figure 4.9.

When compared to test case #2, this test case does not show a significant

increase in the dynamic range to warrant an increase of IO bit width. Increasing the

IO bit width from 16 to 24 only resulted in a dynamic range increase of less than 1

dB in the single-frequency simulations and in the frequency sweep simulations. This

shows that there is an asymptotic region somewhere near 16 bits, where an increase

in the IO bit width does not produce a noticeable increase in the dynamic range. The

cause of this asymptote is in the ROM-based DDS that produces the sin and cos

signals. This DDS stores a very low frequency and has a high noise floor. This high

noise floor cancels any dynamic range gains from the increase of the IO bit width.

54

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 6.886e+006
Y: −43.31

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(a) Matlab R© Fixed Point Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −42.98

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(b) Behavioral Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −42.98

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(c) Post-Synthesis Simulation

Figure 4.9: Case #3 with fin = 10.25 MHz and fc = 3.33 MHz

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(a) Matlab R© Fixed-Point Simulation

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(b) Behavioral Simulation

Figure 4.10: Case #3 Frequency Sweep, fin = 500 kHz to 33 MHz and fc = 73 kHz
to 9.338 MHz in Increments of (a) 500 and 73 kHz and (b) 4.055 and 2.328 MHz

55

Also, an increase in the IO bit width can produce a situation on the S-ASIC where

there is not sufficient IO pads or enough combinational resources available to process

the extra bits. Since no noticeable increase was seen from this test, the IO bit width

will be kept at 16 bits for the remainder of the tests.

4.6.4 Hardware Test Case #4. Test case #4 returned the IO bit width to

16 and modified the Hilbert filter length to be shorter than the previous three test

cases. In this test the Hilbert filter length has been reduced to 33 taps from the 101

taps previously tested. This will increase the passband ripple and show the effects

caused by this. The single frequency simulations completed are shown in Figure 4.11,

with the frequency sweep simulations shown in Figure 4.12.

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 6.886e+006
Y: −32.87

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(a) Matlab R© Fixed Point Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −35.59

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(b) Behavioral Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −35.59

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(c) Post-Synthesis Simulation

Figure 4.11: Case #4 with fin = 10.25 MHz and fc = 3.33 MHz

56

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(a) Matlab R© Fixed-Point Simulation

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(b) Behavioral Simulation

Figure 4.12: Case #4 Frequency Sweep, fin = 500 kHz to 33 MHz and fc = 73 kHz
to 9.338 MHz in Increments of (a) 500 and 73 kHz and (b) 4.055 and 2.328 MHz

The effect can be seen that a shortened Hilbert filter reduces the dynamic range

of the DSSM. Compared to test case #2, which had identical parameters with the

exception of the filter length, this test case has a lower dynamic range. The sin-

gle frequency simulations showed a lower dynamic range, while the frequency sweep

simulations showed only a slightly lower average dynamic range. The key issue that

can be seen from this test case is the large swings in the dynamic range across the

useful band compared to the long filter case. This effect is caused by the Hilbert filter

frequency response.

4.6.5 Hardware Test Case #5. Test case #5 kept the IO bit width set

to 16 and modified the Hilbert filter length to be longer than the previous four test

cases. In this test, the Hilbert filter length has been increased to 153 taps from the

33 and 101 taps previously tested. This will decrease the passband ripple and show

any improvements from this change. The three single frequency simulations for this

test case are shown in Figure 4.13, while the frequency sweep simulations are shown

in Figure 4.14.

The plots for this test case show that an increase in the Hilbert filter may

increase the dynamic range of a single frequency by 10 dB, but the average dynamic

57

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 6.886e+006
Y: −46.35

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(a) Matlab R© Fixed Point Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 1.162e+006
Y: −54.13

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(b) Behavioral Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 1.162e+006
Y: −54.13

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(c) Post-Synthesis Simulation

Figure 4.13: Case #5 with fin = 10.25 MHz and fc = 3.33 MHz

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(a) Matlab R© Fixed-Point Simulation

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(b) Behavioral Simulation

Figure 4.14: Case #5 Frequency Sweep, fin = 500 kHz to 33 MHz and fc = 73 kHz
to 9.338 MHz in Increments of (a) 500 and 73 kHz and (b) 4.055 and 2.328 MHz

58

range may only increase by 1-2 dB. While the average dynamic range does not change

much for this case, the key attribute of this design is the smooth output dynamic range

for the DSSM. The increase in the Hilbert filter length has created fewer ripples in

the passband and allows for more use of the spectrum and a slow changing dynamic

range.

4.6.6 Hardware Test Case #6. Test case # 6 returned both the IO bit

width to 16 and the Hilbert filter length to 101 taps. This test reduced the number of

ROM samples stored from 256 to 128, which decreases the granularity of the shifting

frequency. The results of this test will show any effects caused by this decrease in

frequency granularity. The completed single frequency simulations for this case are

shown in Figure 4.15, with the plots showing the frequency sweep simulations are

shown in Figure 4.16.

The decrease in ROM storage from 256 down to 128 in this case has reduced

both the single-frequency dynamic range and the frequency sweep average dynamic

range by approximately 1 dB. While this decrease is negligible, the frequency sweep

plots shows the effect of decreasing the ROM size. This test case produces an output

dynamic range that is relatively flat, but with a lower average dynamic range. This

design can be used if a constant dynamic range is needed and a high average dynamic

range is not needed.

4.6.7 Hardware Test Case #7. Test case #7 kept the IO bit width at 16 and

the Hilbert filter length at 101 taps. This test increased the number of ROM samples

stored from 128 in test #6 to 512, which increases the granularity of the shifting

frequency. The results of this test will show any effects caused by this increase in

frequency granularity. The single frequency simulations for this test case are shown

in Figure 4.17, with the frequency sweep simulations shown in Figure 4.18.

This increase in ROM storage increased the shifting frequency granularity, but

increased the dynamic range of the DSSM by less than 1 dB in the single-frequency

59

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 6.886e+006
Y: −41.63

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(a) Matlab R© Fixed Point Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.156e+006
Y: −43.01

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(b) Behavioral Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 4.192e+006
Y: −42.95

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(c) Post-Synthesis Simulation

Figure 4.15: Case #6 with fin = 10.25 MHz and fc = 3.33 MHz

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(a) Matlab R© Fixed-Point Simulation

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(b) Behavioral Simulation

Figure 4.16: Case #6 Frequency Sweep, fin = 500 kHz to 33 MHz and fc = 146
kHz to 9.302 MHz in Increments of (a) 500 and 146 kHz and (b) 4.055 and 2.345 MHz

60

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 6.92e+006
Y: −42.79

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(a) Matlab R© Fixed Point Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.19e+006
Y: −43

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(b) Behavioral Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 8.739e+006
Y: −43

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(c) Post-Synthesis Simulation

Figure 4.17: Case #7 with fin = 10.25 MHz and fc = 3.33 MHz

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

70

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(a) Matlab R© Fixed-Point Simulation

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

70

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(b) Behavioral Simulation

Figure 4.18: Case #7 Frequency Sweep, fin = 500 kHz to 33 MHz and fc = 36 kHz
to 9.374 MHz in Increments of (a) 500 and 36 kHz and (b) 4.055 and 2.254 MHz

61

test and increased the average dynamic range by approximately 1 dB in the frequency

sweep simulations. This design shows large ripples near the edge of the Hilbert pass-

band cutoff as well as a higher average dynamic range. This design could be used

whenever the average dynamic range must be high while the ripple in the dynamic

range caused by the Hilbert filter can be neglected.

4.6.8 Hardware Test Case #8. Test case #8 kept the IO bit width at 16,

the Hilbert filter length at 101 taps and reduced the ROM samples back to 256. This

test reduces the number of bits for each of the Hilbert filter coefficients. This creates

a non-square 16 × 14 multiplier in the Hilbert filtering process. The three single-

frequency simulations that have been completed for each of the previous test cases,

along with the single frequency post-PAR simulation, are shown in Figure 4.19. The

frequency sweep simulations are shown in Figure 4.20.

This test case shows the effect of reducing the Hilbert coefficient bit width from

16 to 14, which modifies the size of the constant multipliers in the filter. This could

potentially lower the dynamic range, but as seen from the plots, the dynamic range

was reduced by less than 1 dB. Both the single-frequency and the frequency sweep

simulations showed only a negligible decrease in the dynamic range. This case shows

the importance of testing the IO bit width versus Hilbert filter coefficient bit widths

to find the best dynamic range results for the desired DSSM, and for this design,

the Hilbert coefficient bit width could safely be decreased to reduce the resource

utilization, without a significant decrease in dynamic range.

4.7 FPGA Test Results

As previously mentioned, the only hardware test completed on the Xilinx FPGA

was the modified test case #8. This test case was specifically designed for the par-

ticular FPGA being utilized. The IO bit width was chosen such that both the ADC

and DAC were full-scale. Figure 4.21 provides the Xilinx synthesis tool printout for

the utilization of the targeted FPGA.

