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Figure 19.  GC/MS Data Pipeline Utilizing the Metabolite Differential and Discovery Lab 
(MeDDL) Tool. 
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GC/MS Experimental Example 1:  Differential Binding Affinities Between Volatile Ligands 

and Urinary Proteins Due to Genetic Variation in Mice 

 A collaborative study was completed using the MeDDL tool with scientists from 

Monell Chemical Senses Center (Philadelphia, PA) to investigate the composition of 

bound and unbound VOCs on the mouse major urinary proteins (MUPs) of various 

inbred species.  This effort was part of an investigation on the nature of murine volatile 

and pheromone based signaling and is described in detail in Kwak, et. al., 2012 [117].  In 

short, a comparison of the binding affinities in pooled male urine samples from three 

different inbred mouse strains (B6, BALB/b and AKR) was completed by measuring the 

release of volatile ligands before and after denaturation of the MUPs via SPME based 

headspace concentration and GC/MS analysis.  The sample set analyzed consisted of 

pooled urine samples collected over a 10 day period, one from each of the individual 

mice in the experiment (N = 8 B6, 7 AKR, and 6 BAL/b mice respectively).  Raw spectral 

data of both intact and denatured murine urine was supplied by Monell along with 

associated metadata of the study group samples.  A sampling of the raw spectral data 

was first reviewed for chromatographic and spectral reproducibility across the major 

urinary peaks, and then for instrumental absolute baseline and peak intensities to be 

used for spectral registration and alignment.  All  data was then converted to netCDF 

format and aligned/registered via the MeDDL tool, resulting in a total of 1895 peaks.   
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Figure 20.  Principal component analysis of the GC/MS data for the six different groups 
(a) and for the intact and denatured groups (b) from Kwak et.al., 2012. 
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Following registration and alignment, the GC/MS data were analyzed by PCA and the 

fold change filter as described in Chapter 4.  Screening for group separation via PCA, 

shown in Figures 20a-b demonstrate clear separation between each of the six different 

groups as well as between intact and denatured groups, indicating that both strain 

difference and protein denaturation are important contributors to the unique volatile 

profiles.  To identify those peaks responsible for the separation observed via the PCA, 

we used a combination time-binning (due to EI fragmentation), tests for fold-change 

and statistical significance, and absolute intensity using the below parameter values.  

We restricted the fold-change to only those time windows which demonstrated two fold 

increased levels of change upon protein denaturation (positive change) within a 

specified time slice of 0.1 minutes and an intensity threshold of 300,000 absolute 

intensity (total ion count).  A test for significance between all comparisons was also 

completed using N-way ANOVA (P≤0.1), which included Bonferroni correction to 

compensate for the tendency to incorrectly find a single pairwise significant difference 

among multiple comparisons.  Results obtained from the three strain specific pair-wise 

comparisons of intact to denatured samples displayed the increased release in 49 peaks 

induced by protein denaturation in AKR, 26 in B6, and 36 in BALB/b, respectively.  Figure 

21 illustrates the changes in the release of ligands upon denaturation.  
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Figure 21.  Changes in the release of ligands upon protein denaturation in the urine 
samples derived from different mouse strains. The y axis indicates the absolute intensity 
of the base peak ion in each ligand. I: intact urine; D: denatured urine. The degree of 
release in each ligand was distinctive in each strain.  
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GC/MS Experimental Example 2:  Changes in Volatile Compounds of Mouse Urine as it 

Ages:  Their Interactions with Water and Urinary Proteins 

 A collaborative study was completed using the MeDDL tool with scientists from 

Monell Chemical Senses Center (Philadelphia, PA) to investigate changes in the volatile 

composition of mouse urine as it ages.  This effort was part of an investigation on the 

nature of murine volatile and pheromone based signaling and is described in detail in 

Kwak, et. al., 2013 [118].  In short, the amount of water in an aqueous sample influences 

releases of VOCs from the sample.  As the sample dries, evaporations of water-soluble 

VOCs accelerate, whereas the loss of water may render some VOCs to bind to solid 

surfaces, preventing them from being released into the air.  A number of studies 

measured the loss of VOCs as male mouse urine aged.  Some VOCs were removed 

rapidly, whereas others were released slowly.  However, the previous studies did not 

clearly demonstrate whether the gradual releases of the VOCs were due to their binding 

to MUPs and/or due to the loss of water as urine became dried.  In addition to the roles 

of water in the release of VOCs mentioned above, the loss of water in urine may alter 

the structure of MUPs, losing their ability to retain volatile ligands.  Here, we 

investigated the effect of water loss on the releases of VOCs while mouse urine dried, 

and determined whether the ligand-binding ability of MUPs in the dried urine remains 

active.  Using similar sample collection and GC/MS methodologies utilized in Kwak, et. 
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and capped. Three of the prepared aliquots were analyzed immediately via SPME based 

headspace concentration and GC/MS analysis and served as the "Intact" study group. 

