
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2016

Miniatured Inertial Motion and Position Tracking and Visualization Miniatured Inertial Motion and Position Tracking and Visualization

Systems Using Android Wear Platform Systems Using Android Wear Platform

Dhruvkumar Navinchandra Patel
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Patel, Dhruvkumar Navinchandra, "Miniatured Inertial Motion and Position Tracking and Visualization
Systems Using Android Wear Platform" (2016). Browse all Theses and Dissertations. 1670.
https://corescholar.libraries.wright.edu/etd_all/1670

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1670?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

MINIATURED INERTIAL MOTION

AND POSITION TRACKING AND

VISUALIZATION SYSTEMS USING

ANDROID WEAR PLATFORM

A thesis submitted in partial fulfillment

of the requirement for the degree of

Master of Science

By

DHRUVKUMAR NAVINCHANDRA PATEL

B.E., Gujarat Technological University, 2014

2016

Wright State University

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL

January 6th, 2017

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY

SUPERVISION BY Dhruvkumar Navinchandra Patel ENTITLED Miniatured

Inertial Motion and Position Tracking and Visualization Systems Using Android

Wear Platform BE ACCEPTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF Master of Science.

Yong Pei, Ph.D.

Thesis Director

Mateen M. Rizki, Ph.D.

Chair, Department of Computer Science

and Engineering

Committee on

Final Examination

Yong Pei, Ph.D.

Mateen M. Rizki, Ph.D.

Paul Bender, Ph.D.

Robert E.W. Fyffe, Ph.D.

Vice President for Research and

Dean of the Graduate School

iii

ABSTRACT

Patel, Dhruvkumar Navinchandra. M.S. Department of Computer Science and

Engineering, Wright State University, 2016. Miniatured Inertial Motion and Position

Tracking and Visualization Systems Using Android Wear Platform.

In this thesis, we have designed and developed a motion tracking and

visualization system using the latest motion tracking sensory technologies. It is one of

the enabling technologies for our novel visual-inertial odometer and human anatomy

based 3D Locating, Mapping and Navigation system for endoscopy and drug delivery

capsules used inside GI tract. In particular, we have: i) designed and completed a cloud-

based sensory data collecting, processing and storage system to provide the reliable

computing and storage platform; ii) explored different data processing methods to

obtain improved-quality motion results from extremely noisy raw data, e.g., by using a

low pass and high pass filter, and Kalman filters; iii) developed low-complexity

algorithms to support real-time data analysis; and, iv) provided real-time 3 dimensional

visualizations by a Unity 3D based visualizer.

In this thesis, we have also showcased the use of application processors, which

are widely used in smartphones and tablets, to develop a potentially low-cost sensor

system and networks with enhanced computing, storage and networking capabilities.

Specifically, we have explored Android/Android Wear, Google’s open source mobile

OS’s, enabled smart devices, such as Sony Smartwatch 3, and their built-in sensory

capabilities to build our sensory system. The completeness and maturity of such a

widely used mobile platform ensure a fast prototype design and development process,

as well as significantly better reliability and usability. The reliability of our sensory

iv

system is further improved through the use of a database approach, such as transactions,

for the data flow from sensors to mobile platform and eventually to the cloud. Thus,

our prototype design provides a working model to collect sensor data from Android

Wear, and then transfer and store them into the cloud for further processing and

disseminations.