62

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 6.886e+006
Y: −43.28

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(a) Matlab R© Fixed Point Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −42.98

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(b) Behavioral Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −42.98

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(c) Post-Synthesis Simulation

0 4.31 8.62 12.931 17.241 21.551 25.862 30.172
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

X: 7.223e+006
Y: −42.99

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

(d) Post-PAR Simulation

Figure 4.19: Case #8 with fin = 10.25 MHz and fc = 3.33 MHz

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(a) Matlab R© Fixed-Point Simulation

4.31 8.62 12.931 17.241 21.551 25.862 30.172
0

10

20

30

40

50

60

Input Frequency (MHz)

S
F

D
R

 (
dB

)

(b) Behavioral Simulation

Figure 4.20: Case #8 Frequency Sweep, fin = 500 kHz to 33 MHz and fc = 73 kHz
to 9.338 MHz in Increments of (a) 500 and 73 kHz and (b) 500 and 100 kHz

63

Device Utilization Summary:

Number of BUFGMUXs 1 out of 16 6%

Number of DCMs 1 out of 8 12%

Number of External IOBs 60 out of 644 9%

Number of LOCed IOBs 60 out of 60 100%

Number of MULT18X18s 12 out of 136 8%

Number of RAMB16s 1 out of 136 1%

Number of SLICEs 378 out of 13696 2%

Figure 4.21: FPGA Resource Summary Given by Xilinx Synthesis Tool

The maximum clock frequency that can be used in the FPGA design is shown

from the timing summary from the Xilinx synthesis tool in Figure 4.22. This clock

frequency is the maximum allowable before timing errors begin in the form of setup

time violations. The FPGA clock was also used for the ADC and DAC clocks, so the

maximum input signal to the FPGA is approximately 25 MHz.

Timing Summary:

Speed Grade: -5

Minimum period: 19.940 ns (Maximum Frequency: 50.151 MHz)

Minimum input arrival time before clock: 2.273ns

Maximum output required time after clock: 4.061ns

Maximum combinational path delay: No path found

Figure 4.22: FPGA Timing Summary Given by Xilinx Synthesis Tool

Along with the results that were produced from the Xilinx Synthesis tool, a

power estimation tool was available and was used to gather the estimated power used

by the FPGA. The results of the power estimation appear in Figure 4.23

Figure 4.24 shows the picture taken from the digital oscilloscope FFT output for

the scenario detailed earlier for the FPGA. From this image of the FFT output of the

digital oscilloscope, the dynamic range is approximately 33 dB. This approximation

is due to each vertical division equal to 25 dB, with the main frequency content

appearing near the center and the highest spur located approximately two divisions

left of the main frequency.

64

Power summary | I(mA) | P(mW) |

--

Total estimated power consumption | | 169 |

Total Vccint 1.50V | 64 | 97 |

Total Vccaux 2.50V | 10 | 25 |

Total Vcco25 2.50V | 19 | 47 |

Clocks | 7 | 10 |

Inputs | 0 | 0 |

Logic | 4 | 5 |

Outputs |

Vcco25 | 18 | 44 |

Signals | 4 | 6 |

Quiescent Vccint 1.50V | 50 | 75 |

Quiescent Vccaux 2.50V | 10 | 25 |

Quiescent Vcco25 2.50V | 1 | 3 |

Figure 4.23: FPGA Power Estimation Given by Xilinx Synthesis Tool

Figure 4.24: FPGA Results, fin = 10.25 MHz and fc = 3.33 MHz

4.8 Results

From each of the test cases shown previously, data was collected on the SFDR

of the output signals as well as the power, maximum clock frequency and resource

utilization for each of the hardware tests. For each of the hardware test case simula-

tions completed, the dynamic range was calculated and is shown in Table 4.2. The

dynamic range results from each of the simulation can be compared to the floating

point MatlabR© simulation completed earlier which resulted in a dynamic range of

68.56 dB.

65

Table 4.2: Single Frequency Dynamic Range Results (in dB)

Case #
MatlabR©

Behavioral
Post Post

Fixed Pt Synthesis PAR

1 37.58 37.10 37.10 N/A
2 43.30 42.99 42.99 N/A
3 43.31 42.98 42.98 N/A
4 32.87 35.59 35.59 N/A
5 46.35 54.13 54.13 N/A
6 41.63 43.01 42.95 N/A
7 42.79 43.00 43.00 N/A
8 43.28 42.98 42.98 42.99

Table 4.3 shows the results of the input and shifting frequency sweeps for both

the MatlabR© fixed-point simulations and behavioral simulations that were completed.

Each of the simulations were compared based on the minimum and maximum dynamic

range that was calculated as well as the average dynamic range throughout the sweep,

as well as the standard deviation of the dynamic range The input and shift values

represent the input and shifting frequency that exhibited either the minimum or

maximum SFDR.

66

Table 4.3: Frequency Sweep Dynamic Range Results

Case #
MatlabR© Fixed-Point Simulation Behavioral Simulation

Minimum Maximum
Average

Standard Minimum Maximum
Average

Standard
SFDR Input Shift SFDR Input Shift Deviation SFDR Input Shift SFDR Input Shift Deviation

1 26.556 6.0 5.994 40.292 24.5 6.061 38.831 1.363 34.265 24.83 4.378 39.533 16.72 4.378 36.742 1.898
2 37.141 6.0 5.994 58.705 10.5 3.502 48.033 4.350 38.088 28.885 8.553 54.141 8.61 4.378 45.979 4.971
3 37.113 6.0 5.994 58.735 10.5 3.502 48.043 4.361 38.091 28.885 8.553 54.168 8.61 2.223 45.993 4.980
4 25.429 6.0 5.994 46.306 13.0 7.274 38.768 4.591 26.182 4.555 2.223 50.445 24.83 8.553 37.24 7.503
5 40.787 5.0 7.206 58.734 10.5 3.502 51.020 3.096 39.609 4.555 6.466 49.053 20.775 0.067 46.392 3.160
6 36.826 6.0 5.792 53.390 7.0 7.004 46.091 2.502 38.034 8.61 0.135 48.132 8.61 8.486 44.823 3.567
7 29.462 26.5 7.981 64.097 10.5 3.468 48.971 5.742 38.089 28.885 4.344 64.859 8.61 8.587 47.012 6.950
8 37.259 6.0 5.994 58.705 10.5 3.502 48.033 4.358 38.098 28.885 8.553 54.135 8.61 2.233 45.878 4.938

All SFDR Results are in dB while all frequencies are in MHz

67

From synthesis to placement, routing and post-PAR static timing analysis, sev-

eral timing reports were given. The Cadence RTL Compiler provided an estimate on

the maximum clock frequency as did the ViAsic ViaPath PAR tool and Incentia STA

tool. Also included in the timing reports is the maximum clock frequency obtained

through post-synthesis and post-PAR simulations using the Cadence SimVision sim-

ulation suite. The Cadence RTL Compiler and ViAsic ViaPath PAR tool both used

estimates on the path lengths to determine the maximum clock frequency. One would

expect each of the reported clock frequencies to be clustered together near a common

frequency. For the timing reports shown in Table 4.4, they are clustered together in a

23 MHz range. This table also shows the downward progression of the reported clock

frequency from synthesis to post-PAR static timing analysis.

Table 4.4: S-ASIC Timing Reports
Source Maximum Clock Reported

Post-Synthesis Timing Report 90.114 MHz
Post-Synthesis Simulation 66.667 MHz
Post-PAR Timing Report 80.431 MHz
Post-PAR Simulation 68.966 MHz

Post-PAR STA Timing Report 76.045 MHz

4.9 Comparison

The hardware comparison of the different hardware test cases for the S-ASIC

is shown in Table 4.5. The power values shown in the table were gathered from the

post-synthesis power report given by the Cadence RTL Compiler. The maximum

clock frequency shown in the table was gathered from the synthesis tool output while

SFDR was calculated using the post-synthesis simulation data shown earlier. Since

the limiting factor on the S-ASIC was the amount of DFFs present, the resource

utilization shown in the table represents the percentage of DFFs used out of the total

number of DFFs available on the S-ASIC chip.

4.9.1 Design Parameter Effects. When varying the design parameters, sev-

eral output parameters were modified. The parameters in question are power, maxi-

68

Table 4.5: S-ASIC Hardware Comparison

Parameter
Test Case #

1 2 3 4 5 6 7 8

Power (mW) 56.975 358.473 813.013 155.378 479.812 359.084 364.934 328.533
max fclk (MHz) 92.199 90.025 87.382 90.074 89.622 90.025 90.057 90.114

Resource Utilization (%) 24.97 64.08 113.5 41.7 81.18 64.08 64.06 64.7
SFDR (dB) 37.1 42.99 42.98 35.59 54.13 42.95 43.0 42.98

mum clock frequency, resource utilization and SFDR. This is not an all inclusive list

of different parameters, but were chosen for comparison purposes as they fit into many

engineers’ calculations. Each of the parameters are featured in their own figure based

on the three design parameters that were varied around the design that was sent for

fabrication. These parameters were the IO bit width, the ROM storage capacity for

the DDS and the Hilbert filter length. Each of the three different design parameters

modified the designed DSSM in some fashion, and Figures 4.25-4.28 show this.