The remaining three aliquots were left uncapped in a ventilated chemistry hood for 24h 

until nearly dried and served as the "Aged" study group.  Raw spectral data was supplied 

by Monell along with associated metadata of the study group samples.  As described 

above, a sampling of the raw spectral data was first reviewed for chromatographic and 

spectral reproducibility across the major urinary peaks, and then for instrumental 

absolute baseline and peak intensities to be used for spectral registration and 

alignment.  All  data was then converted to netCDF format and aligned/registered via 

the MeDDL tool, resulting in a total of 384 peaks.  To identify the differential VOCs, the 

following filter settings were used: the fold change filter was limited to those peaks with 

2-fold or greater change in intensity and the time binning filter parameter was set using 

0.1 min bins and inclusive of only those peaks >10K absolute intensity.  Once each of 

these filters was applied to the grouped, global data set, a Boolean “AND” was added to 

the resulting filtered peak sets to identify their logical intersection.  Results of the time 

binning filter generated 103 discrete peaks and combination with the fold filter (Intact 

vs Aged) resulted in 58 differential VOCs.  The 58 peaks were identified and a list of the 

identified VOCs is provided in Table 1 (from Kwak et.al. 2013). 
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Retention time 
(min) 

Base ion Compound ID Fold change (Intact -> Aged) 

1.32 42 trimethylamine* 5.05 
2.15 43 acetone 29.66 
2.90 43 2-butanone 17.43 
3.22 45 ethanol 11.71 
4.06 43 2-pentanone 51.83 
4.42 43 2-methyl-3-pentanone 13.17 
4.62 58 2-hexanone 8.19 
5.59 43 3-hexanone 11.04 
6.15 57 3-heptanone 32.95 
6.50 43 3-ethyl-2-pentanone 4.12 
6.88 43 3-methyl-2-hexanone 3.74 
7.39 43 4-heptanone 145.33 
8.86 43 2-heptanone 12.88 
9.36 43 3-methyl-2-heptanone 12.81 
9.57 57 6-methyl-3-heptanone 11.69 
9.82 69 3-methylcyclopentanone 14.45 
9.92 71 2-methyl-4-heptanone 5.42 

12.40 43 4-nonanone 2.42 
12.76 83 3-ethylcyclopentanone 22.58 
13.02 72 3,5-dimethyl-2-octanone 21.16 
13.92 58 2-nonanone 11.55 
15.68 43 4-hydroxy-2-pentanone* 2.17 
15.83 112 p-menthan-3-one 80.09 
16.06 60 acetic acid* 7.01 
18.44 45 propylene glycol* 14.58 
20.45 74 2-methylbutyric acid* 11.19 
20.50 60 3-methylbutyric acid* 3.26 
20.97 145 3,6-dimethylbenzofuran 15.88 
21.39 110 p-menth-1-en-3-one 32.04 
21.48 107 a terpene 31.94 
21.80 59 acetamide* 2.61 
22.77 42 caprolactone* 4.41 
24.58 79 dimethyl sulfone* 11.96 
26.78 71 pentolactone* 7.34 
27.47 107 p-cresol 6.59 

Table 7.  A list of the volatile compounds whose levels changed after the urine samples 

were aged [119].  (* indicates the compounds whose absolute intensities increased after 

the samples were aged.)  
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GC/MS Experimental Example 4:  Human Volatile Markers of Age and Ethnicity in 

Axillary Odor profiles 

 A collaborative study was completed using the MeDDL tool with scientists from 

Monell Chemical Senses Center (Philadelphia, PA) to investigate human volatile markers 

of age and ethnicity in axillary odor profiles.  Volatile organic compound biomarker 

discovery in humans is especially challenging due to significant variances in diet, 

environmental conditions/exposures, and genetics.  Thus, creation and validation of 

outlier filtering and normalization approaches for spectral data is required for the 

differential analysis of many studies involving human subjects, with four approaches 

evaluated for this study: Total Ion Current (TIC) based normalization; "Olympic average" 

based normalization; outlier filtering; and "Group Distribution" based filtering.  Please 

note that these are just a few of the filter types available in MeDDL, with a more 

complete listing available in Appendix A.  In short, TIC normalization involves summing 

the intensities of all peaks contained in each file of the spectra and setting that sum as 

equal across all files.  This approach, however, can be skewed by the presence of high 

intensity outliers, thus "Olympic average" based normalization was implemented.  In 