v

TABLE OF CONTENTS

1. Introduction ... 1

1.1. Overview of Motion Technology... 1

1.2. Overview of Android Wear and Handheld Technology 3

1.3. Cloud Based Prototype to Collect Sensor Data using Android Wear 4

2. Sensor System and Motion Capture Devices .. 6

2.1. What we need for our System .. 6

2.2. Android Wear as a Motion Capture Device ... 8

2.2.1. Sony Smartwatch 3(SWR50) Specification .. 8

2.3. Why we choose Android Wear (Sony Smartwatch 3) 10

2.3.1. Processing Capabilities ... 10

2.3.2. Sensors Capabilities .. 10

2.3.2.1. Overview of Android/Android Wear Built-in Sensors 11

2.3.2.2. Google Asus Nexus 7 sensor specification 12

2.3.2.3. Nexus 7 Device Coordinate System ... 14

2.3.2.4. Available Sensors in Sony Smartwatch 3 14

2.3.2.5. Device Coordinate System in Sony Smartwatch 3 18

2.3.2.6. Sensor Performance: Sampling Rates & Accuracy 20

vi

2.3.3. Network Connectivity ... 22

2.4. Android Sensor Problems & Limitations ... 22

3. Prototype of a Stand-alone Motion Capture Device Using an Android Device 25

3.1. Prototype Workflows ... 25

3.2. Android Sensor API ... 26

3.2.1. Adjusting Sampling Rate .. 27

3.3. Capture Sensor Data .. 28

3.4. Data Storage ... 29

3.5. Experimental Studies ... 29

3.5.1. Using Accelerometer Sensor... 32

3.5.2. Using Linear acceleration Sensor ... 34

4. Sensor-Web based Cloud Solution and Prototype Designs 36

4.1. Graphical Representation of Cloud based Prototype 37

4.2. Sony Smartwatch 3 Sensors ... 37

4.3. Android Wear Sensor API ... 40

4.3.1. Adjusting Sampling Rate .. 41

4.4. Interaction between Android Wear-based Watch and Android handheld 44

4.4.1. Established Connection between Android Handheld and Android Wearable

... 45

vii

4.4.2. Sending and Syncing Sensor Data between Android Wear and Android

Handheld ... 46

4.4.2.1. Android Wear Node API .. 47

4.4.2.2. Android Wear Message API ... 48

4.4.2.3. Solution of data loss happens when higher sampling rate 49

4.5. Interaction Between Android and the Cloud ... 51

4.6. Prototype Advantages .. 52

5. Estimate Acceleration, velocity and Position through sensor data Filtering techniques

... 53

5.1. Observed Problems in Collected Sensory Data ... 53

5.1.1. Raw Sensor Data Errors .. 54

5.1.2. Integration Errors .. 55

5.2. Overview of Solution ... 56

5.3. Low Pass/High Pass Filter ... 56

5.4. Kalman Filter based De-noising and Motion Data Estimation 58

5.4.1. Calibration Step to Remove an Offset .. 59

5.4.2. Kalman Filter .. 60

5.4.2.1. Implementing Kalman Filter ... 61

5.4.2.2. Selecting the Kalman Filter Parameters 63

viii

5.4.2.3. Selecting the Kalman Filter Parameters for Linear acceleration

Data………………………………………………………………………..64

5.4.3. Filter Linear acceleration through the Kalman Filter 68

5.4.4. Estimate the Velocity .. 69

5.4.4.1. Effects of Sampling rate on Velocity Estimation 70

5.4.4.2. Velocity Filtering through the Kalman Filter 70

5.4.5. Estimate the Position... 71

5.4.5.1. Position Filtering through the Kalman Filter 72

5.5. In-Cloud Processing of Sensory Data from the Sony Smartwatch 3 based Sensor

Web ... 74

6. Conclusion and Future Work .. 79

6.1. Conclusions .. 79

6.2. Future Work ... 82

7. References ... 84

ix

LIST OF FIGURES

Figure 1. 1 3x3x1 mm InvenSense’s MPU-925x Motion tracking unit (3-axis

gyroscope, 3-axis accelerometer and 3-axis compass) [2] .. 2

Figure 2. 1 Sony Smartwatch 3 (SWR50) .. 8

Figure 2. 2 Nexus 7 Device Coordinate System [7] ... 14

Figure 2. 3 Coordinate System in Sony Smartwatch 3 ... 19

Figure 2. 4 Interaction between Android Wear and Android Handheld devices [8] .. 22

Figure 3. 1 Workflow to collect sensor data from Asus Nexus 7 Tablet. 25

Figure 3. 2 Nexus 7 Android Prototype .. 28

Figure 3. 3 Timestamp vs linear acceleration sensor data (200 milliseconds sensor rate)

... 30

Figure 3. 4 Timestamp vs linear acceleration sensor data (5 milliseconds sensor rate)

... 31

Figure 3. 5 Timestamp vs linear acceleration sensor data (10 milliseconds sensor rate)

... 32

Figure 3. 6 Acceleration sensor data Series1-X Series2-Y Series3-Z 33

Figure 3. 7 Acceleration sensor data around device Y coordinate 33

Figure 3. 8 Linear acceleration sensor data around device coordinates 34

Figure 3. 9 Linear acceleration sensor data around device Y coordinate 35

file:///C:/Users/alpes/Desktop/dhruv/Dhruv_ThesisDocument.docx%23_Toc471760607
file:///C:/Users/alpes/Desktop/dhruv/Dhruv_ThesisDocument.docx%23_Toc471760607
file:///C:/Users/alpes/Desktop/dhruv/Dhruv_ThesisDocument.docx%23_Toc471760615
file:///C:/Users/alpes/Desktop/dhruv/Dhruv_ThesisDocument.docx%23_Toc471760616
file:///C:/Users/alpes/Desktop/dhruv/Dhruv_ThesisDocument.docx%23_Toc471760618
file:///C:/Users/Dhruv/Desktop/final%20ppt%20&%20document/Dhruv_Final_Thesis.docx%23_Toc471809642
file:///C:/Users/Dhruv/Desktop/final%20ppt%20&%20document/Dhruv_Final_Thesis.docx%23_Toc471809643

x

Figure 4. 1 Describe flow of our sensor-web based system prototype 37

Figure 4. 2 Acceleration sensor data with all coordinates .. 39

Figure 4. 3 Acceleration sensor data with all coordinates .. 39

Figure 4. 4 Acceleration sensor data with 60 milliseconds sampling rate 43

Figure 4. 5 Acceleration sensor data with 5 milliseconds sampling rate 43

Figure 4. 6 Acceleration sensor data with 7 milliseconds sampling rate 44

Figure 4. 7 The Bluetooth connection between the two nodes 45

Figure 4. 8 Android handheld application design ... 47

Figure 4. 9 Message transmission between two nodes ... 48

Figure 4. 10 Syncing data from Android Wear to handheld through DataItem. 50

Figure 5. 1 Linear acceleration Sensor Y Axis raw noisy data with errors. 53

Figure 5. 2 Linear acceleration Data with Offset/Bias Error 55

Figure 5. 3 Block Diagram of Low-pass and High-pass Filtering 57

Figure 5. 4 Linear acceleration Data before and After Low-pass High-pass Filtering 58