The first to look at is the power for the S-ASIC design and was calculated from

the Cadence RTL Compiler output files. As can be seen from the the plots in Figure

4.25, both the length of the Hilbert filter as well as the IO bit width greatly influenced

the power needed for the DSSM.

8 16 24

56.975

358.473

813.013

IO Bits

P
ow

er
 (

m
W

)

(a) IO Bits

128 256 512

358.473
359.084

364.934

P
ow

er
 (

m
W

)

ROM Size

(b) ROM Storage

33 101 153

155.378

358.473

479.812

Hilbert Length

P
ow

er
 (

m
W

)

(c) Hilbert Length

Figure 4.25: Design Parameters vs. Power Comparison

The second parameter focused on was the maximum clock frequency of the

DSSM, which was captured from the Cadence RTL Compiler output files. From the

plots it is easy to see that the key parameter that effects the clock speed is the IO bit

width. The reason is in the size of the needed multipliers and adders in the DSSM to

69

support an increase in bit widths. The plots showing the comparison for the maximum

synthesized clock frequency are shown in Figure 4.26.

8 16 24

87.382

90.025

92.199

IO Bits

M
ax

 C
lo

ck
 F

re
qu

en
cy

 (
M

H
z)

(a) IO Bits

128 256 512

90.025

90.057

ROM Size

M
ax

 C
lo

ck
 F

re
qu

en
cy

 (
M

H
z)

(b) ROM Storage

33 101 153

89.622

90.025

90.074

Hilbert Length

M
ax

 C
lo

ck
 F

re
qu

en
cy

 (
M

H
z)

(c) Hilbert Length

Figure 4.26: Design Parameters vs. Maximum Clock Frequency Comparison

The resource utilization parameter comes from the availability of DFFs on the

S-ASIC. The measurement used for this comparison was to show the percentage of

used DFFs to the number of available DFFs. This comparison shows that both the

IO bit width and the Hilbert filter length contribute to the resource usage of the

DSSM. The IO bit width has slope greater than one on the the resource usage while

the Hilbert filter has a slope less than one for the percentage of used DFFs. The plots

in Figure 4.27 shows the effects of the parameters on the resource usage of the DSSM.

8 16 24

24.97

64.08

113.5

IO Bits

R
es

ou
rc

e
U

sa
ge

 (
%

)

(a) IO Bits

128 256 512

64.06

64.08

ROM Size

R
es

ou
rc

e
U

sa
ge

 (
%

)

(b) ROM Storage

33 101 153

41.7

65.08

81.18

Hilbert Length

R
es

ou
rc

e
U

sa
ge

 (
%

)

(c) Hilbert Length

Figure 4.27: Design Parameters vs. Resource Utilization Comparison

Lastly, the SFDR was looked at from the post-synthesis simulations of each of

the design parameter cases. The design parameters that contribute the most to the

dynamic range performance of the DSSM is the IO bit width and the Hilbert filter

length. An increase in the IO bit width from 8 bits to 16 bits increased the dynamic

70

range by 6 dB, while an increase in filter length from 33 taps to 101 taps increased

the dynamic range by 8.4 dB, and an increase from 101 taps to 153 taps increased the

dynamic range further by 11.1 dB. An increase in the IO bit width from 16 bits to

24 bits did not increase the dynamic range. From the plots in Figure 4.28, it is easy

to see the Hilbert filter length effects the dynamic range more than the ROM size or

the IO bit width.

8 16 24

37.1

42.98

IO Bits

S
F

D
R

 (
dB

)

(a) IO Bits

128 256 512

42.95

42.99

43

ROM Size

S
F

D
R

 (
dB

)

(b) ROM Storage

33 101 153

34.59

42.99

54.13

Hilbert Length

S
F

D
R

 (
dB

)

(c) Hilbert Length

Figure 4.28: Design Parameters vs. SFDR Comparison

From the preceding plots, one can conclude that the most influential parameter

to the size, power and speed of the DSSM is the IO bit width. An increase in bit width

increases power, decreases the clock frequency and increases the resource utilization

greater than linear fashion. The second parameter that plays a role in the DSSM

performance is the Hilbert filter length. The filter’s length contributes to the resource

utilization and power, more than it does to the clock frequency.

The key parameter that effects the dynamic range of the DSSM is the Hilbert

filter length more than the IO bit width. Due to limitations on the number of bits

for ADCs and DACs, the number of IO bits has a maximum, while the length of

the Hilbert filter is limited by the number of DFFs available and the target clock

frequency for the DSSM. If an increase in the Hilbert filter, that is, an increase in

power and an increase in resource usage, is possible, the dynamic range of the DSSM

can be increased.

The size of the ROM used in the DDS does not effect the DSSM performance

in either a positive or negative way. The ROM size effects on power, clock frequency,

71

resource usage and dynamic range are negligible compared to the other design pa-

rameters. While the effects cannot be seen from the results presented, the effects of

the ROM size can be seen on the frequency resolution of the shifting frequency. As

the ROM size decreases the frequency resolution decreases and alternatively, when

the ROM size increases, so does the frequency resolution. The ROM size should be

chosen based on the desired frequency resolution more than any of the parameters

compared here.

Test case #8 involved modifying the Hilbert filter coefficient bit width in case #2

to 14 bits. This creates non-square multipliers in the Hilbert filter and, as discussed

previously, should decrease the power and resource usage while increasing the clock

frequency. The comparison of cases #2 and #8 are shown in Figure 4.29. It can

be seen that the decrease in Hilbert filter coefficient bit width decreased power by

8%, increased the maximum clock frequency by approximately 1%, increased resource

usage by approximately 1% and increased the dynamic range of the DSSM by 8%. The

modification from 16 to 14 bit Hilbert coefficients contributed to a more useful DSSM

with reduced power and increased dynamic range without a major hit to resource

usage and clock frequency.

4.9.2 S-ASIC Versus FPGA. To compare the S-ASIC to the FPGA used for

prototyping involved a few changes. The changes made involved the IO bits and the

Hilbert length. The ADC and DAC on the FPGA board were both limited to 14 bits

that limited the IO bits to 14 and the speed of the FPGA could not handle a large

Hilbert filter length. The filter length used was 33 taps. From the results shown in

the previous section, the dynamic range of the FPGA will be lower due to the shorter

Hilbert filter, which must be accounted for in a fair comparison. The maximum clock

frequency for the S-ASIC was also taken from maximum clock frequency achieved

through the post-PAR simulation while the SFDR calculation for the S-ASIC was

also taken from the post-PAR simulation. The comparison values are shown in Table

4.6.

72

14 16

328.533

358.473

Coefficient Bit Width

P
ow

er
 (

m
W

)

(a) Power

14 16

90.025

90.114

Coefficient Bit Width

M
ax

 C
lo

ck
 F

re
qu

en
cy

 (
M

H
z)

(b) Clock Frequency

14 16

64.08

64.7

Coefficient Bit Width

R
es

ou
rc

e
U

sa
ge

 (
%

)

(c) Resource Utilization

14 16

46.26

50.44

Coefficient Bit Width

S
F

D
R

 (
dB

)

(d) SFDR

Figure 4.29: Comparison of Test Cases # 2 and 8

Table 4.6: FPGA vs. S-ASIC Comparison
Parameter S-ASIC FPGA Improvement

Power (mW) 328.533 169 -1.94x
max fclk (MHz) 68.965 50.151 1.37x

Resource Utilization (%) 64.7 2 -32.3x
SFDR (dB) 42.99 33 9.99 dB

As can be seen from the preceding table, the S-ASIC power consumption in-

creased by approximately a factor of 2 over the FPGA and had a resource utilization

increase by a factor of 30. Due to the Hilbert filter length difference addressed earlier

for the FPGA DSSM design, the results presented earlier show that the SFDR would

have increased by a factor of 1.39, the power consumption would be increased by a

factor of 2.3, the maximum clock frequency would have decreased by a factor of 0.01

and the resource usage would have increased by a factor of 1.56. When accounting

for these modifications, the comparison translates into what is seen in Table 4.7.

As can be seen from this compensated table, the resource usage of the FPGA was

drastically lower than that of the S-ASIC design, yet the power and maximum clock

frequencies were higher and the dynamic range differed only by 2.88 dB. This suggests

73

Table 4.7: FPGA vs. S-ASIC Comparison With Compensation
Parameter S-ASIC FPGA Improvement

Power (mW) 328.533 388.7 1.18x
max fclk (MHz) 68.965 46.649 1.47x

Resource Utilization (%) 64.7 3.12 -20.7x
SFDR (dB) 42.99 45.87 -2.88 dB

that even though this design has been radiation hardened, it can still perform as well

as an FPGA while also keeping the power lower and increasing the clock frequency.

4.9.3 Hardened Versus Non-Hardened DSSM. Also for comparison pur-

poses, the DSSM designed through this research has been compared to a non-hardened

DSSM using similar 90nm CMOS technology. The three designs were compared using

identical hardware and input test conditions as detailed eariler. The results gathered

for this comparison were from test case #8, the design being fabricated on the S-

ASIC. The power parameter was captured from Cadence RTL Compiler output, the

area from the ViAsic ViaPath PAR tool output, the SFDR from the post-PAR sim-

ulation and the maximum clock frequency from the Incentia STA tool output using

the post-PAR design file. Table 4.8 shows the results gathered for this comparison.