"Olympic average" based normalization, user defined upper and lower percentiles are 

calculated across all of the files using user defined values.  This will generate in two 

vectors containing percentiles, each with a size of n by 1, where n is the number of 
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features. These percentile vectors are used to normalize the intensity values for all ions 

across each file.  The difference of the original intensities in a file and the lower 

percentile value is divided by the difference of the upper and lower percentiles. This 

technique will scale down the intensities by several orders of magnitude, but should be 

less susceptible to the presence of low/high intensity outliers.  Next, the outlier filter, 

using an operator defined threshold, removes those peaks that are outside of the range 

of the n number of standard deviations from the mean.  The user specifies the number 

of standard deviations to accept and data outside of this range will not be shown 

throughout MeDDL (i.e. this is a display filter, not a data exclusion filter).   It should be 

noted that as this filter replaces excluded data points from the display with NaNs ("Not a 

Number"s), some comparisons and plots, such as PCA, cannot be generated using the 

modified data set.  The final filtering technique evaluated, and the one utilized for study, 

is a similar mean distribution filter to the "outlier" display filter labeled "group 

distribution" as currently implemented in MeDDL.  In this filter, the means and standard 

deviations are calculated across all files for each peak.  Each value is checked to ensure 

that it is within the user-defined number of standard deviations from the mean, and if 

the peak is more standard deviations away then the given threshold, the peak is 

excluded from the final peak set. 
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 In brief, for sample generation by Monell scientists, body odors were collected 

from 40 female subjects consisting of N=10 of four ethnic and age group (Young 

Caucasian, Young Asian, Older Caucasian, and Older Asian) under a protocol approved 

by the University of Pennsylvania Institutional Review Board.  Subgroups of these 

extracts were combined to form super-donors to eliminate sensory panelists focusing on 

individual donors.  Prior to skin extraction, subjects were screened via collected SPME 

samples prior to formation of super-donors to insure that no donor was an outlier (e.g., 

unusual VOCs such as bromoform from swimming pool water).  The raw GC/MS data 

from these collected samples was supplied by Monell along with associated metadata of 

the study group samples.  As described above, a sampling of the raw spectral data was 

first reviewed for chromatographic and spectral reproducibility across the major peaks, 

and then for instrumental absolute baseline and peak intensities to be used for spectral 

registration and alignment.  All  data was then converted to netCDF format and 

aligned/registered via the MeDDL tool to look at inter-age and inter-ethnicity variation 

in skin VOCs. 
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APPENDIX A.  SOFTWARE USER GUIDE 

Please note: a complete, online version of the MeDDL user guide is available at: 
http://meddl.cs.wright.edu 

 

Peak Data 

The Peak Data tab contains the main data table and will also serve as the location of any external 

data files that you load. For more information about loading external data, see the entry 

on External Data. 

Main Buffer 

This tab contains the main table that displays a summary of all of the registered peaks in a given 

data set. This table allows you to preform a variety of actions on any number of selected peaks. 

At the bottom of the table you will see a row of buttons that you will use to further analyze the 

data set. These include: Line Plot, Box Plot, PCA, Correlate, Data Table, and Copy. To find a 

peak in the Heat Map, simply right-click on it and a green circle will surround that peak. You also 

select multiple peaks and right-click on the selection to find multiple peaks in the Heat Map. 

Right-clicking once will only highlight peaks while you hold the right mouse button down. To lock 

highlighting around a peak, right-click twice. 

