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1.0 Introduction 

1.1 Background 

The ever-increasing rate of automation in image capture and the resulting increase in 

volume of imagery to analyze outpaces the ability of intelligence analysts (IA) to process 

them. Due to the increase in the amount of data availability, the cognitive limit of IAs is 

continuously pushed to its limits, and the identification of anomalies within the military 

image analysis task is becoming increasingly time-critical (Fendley & Narayanan, 2012; 

Muller & Narayanan, 2009; Duvall, 2005; Maule, 1997). Additionally, the random and 

unexpected nature of certain anomalies provides an increased difficulty of timely 

anomaly detection (Warren, Smith, & Cybenko, 2011). Due to the increase in availability 

of data and a subsequent increase in workload of IAs, time-saving tactics are often 

employed in an attempt to keep up with the increasing pace of data generation. A 

common example of a time-saving tactic in the Intelligence, Surveillance, and 

Reconnaissance (ISR) domain is to selectively scan intelligence feeds for specific regions 

of interest (ROIs) and ignore others that do not seem of particular importance. This 

selective attention could, therefore, lead to missed anomalies in unexpected ROIs or 

outside the ROIs. Additionally, it is well-known and accepted in the field of cognitive 

psychology that people have no conscious experience of most of what happens in the 

human mind (Heuer, 1999; Simon, 1957; March, 1978). This research will explore this 

concept of unconscious awareness through missed anomalies in a visual search task and 

presents a methodology for determining possible unconscious detections by investigating 

physiological signatures of detected and un-detected anomalies. 
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1.2 Research Objective 

The objective of this study is to not only show that unconscious processing exists, but 

that there are physiological eye-tracking signatures of these phenomena that can be 

detected and used for acknowledgement and mitigation purposes. The present study will 

investigate physiological signatures of anomaly detection during missed anomalies in a 

visual search task, create a model of detection versus non-detection, and identify events 

in which unconscious anomaly detection may be occurring. This paper will first provide 

relevant background information and then go on to discuss the methodology, analysis, 

results, and discussion of the present research. 

2.0 Literature Review 

2.1 Intelligence, Surveillance, and Reconnaissance 

Intelligence, Surveillance, and Reconnaissance (ISR) programs are a crucial part of 

the United States Department of Defense (DoD) that serve as the center for planning, 

execution, and assessment of issues concerning global situational awareness and national 

security. In order to fully understand what the ISR community is responsible for, the term 

can be broken down into its parts. According to Barber (2001), intelligence is defined as 

“the product of processed information concerning hostile or potentially hostile forces”, 

surveillance is the “systematic observation by technical sensors or human beings [which] 

implies continuous 24 hours a day / 7 days a week [observation] of areas or forces of 

interest”, and reconnaissance is defined as the “directed mission(s) to obtain specific 

information”. Combining these separate terms, Barber defined ISR as “the capability that 

integrates command direction, sensors, and processed formation and intelligence with 
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timely dissemination in order to provide decision makers with effective ‘Situational 

Awareness’”. In other words, it can be said that one of the main goals of the ISR 

community is information acquisition in many forms such as real-time video feed or text-

based data streams, as well as the corresponding analysis of the gathered intelligence in 

order to provide timely situational awareness and national security. There exists a 

specific characterization of intelligence depending on the source of how it was obtained, 

which includes Human Intelligence (HUMINT) from a person observing, Imagery 

Intelligence (IMINT) from photographs or other imagery, Signals Intelligence (SIGINT) 

from electronic signals, and Measurement and Signatures Intelligence (MASINT) from 

measurable aspects of the target (Chizek, 2003). When analyzing these various types of 

intelligence, there is the potential for real-time analysis by the ISR community or, in 

other less time-critical situations, imagery captured by the UAVs can be relayed back to 

IAs, who will analyze the data “offline”, or not in real-time. The analysis process, which 

could include still-, motion-, or text-based imagery, is a complex task that involves the 

integration of many cognitive processes. In order to fully understand this process, it is 

important to know the steps involved in human reasoning and decision making. 