Figure 5. 5 Workflow of acceleration, velocity and position estimation using Kalman

Filter .. 59

Figure 5. 6 Linear acceleration Sensor Y Axis sensor data before and after removing

Offset... 60

Figure 5. 7 Linear acceleration Sensor Y Axis sensor data filtering with Q=128 and

R=10 .. 65

file:///C:/Users/Dhruv/Desktop/final%20ppt%20&%20document/Dhruv_Final_Thesis.docx%23_Toc471810137
file:///C:/Users/Dhruv/Desktop/final%20ppt%20&%20document/Dhruv_Final_Thesis.docx%23_Toc471810138
file:///C:/Users/Dhruv/Desktop/final%20ppt%20&%20document/Dhruv_Final_Thesis.docx%23_Toc471810139

xi

Figure 5. 8 Linear acceleration Sensor Y Axis sensor data filtering with Q=4 and R=10

... 66

Figure 5. 9 Linear acceleration Sensor Y Axis sensor data filtering with Q=0.125 and

R=10 .. 66

Figure 5. 10 Linear acceleration Sensor Y Axis sensor data filtering with Q=0.0625 and

R=10 .. 67

Figure 5. 11 Linear acceleration Sensor Y Axis sensor data filtering with Q=0.0625 and

R=4 .. 68

Figure 5. 12 velocity results before and after Kalman Filter 71

Figure 5. 13 position results before and after Kalman Filter 72

Figure 5. 14 Series1: Linear acceleration, Series2: Velocity, Series3: Position 73

Figure 5. 15 Acceleration Data along the 3 device coordinate axes of Sony Smartwatch

3... 75

Figure 5. 16 Linear acceleration Data After Low-pass High-pass Filtering 76

Figure 5. 17 Linear acceleration Kalman Filter Result Analysis 76

Figure 5. 18 Velocity Output Before and After Kalman Filter 77

Figure 5. 19 Position Output After Kalman Filter .. 78

file:///C:/Users/Dhruv/Desktop/final%20ppt%20&%20document/Dhruv_Final_Thesis.docx%23_Toc471810644
file:///C:/Users/Dhruv/Desktop/final%20ppt%20&%20document/Dhruv_Final_Thesis.docx%23_Toc471810644

xii

LIST OF TABLES

Table 2. 1 Android Wear Teardown and Specification .. 9

Table 2. 2 List of Available Sensors ... 13

Table 2. 3 List of Built-in Motion Sensors in Sony smartwatch 3 Android Wear 16

xiii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude to my thesis advisor

Dr. Yong Pei, for guiding me through this endeavor and being a source of constant

inspiration. Despite battling with thoroughly preoccupied and strenuously tight

schedules, you’ve spared time to render every possible effort to help me go through

this thesis work, and provided infrastructure and resources as well. Also I would like

to thank my lab mates for their motivations.

1

Chapter 1

1. Introduction

The motivation of this research is to demonstrate the latest capabilities in motion

capture and analysis and their applications in Healthcare domain to help people live

healthier lives. It has been reported that nowadays 40% of the people suffer from Lower

Back Pain [1]. For instance, for those people who sit almost the whole day in front of

the computers, research shows that almost everyone (up to 85-90%) among them has

suffered from lower back pain at some point in his/her life [1]. One of our goal is to

develop technologies to help identify the cause of lower back pain and assist the

corresponding therapy process. Another potential application of this research is to

enable automatic locating and mapping capabilities inside GI tract system in order to

provide the high-precision navigation capabilities for endoscopy and drug delivery

capsules used in GI medicine. We expect that these proposed new technologies will

provide improved workflow, accuracy and efficiency in sports, fitness and healthcare

fields.

1.1. Overview of Motion Technology

Motion capture devices have been widely used to measure motion and movement

of an object in various fields, such as entertainment, sports, military and health care

applications [3]. In this thesis, we are primarily interested in developing position and

2

motion tracking technologies in the health care domain for such applications as human

body joint gait analysis, locating and mapping the endoscopy and drug-delivery

capsules within the GI tract, and etc. As a result, we are particularly interested in

designing non-optical and miniaturized motion

tracking systems, such as inertial motion tracking

capabilities as evident in motion sensors used in most

smartphones, such as the 3x3x1 mm 9-axis motion

sensors by InvenSense as shown in Fig.1.1. [2].

The combination of Accelerometer, Gyroscope and Magnetometer in a single

Inertial Measurement Unit (IMU) has been commonly used in most of today’s motion

tracking sensors [3]. Such highly miniaturized sensors are made possible by MEMS

(microelectromechanical systems) technologies, as shown in related products by

InvenSense, Qualcomm, EM Micro and other vendors. Such motion units enable the

motion tracking capabilities on the smartphone and wearable technologies, and Virtual

and Augmented Reality (VR/AR) technologies [3].