Line and Box Plot 

These plots will display a respective plot for each of the peaks selected. Be advised that you do 

not want to select too many peaks at one time because each plot will be displayed in a single 

figure. These buttons have two settings associated with them: Plot Display Group and Plot Color 

Group. These settings are defined in the Plot Filter tab. The Plot Display Group is the attribute 

that you wish to plot and the Plot Color Group is the attribute that you wish to use to split up the 

plots by. For example, if your data set has the attributes Strain (containing three possiblities: 

AKR, B6, and BALB_B) and MUP Protein (containing two possibilities: Intact and Denatured), 

then you can view a plot of the Strain versus MUP Protein by setting your Plot Display Group as 

Strain and Plot Color Group as MUP Protein. For a box plot this means that you will have two 

separate plots because you have two possible tags under attribute MUP Protein (Intact and 

http://meddl.cs.wright.edu/
http://meddl.cs.wright.edu/doku.php?id=extern
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Denatured) with each containing three boxes along the x-axis (one for each of the tags under the 

attribute Strain). For a Line Plot this means that you will have one plot that has each Strain along 

the x-axis with each MUP Protein as a different marker. 

The Line Plot is unique in that it provides access to the raw spectra data for a particular peak. 

You may double click on any of the plotted points in a line plot. This will open a summary window. 

Click the Explore button to view a peak in the raw spectra. The window can be dismissed using 

the Done button. 

 

PCA 

The PCA button will generate a 3D plot of the prinple 

components in the data set as well as generate a 

variance pareto graph. The PCA uses the last two 

attributes in a given data set to generate labels. For 

example, if your experiment.ini file contains the 

following attributes: [File Subject Strain MUP_Protein], 

then you will have a PCA labeled with all possible 

combinations of the tags for the last two labels. Again, 

if the attribute Strain has three tags: AKR, B6, and 

BALB_b, and the attribute MUP_Protein contains two 

tags: Intact and Denatured, the PCA will have the labels: Denatured-AKR, Denatured-B6, 

Denatured-BALB_b, Intact-AKR, Intact-B6, and Intact-BALB_b. Note that you do not have to have 

any peak(s) selected to preform a PCA; the PCA is based off of the entire data set. 

Correlate 

The Correlate button will take a single selected peak and update the Rank column to contain a 

score for the correlation of the peaks in respect to the peak selected. The peak that was used to 

correlate from will have a score of 1.0. The correlate function will get the all of the intensities for a 

selected peak and pass them into the Matlab corr function. This will return a vector that is the 

same size as the main feature vector. This vector will contain Pearson product-moment 

http://meddl.cs.wright.edu/lib/exe/fetch.php?media=pca.png
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correlation coefficients for each of the comparisons against the selected feature, which will be 

from -1.0 to 1.0. See the corr function for more information. 

 

Data Table 

The Data Table button will display a table for the 

selected peaks that shows detailed information about 

the peak(s) across all of the samples/files. This 

detailed information includes data such as mass, 

intensity, and time. 

 
 
 
 
 
 
 

Group Filter 

The group filter tab allows users to create partitions and groups. For an explanation on partitions 

and groups, see the Data Management page. After users have created at least one group, they 

can begin to add groups to it. The All partition is a default partition that contains all of the files. 

Creating a Partition 

To create a partition, simply type a label in the partition text box and click the 'Save Partition' 

button. After you create a partition it becomes the active partition on the group filter tab. This 

means that any groups you save will be saved within it. To change the active partition, change 

the selected partition in the partition combo box. 

Creating a Group 

http://www.mathworks.com/help/toolbox/stats/corr.html
http://meddl.cs.wright.edu/doku.php?id=partitions
http://meddl.cs.wright.edu/lib/exe/fetch.php?media=data_table.png
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To create a group, you will need to have created a partition (see above). Once you have a 

partition, toggle the check boxes under each tag of your data that you wish to include in the 

group. Note that if only one field is selected under a given tag, MeDDL automatically inserts that 

field into the groups label. Once the check boxes are set for the group, click the 'Save Group' 

button. Remember that this group will be added to the active partition (whichever partition is 

selected in the partition combo box). You cannot save a group in the All partition. The groups 

within a partition must be mutually exclusive. 

 
 
 

Outlier Filter 

Summary 

Removes peaks that are outside of the range of the n number of standard deviations from the mean. This filter inhibits the 

use of the PCA functionality. Users specify the number of standard deviations to accept. Data outside of this range will not 

be shown throughout MeDDL. 

Pseudocode 

mu = mean(intensities) 

stand = std(intensities) 

   

for i = 1 : number of files 

  for j = 1 : number of features 

    if(intensities(i, j) < (mu(j) - (factor * stand(j))) || outlierInten(i,j) > (mu(j) + 

(factor * stand(j)))) 

      intensities(i, j) = NaN 

    end 

  end 
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end 

Factor is the user-defined parameter representing the number of standard deviations from the mean to accept. 