The non-hardened DSSM process library did not have accurate timing models for the

digital gates and could not be simulated the same as the DSSM from this design.

Both the DSSM from this research and the non-hardened DSSM used a 20 MHz clock

frequency as it was the fastest clock frequency the non-hardened DSSM could be sim-

ulated at. The dynamic range result from the table shows the average dynamic range

found among a series of input frequencies.

Table 4.8: Hardened vs. Non-Hardened DSSM Comparison
Parameter This Research Non-Hardened [16] Improvement

Power (mW) 328.533 54.535 -6.06x
Area (mm2) 11.225 5.045 -2.23x

max fclk (MHz) 76.045 78.49* -0.04x
SFDR (dB) 44.574 50.698 -6.124 dB

*Data from synthesis timing report

74

It can be seen that this DSSM design has decreased performance versus the non-

hardened DSSM. From the radiation hardening by design process, an increase in area

and power and a decrease in the maximum clock frequency should be seen compared

to the non-hardened DSSM, which was the case for this test. This DSSM design also

showed a small decrease in the dynamic range from the non-hardened design. This

decrease in dynamic range was expected due to the radiation hardened library. While

the maximum clock frequency of the non-hardened DSSM was comparable to the

radiation hardened DSSM from this research, the timing models for the non-hardened

were not accurate. This inaccuracy created a non-ideal comparison between the two

DSSM designs. Had more accurate timing models been available for the non-hardened

DSSM design, a better comparison could have been completed.

75

V. Conclusions

A radiation hardened by design DSSM has been successfully designed, imple-

mented and tested for an S-ASIC. Through the application of the theory behind

the frequency shift principle of the SSM in the analog domain and transitioning to

the digital domain, a tested design was created that would implement a functioning

DSSM. Through the utilization of an S-ASIC, the design cycle was drastically reduced

by the use of a standard cell library for synthesis and a one mask approach to the

fabrication of the design. This design has shown how a radiation hardened DSSM can

be constructed using commercially available tools and processes and how it compares

to a non-hardened DSSM.

5.1 Lessons Learned

Through the theory, methodology and simulations, many lessons were learned

through this research. The key lesson learned from this research is that the STA

completed by the synthesizing and PAR software may not be accurate. The timing

estimates provided by the software tools may give operating clock speeds higher or

lower than what was expected depending on the design, software version and in some

cases, the computing system the software tools are executing on. This creates a

situation where each synthesized, placed and routed design must be simulated several

times to ensure that the circuit can operate at the clock speed intended. Also involved

in the timing estimates is the library timing information. This timing information

provides the capacitive and resistive values for the designed digital gates used in the

design. These parameters are sufficient enough to calculate the propagation delay

of the digital gate and provide the STA with the timing information it needs for

its timing estimate. If the library timing information is not accurate the STA tool

timing estimate cannot be trusted until the designed chip can be fabricated and then

functionally tested for timing.

76

5.2 Future Work

As with any research, there is always more that can be done in terms of testing

and/or modifications. Due to the delay in the fabrication of the DSSM chip, the final

functional testing on the DSSM, as well as the radiation testing of the DSSM, would

need to be completed. To aid in processing more RF spectrum, bandpass filters can

be added after the ADC to create a filterbank DSSM. This filterbank would separate

sections of the RF spectrum into manageable slices for each individual DSSM. To aid

in the speed of the DSSM, a pipelined digital Hilbert filter can be utilized. Lastly,

adding a signal storage and retrieval system to control which signals are processing

and output could be added to create the overall DRFM structure.

5.2.1 Filterbank Approach. Due to the Nyquist theorem on sampling rates

being twice that of the bandwidth of interest, the DSSM speed must increase as the

RF spectrum of interest increases. The filterbank approach adds the ability to utilize

the DSSM designed in this research with its given clock speed multiple times to create

the same effect. The basic idea of the filterbank is to use BPFs to select a portion of

the RF spectrum, digitized by the ADC, such that the bandwidth can be processed

in the DSSM at a reduced frequency. The larger the captured RF spectrum, the

more filterbank paths need to be created. Figure 5.1 shows the structure of such a

filterbank using the DSSM from this research.

ADC BPF

BPF

BPF

DSSM

DSSM

DSSM

+

BPF DSSM

Down

convert

Down

convert

Down

convert

Down

convert

Up

convert

Up

convert

Up

convert

Up

convert

DAC

+

+

BPF

Figure 5.1: Filterbank DRFM Structure

5.2.2 Pipelined Digital Hilbert Filter. While the filterbank approach can

help increase the RF spectrum examined by the entire system, adding a pipelined

77

digital Hilbert filter could increase the RF spectrum examined by a single DSSM.

The same basic filter structure can be utilized with the addition of DFFs between

the adders in the adder tree. If a new design includes more DFFs, then the entire

tree may be pipelined as shown in Figure 5.2. If the number of DFFs is limited, as it

was in this DSSM design, there should be several iterations completed to insert the

needed pipeline stages in strategic locations such that the speed of the DSSM can

be increased without the over utilization of the available DFFs. This addition to the

DSSM designed from this research would allow the DSSM clock rate to be increased

and would allow more of the RF spectrum to be processed. If coupled with the

filterbank approach, the complete system would be capable of a much larger section

of the RF spectrum and could be used in many applications.

+ +

+

+ +

+

+

Figure 5.2: Pipelined Adder Tree for Hilbert Filter

This addition to the digital Hilbert filter would require a complete revision of

the VHDL code for the Hilbert filter. The VHDL code designed in this research

was written as a behavioral design, and with the addition of the pipeline stages, the

design would need to be converted to a structural design that would allow for different

placements of the pipeline stages. The different placements would arise whenever there

are not enough DFFs in the targeted design.

78

5.2.3 Signal Storage and Retrieval System. Due to the limited memory

elements available on the S-ASIC chip, it was decided to neglect any control structure

on the storage and retrieval of digitized signals, and focus on the DSSM portion of

the DRFM. This storage system would allow for a signal to be stored for a defined

amount of time and retransmitted at the discretion of the controller. This feature

would allow a captured signal to be stored and a frequency shifted version of that

signal transmitted at various intervals in time. Storing a signal for later retrieval

allows for the reproduction of a signal that has since disappeared and also to store

the signal for more detailed signal processing at a later time.

79

Appendix A. Matlab R© Simulations and Comparison Scripts

The MatlabR© simulation functions and script as well as the MatlabR© comparison

script is found in this appendix. The simulation script creates a double-precision

representation of an ideal input and output signal as well as a fixed-point representa-

tion of the same signals. The comparison script reads in the simulation data files for

the VHDL design simulation, the post-synthesized VHDL simulation and the post-

Place and Route simulation and plots the corresponding RF spectrum for comparison

against the ideal MatlabR© simulation. The dynamic range helper function findDR

used in the drfm sim simulation script is also found in this appendix.

A.1 MatlabR© Floating-Point DSSM Simulation

function [OUT ,COS ,SIN ,I,Q] = drfm_sim_float(sig ,Fc ,Fs,N,addSub)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DRFM Matlab Simulation
%
% Created by: Thomas Pemberton
%
% Last Updated on: 10 Nov 2009
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = (0:N-1)*1/Fs;

%% create the shifting signals
COS = cos(2*pi*Fc*n);
SIN = sin(2*pi*Fc*n);

%% perform Hilbert transform on data
h = hilbert(sig);

%% extract the Real and Imag from the output
I = real(h);
Q = imag(h);

%% perform the mixing
Imix = I.*COS;
Qmix = Q.*SIN;

%% subtract Imix and Qmix for the final output
if (strcmp(addSub ,’sub’) == 1), OUT = Imix+Qmix; end;
if (strcmp(addSub ,’add’) == 1), OUT = Imix -Qmix; end;

A.2 MatlabR© Fixed-Point DSSM Simulation
function [OUT ,sig ,COS ,Q] = drfm_sim_fixed(sig ,Fs ,params ,addSub)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DRFM Matlab Simulation
%
% Created by: Thomas Pemberton
%
% Last Updated on: 10 Nov 2009
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

80

%% check if all parameters were given
if (nargin < 4), error(’Requires 4 arguments’); end;

%% generate the fixed point input signal
sig = ceil(sig*2^(params.ADC_bits -1));

%% set the shifting frequency signal
Fc = ceil(params.Fc/((Fs/4)/params.ROM_size));

%% create the shifting signals
ROM = ceil(2^(params.ROM_bits -1)*cos(2*pi*(0: params.ROM_size -1)*.25/

params.ROM_size));

%% create the hilbert coeffecients
h = zeros(1,params.HILBERT_length);
i = 1;
while i<= params.HILBERT_length

h(1,i) = 2/(pi*(i-(params.HILBERT_length -1)/2));
i=i+2;

end
h = ceil(2^(params.HILBERT_bits -1)*h);