As evident in such popular devices as Apple Watch and Microsoft Band, such

inertial sensors can be used for capturing accelerations and orientation data of an

objects and then, through sensor data fusion algorithms and applications, to produce

motion analysis in velocity and position, leading to meaningful applications in different

areas. Moreover, wearable devices with embedded IMUs can enable clinical specialists

to track, manage and train the patient on a certain movement. It will also help in sports

where athletes can study movement, and then refine and improve their techniques [3].

Figure 1. 1 3x3x1

mm InvenSense’s MPU-

925x Motion tracking unit

(3-axis gyroscope, 3-axis

accelerometer and 3-axis

compass) [2]

3

1.2. Overview of Android Wear and Handheld

Technology

Android is an operating system based on Linux kernel designed for mobile devices

such as smartphones, tablets and also for wearable devices such as android watches. As

an open source technology, it provides us freely the Application Programming Interface

(API) for application development. APIs provide commonly used utilities, and are

made available for speeding up the development with enhanced efficiency and

reliability, for broad spectrum of usage in various applications. Following are the

features that attract us to use this operating system for our related prototype

developments.

1. Most of the Android devices have built in sensors for motion, orientation and

other environmental conditions. Thus, we can directly use these types of devices

as a motion capture device. It provides a much more cost-efficient alternative

to use the related development kits from the IMU vendors. This is particularly

beneficial for research purpose.

2. Android provides a reliable, secure and consistent OS for development and

distribution of new applications.

3. Android devices support intuitive interactions between user and application

using Graphical User Interface.

4. Android device’s functionalities are written in Android software development

kit (SDK), which uses Java and sometimes C/C++ programming languages that

have access to the Android APIs.

4

5. Android platform provides Automatic Memory Management functionality and

it is also easy to integrate and customize the operating system.

In short, Android Wearable and handheld devices are low in price and gives us nice

features for development purpose. Wearable technology and research opens new areas

of innovation, particularly when connected and attached with the Cloud’s big data

capabilities, to support sports, fitness, virtual reality and healthcare. It is important to

note that Android/Android Wear provide fully-fledged networking capabilities to be

connected through a handheld using, e.g., Bluetooth, to the Internet and Cloud. As a

result, in this research we will build our prototype system of 3D human body motion

tracking and visualization using Android/Android Wear devices’ built-in sensor

capabilities.

1.3. Cloud Based Prototype to Collect Sensor Data

using Android Wear

In this section, we discussed our system that collects data from Android Wear

Motion sensors. We will establish a communication channel between Android

Handheld and Android Wear devices for actuation/control and data transfer. Here, we

are presenting an approach for the complete data flows: i.) to send and synchronize

large sensor datasets between android handheld and Android Wear; ii.) followed by

storing the motion sensor data in Database on Android handheld, and then iii.) transfer

that dataset into Cloud for storage and processing.

5

We will then process the collected sensor data to find 3-Dimensional accelerations,

velocity and position using sensor filter techniques and use Unity 3D-based

‘Visualizer’ to visualize 3D position trajectory system. Following are the major

advantages of this approach.

1. Motion sensor data is collected through the well-established Android Wear OS.

Thus large dataset can be conveniently and reliably synchronized between

nodes.

2. Provide Bluetooth connectivity and data transfer facility between handheld and

Android Wear.

3. Provide local Database to store on handheld side when connectivity is not

available; and later store in Cloud for access from anywhere.

4. Android Wear can be easily attached with human body, so we can accurately

track human body motion activity with minimized interference to the person.

We have developed a prototype system to show the entire workflows. We will

discuss technical details, development procedure and implementation details in later

chapters of this thesis.

6

Chapter 2

2. Sensor System and Motion Capture Devices

In this chapter, we will discuss in detail what sensor capabilities and devices we need

for our system, and why we choose Android Wear and Handheld Technologies.

Particularly, we want to illustrate the viability of using mobile application processors

and mobile OS for wireless sensors and network system designs.

2.1. What we need for our System

To detect the 3-dimensional human body motion and position tracking and

visualization, we need high quality miniatured motion sensors, especially with high

sampling rate and processing capabilities. Thus, we chose to explore the use of 9 Axis

accelerometer+gyroscope+compass sensor hub, which can produce, through sensory

data fusion, virtual or synthetic sensors like linear acceleration, gravity, rotation vector

and orientation for various applications. These sensors are widely available today, e.g.,

by MEMS, InvenSense, QUALCOMM, EM Micro and others, thanks to the huge

market demand in smartphones and tablets. The synthetic sensors can be developed,

e.g., by AOSP (Android Open Source Project) [4].

Conventionally, for research prototype development, you can use the Development

Kits from the vendor together with the sensor hub chip and Arduino boards. Arduino

is an open source electronics platform for hardware and software applications. It can

be used to read inputs from sensors and process and turn it into the desired output.

7

Programs based on Arduino programming language will be developed for data

processing. However, there are serious limitations of this approach in cost, effort and

complexity. Individually and collectively, the components required to build a prototype

could be very costly. For example, InvenSense 9 Axis IMU development Kit alone

costs over $500 [2]. Additional Arduino boards to augment the sensory system

capabilities in computing, storage and networking may add up too much higher prices.

Moreover, this approach requires significant developing and testing effort and time due

to its primitive hardware/software co-design nature.