Theory 

The means and standard deviations are calculated across all of the files for each peak. Each value is checked to ensure 

that it is within the user-defined number of standard deviations from the mean.The figure on the left is was generated 

using the original data and the figure on the right was generated after the outliers were removed. A setting of 1 standard 

deviation was used in this case.  

 
Total Ion Current (TIC) Normalization 

Summary 

Total Ion Current Normalization involves summing the intensities contained in each file of the 

spectra. The user selects which file to use as the seed file. The seed file will be used to build the 

normalization ratio. 

Pseudocode 

function computeTICs 

  TICs = [] 

   

  for i = 1 : number of features 

    TICs = [TICs; sum(intensities(i, :))] 

  end 

  return TICs 

end 
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TICs = computeTICs 

normailizationRatio =  seedTic / TICs 

  

for i = 1 : number of TICs 

  intensity(i, :) = normailizationRatio(i) * intensity(i, :);    

end 

Theory 

As you can see in the above pseudocode, a TIC score is calculated for each file in the data by 

summing the intensities in said file. This array of TIC scores is returned to a different function that 

applies the normalization to the data. The seed TIC is simply the TIC score from the file that the 

user selects in a drop down box. The TIC vector becomes the right division of the seed TIC and 

TIC vector. That is, each score in the TIC vector becomes the seed TIC divided by the original 

TIC score. Note that this makes the normalization ratio for the seed file to be 1; the intensities in 

the seed file will remain unchanged. The normalization ratio is applied to all of the intensities 

within each file. 

Olympic Average Normalization 

Summary 

The upper and lower percentiles are calculated for all of the features across each file. These 

percentiles are then used to normalize the intensity values in each file. Intensity values that 

become negative as a result of the normalization are replaced with NaNs. 

Enter the upper percentage and lower percentage in the respective text boxes. A setting of 90 

and 10 (as shown at the top of this page) will calculate the 10th and 90th percentiles. Thus, the 

data will be normalized using the upper and lower 10% of the data. 
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Pseudocode 

lower_percentile = prctile(intensity, lower, 2) 

upper_percentile = prctile(intensity, upper, 2) 

     

for i = 1 : number of files 

  normalizedIntensity(i,:) = (intensity(i,:) - lower_percentile(i)) / 

(upper_percentile(i) - lower_percentile(i)); 

end 

It is understood that the variables lower_percentile and upper_percentile can be 

calculated in one line. For example, the following command would return an array containing the 

upper and lower percentiles: prctile(intensity, [lower, upper], 2) Here we break 

them up for simplicity. 

Theory 

The upper and lower percentiles are calculated across all of the files using the user defined 

values. This gives us two vectors containing percentiles, each with a size of n by 1, where n is 

the number of features. These percentile vectors are used to normalize the intensity values for 

across each file. The difference of the original intensities in a file and the lower percentile value is 

divided by the difference of the upper and lower percentiles. This technique will scale down the 

intensities by several orders of magnitude. 

Consider the following Line Plots for the same peak. The left plot shows the original data and the 

right plot shows the data that has been normalized using the Olympic Average Normalization 

technique. The upper bound of the y-axis for the unnormalized data is 12 x 10^8 and the upper 

bound of the y-axis for the normalized data is 350. 
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Data Filter 

The Data Filter tab contains all of the filtering methods that allow you to down select your data so 

that you can focus on significant data. These filters create objects called peak sets. A peak set 

can be viewed in the Visualization Tab or classified in the Machine Learning Tab. 

P-Value Filter 

Summary 

The P-Value filter checks for statistical significance using ANOVA, calculating a p-value for each 

peak in study. After the p-values are calculated for each peak, a new feature vector is produced 

using the user defined p-value threshold (confidence bounds). This feature vector is saved as a 

peak set. 

Theory 

There are two options for the P-Value filter: 

 N-Way: performs an n-way ANOVA using the Matlab function anovan which accepts all of 

the groups in the active partition. The features are down selected to be only from files that are 

included in the active partition. The down selected features are sent to anovan. Thus, 

features from each file are compared to features from the remaining files. 

 Pairwise: performs a pairwise ANOVA using the Matlab function anovan iteratively 

generating all possible combinations of the groups in the active partition. The indices of the 

comparisons relate to the indices of all nonzero elements in a strictly upper triangular matrix, 

i.e. 1 to 2, 1 to 3, 2 to 3, etc. Groups are not compared to themselves. 
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Time Binning Filter 

Summary 

The Time Binning Filter allows you to reduce GC-MS data that contains fragments caused by 

electron impact. 