%% filter the incoming signal and scale the signal appropriately
a = conv(sig ,h);
a = a/(2^(params.HILBERT_bits -1));

%% extract the I and Q channels
I = sig((params.HILBERT_length -1)/2:end);
Q = a(params.HILBERT_length -2:end -params.HILBERT_length);
I = I(1:length(Q));

%% create the appropriate COS and SIN for mixing
ii=1;
address = 1;
while ii <= length(I)

if (address > params.ROM_size*4)
address = address -params.ROM_size*4;

end;
if ((address >= 1) && (address < params.ROM_size))

addr = address;
COS(ii) = ROM(addr+1);
SIN(ii) = ROM(params.ROM_size -addr);

elseif ((address >= params.ROM_size) && (address < params.
ROM_size*2))
addr = address -params.ROM_size;
COS(ii) = -1*ROM(params.ROM_size -addr);
SIN(ii) = ROM(addr+1);

elseif ((address >= params.ROM_size*2) && (address < params.
ROM_size*3))
addr = address -params.ROM_size*2;
COS(ii) = -1*ROM(addr+1);
SIN(ii) = -1*ROM(params.ROM_size -addr);

elseif ((address >= params.ROM_size*3) && (address < params.
ROM_size*4))
addr = address -params.ROM_size*3;
COS(ii) = ROM(params.ROM_size -addr);
SIN(ii) = -1*ROM(addr+1);

end;
address = address+Fc;
ii = ii+1;

end

%% perform the mixing
Imix = I.*COS; Imix = Imix/(2^ params.DAC_bits);
Qmix = Q.*SIN; Qmix = Qmix/(2^ params.DAC_bits);

81

%% add/subtract Imix and Qmix for the final output
if (strcmp(addSub ,’sub’) == 1) OUT = Imix -Qmix; end;
if (strcmp(addSub ,’add’) == 1) OUT = Imix+Qmix; end;

A.3 MatlabR© Floating-Point vs. Fixed-Point DSSM Simulation

%% clean environment
clear all; close all; clc;

%% setup parameters
Ts = 14.5e-9;
Fs = 1/Ts;
N = 4096; % N-pt FFT
n = (0:N-1)*Ts;
f = 0:Fs/N:Fs-Fs/N;
F1 = 10.25e6; P1 = 0; % frequency and power(dBm) of Tone 1
A1 = sqrt (10^(P1/10)*50*1e-3)/0.707;
Fc = 3.33e6;

%% define the upper (add) or lower (sub) SSM
addSub = ’sub’;
%addSub = ’add ’;

%% define plotting for fixed and floating point
plotFloat = 0;
plotFixed = 0;
plotSFDR = 1;
normalize = 1;
windowData = 1;
power = 1;
freqSweep = 1;
sigFloor = -100; % floor of the sfdr plots

%% set the fixed point parameters
params.ADC_bits = 16;
params.DAC_bits = params.ADC_bits;
params.HILBERT_length = 101;
params.HILBERT_bits = 16;
params.ROM_size = 512;
params.ROM_bits = 16;

%% define the frequency sweep
startFreq = 0.5e6;
endFreq = 34e6;
freqRes = 0.5e6;
if (freqSweep == 1)

freq = startFreq:freqRes:endFreq;
else

freq = F1;
end

%% define the shifting frequency sweep
shiftFreqRes = (Fs/4)/params.ROM_size;
startShiftFreq = shiftFreqRes;
endShiftFreq = (params.ROM_size/2-1)*shiftFreqRes;
if (freqSweep == 1)

shiftFreq = startShiftFreq:shiftFreqRes:endShiftFreq;
else

shiftFreq = Fc;
end

%% define the output sfdr found
if (freqSweep == 1)

OUT_FLOAT_sfdr = zeros(length(freq),length(shiftFreq));
OUT_FIXED_sfdr = zeros(length(freq),length(shiftFreq));

end

%% loop through all of the input frequencies

82

for jj=1:length(freq)

%% create the test signal
sig = A1*cos(2*pi*freq(jj)*n);

%% loop through all of the shifting frequencies
for kk=1:length(shiftFreq)

%% set the Fc value
Fc = shiftFreq(kk);
params.Fc = Fc;

%% now test both the fixed and floating point versions
[out_float ,COS_f ,SIN_f ,I_f ,Q_f] = drfm_sim_float(sig ,Fc,Fs,N,

addSub);
[out_fixed ,sig_out ,COS ,Q] = drfm_sim_fixed(sig ,Fs ,params ,

addSub);

%% lower the output of the floating point version for
matching to the

%fixed point version
out_float = out_float/(2^2); % 4 bits (2 for each I and Q)

%% convert the fixed point outputs back to floats
out_fixed = out_fixed/2^params.DAC_bits;
sig_out = sig_out/2^params.ADC_bits;

%% generate the FFTs of each and scale to 0 dB
if windowData == 1

OUT_FIXED = abs(fft(out_fixed.* hanning(length(out_fixed))
’,N));

else
OUT_FIXED = abs(fft(out_fixed ,N));

end
if power == 1

OUT_FIXED = OUT_FIXED.^2/N^2;
end
if normalize == 1

OUT_FIXED = OUT_FIXED/max(OUT_FIXED);
end;
if power == 1

OUT_FIXED = 10*log10(OUT_FIXED);
else

OUT_FIXED = 20*log10(OUT_FIXED);
end
if windowData == 1

OUT_FLOAT = abs(fft(out_float.*hanning(length(out_float)
)’,N));

else
OUT_FLOAT = abs(fft(out_float ,N));

end
if power == 1

OUT_FLOAT = OUT_FLOAT.^2/N^2;
end
if normalize == 1

OUT_FLOAT = OUT_FLOAT/max(OUT_FLOAT);
end;
if power == 1

OUT_FLOAT = 10*log10(OUT_FLOAT);
else

OUT_FLOAT = 20*log10(OUT_FLOAT);
end

%% put the outputs into the storage array
if (freqSweep == 1)

OUT_FIXED_sfdr(jj,kk) = findDR(OUT_FIXED(1:N),Fs ,
normalize);

83

end

end % end shifting frequency loop

end % end input frequency loop

%% create the x-axis labels for the following plots
a = 0:Fs/16:Fs/2; labels = []; ii = 1;
while (ii <= length(a))

x = a(ii)/1e6;
% trim to 3 decimal places
x = x*10^3; x = floor(x); x = x/10^3;
labels = [labels x]; ii=ii+1;

end

%% now plot the floating and fixed point sfdr ’s found
if ((plotSFDR == 1) && (freqSweep == 1))

figure; plot(freq ,OUT_FIXED_sfdr ,’-o’);
high = max(max(OUT_FIXED_sfdr))+10;
axis manual; axis([min(freq),max(freq),0,high]);
set(gca , ’XTick’, 0:Fs/16:Fs/2);
set(gca , ’XTickLabel’, {labels (1:length(a))});
xlabel(’Input Frequency (MHz)’); ylabel(’SFDR (dB)’);

end
if ((plotFixed == 1) && (freqSweep == 0))

figure; plot(f(1:N/2),OUT_FIXED(1:N/2));
high = max(OUT_FIXED(1:N/2))+10;
axis manual; axis([min(f(1:N/2)),max(f(1:N/2)),sigFloor ,high]);
set(gca , ’XTick’, 0:Fs/16:Fs/2);
set(gca , ’XTickLabel’, {labels (1:length(a))});
xlabel(’Frequency (MHz)’); ylabel(’Magnitude (dB)’);

end
if ((plotFloat == 1) && (freqSweep == 0))

figure; plot(f(1:N/2),OUT_FLOAT(1:N/2));
high = max(OUT_FLOAT(1:N/2))+10;
axis manual; axis([min(f(1:N/2)),max(f(1:N/2)),sigFloor ,high]);
set(gca , ’XTick’, 0:Fs/16:Fs/2);
set(gca , ’XTickLabel’, {labels (1:length(a))});
xlabel(’Frequency (MHz)’); ylabel(’Magnitude (dB)’);

end

%% now figure out the min , max and avg SFDR
if (freqSweep == 1)

%% remove the bottom and top 5 MHz from the scan for min and avg
ss = round(5e6/(freqRes));
tt = round((freq(end)-5e6)/freqRes);

%% now tabulate the min , max and avg SFDR results
maxSFDR = max(max(OUT_FIXED_sfdr));
minSFDR = min(min(OUT_FIXED_sfdr(ss:tt ,:)));
avgSFDR = sum(sum(OUT_FIXED_sfdr(ss:tt ,:)))/((length(freq) -(

length(freq)-tt)-ss)*length(shiftFreq)-length(shiftFreq));

%% now find out where the exact min and max occurred
minSFDR_input=0; minSFDR_shift=0;
maxSFDR_input=0; maxSFDR_shift=0;
ii=1;
while ii <= length(freq)

jj=1;
while jj <=length(shiftFreq)

if (OUT_FIXED_sfdr(ii,jj) == maxSFDR)
maxSFDR_input = freq(ii);
maxSFDR_shift = shiftFreq(jj);
ii=length(freq);
jj=length(shiftFreq);