As a result, in this thesis, we want to illustrate the viability of using mobile

application processors and mobile OS for wireless sensors and network system designs.

We are looking at smartphones and wearable devices as an alternative platform, which

provide all our needs for sensor capabilities, computing and networking, and provide

us with a convenient development environment

For example, most Android Wearable devices contain all the required features

and processing capabilities to demonstrate wireless sensors and network designs.

Furthermore, Android Wearable can connect with Android handheld device to augment

its capabilities in storage, processing and networking, through synchronization of a

high volume of sensor data. We will also look at cloud-based solutions to further

augment these capabilities, so one can store, process and retrieve a high volume of

sensor data.

Next, we will discuss Android Wear sensory compatibility, processing

compatibility and other advantages in the following sections, and provide arguments

8

for Android Wear devices as a better choice over others for our prototype

developments.

2.2. Android Wear as a Motion Capture Device

There are many commercially available Android Wear devices, particularly watch-like

devices, with different sizes, shapes, styles and features, like, e.g., Moto 360, Samsung

gear live, Sony smartwatches, etc. [18]. In our research, we will use Sony smartwatch

3, which runs Android Wear, as a motion capture device. Priced at about $150, it

provides a very low-cost but highly robust, reliable and capable platform for developers

as well as users [18].

2.2.1. Sony Smartwatch 3(SWR50) Specification

Sony Smartwatch 3 Android Wear is a standalone smart device with built-in

processors, storage and sensory capabilities. It also provides connectivity to Android

Phone or Tablet (Android Handheld) devices with version

Android 4.3 or later [6]. It has maximum scratch resistance

and durability, waterproof protection and a stainless-steel

body. It also provides other features for Android Wear

development purpose as illustrated in the following

specifications in Table 2.1 [6].

Figure 2. 1

Sony Smartwatch

3 (SWR50)

9

Processor 1.2 GHz, Quad-core ARM® CortexTM A7

Size 36 x 10 x 51 mm

Weight 38 grams

Display Transflective TFT LCD, multi touch Capacitive, 320x320 pixels

resolution

Memory 4 GB internal storage, 512 MB RAM

Sensors Accelerometer, Magnetometer, Gyro, Ambient light sensor

Connectivity 4.0 Bluetooth, Wi-Fi, GPS, NFC,USB

Battery 420 mAh Li-polymer, less than 1 hour charge time, standby up

to 96 hours

Price Around 150 USD

Operating

System

Compatibility

Android version 4.3 and later

Table 2. 1 Android Wear Teardown and Specification [6]

10

2.3. Why we choose Android Wear (Sony

Smartwatch 3)

Following are the brief descriptions about advantages and features of Android Wear

as networked sensor platforms.

2.3.1. Processing Capabilities

Sony Smartwatch 3 adopts a new wearable platform from Broadcom. It is based

on the Broadcom System-on-chip (SoC) platform which contains a 1.2 GHz Quad-core

ARM Cortex A7 processor with a highly integrated power management IC that assures

low power consumption [6]. Ultra-low power circuits, energy efficient communication

and displays become important components in making of new smartwatches. The OS -

Android Wear provides efficient memory and storage management and processing of

the 512MB RAM and 4GB storage, capable of managing high volume of data

sufficiently for most sensory system’s needs [6]. This processing capability is

significantly better when compared to other platforms such as Arduino. In addition,

EM Microelectronics provides the motion tracking sensors built into the SoC chip.

2.3.2. Sensors Capabilities

The device’s sensory capabilities are the main reason behind using Sony

smartwatch 3 as a part of this research. Here we are describing availability of each

sensor, particularly on those useful for motion tracking.

11

2.3.2.1. Overview of Android/Android Wear Built-in

Sensors

Most if not all Android Wear devices have a sensor hub chip that contains

either a 9-Axis or 6-Axis MEMS (Microelectromechanical Sensors) motion

sensor that is made from a silicon chip. These sensors are capable of providing

raw sensor data in high rate (about 200 sample per second) and precision to use

in three-dimensional motion tracking devices. The Android platform supports

the following different kinds of sensors [7].

1. Motion Sensors: accelerometer, gyroscope, gravity and rotational

vector sensors used to measure acceleration and rotational forces

along axes.

2. Position Sensors: GPS, orientation and magnetometer sensors.

3. Environmental Sensors: barometer, photometers, thermometers

sensors used to measure various environmental parameters.

4. Radio Sensors: Transceivers also provide radio signal strength at

certain radio bands.

In this thesis, we will use Android-provided Sensor APIs to extract raw

sensor data from these sensors. Android sensors can be classified into two

different classes: i.) raw sensors, and ii.) synthetic sensors [4]. Android raw

sensors abstract directly relate to one of the physical sensors available on the

device, e.g., accelerometer, gyroscope and compass sensors. Synthetic sensors,

12

on the other hand, are abstract or virtual sensors that are created by fusing data

from two or more raw sensors. For example, the Linear acceleration Sensor is

produced in some devices by using Accelerometer + gyroscope sensors.

Next, we will look at Google Asus Nexus 7 and Sony Smartwatch 3, as specific

cases, for more details on Android sensory capabilities.