Pseudocode 

while sum(maxIntensities > 0) 

  maxIndex = max(maxIntensities); 

   

  intensityLogical(maxIndex) = 2; 

  maxIntensities (maxIndex) = 0; 

   

  timeCenter = timeAvg(maxIndex); 

  upper = timeCenter + (deltaT / 2); 

  lower = timeCenter - (deltaT / 2); 

   

  index = find( intensityLogical == 1 AND timeAvg >= lower AND timeAvg 

< upper); 

  intensityLogical(index) = 0; 

  maxIntensities(index) = 0; 

end 

Theory 

The Time Binning Filter drills down on the data set starting with the most intense peak of the data 

set. After the maximum peak is found, the peaks with times within ±t/2 from the time t0 are 
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removed from the data, where t is the user defined time parameter and t0 is the time of the most 

intense peak in the data set. This process is repeated until all peaks are processed. 

The intensities in the 'maxIntensity' array are set to 0 as the data is processed to indicate that 

they are of no further interest. The array 'intensityLogical' is a pseudo-boolean array. 0's indicate 

features of no interest, 1's indicate potential interest, and 2's indicate an intensity index that is the 

maximum within the time window. 

Fold Change Filter 

Summary 

The Fold Change Filter takes the average of each feature across all of the files that are included 

in a partition. This produces a group average vector for each group. The average vectors are 

divided by each other using right division, left division, a combination of both to produce a fold 

value vector (containing a fold value for each feature). Features with fold values that meet or 

exceed the user-defined threshold are kept. 

Pseudocode 

  left  = B / A; 

  right = A / B; 

 

  if typeChange == absolute 

      result = left >= foldChange OR right >= foldChange; 

      value = max(left, right); 

  else if typeChange == positive 

      result = left >= foldChange; 

  else 

      result = right >= foldChange; 
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Theory 

The components of the resulting fold vector are compared to the threshold that the user defines 

and only those features that meet or exceed the threshold pass the filter. If there are more than 

two groups in the active partition, then pairwise comparisons of all of the groups are generated. 

As in the ANOVA filter, the indices of the comparisons relate to the indices of all nonzero 

elements in a strictly upper triangular matrix. The disjunction of all of the feature vectors from 

each of the pairwise comparisons is generated: features must meet the fold criteria in at least one 

fold comparison. 

The Fold Change Filter has the options to accept only positive or only negative folds that fulfill the 

threshold, where a positive fold is defined as the right division of A and B and a negative fold is 

defined as the left division of A and B. Note: we define left division as B(i, j) / A(i, j) and 

right division as A(i, j) / B(i, j). See MathWorks for more information. The default setting 

is absolute, which accepts a feature if either the left division or right division is greater than the 

set threshold. In the case of the absolute setting, the resulting fold value vector will contain the 

maximum fold change from either the left division or right division of the average matrices. 

 Absolute: Calculate the fold using both the left and right division of the pair of matrices. The 

fold value will be the maximum for that feature from either matrix. 

 Positive: Calculate the fold using the right division of the average vectors. 

 Negative: Calculate the fold using the left division of the average vectors. 

 

Group Intensity Filter 

Summary 

The Group Intensity filter peaks that have an average intensity greater than the set intensity. 

The Strict setting specifies whether or not all of the groups in the partition must pass the filter. If 

Strict is used the conjunction of the feature vectors is taken to produce the final peak set. 

Otherwise, the disjunction of the feature vectors is taken to produce the peak set. 

http://www.mathworks.com/help/techdoc/ref/arithmeticoperators.html
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Pseudocode 

for all samples in the group on the filter tab 

   

  if strict is selected 

    remaining peaks = all the peaks AND peaks with an average intensity 

greater than the given absolute intensity 

   

  otherwise 

    remaining peaks = all the peaks ORpeaks with an average intensity 

greater than the given absolute intensity 

Group Distribution 

Summary 

Group Distribution filters out peaks that do not fall within the given standard deviation in the group 

it is contained in. If the peak is more Standard Deviations away then the given value the peak is 

excluded from the final peak set. 

The Strict setting specifies whether or not all of the groups in the partition must pass the filter. If 

Strict is used the conjunction of the feature vectors is taken to produce the final peak set. 