84

end
jj = jj+1;

end
ii=ii+1;

end
ii=1;
while ii <= length(freq)

jj=1;
while jj <=length(shiftFreq)

if (OUT_FIXED_sfdr(ii,jj) == minSFDR)
minSFDR_input = freq(ii);
minSFDR_shift = shiftFreq(jj);
ii=length(freq);
jj=length(shiftFreq);

end
jj = jj+1;

end
ii=ii+1;

end

%% now find the standard deviation
stdDevSFDR = (std(OUT_FIXED_sfdr(ss:tt ,:)));
stdDevSFDR = sum(stdDevSFDR)/length(stdDevSFDR);

%% now print the conditions for the plot
fprintf(1,’Input Sweep Range :\n’);
fprintf(1,’ Starting Frequency : %3.3f MHz\n’,startFreq/1e6);
fprintf(1,’ Ending Frequency : %3.3f MHz\n’,endFreq/1e6);
fprintf(1,’ Frequency Resolution : %3.3f MHz\n’,freqRes/1e6);
fprintf(1,’ Number of Frequencies: %d\n’,length(freq));
fprintf(1,’\n’);
fprintf(1,’Shifting Frequency Range:\n’);
fprintf(1,’ Starting Frequency : %3.3f MHz\n’,startShiftFreq/1

e6);
fprintf(1,’ Ending Frequency : %3.3f MHz\n’,endShiftFreq/1e6

);
fprintf(1,’ Frequency Resolution : %3.3f MHz\n’,shiftFreqRes/1e6

);
fprintf(1,’ Number of Frequencies: %d\n’,length(shiftFreq));
fprintf(1,’\n’);
fprintf(1,’SFDR Calculations\n’);
fprintf(1,’ Minimum SFDR : %3.3f dB @ %3.3f MHz input and %3.3f

shift\n’,minSFDR , minSFDR_input/1e6 ,minSFDR_shift/1e6);
fprintf(1,’ Maximum SFDR : %3.3f dB @ %3.3f MHz input and %3.3f

shift\n’,maxSFDR , maxSFDR_input/1e6 ,maxSFDR_shift/1e6);
fprintf(1,’ Average SFDR : %3.3f dB\n’,avgSFDR);
fprintf(1,’ Std Deviation: %3.3f dB\n’,stdDevSFDR);

end

A.4 MatlabR© Comparison Script

%%
close all;
clear all; clc;

%% setup the simulatoion type
type = 1; % 0 - behavioral

% 1 - post -synthesis
% 2 - post -par

%% setup parameters
N = 4096;
if (type == 0)

Ts = 14.5e-9;
else

Ts = 14.5e-9;

85

end;
Fs = 1/Ts; % set frequency based on period
fstep = Fs/N; % frequency step size
f = 0:fstep:Fs -fstep; % frequency range -Fs/2->Fs/2
dbFloor = -100;
power = 1;
plotSig = 1;

%% output file name
if (type == 0)

file = ’sim_out_output.txt’;
elseif (type == 1)

file = ’sim_out_output_syn.txt’;
else

file = ’sim_out_output_par.txt’;
end;

%% gather the output
output = load(file);

%% truncate the output and window it
output = output (1:N).*hanning(N);

%% perform N-pt FFT and normalize the output and put in dB
ff_out = abs(fft(output,N));
if (power == 1)

ff_out = ff_out .^2; ff_out = 10*log10(ff_out/max(ff_out));
else

ff_out = 20*log10(ff_out/max(ff_out));
end

%% design the xlabels for the plots
labels = [];
for ii=0:Fs/16:Fs/2

a = floor(((ii/1e6)*1e3))/1e3;
labels = [labels a];

end

%% plot the output
if (plotSig == 1)

figure; plot(f(1:N/2),ff_out (1:N/2)); %title(’Behavioral
Simulation ’);

axis([min(f(1:N/2)) max(f(1:N/2)) dbFloor 10]);
set(gca ,’XTick’ ,0:Fs/16:Fs/2);
set(gca ,’XTickLabel’,labels);
xlabel(’Frequency (MHz)’);
ylabel(’Magnitude (dB)’);

end

sfdr = findDR(ff_out,Fs ,1)

A.5 Dynamic Range Helper Function

function dr = findDR(FFT ,Fs ,norm)
%%
% This function finds the dynamic range of the given:
%
% FFT - FFT data (in dB)
% Fs - sampling frequency used

%% figure out how many points there are
N = length(FFT)/2;

%% internally normalize the fft data
FFT = FFT -min(FFT);

%% if the data has not been normalized , then normalize it
if (norm == 1)

86

FFT = FFT+-1*min(FFT);
end

%% now find the maximum signal of interest
freqBin = find(FFT(1:N) == max(FFT(1:N)));

if length(freqBin) > 1 freqBin = freqBin(1); end;

%% now start there and go forward and backwards to find a
%% trough , if it exists
leftTrough=0; rightTrough=0;
ii=freqBin -1; prev=max(FFT(freqBin -1:1: freqBin+1));
while ii >1

%find point where the current FFT point is larger than the
previous

if (prev == 0)
prev = FFT(ii);

elseif (FFT(ii) > prev)
leftTrough = ii;
ii = 0;

else
prev = FFT(ii);

end
ii = ii -1;

end

ii=freqBin+1; prev=max(FFT(freqBin -1:1: freqBin+1));
while ii <=N

if (prev == 0)
prev = FFT(ii);

elseif (FFT(ii) > prev)
rightTrough = ii;
ii = N+1;

else
prev = FFT(ii);

end
ii = ii+1;

end

%% now find the largest spur
if ((leftTrough == 0) && (rightTrough == 0))

dr = 0;
elseif ((leftTrough ~= 0) && (rightTrough == 0))

dr = max(FFT(1:N))-max(FFT(1:leftTrough));
elseif ((leftTrough == 0) && (rightTrough ~= 0))

dr = max(FFT(1:N))-max(FFT(rightTrough:N));
else

dr = max(FFT(1:N))-max(max(FFT(1:leftTrough)),max(FFT(rightTrough
:N)));

end
end

87

Appendix B. VHDL Source Code and Simulation Testbench Files

The top-level VHDL source file for the DSSM is found in this appendix. This

top-level file utilizes several user-changeable entries as generics that will alter

the behavior of the DSSM. Other changes such as the length of the Hilbert filter, the

bit width of the Hilbert filter coefficients, the size of the ROM as well as the ROM

coefficient bit width must be changed either manually or through the use of a VHDL

generator.

B.1 DSSM VHDL File
library IEEE ,work;

use IEEE.std_logic_1164.all;
use IEEE. std_logic_arith.all;
use IEEE. std_logic_unsigned.all;
use IEEE.math_real.all;
use work.all;

entity DSSM is
generic (

NF : integer := 8; -- number of bits for the Fc scaling
-- log2(number of ROM samples)

NC : integer := 16; -- number of bits for sine and cosine
NCO : integer := 16; -- number of bits of output cosine
NI : integer := 16); -- number of bits coming from ADC

port (
ADC_IN : in std_logic_vector(NI -1 downto 0);
CLK_IN : in std_logic;
MUX_S : in std_logic;
RST_IN : in std_logic;
ADD_SUB_S : in std_logic;
ROM_SEL : in std_logic;
Fc_IN : in std_logic_vector(NF -1 downto 0);
MUX_OUT : out std_logic_vector(NI -1 downto 0);
HIL_Q_OUT : out std_logic_vector(NI -1 downto 0);
ROM_COS_OUT : out std_logic_vector(NCO -1 downto 0);
DRFM_OUT : out std_logic_vector(NI -1 downto 0));

end DSSM;

architecture Behav of DSSM is

component HILBERT_NT101_NC14
generic (

NI : integer := 16;
NE : integer := 6);

port (
SI : in std_logic_vector(NI -1 downto 0);
CLK : in std_logic;
SD : out std_logic_vector(NI -1 downto 0);
SO : out std_logic_vector(NI -1 downto 0);
regOut : out std_logic_vector(NI -1 downto 0));

end component;

component HILBERT
port (

SI : in std_logic_vector(NI -1 downto 0);
CLK : in std_logic;
SD : out std_logic_vector(NI -1 downto 0);
SO : out std_logic_vector(NI -1 downto 0);
regOut : out std_logic_vector(NI -1 downto 0));