2.3.2.2. Google Asus Nexus 7 sensor specification

Google Asus Nexus 7 can be used as an Android motion capture device.

This device contains a sensor chip with 9-axis accelerometer, gyro and compass

sensors, as well as other raw and synthetic sensors. We have used a sensor API

to list out all the available sensors in a Nexus 7 tablet [7]. As detailed in Table

2.2, we can use MPL accelerometer or linear acceleration sensor for sensor data

collection before further processing to estimate velocity and position.

13

Sensor Name Vendor

Details

Use of Sensor

MPL accelerometer InvenSense Measure Acceleration applied to devices including

gravity

AKM

magnetometer

AKM Measure magnetic field

MPL gyroscope InvenSense Measure the rotation around axis

Orientation Qualcomm Measure orientation combination of angle and axis

Light sensor LSC Detect current ambient light

Rotation Vector Qualcomm Measure orientation of device

Gravity sensor Qualcomm Measure direction and magnitude of gravity

Linear acceleration Qualcomm Measure acceleration excluding gravity

Table 2. 2 List of Available Sensors

14

2.3.2.3. Nexus 7 Device Coordinate System

Each motion sensor extracts a sensor data along one of its three coordinate

axes. Following are details of sensor data coordinates and values for Nexus 7

[4].

1. X axis is horizontal with a positive value on right and negative on

left.

2. Y axis is vertical with a positive value upwards and negative value

downwards.

3. Z axis is positive values in front of the screen.

Device coordinates do not change

when the device is in portrait mode or

landscape mode. Figure 2.2 displays the

device coordinate system in Asus Nexus

7 Tablet.

2.3.2.4. Available Sensors in Sony Smartwatch 3

We can conveniently use Android Sensor API to find out what sensors are

available in Sony smartwatch 3 and its corresponding vendor. This information

Figure 2. 2 Nexus 7 Device Coordinate System [7]

15

is obtained through sensor. getVendor () and sensor. getName () methods [7].

We will look at each motion-related sensor as has been listed in Table 2.3.

Sensor Name Vendor

Details

Use of Sensor

em8170

accelerometer

EM Micro Measure Acceleration applied to devices including

gravity

em8170

magnetometer

EM Micro Measure magnetic field

em8170 gyroscope EM Micro Measure the rotation around axis

em8170 quaternion EM Micro Represent orientation and rotation in three

dimensional

em8170 orientation EM Micro Measure orientation combination of angle and axis

BH1721 Light sensor Rohm Detect current ambient light

em8170 step counter EM Micro Count the number of steps by user

16

(i) Raw sensors: Accelerometer, magnetometer and gyro are the main three

raw sensors available in Sony smartwatch 3 Android Wear. Brief

descriptions of these sensors are below [4].

1. Accelerometer: Sony Smartwatch 3 contains a 6-Axis

Accelerometer and gyroscope IMU, so each sensor provides

data over 3 axes. Accelerometer sensor measures the

acceleration along three axes. The measurement is reported

towards X, Y, Z fields. Accelerometer measures both gravity

and physical acceleration. For example, we can use

accelerometer sensor data to analyze a hand movement

which is of interest in sports, health and other fields.

However, Accelerometer and gyroscope sensory data

processing are necessary and complicated due to its dynamic

em8170 step detector EM Micro Notify when user take a step

em8170 tilt sensor EM Micro Measuring tilting in reference plane

Gravity sensor AOSP Measure direction and magnitude of gravity

Linear acceleration AOSP Measure acceleration excluding gravity

Table 2. 3 List of Built-in Motion Sensors in Sony smartwatch 3 Android

Wear

17

range, wide operation frequency, high sensitivity and noisy

nature.

2. Gyroscope: This sensor is used to measure rotation of the

device around three axes. Rotation is positive towards

counterclockwise direction which describes positive values

of X, Y, Z field axes. The readings are calibrated using

temperature compensation, factory scale compensation and

online bias compensation.

3. Magnetometer: This is a non-wake up sensor that reports the

ambient magnetic field together with a hard iron calibration

estimate. It can be used to produce synthetic sensors such as

orientation and rotation vector sensors with collaboration of

accelerometer and gyroscope.

(ii) Synthetic sensors: linear acceleration, gravity and orientation sensors

[4].

1. Linear acceleration: In Sony smartwatch 3, linear

acceleration is provided by Android open source project

(AOSP) which is developed using accelerometer and

gyroscope (if present); otherwise, using accelerometer and

magnetometer. Linear acceleration measures device

acceleration force excluding gravity. In other words, you can

18

calculate linear acceleration by subtracting the output of

gravity sensor from the output of accelerometer sensor. In

this research, we will use the linear acceleration data to

estimate the position trajectory which is further described in

later chapter of this thesis.

2. Gravity: This sensor is used to measure direction and

magnitude of gravity in the device coordinate frame. When

the device is on, gravity sensor readings are the same as

Accelerometer sensor readings when at rest, around 9.8

m/s^2.

3. Orientation: This sensor is deprecated and produced using

Accelerometer, Gyroscope and magnetometer raw sensors.

It is used to measure azimuth (angle between magnetic north

direction and the Y axis), pitch (rotation around X axis, with

positive values when the Z axis moves towards the y axis)

and roll (rotation around Y axis, with positive values when

the X axis moves towards the Z axis) around the axis.