2.2 Human Reasoning and Decision Making 

The process of surveying and identifying anomalies in a military image analysis task 

is a cognitively-demanding and high-workload process. In order to ensure that IAs are 

making timely, effective, and trusted decisions in critical situations, it is first important to 

understand the process of decision making, the involvement of human reasoning, and the 

steps leading up to these cognitive tasks. 
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Before the process of decision making or human reasoning occurs, the IA first needs 

to gather the intelligence into what is referred to as “working memory”. Working 

memory is a term that refers to the maintenance and storage of information in the short 

term and can be described as the system that underlies human thought processes. 

Following the information processing model developed by Wickens (1992) as shown in 

Figure 1, sensory information enters a short-term sensory store where the information is 

transformed into an understandable form by the perceptual processes of the brain. After 

perception, the information is transferred to working memory which interacts with long-

term memory in order to grow and develop the individual’s perception of the world and 

determine a reasonable response to the stimuli. 

 

Figure 1: Wickens' Model of Information Processing (Wickens, 1992). A stimulus enters the 

short-term sensory store where it is transformed into an understandable form in order to 

be perceived. Working-memory and long-term memory interact to determine an 

appropriate response that is then executed. 
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 Working memory temporarily maintains this information as a means for providing an 

interface between perception, long-term memory, and action (Baddeley, 2003). Another 

view of working memory is that it is made up of three major parts: the central executive, 

the phonological loop, and the visuospatial sketchpad.  

The central executive serves as the control system while the phonological loop and 

visuospatial sketchpad make up the storage systems of the model. With regards to the 

central executive function, it is arguably the most important of the three components, 

however, the least understood. The phonological loop exists to facilitate with the 

acquisition of verbal skills, such as the ability to learn a new language, whereas the 

visuospatial sketchpad is responsible for the storage of visual cues. Figure 2 shows the 

makeup of working memory. 

 

Figure 2: The Baddeley and Hitch (2003) Model of Working Memory. The central executive, 

or control system, consists of the visuospatial sketchpad, which stores visual information, 

and the phonological loop, which stores auditory information, in order to achieve 

perception of the stimulus. 
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As shown, input perceived by an individual is separated into either visual or auditory 

information, which is then relayed to the corresponding storage system that ultimately is 

transferred to the central executive for processing in order to determine if action needs to 

be taken or if the information needs to be stored in long-term memory, for example. 

Once information is gathered in the brain, there are several theories and pathways for 

that knowledge and intelligence to be further processed and analyzed, such as case-based 

reasoning, naturalistic decision making, dual-process theory, fuzzy-trace theory, and 

intuition. Although this is not intended to be an exhaustive list, the following paragraphs 

will briefly discuss each of these methods in order to gain an understanding of the types 

of pathways available for decision making and reasoning. 

2.2.1 Case-Based Reasoning 

Case-based reasoning refers to the problem-solving method in which past experiences 

and previously stored knowledge about a certain topic are applied to the current situation 

at hand (Aamodt, 1994). With this approach, a new problem is solved by recalling a 

specific, similar case from the past and applying that knowledge to the new situation. 

This means that the strategy is an incremental, sustained learning process, meaning that 

with each problem solved, another solution is retained in memory for further potential use 

of future applicable problems. In order to fully understand this concept, consider the 

following scenario: 

David, a family doctor, is examining a patient with specific 

symptoms, and he is reminded of a patient that he had several 

weeks ago with very similar symptoms. He recalls that he did not 

think the previous patient’s symptoms were serious, and therefore 
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just advised the patient to get rest and drink fluids. However, he 

remembers that the patient came back a couple days later with an 

even greater decline in health, so he decided to prescribe 

antibiotics which quickly remedied the symptoms. Using this 

knowledge, David decides to prescribe antibiotics to the new 

patient right away. 

In this example, David uses a past experience in order to effectively solve the current 

problem at hand. He recalls that “rest and fluids” was not an effective treatment in a 

previous patient with similar symptoms, and therefore goes straight to the solution that 

worked for the previous patient. This method is effective because it is coupled with a 

“learning” process. The more experiences an individual has, the more knowledge that is 

stored for use in future problems. 