88

end component;

component rom_wrapper
generic (

NC : integer := 16;
NF : integer := 8);

port (
CLK : in std_logic;
RST : in std_logic;
SEL : in std_logic;
addr : in std_logic_vector(NF+1 downto 0);
sin : out std_logic_vector(NC -1 downto 0);
cos : out std_logic_vector(NC -1 downto 0));

end component;

component mixer
generic (

NI : integer := 16;
NC : integer := 16;
NF : integer := 8);

port (
clk : in std_logic;
RST : in std_logic;
ADD_SUB_S : in std_logic;
Fc : in std_logic_vector(NF -1 downto 0);
Isig_in : in std_logic_vector(NI -1 downto 0);
Qsig_in : in std_logic_vector(NI -1 downto 0);
Cos_in : in std_logic_vector(NC -1 downto 0);
Sin_in : in std_logic_vector(NC -1 downto 0);
addr_out : out std_logic_vector(NF+1 downto 0);
Mix_out : out std_logic_vector(NI -1 downto 0));

end component;

component gen_mux
generic (

NI : integer := 16);
port (

A : in std_logic_vector(NI -1 downto 0);
B : in std_logic_vector(NI -1 downto 0);
S : in std_logic;
Z : out std_logic_vector(NI -1 downto 0));

end component;

signal GND : std_logic;

signal shiftRegOut : std_logic_vector(NI -1 downto 0);
signal I,Q : std_logic_vector(NI -1 downto 0);
signal mixed : std_logic_vector(NI -1 downto 0);
signal cos ,sin : std_logic_vector(NC -1 downto 0);
signal addr : std_logic_vector(NF+1 downto 0);
signal muxOut : std_logic_vector(NI -1 downto 0);

begin

-- begin instantiating the components

-- mux the input from the ADC with the shift register output
im1 : gen_mux

generic map (NI => NI)
port map (A=>ADC_IN ,B=>shiftRegOut ,S=>MUX_S ,Z=>muxOut);

-- hilbert transform from sig to I and Q
hil : HILBERT_NT101_NC14

generic map (NI=>NI , NE=>6)
port map (SI=>muxOut, CLK=>CLK_IN, SD=>I, SO=>Q, regOut=>

shiftRegOut);

89

-- digital mixer
mx1 : mixer

generic map (NI=>NI , NC=>NC, NF=>NF)
port map (clk=>CLK_IN , ISig_in=>I, QSig_in=>Q, Fc=>Fc_IN ,

RST=>RST_IN , Cos_in=>cos , Sin_in=>sin , addr_out=>addr
,

Mix_out=>Mixed , ADD_SUB_S=>ADD_SUB_S);

-- wrapper to interface with ROM
-- given the address , will query ROM appropriately and get both
-- the sine and cosine for that particular address
-- rom_wrapper contains 2 256x16 sequentially addressed ROMs
rw1 : rom_wrapper

generic map (NF=>NF , NC=>NC)
port map (CLK=>CLK_IN ,addr=>addr ,RST=>RST_IN ,

sin=>sin , cos=>cos , SEL=>ROM_SEL);

-- now send outputs to the OUTSIDE WORLD
MUX_out <= muxOut;
HIL_Q_OUT <= Q;
ROM_COS_OUT <= cos(NC -1 downto NC -NCO);
DRFM_OUT <= Mixed;

end Behav;

B.2 VHDL Design Testbench

-- run_sim
library ieee , work;

use std.textio.all;
use ieee.std_logic_1164.all;
use ieee. std_logic_arith.all;
use ieee. std_logic_signed.all;
use ieee.math_real.all;
use work.all;

entity TB_DSSM is
generic (

NC : integer := 16;
NI : integer := 16;
NF : integer := 8;
FC_int : integer := 67; -- 4.362 MHz
N_ITS : integer := 10001; -- number of test sets
CP : time := 15.0 ns ; -- 66.667 MHz clock period
CPR : real := 15.0e-09 ; -- 66.667 MHz clock period
f1 : real := 10000.0e03 ; -- 10 MHz
f2 : real := 10000.0e03 ; -- 10 MHz
P1 : real := 0.0 ; -- [dB] power levels
P2 : real := 0.0 -- [dB] power levels

);
end ;

architecture TB of TB_DSSM is
file OUT_FILE: text is out "sim_out.txt";
file OUT_FILE1: text is out "sim_out_all.txt";
file OUT_FILE2: text is out " sim_out_input.txt";
file OUT_FILE3: text is out " sim_out_muxout.txt";
file OUT_FILE4: text is out "sim_out_Q.txt";
file OUT_FILE5: text is out "sim_out_cos.txt";
file OUT_FILE6: text is out " sim_out_output.txt";
file OUT_FILE7: text is out "sim_out_sin.txt";

component DSSM
generic (

NF : integer := 8;
NI : integer := 16;
NC : integer := 16);

port (
ADC_IN : in std_logic_vector(NI -1 downto 0);
CLK_IN : in std_logic;

90

MUX_S : in std_logic;
RST_IN : in std_logic;
ADD_SUB_S : in std_logic;
ROM_SEL : in std_logic;
Fc_IN : in std_logic_vector(NF -1 downto 0);
MUX_OUT : out std_logic_vector(NI -1 downto 0);
HIL_Q_OUT : out std_logic_vector(NI -1 downto 0);
ROM_COS_OUT : out std_logic_vector(NC -1 downto 0);
DRFM_OUT : out std_logic_vector(NI -1 downto 0));

end component;

type TYPE_INPUT_ARRAY is array (0 to N_ITS) of std_logic_vector(NI -1
downto 0);

type TYPE_REAL_ARRAY is array(0 to N_ITS) of real;
signal CLK ,CLK_ROM : std_logic;
signal RESET : std_logic;
signal INDEX : integer := 0;
signal ADC : std_logic_vector(NI -1 downto 0);
signal INPUT_V: TYPE_INPUT_ARRAY;
signal FC : std_logic_vector(NF -1 downto 0);
signal muxSelect : std_logic;
signal muxOUT ,drfmOUT: std_logic_vector(NI -1 downto 0);
signal add_sub : std_logic;
signal hilQOUT: std_logic_vector(NI -1 downto 0);
signal romCosOUT: std_logic_vector(NC -1 downto 0);
signal romSelect : std_logic;

begin
COMP_DSSM: DSSM

generic map (NF=>NF,NC=>NC,NI=>NI)
port map (CLK_IN=>CLK , ADC_IN=>ADC , RST_IN=>RESET ,

MUX_S=>muxSelect , Fc_IN=>FC , MUX_OUT=>muxOUT ,
HIL_Q_OUT=>hilQOUT , ROM_COS_OUT=>romCosOUT ,
DRFM_OUT=>drfmOUT ,ADD_SUB_S=>add_sub ,ROM_SEL=>romSelect

);

Fc <= conv_std_logic_vector(FC_int,NF);
muxSelect <= ’0’;
romSelect <= ’1’;
add_sub <= ’1’;
-- functionality of add_sub
-- if add_sub = ’1’ and if F_in < F_c then F_out = F_in+F_c
-- if F_in > F_c then F_out = F_in -F_c
-- if add_sub = ’0’ and if F_in < F_c then F_out = F_in -F_c
-- if F_in > F_c then F_out = F_in+F_c

process (CLK)
variable tmp : integer := 0;

begin
if CLK ’event and CLK = ’1’ then

if tmp = 0 then
RESET <= ’1’;
tmp := tmp+1;

else
RESET <= ’0’;

end if;
end if;

end process;

CLK_PROC: process
begin

wait for CP/2;
CLK <= ’0’;
wait for CP/2;
CLK <= ’1’;

end process;

91

process(CLK)
begin

--if CLK ’event and CLK=’1’then
-- note we have to delay the input relative to clk arrival for

setup time
if CLK ’event and CLK=’0’then

ADC <= INPUT_V(INDEX);
if INDEX = N_ITS -1 then

INDEX <= 0;
else

INDEX <= INDEX + 1;
end if;

end if;
end process;

FFT_PROC: process
variable W1 ,W2 ,A1 ,A2 ,Amax ,P_dym ,fsample:real :=1.0; -- amplitudes
variable S_REAL ,VAL_COMP ,VAL_DIV : real;
variable INPUT_R: TYPE_REAL_ARRAY;
variable OUT_LINE: line;
variable J,K: integer;
variable S_VECTOR : TYPE_INPUT_ARRAY;

begin
fsample := 1.0/real(CPR);

--vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
-- generate input data ---------------
P_dym := P1 - P2;
A2 := Amax / (1.0 + exp(log(10.0) *(P_dym)/10.0));
A1 := Amax -A2; -- Amax - A2
W1 := 2.0 * 3.1415927 * real(f1); -- sets W
W2 := 2.0 * 3.1415927 * real(f2); -- sets W
K:= 0; WH_LOOPK0: while K < N_ITS -1 loop

--S_REAL := A1*sin(W1*REAL(K)*CPR); -- one
tone

S_REAL := A1*sin(W1*REAL(K)*CPR)+A2*sin(W2*REAL(K)*CPR);-- two
tones

-- n bit ADC
VAL_COMP := 0.0; VAL_DIV := 0.0;
if S_REAL < VAL_COMP then S_VECTOR(K)(NI -1):=’1’;VAL_DIV:= -0.5;

VAL_COMP:= -0.5;
else S_VECTOR(K)(NI -1):=’0’;VAL_DIV:=0.5; VAL_COMP:=0.5; end if;
for IIII in 1 to NI -1 loop

if S_REAL < VAL_COMP then
S_VECTOR(K)(NI -1-IIII):=’0’;
VAL_DIV:=VAL_DIV/2.0;
VAL_COMP:=VAL_COMP -abs(VAL_DIV);

else -- S_REAL >= VAL_COMP
S_VECTOR(K)(NI -1-IIII):=’1’;
VAL_DIV:=VAL_DIV/2.0;
VAL_COMP:= VAL_COMP+abs(VAL_DIV);

end if;
end loop;