2.3.2.5. Device Coordinate System in Sony Smartwatch 3

In Sony Smartwatch 3, the 6-axis accelerometer and gyroscope, and 3-Axis

magnetometer sensor hub reports values using the device coordinate system.

The device coordinate system is depending on each type of device. Sony

19

Smartwatch 3 measures three-dimensional sensor reading using the following

coordinate system which is when the device is viewed in default orientation [4].

1. X – Axis is horizontal with positive values on right and negative on

left.

2. Y – Axis is vertical with positive values on upwards and negative

on downwards.

3. Z – Axis is positive values in front of the screen.

The coordinate system is fixed and not changed when the device goes from

portrait to landscape mode.

Figure 2. 3 Coordinate System in Sony Smartwatch 3

20

2.3.2.6. Sensor Performance: Sampling Rates & Accuracy

1. Sampling Rate: Sampling rate is the average number of samples

obtained per second by the sensor [4]. Higher sampling rate implies

higher temporal resolution of the sensor, but at a cost of higher

power consumption. Today’s MEMS sensors can provide a range of

different sampling rates to fit different needs. Through the Sensor

API, we can control the sampling rate by setting the inter-sample

period. It also provides the corresponding Timestamp of the reading,

a measurement in nanoseconds at which events occur. We can track

the actual inter-sample time-interval for each measure by calculating

the difference between successive timestamps. Sony smartwatch 3

supports sampling rate up to 200 samples per second, which is

equivalent to 5 milliseconds in average. However, we have observed

that the actual inter-sample time-interval may be varying within a

small range around 5 milliseconds. As a result, it is also important

to track the actual inter-sample time-interval when we process the

data to estimate velocity and position information. In our research,

we have pushed the envelope of the sensory capabilities of the

device, and operated it at its highest sampling rate in order to

sufficiently capture the high-speed motions. However, it should be

noted that it is not always necessary to operate at such a high rate.

We should choose the appropriate operating rate based on the

application’s need, and also consider the factors in battery usage,

21

storage and processing demand. A major challenge when operating

at higher sampling rate was the potential data loss when sending and

syncing a large amount of sensor data between Android handheld

and Android Sony smartwatch 3. We will discuss the whole

prototype to gain a higher sampling rate, solve the data loss problem

and solve the synchronization issue in a later chapter of this thesis.

2. Accuracy: Accuracy of the sensor can be measured by the difference

between the actual value and the measurement obtained by the

sensor [4]. High accuracy means the measured reading is very close

to the actual value. Post-processing, like data filtering, can be

applied to suppress the noise in the raw sensor data, and make

estimate with enhanced accuracy and reliability. We have designed

data filtering techniques to achieve improved accuracy and precision

of motion tracking.

22

2.3.3. Network Connectivity

Android Sony Smartwatch 3 provides power-efficient networking connectivity

via 4.0 Bluetooth, Wi-Fi, GPS, NFC and USB [6]. Figure 2.4 illustrates how Sony

smartwatch 3 connects as an IoT (Internet of Things) device through an Android

handheld to the Cloud in order to transfer

and sync a high volume of sensor data, to

receive notifications, to send-receive

messages, etc.

2.4. Android Sensor Problems & Limitations

In this section, we want to discuss the limitations and problems occurred when

using raw sensor data extracted from Android Wear sensors. It is important to recognize

and understand these issues when we develop Android based sensor system

applications.

1. Human Error and Systematic Error: Human errors are mistakes made by

humans while reading or extracting sensor data from a device. Systematic

Figure 2. 4 Interaction between Android Wear and Android Handheld devices

[8]

Figure 2. 5 Interaction between Android Wear and Android Handheld devices

[8]

23

errors, e.g., a constant offset inside raw sensor data reading, may affect the

accuracy of a measurement, if not properly handled [4].

2. Random Noise: Random noise or errors, on the other hand, occur because

there is a random noise inside raw sensor data measurement, and have to be

handled differently, e.g., through statistical methods. Noise is an undesired,

but unavoidable, signal present in the raw sensor signal. Without proper

noise filtering, sensor raw data may appear meaningless. Various filtering

techniques have been developed over the last century to deal with noise of

different natures, such as white noise, Brownian noise, etc. [4].

3. Drift: Drift means some undesired data inside the raw sensor data that

makes sensor raw data away from the correct values. Drift can happen due

to sensor reading degrading over time. If we integrate sensor value, then

there will be drift inside the integration result. There will be a constant value

added to each iteration of the integration step which makes resulting sensor

data reading drift away from the actual values [4].

4. Offset: When a device is in stationary situation, the value of motion sensor

reading should be zero. Otherwise, there may exist an offset. For example,

if device is not moving, then accelerometer sensor reading should actually

looks like (0,0, -9.8 m/s^2). But, the measured sensor data is not exactly

zero for x, y and -9.81 m/s^2 for Z axis due to bias or offset [4].

5. Sensor Time Delay and Data Loss: As we discussed earlier, higher sampling

rate can capture higher-speed motion. But, at a higher sampling rate there

may be increasing losses of data between two handheld and wearable. This

24

happens because Android is not a real-time operating system, and

sometimes sensor delay may cause incorrect timestamp.