2.2.2 Naturalistic Decision Making 

Another method for decision making is called naturalistic decision making. This term 

refers to decision making in complex real-world settings. Prior to the knowledge of 

naturalistic decision making, other methods were used by theorists and decision makers, 

including Multi-Attribute Utility Analysis (MAUA) and Decision Analysis (Klein & 

Klinger, 2008). The methods of MAUA and Decision Analysis focus on the analytical 

process of decision making and are theoretically successful with regards to the systematic 

process of weighing and rating solutions, as well as calculating probabilities. However, 

the short-coming of these methods is that they fall short when it comes to real-world, 

time-critical, and high-stress situations. These methods are too time-consuming and 

require extensive work in order to reach a valid decision. Additionally, it is difficult to 
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factor in ambiguity and dynamic environments. Therefore, naturalistic decision making 

was designed in order to account for these short-comings and serve as a successful 

method in complex real-world settings. According to Klein et al. (2008), a complex real-

world situation is comprised of ten main features, which are summarized in Table 1.  

Table 1: Features of Naturalistic Decision Making (Klein, 2008). These characteristic 

features are applied towards the ISR domain and specific examples are provided. 

 Feature ISR-Specific Example 

1 Ill-defined goals and ill-structured 

tasks 

Temporal and spatial locations of targets or 

threats are unknown 

2 Uncertainty, ambiguity, and 

missing data 

Data feeds may be incomplete or unclear 

3 Shifting and competing goals Multiple monitors, data feeds, and systems 

to analyze and operate 4 Dynamic and continually changing 

conditions 

5 Action-feedback loops (real-time 

reactions to changed conditions) 

Time-critical decisions and appropriate 

actions needed 

6 Time stress 

7 High stakes 

8 Multiple players IAs must work with personnel to receive 

intelligence, analyze data, make appropriate 

decisions, and act on those decisions 
9 Organizational goals and norms 

10 Experienced decision makers 

 

As stated by Klein et al. (2008), naturalistic decision making accounts for “dynamic 

and continually changing conditions, real-time reactions to these changes, ill-defined 

tasks, time pressure, significant personal consequences for mistakes, and experienced 

decision makers.” This method revolves around making decisions without performing 

analyses, without an in-depth comparison of options, and rarely without a search for an 

“optimal choice.” Instead the method consists of finding the first solution that is time-

effective, cost-effective, and plausible. 
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2.2.3 Dual-Process Theory and Fuzzy-Trace Theory 

Dual-process theory, a concept that attempts to explain the process of thinking and 

reasoning, states that human reasoning is made up of two distinct systems. These systems 

consist of an intuitive, autonomous system and an analytical, controlled system 

(Gawronski & Creighton, 2013; Reyna & Brainerd, 2011; Evans, 2008; Wixted, 2007; De 

Neys, 2006; Evans, 2003). Branching from this concept, another term attempting to 

explain the process of human reasoning, known as fuzzy-trace theory, is a derivation 

from the dual-process theory that was originally used to predict improvement in the 

ability to reason from childhood to adulthood. Through relevant studies (Reyna & 

Brainerd, 2011), it was determined that there are two parallel memory representations 

formed in the mind: verbatim traces and gist traces. Verbatim traces refer to knowledge 

remembered word-for-word exactly and tend to be more specific while gist traces refer to 

remembering a general meaning or concept. 

2.2.4 Intuition 

 Another important topic to be discussed in this review concerning decision making is 

intuition. There is not one exact definition of intuition that is unanimously agreed upon 

and, as Betsch (2008) states, “There are as many meanings for the term intuition as there 

are people using it.” However, the term tends to refer to reaching an answer or solution or 

idea without conscious effort or reasoning. Some consider it a source of knowledge, some 

a process, and some even a structure of the brain (Betsch & Glöckner, 2010; Horstmann, 

Ahlgrimm, & Glöckner, 2009). Nevertheless, the concept that a thought, solution, or idea 

can be developed without conscious thought is a view that differs to quite an extent from 

the other previously discussed decision making strategies, although most closely related 
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to naturalistic decision making. The concept of intuition brings several questions to mind, 

such as “how do these concepts develop in the brain?”, “by what mechanism do these 

thoughts reach consciousness?”, and “what neurophysiological biomarkers could exist to 

track these processes?” Numerous studies have attempted to answer these questions, 

which will be further investigated later in this paper. 