INPUT_V(K) <= S_VECTOR(K);
INPUT_R(K) := S_REAL;
K := K + 1;

end loop WH_LOOPK0;
--^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
K:= 0; WH_LOOPK1: while K < N_ITS -1 loop

if K >= N_ITS/2 then
write(OUT_LINE ,INDEX);
write(OUT_LINE ,string ’(" "));
write(OUT_LINE ,INPUT_R(K));
write(OUT_LINE ,string ’(" "));
J:= NI -1;WH_LOOPJ2: while J > -1 loop

92

write(OUT_LINE ,conv_integer(INPUT_V(K)(J)));
J := J - 1;

end loop WH_LOOPJ2;

write(OUT_LINE ,conv_integer(INPUT_V(K)));
writeline(OUT_FILE2 , OUT_LINE);
write(OUT_LINE ,conv_integer(muxOUT));
writeline(OUT_FILE3 , OUT_LINE);
write(OUT_LINE ,conv_integer(hilQOUT));
writeline(OUT_FILE4 , OUT_LINE);
write(OUT_LINE ,conv_integer(romCosOUT));
writeline(OUT_FILE5 , OUT_LINE);
write(OUT_LINE ,conv_integer(drfmOUT));
writeline(OUT_FILE6 , OUT_LINE);

end if;
wait until CLK ’event and CLK = ’1’;
wait until CLK ’event and CLK = ’0’;
K := K + 1;

end loop WH_LOOPK1;

--
assert (false) report "done" severity FAILURE;

end process;

end ;

configuration CFG_TB of TB_DSSM is
for TB
end for;

end ;

93

Bibliography

1. Axtell H. S. Development of a Parameterizable, Synthesizable Real-Time Digital
Single Sideband Modulator for Hardware Implementation. MS Thesis, Wright
State University, MSEgr, Dayton, OH, June 2010.

2. Barnaby H. “Total-ionizing-dose effects in modern CMOS technologies,” Nuclear
Science, IEEE Transactions on, 53 :3103 –3121 (December 2006).

3. Benedetto J., Eaton P., Mavis D., Gadlage M., and Turflinger T. “Digital Single
Event Transient Trends with Technology Node Scaling,” Nuclear Science, IEEE
Transactions on, 3462 –3465 (December 2006).

4. Braga L. H. C., Domingues S., Rocha M. F., Sá L. B., Campos F., Santos F. V.,
Mesquita A. C., Silva M. V., and Swart J. W. “Layout techniques for radiation
hardening of standard CMOS active pixel sensors,” SBCCI ’07: Proceedings of
the 20th annual conference on Integrated circuits and systems design, 257 –262
(September 2007).

5. Chavez R. M., Rax B. G., Scheick L. Z., and Johnston A. H. “Total ionizing dose
effects in bipolar and BiCMOS devices,” Radiation Effects Data Workshop 2005,
IEEE , 144 –148 (July 2005).

6. Claeys C. and Simoen E. Radiation Effects in Advanced Semiconductor Materials
and Devices . Spring, October 2002.

7. Colinge J.-P. Silicon-on-Insulator Technology: Materials to VLSI . Springer,
September 1997.

8. Engelberg S. Digital Signal Processing, An Experimental Approach. Springer,
February 2008.

9. Foltz T., Cook G., and Meer D. “A digital single sideband modulator for a digital
radio frequency memory,” Aerospace and Electronics Conference, 1989. NAECON
1989., Proceedings of the IEEE 1989 National , 2 :926 –932 (May 1989).

10. Ghosh M., Chimakurthy L., Dai F., and Jaeger R. “A novel DDS architecture
using nonlinear ROM addressing with improved compression ratio and quanti-
sation noise,” Circuits and Systems, 2004. ISCAS ’04. Proceedings of the 2004
International Symposium on, 2 :705 –708 (May 2004).

11. Guoying S., Yunjie L., and Meiguo G. “An Improved DRFM System Based on
Digital Channelized Receiver,” Image and Signal Processing, 2009. CISP ’09. 2nd
International Congress on, 1 –5 (October 2009).

12. Hamming R. W. “Error Detecting and Error Correcting Codes,” Bell System
Technical Journal , 29 :147 –160 (1950).

94

13. Haykin S. and Moher M. Introduction to Analog and Digital Communications
(2nd Edition). Wiley, 2007.

14. Haykin S. “Different forms of the Hilbert transform as applied to digital filters
and sequences,” Electrical Engineers, Proceedings of the Institution of , 121 (7):561
–567 (July 1974).

15. Hilbert D., Hallett M., and Majer U. David Hilbert’s Lectures on the Foundations
of Geometry, 1891-1902 . Springer, July 2004.

16. Hopkins T. A. An Automated Approach to a 90-nm CMOS DRFM DSSM Circuit
Design. MS Thesis, Wright State University, MSEgr, Dayton, OH, June 2010.

17. Huhtinen F. D., Faccio F., Detcheverry C., and Huhtinen M. “First evaluation of
the Single Event Upset (SEU) risk for electronics in the CMS experiment,” The
Compact Muon Solenoid (CMS) Experiment Note (1998).

18. Imec B. D., Bogaerts J., and Dierickx B., “Total Dose Effects on CMOS Active
Pixel Sensors,” 1998.

19. Koopman P. and Chakravarty T. “Cyclic Redundancy Code (CRC) Polynomial
Selection For Embedded Networks,” DSN ’04: Proceedings of the 2004 Interna-
tional Conference on Dependable Systems and Networks , 145 (July 2004).

20. Lewis G. K., Bahl I. J., and Griffin E. L. “GaAs MMIC For Digital Radio
Frequency Memory (DRFM) Subsystems,” 1987 Microwave and Millimeter-Wave
Monolithic Circuits Symposium, IEEE , 53 –56 (June 1987).

21. Ma T. and Dressendorfer P. V. Ionizing Radiation Effects in MOS Devices and
Circuits . Wiley, April 1989.

22. Mavis D. G. and Eaton P. H., “Temporally Redundant Latch For Preventing
Single Event Disruptions in Sequential Integrated Circuits.” US Patent 6,127,864,
assigned to Micro-RDC. Filed on August 19, 1998. Application No. 09/136,872.
Approved on October 3, 2000.

23. Mohr K. C., Clark L. T., and Holbert K. E. “A 130-nm RHBD SRAM With
High Speed SET and Area Effecient TID Mitigation,” Nuclear Science, IEEE
Transactions on, 2092 –2099 (December 2007).

24. Mohr K. C., Clark L. T., Holbert K. E., Yao X., Knudsen J., and Shah H.
“Optimizing Radiation Hard by Design SRAM Cells,” Nuclear Science, IEEE
Transactions on, 2028 –2036 (December 2007).

25. Moon T. K. Error Correction Coding: Mathematical Methods and Algorithms .
Wiley-Interscience, June 2005.

26. Nyquist H. “Certain topics in telegraph transmission theory,” Bell Technical
Journal , 3 :617 –644 (April 1924).

27. Oppenheim A. V., Schafer R. W., and Buck J. R. Discrete-Time Signal Processing
(2nd Edition). Prentice-Hall, January 1999.

95

28. SanGregory S. L. and Mehalic M. A. “A 2K X 8-bit single-chip digital radio fre-
quency memory,” ASIC Conference and Exhibit, 1993. Proceedings., Sixth Annual
IEEE International , 247 –249 (27 Sep - 1 Oct 1993).

29. Shoga M. and Binder D. “Theory of Single Event Latchup in Complementary
Metal-Oxide Semiconductor Integrated Circuits,” Nuclear Science, IEEE Trans-
actions on, 33 (6):1714 –1717 (December 1986).

30. Vahid F. Digital Design. Wiley, July 2006.

31. ViASIC , “ViaMask Datasheet.” Internet: http://viasic.wenderhost.com/

wp-content/uploads/datasheets/ViaMask_datasheet.rev6.29.09-2.pdf,
June 2009.

32. Wirth G., Vieira M., Neto E., and Kastensmidt F. “Single Event Transients in
Combinatorial Circuits,” Integrated Circuits and Systems Design, 18th Sympo-
sium on, 121 –126 (September 2005).

33. Yi L., Tuan Y., Ningmei Y., and Yong G. “The Application of a Novel Direct
Digital Synthesizer for the IP Code Design of All Digital Three Phase SPWM
Generator,” Power Electronics and Motion Control Conference, 2004. IPEMC
2004. The 4th International , 2 :730 –733 (August 2004).

34. Zongbo W., Meiguo G., Yunjie L., and Haiqing J. “Design and application of
DRFM system based on digital channelized receiver,” Radar, 2008 International
Conference on, 375 –378 (September 2008).

96

	A Structured ASIC Approach to a Radiation Hardened by Design Digital Single Sideband Modulator for Digital Radio Frequency Memories
	Repository Citation

	pemberton_thesis.dvi