Otherwise, the disjunction of the feature vectors is taken to produce the peak set. 

Pseudocode 

for all samples in the group 

 

        upper limit allowed = group average plus the standard 

deviations 

        lower limit allowed = group average minus standard deviations 
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              if strict is selected on the filter tab 

         filtered peaks = filtered peaks AND intensities that are 

less than the upper limit allowed  AND intensities that are less than 

the lower limit allowed 

        

              otherwise 

         filtered peaks = filtered peaks OR intensities that are 

less than the upper limit allowed OR intensities that are less than the 

lower limit allowed 

   

Group Separation Filter 

Summary 

This filter compares all possible pair-wise combinations of the groups. The means of both groups 

are calculated, then the difference is found between the mean of every peak in each group. If the 

separation of that peak is larger than the given separation value then the peak passes the filter 

and depending on strict or loose may or may not be included in the final peak set. 

The Strict setting specifies whether or not all of the groups in the partition must pass the filter. If 

Strict is used the conjunction of the feature vectors is taken to produce the final peak set. 

Otherwise, the disjunction of the feature vectors is taken to produce the peak set. 

Pseudocode 

   for all possible combinations 

      setA = means for set A 

      setB = means for set B 
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      if strict is selected on the filter tab 

           filteredPeaks = filteredPeaks AND peaks that pass |setA - 

setB| > separationFactor 

      otherwise 

           filteredPeaks = filteredPeaks OR peaks that pass |setA - 

setB| > separationFactor 

Ratio Filter 

Summary 

There are two options for this filter, top heavy and singular. Top heavy squares the numerator of 

the equation used to find the ratios and singular does not. The filter calculates ratios based on a 

formula and returns the given amount of peaks with the highest ratios. The ratio is calculated by 

first generating all pair-wise combinations of the groups. Then the Standard Deviation and 

average intensities are calculated for each of those groups. Then the ratio is calculated by adding 

all the comparison combinations ratios together, ratios are calculate by the absolute value of the 

average of set one minus the average of set 2, intensity that is, divided by the standard deviation 

of set 1 times the standard deviation of set 2. The statistical significance would be finding peaks 

that are tightly formed and separated with respects to intensity. 

Top Heavy:  

Otherwise:  
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Pseudocode 

For all pairwise comparisons of the groups 

 

  setAMu = means of set A 

  setAStandardD = standard deviation of set A 

  setBMu = means of set B 

  setBStandardD = standard deviation of set B 

   

  if top heavy is selected on the filter tab 

    ratios = ratios + (setAMu - setBMu)^2 / (setAStandardD * 

setBStandardD) 

  otherwise 

    ratios = ratios + abs((setAMu - setBMu)) / (setAStandardD * 

setBStandardD) 

     

pick the n highest ratio peaks 

Mass-Time Exclusion Window 

Summary 

The mass-time exclusion filter allows you to specify an exclusion window of mass and time. This 

can be done in two ways: manually or with the heat map. To manually specify an exclusion 

window, enter the upper and lower bounds for both mass and time, and then click the Add button. 

This will add the window to the table on the right. You may now enter another window and add it 

to the table or click the Apply button to generate a peak set that excludes all of the windows listed 

in the table. To specify a mass-time exclusion window using the heat map, simply left click and 



158 
 

drag a selection box around the peaks that you wish to exclude. The coordinates (upper and 

lower bounds) of the selected region will be displayed in the text fields for the filter. You may click 

the Add button to add the window to the table or modify the upper and lower bounds by typing 

them in manually or by drawing a new selection on the heat map. 

 

Manual Selection 

Summary 

The Manual Selection Filter allows 

you to hand select peaks to be 

included in a feature vector. This can 

be used to include peaks of interest 

or to create a mask of peaks that are 

extraneous to your study. If the peaks 

are of interest, then you can view 

them as or logically OR them with 

another peak set. If they are 

extraneous, you can negate the 

feature vector and then AND the 

resulting peak set with any other peak set. 

Use the Select All/Deselect All to toggle all of the check boxes on or off, respectively. Use the 

toggle button to invert the state of all of the check boxes. Finally, the Apply button will generate a 

peak set from the selected peaks. All of the columns in the table support sorting, including the 

check box column. Left click on the column header to sort in the features in decreasing order. 

Click the header again to sort in nondecreasing order. 

Peak Set Editor 

http://meddl.cs.wright.edu/lib/exe/fetch.php?media=manual_selection.png