2.3 Signal-Detection Theory 

A method for analyzing detections involves a concept known as signal-detection 

theory. The term signal-detection theory (SDT) refers to a statistical technique in which a 

signal, target, or object of interest is identified through noise or distraction. As the name 

suggests, it is a technique used to differentiate between a measured electrical signal, such 

as an electrocardiograph (EEG), and the associated noise of the system. However, the 

techniques of SDT can also be applied to the field of psychology, such as with the 

detection of an anomaly or object of interest (Stanislaw & Todorov, 1999).Taking this 

application into consideration, there are various methods of applying SDT depending on 

what is being tested and the type of experiment at hand. The main type of experiment that 

will be focused on in this paper is the "Yes-No Experiment", in which sensitivity is 

measured in terms of the ability to distinguish between stimuli (Macmillan & Creelman, 

2004). Examples of this type of task include finding abnormalities in X-rays or 

differentiating between two slightly different images of the same scene. In both of these 

examples, there are clear anomalies (e.g., a fracture in the X-ray or a fire hydrant in one 

of the images) that may or may not be present in each of the stimuli (each X-ray or each 

image of the scene). When searching for these anomalies, there are four possible choices 

for the outcome, as shown in Table 2. If there is an anomaly present, it can either be 
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detected or not detected. Likewise, if there is no anomaly present, there can be a false 

detection or a correct rejection. 

 

Table 2: Response Matrix for "Yes-No" Experiment (Macmillan & Creelman, 2004). A binary 
response is characterized by the reality of whether the target is truly present or not in the 

stimulus. 
 

 Response 

"Yes" "No" 

Target Present Hit Miss 

Target Not Present False alarm Correct rejection 

 

 

In this type of experimental setup, it is relatively simple to calculate the hit rate. This 

would be accomplished by dividing the number of "hits" by the total number of “signal 

trials”, or trials where anomalies or targets known to be in the stimuli. Similarly, the false 

alarm rate is calculated by dividing the number of "false alarms" by the total number of 

“catch trials”, or stimuli without targets (Macmillan & Creelman, 2004). For example, 

take into consideration the task of differentiating between two slightly different images of 

the same scene. Specifically, imagine two images of a kitchen scene. In some trials, the 

two images are exactly the same (catch trials). In other trials, a cooking pot is present on 

the stove in one but not the other with all other details of the images being exactly the 

same (signal trials). If the participant was asked to state whether there was a difference 

between the two images, this would be a typical "Yes-No" experiment in which "hits" 

would be when the participant correctly states that there is a difference and "false alarms" 

would be when the participant states there is a difference when in reality the two images 



12 
 

are exactly the same, as shown in Table 3. Therefore, the false alarm rate is calculated by 

dividing the total number of false alarms by the total number of catch trials. 

 

Table 3: Response Matrix for Kitchen Scene. This is an example application of the “Yes-No” 

Experiment Response Matrix, in which classification of the binomial response is dependent 

on the reality of whether the kitchen pan is present in the scene. 

 

 Participant’s Response 

 “Yes” “No” 

Pan Present Hit Miss 

Pan Not Present False alarm Correct rejection 

 

 

Alternatively, the false alarm rate is not as simple for other experimental setups. Now 

consider a task in which participants are asked to find abnormalities in X-rays. The 

number of "false alarms" is clear: the number of times the participant stated there was an 

abnormality somewhere in the X-ray when there actually wasn't. However, there is no 

easy or accurate way to calculate the total number of possible false alarms in the stimuli. 

There are an infinite number of possibilities for an individual to mistake a normal object 

as an abnormality; therefore the false alarm rate is not clear. Depending on the 

experiment, there are possible ways to get around this; however, they tend to be not as 

accurate or convenient as the hit rate calculation. Therefore, the specific experiment at 

hand has a strong influence on what results can be accurately measured and calculated. 
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With regards to differences among experimental setups, they depend partially on the 

modality of stimulus presentation and partially on the type of anomaly or target being 

detected. These differences between anomaly types need to be investigated in order to 

fully understand the possible outcomes of an experiment, which will be covered in the 

next section. 

2.4 Anomaly Detection 

 An anomaly is commonly understood as an occurrence that deviates from what is 

normal or expected (Chandola, Banerjee, & Kumar, 2009). Other common terms used to 

refer to these phenomena are outliers, exceptions, contaminants, or surprises. A simple 

depiction of an anomaly is shown in Figure 3. 

 

 

Figure 3: Simple example of anomalies in 2-dimensional data set (Chandola, et. al, 2009). 
The general trend of the data is depicted by N1 and N2. Points O1, O2, and collection of 

points O3 are all anomalous. 
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In this two-dimensional data set, the collection of data points denoted by N1 and N2 

shows the expected nature of the data. However, point O1, point O2, and collection of 

points O3 do not conform to the expected nature of N1 and N2. Therefore, these three 

points or collection of points are considered anomalous. This, of course, is a very simple 

example in order to easily portray the definition of an anomaly. Real-world cases are 

much more complex and involve a more in-depth analysis in order to identify the 

anomalous points or events. 

 Applying this definition of an anomaly, it can be inferred that anomaly detection 

refers to the process of identifying these patterns, occurrences, or behaviors that do not 

conform to expected behavior. The process of anomaly detection has many possible 

applications in a wide variety of domains, such as fraud detection, insurance or health 

care, and military surveillance for enemy activities (Chandola, Banerjee, & Kumar, 

2009). The potential types of anomalies within these different domains are numerous, and 

there are various ways of categorizing them. One way is to separate the anomalies into 

point anomalies, contextual anomalies, and collective anomalies, as shown in Table 4 

(Chandola, Banerjee, & Kumar, 2009). Point anomalies focus on one individual event 

that is unexpected with respect to the rest of the data, a contextual anomaly is an 

individual event or outlier that is considered anomalous only in a specific context but not 

in others, and a collective anomaly is a series of data points or events that are considered 

anomalous but not necessarily each point individually. 
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Table 4: Categorization of Anomaly Types (Chandola, et. al, 2009). Point, contextual, and 

collective anomaly types are described, along with real-world examples. 

 

Type of 

Anomaly 

Definition Example 

Point One individual data point or instance 

or event is considered as an outlier 

with respect to the rest of the data. 

A car is going in the wrong 

direction (against traffic) on 

a road.  

Contextual One individual data point or instance 

or event is considered as an outlier in 

a specific situation (but not 

otherwise). 

The outside temperature in 

July is 30 degrees Fahrenheit 

(this would not be anomalous 

if it were, for example, 

December). 

Collective The occurrence of a collection of 

related data points or instances or 

events is considered as an outlier (but 

not necessarily individually). 

An ECG recording shows a 

series of flat-line data points. 

 

 

The present study focuses on point anomalies, which can be separated further into 

the spatial and temporal domains, as shown in Table 5. Spatial domain point anomalies 

refer to individual instances that appear anomalous with respect to their position or 

location. Alternatively, temporal domain point anomalies refer to individual instances 

that appear anomalous with respect to the time of occurrence (Chandola, Banerjee, & 

Kumar, 2009). 

 

 

 

 

 



16 
 

Table 5: Types of Point Anomalies (Chandola, et. al, 2009). Point anomalies consist of 

spatial and temporal types. Descriptions, along with common and ISR-specific examples, are 

described. 

Type of Point Anomaly Definition Common Example ISR-Specific Example 

Spatial 

 

*denoted by  

underlined text 

Focuses on a 

geographical area or 

location (a point 

location or a point 

area); comparison of 

multiple still images 

of a scene 

Noticing an image 

of a gorilla inserted 

in a computed 

tomography (CT) 

lung cancer 

screening 

Aerial still images 

reveal an individual 

entering a vacant 

building at the same 

time every day late at 

night. 

Temporal 

 

*denoted by  

italicized text 

Includes a time 

period during which 

data was collected; 

comparison of a 

dynamic scene 

Noticing a gorilla 

walking through 

players passing a 

ball 

Drone video feed 

shows an individual 

digging with a shovel 

in a deserted area late 

at night. 

 

As shown in Table 5, two common, generic examples, as well as two ISR-specific 

examples, are provided in order to illustrate the difference between spatial and temporal 

anomalies. The two generic examples are very well-known studies (see Drew, Vo, & 

Wolfe, 2013; Simons & Chabris, 1999). The spatial example refers to a study in which 

naïve observers as well as expert radiologists examined computed tomography (CT) lung 

cancer screening images for lung nodules, which appeared as small light circles, and 

failed to detect the presence of a black gorilla 48 times the size of the average nodule 

(Drew, Vo, & Wolfe, 2013). The temporal example is a study in which a participant 

watched a video of players passing a ball, with some players wearing black shirts and 

others wearing white shirts (Simons & Chabris, 1999). The participants were told to 

count the number of passes that either the white team or the black team had and 

ultimately failed to detect an individual dressed in a gorilla costume walking directly 

through the middle of the scene. For the ISR-specific examples, each example contains 

certain aspects of both spatial and temporal anomalies, where the spatial parts of the 
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anomaly are denoted by underlined text and the temporal components are denoted by 

italicized text. For the example in the top row, "entering a vacant building" refers to the 

spatial component due to the fact that it refers to a specific location. The temporal 

component is "the same time every day late at night" since it refers to a specific point in 

time. The example in the second row can be explained in a very similar way. The phrase 

"digging with a shovel in a deserted area" refers to a specific location; therefore it is a 

spatial anomaly. The temporal component is "late at night" because, once again, it refers 

to a specific point in time. 

During the process of identifying these specific types of anomalies, there are certain 

phenomena that can occur that ultimately decrease the performance of an IA and cause 

the potential for a missed anomaly. Two of the more widely studied examples of these 

phenomena are change blindness and inattentional blindness. Change blindness refers to 

the phenomenon that occurs when an individual fails to detect changes in a visual scene 

when the physical changing of the scene is masked, usually by short flickers of the image 

(Rich & Gillam, 2000). Inattentional blindness is a similar concept, however differs in 

that it refers to the inability to detect a clearly identifiable, unchanging object in a scene 

(Gu, Stocker, & Badler, 2005). In Table 5, the common examples from the literature for 

spatial and temporal anomalies are both examples of inattentional blindness. As the 

definitions suggest, these two phenomena have the potential to cause detrimental effects 

in the ISR domain. Research exploring the causes of these happenings, as well as possible 

ways to detect and mitigate them is needed. The next section will explore these studies, 

with a focus on physiological monitoring, specifically eye-tracking, as a means of 

detection. 
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2.5 Eye-Tracking 

The wide area of research devoted to exploring the causes of missed anomalies 

provides for numerous ways for characterization and detection, including 

electroencephalography (EEG), electrocardiography (ECG), and eye-tracking 

methodologies. For the purposes of this study, eye-tracking methods will be used in the 

experimental setup and, therefore, will be focused on in the remainder of this paper. 

As stated previously, the “lung nodule” study as well as the “gorilla costume” study 

both portrayed well-known examples of inattentional blindness. For the “lung nodule” 

study (Drew, Vo, & Wolfe, 2013), eye-tracking methodologies were used during 

experimentation on all participants. The results revealed that twenty out of twenty-four 

expert radiologists failed to report seeing the gorilla, even though eye tracking confirmed 

that 12 out of the 20 radiologists that failed to detect the gorilla actually looked directly at 

the gorilla’s location when it was visible in the CT scans (mean dwell time 547 ms). This 

discovery raises questions, such as the cause for the inattentional blindness, possible 

identifiers of the occurrence of this phenomenon, and the possible inclusion of 

unconscious processes during the examination of images. 

Several other studies (Droll, Hayhoe, Triesch, & Sullivan, 2005; Simons, Chabris, 

Schnur, & Levin, 2002; Hollingworth & Henderson, 2002) show similar results, 

indicating that changes in a scene receive longer fixation durations even though the 

changes are not consciously recognized. For example, Droll et al. (2005) performed a 

study to explore how the visual scene or task at hand affects the acquisition of 

information from that scene. Results from the study revealed that fixation durations on 
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changed objects were longer than other areas of the scene, yet the change still went 

unnoticed. 

2.5.1 Correlates of Unconscious Awareness 
 

The occurrence of unconscious processing, and possibly unconscious awareness, 

during anomaly detection is the basis of this research effort and is a topic that has been 

explored by numerous other researchers (Rensink, 2004; Spering, Pomplun, & Carrasco, 

2011; Spering & Carrasco, 2015; Galpin, Underwood, & Chapman, 2008; Rothkirch, 

Stein, Sekutowicz, & Sterzer, 2012; Underwood, Templeman, Lamming, & Foulsham, 

2008; Chen & Yeh, 2012). It is evident, from studies focusing on change blindness, that 

relatively little information from the visual world is internally stored. However, change 

blindness could be due to other reasons even if a mental representation of the pre-change 

visual scene is stored. One example of this is the failure to compare the pre-change scene 

to the post-change scene (Simons, Chabris, Schnur, & Levin, 2002; Hollingworth & 

Henderson, 2002). Taking into consideration the change blindness paradigm, it has been 

proposed that, even though a participant does not provide an explicit reporting of the 

change, it does not mean that the change was not detected at all. It only means that an 

explicit report is not sensitive enough to measure the change (Hollingworth & 

Henderson, 2002). In a study performed by Simons et al. (2002), it was shown that 

participants failed to notice a change initially; however, they were later able to report the 

exact change when the experimenter provided a clue as to what the change was. This 

provides an interesting proposition that the participants stored a mental representation of 

the scene; however it did not reach consciousness until explicitly pointed out to them. 

This study, therefore, provides evidence that visual information acquisition and mental 
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encoding can occur as unconscious processes. Research by Rensink (2004) further 

supports these findings, who stated that a visual experience (i.e., consciously seeing or 

noticing) is not required in order to become aware of an object, event, or the 

surroundings. In the study, images of a scene and a changed scene were presented to the 

participant, with the change being either being related to presence (or non-presence), 

color, or location of an object. Participants viewed the images and were asked to press a 

key when they first had a “feeling” that a change was occurring and again when they saw 

explicitly what the change was. Results from the study suggested that visual changes can 

be sensed without an explicit visual experience. A follow-up to this study was performed 

by Galpin et al. (2008), who found that sensing did indeed occur in participants without 

an actual visual experience (as opposed to being random and guess-based) and, 

furthermore, that sensing and actually visually seeing are two different processes 

altogether. Other studies have further shown that there is a possibility that visual 

information processing is distinct and different for perception and for motor action, 

indicating that eye movements can reflect unconscious visual processing (Spering, 

Pomplun, & Carrasco, 2011; Spering & Carrasco, 2015). 

The goal of the present study is to not only show that unconscious processing exists, 

but that there are physiological eye-tracking signatures of these phenomena that can be 

detected and used for acknowledgement and mitigation purposes. There are significantly 

fewer papers focused specifically on these goals; however, research has been done in an 

attempt to accomplish these tasks (Rothkirch, Stein, Sekutowicz, & Sterzer, 2012; Jacob 

& Hochstein, 2009). Rothkirch et al. (2012) performed a study in which participants 

performed a search task in order to locate a Gabor patch that was made supposedly 
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invisible using continuous flash suppression (CFS) techniques (Tsuchiya & Koch, 2005). 

According to Rothkirch et al. (2012), “CFS is thought to largely disrupt neural signals 

from the suppressed eye at early central processing stages, but may leave some 

subcortical processes and responses in dorsal visual cortical areas relatively preserved”. 

The participants were asked the location of the Gabor patch, the orientation, and were 

subjected to a confidence rating. Results of “very unsure” participants showed that 

location and orientation were at chance level and, therefore, the participants had no 

subjective or objective awareness of the Gabor patch. However, dwell times of the 

participants revealed that they were increased by 40% for the Gabor patch area relative to 

the control areas. These results indicate that participants’ eye movement patterns were 

affected by the unconscious perception of stimuli. 

The present research will explore the concept of unconscious awareness through 

missed anomalies in a visual search task. A methodology for determining possible 

unconscious detections is described by investigating physiological signatures of detected 

and un-detected anomalies. 

2.6 Test Objective & Hypothesis 

Rothkirch et al. (2012) provided evidence that objects made inherently invisible, and 

shown to be "unseen" by an individual, can still exhibit various effects in the search 

patterns and fixations of that individual. This leads to the notion that possible 

unconscious visual processing can occur during search tasks, or any other image 

processing experience for that matter. The details of the image may not reach the level of 

conscious awareness; however, they are processed at some level below this conscious 

threshold through which effects can still be experienced. The present study aims to apply 
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this phenomenon to an environment more closely related to that experienced by IAs in 

the ISR domain by using ISR-related images and search tasks. A simulated analyst 

environment is also accomplished by the ambiguity of the presence of an anomaly. In 

other words, subjects are not told if or when an anomaly is present in the image, much 

like a real IA experience. Given the previously explained research, it is hypothesized that 

the presence of an anomaly changes the search activity of the individual and, more 

specifically, causes the individual to increase the fixation count, fixation duration, 

saccade length, and backtrack rate in the area of the anomaly, as follows, where µ is the 

mean of the respective metric: 

𝐻𝑜: µ𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = µ𝑛𝑜𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

𝐻1: µ𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 > µ𝑛𝑜𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

 

3.0 Research Methodology 

3.1 Participants 

A total of 33 Wright State University engineering students participated in this 

study. The subject pool consisted of 12 female and 21 male subjects with ages ranging 

from 20–52 years (mean = 23.6 years). All participants had normal or corrected to normal 

vision. During the analysis phase, three participants were discarded due to a low quality 

of eye-tracking data (12%, 15%, and 17%), which refers to the percentage of samples 

collected throughout all trials for that participant. The data quality of the remaining 30 

participants ranged from 37%-80% (mean = 64.5%) and were used for the analysis. The 

variation in these percentages can be attributed to factors such as the participant blinking 
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Figure 17: Scatterplot with jitter applied (top) and boxplot (bottom) of mean saccade 

length for detections and non-detections 
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Figure 18: Scatterplot with jitter applied (top) and boxplot (bottom) of backtrack rate for 

detections and non-detections 
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A two-tailed unpaired-t test (overall α=0.05, individual α=0.0125) was performed 

using JMP software for each target type (suits and signals) and each metric (fixation 

count, fixation duration, mean saccade length, and backtrack rate) to give a total of eight 

statistical analyses that compared these metrics for detected and non-detected targets. For 

each of these tests, the mean of the respective metric was calculated for each participant 

for detected and non-detected targets. One participant had zero signal detections and, 

therefore, the mean metric value was set equal to zero. These test results are shown in 

Table 7. 

 

Table 7: Results from Unpaired-t test Statistical Analyses (𝒕𝟐𝟗,𝟎.𝟎𝟏𝟐𝟓 =  𝟐. 𝟒𝟔𝟐) for Detected and 

Undetected Targets 

 

Target Metric Test Statistic p-value 

Suits Fixation Count -28.2896 <0.0001* 

Fixation Duration -21.1761 <0.0001* 

Mean Saccade Length -1.29747 0.2047 

Backtrack Rate 1.424373 0.1650 

Signals Fixation Count -4.22498 0.0002* 

Fixation Duration -4.52739 <0.0001* 

Mean Saccade Length 1.257681 0.2185 

Backtrack Rate 1.490045 0.1470 
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4.2.1 Detection Threshold Model 
 

The Detection Threshold Model used to characterize the eye physiology of 

detections was based on a combination of a prototype model of categorization, which is a 

type of cognitive model in which the classification of a new target is based on the 

similarity to each category prototype (Cohen & Basu, 1987; Ashby & Maddox, 1993), 

and a decision ladder (Rasmussen & Goodstein, 1985). This model is depicted in Figure 

19. As shown in the model, possible unconscious detections can be identified by using 

the metrics shown to be significant through the unpaired-t test analysis. Thresholds in the 

model were determined based on the statistical analysis of each metric along with the 

visual separation of detection and non-detection in a scatterplot of the data. The overall 

classification of a non-detection as an unconscious detection or true non-detection was 

determined by the number of metrics that were above threshold. If all metrics were above 

threshold for a given non-detected target, it was classified as an unconscious detection. 

All targets from the experiment were applied to the Detection Threshold Model, and the 

results are summarized in the confusion matrix in Table 8.  
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4.2.2 Model Validation 
 

In order to validate the classification of data performed by the Detection 

Threshold Model, a nominal logistic regression was performed on the data using JMP 

software to compare the metrics of each individual target (N=1980) in order to classify as 

detected or non-detected. Results revealed that fixation duration, mean saccade length, 

and backtrack rate were all statistically significant (p < 0.0001), and fixation count was 

marginally significant (p = 0.0807) at the 5% confidence level. Therefore, all four metrics 

were included in the model, and the results are shown in Table 9. Cumulative probability 

plots were also created for each of the factors in order to examine individual effects on 

the response. Figure 20 shows these cumulative probability plots for fixation count (top 

left), fixation duration (top right), mean saccade length (bottom left), and backtrack rate 

(bottom right). 

 

Table 9: Confusion Matrix Results from Nominal Logistic Regression. Classification, label, 

and overall accuracies were calculated for the results. 

 

  Predicted 

Classification 

Accuracy   Detected Non-Detected 

Actual 

Detected 485 152 76.1% 

Non-Detected 61 1282 95.5% 

Label Accuracy 88.8% 89.4% Overall=89.2% 

 

 