6. Integration Errors: To estimate correct position of an Android Wear, we

need to double integrate Linear acceleration sensor data, which may cause

integration errors. Mainly, we observed the following two type of errors [5].

1. Acceleration Drift: When we estimate the position based on the

acceleration data, each iteration of an integration may add constant

offset into the resulting sensor data. This drift can be accumulated

in the integration, which will result in a poor position estimate.

2. Initial Conditions: To find positions based on acceleration, we may

assume there is zero velocity and zero position initially.

In chapter 3, we will present a motion capture and analysis prototype using an

Android handheld device. Then in chapter 4, we will discuss a novel motion capture

and analysis system using Android Wear smart watch and their sensor capabilities.

25

Chapter 3

3. Prototype of a Stand-alone Motion Capture

Device Using an Android Device

In this chapter, we will describe the use of Android handheld devices as a

motion capture device. We will first review the sensor capabilities of Google Asus

Nexus 7 Tablet device, and then our prototype and experimental studies.

3.1. Prototype Workflows

Figure 3.1 describes the workflow of our prototype of a stand-alone motion capture

device that collects motion sensor data using an Android tablet.

In this work, we have designed a prototype which can specify sampling rates and

particular sensor type to capture data of interest in device coordinate systems and store

Figure 3. 1 Workflow to collect sensor data from Asus Nexus 7 Tablet.

26

corresponding timestamps, three-dimensional sensor data into a Microsoft Excel (.csv)

file. This file is then used for further data analytics. Our motivation behind this is to

design a Kalman filter base sensor data filtering algorithm to filter tablet linear

acceleration sensor data and evaluate velocity and position. Later, use that algorithm to

filter watch sensor data

3.2. Android Sensor API

Android Sensor API classes can identify and extract sensor data from device

hardware. In this prototype, we have used the following classes [4]:

1. SensorManager: This class is used to create an instance of a sensor service,

listing and identifying sensor list [7]. It is also used to register and unregister

sensors. We can also set the sensor sampling rate and accuracy. Once sensor is

registered, data will be extracted from the device hardware sensor chip.

2. Sensor: This class is used to create an instance of a particular sensor and their

capabilities [7]. Sensor used to get important information about maximum

range, minimum and maximum delay between two sensor event, sensor Name,

Power, Resolution, manufacturer (vendor) Name, type and version.

3. SensorEventListener: It is used to receive notification when the sensor event is

occurred [7]. This class provide information about sensor type, accuracy,

timestamp, x, y, z three dimensional values array. When the event occurs, we

are extracting accelerometer or linear acceleration sensor data timestamp and x,

y, z values stored as one string for one event or sample [7].

27

1. Accuracy: describe sensor accuracy which refers to what percentage of

sensor reliability or trust ability which is not in terms of reading are

closely to the actual physical value or not.

2. Timestamp: Timestamp is a time generate at the time of the event occurs

or sensor data value has changed which is in nanoseconds. But, later we

are converting into milliseconds to find object position.

3. Sensor Values: As we discussed, device coordinates values for

acceleration and linear acceleration sensor data. Values contains x, y, z

three dimensional values.

3.2.1. Adjusting Sampling Rate

Sampling rate or sensor rates means number of sensor data samples extracting

per second from Google Nexus 7. Sensormanager is used to register a sensor listener.

So, after we register a sensor event listener for a given sampling frequency for a

particular sensor, as soon as the sensor data becomes available from the hardware

sensor, the event will be generated. Followings are the predefined rates in Android

sensor API: SENSOR_DELAY_NORMAL, SENSOR_DELAY_UI,

SENSOR_DELAY_FASTEST, SENSOR_DELAY_GAME [7]. However, it should be

stressed that event may be delivered faster or slower than the specified rate due to the

lack of strong real-time support in Android OS. Applications may choose different

sampling rates, depending on its need. In our initial testing experiments, we have tested

two parameters SENSOR_DELAY_NORMAL and SENSOR_DELAY_FASTEST for

Nexus 7.

28

Alternatively, we can directly set the desired sensor delay between two sensor

events (i.e., inter-sample time-interval) in microseconds for Android API level 9 and

onwards which works for android Nexus 7 [7].

3.3. Capture Sensor Data

We have designed an Android application that selects sensor type between

Acceleration and linear acceleration sensor and then chooses sampling rates

SENSOR_DELAY_NORMAL, SENSOR_DELAY_FASTEST, or, alternatively, we

can specify a sensor delay value in a microsecond. Fig. 3.2. shows the app GUI.

Figure 3. 2 Nexus 7 Android Prototype

29

3.4. Data Storage

According to our prototype sensor data which contains timestamp, three

dimensional x, y, z values automatically store into a Microsoft Excel (.csv) file inside

a tablet SD card. File storage is used to plot sensor data in graphical format as well as

for further processing in sensor filtering and velocity, position estimation.

3.5. Experimental Studies

With this prototype, our goal is to demonstrate the various sampling rate

capabilities and data sensory data quality and appropriate post-processing. We have

carried out experiments for two different cases: i) when device is stably rested on a

table, and ii) when device is in motion. We used SENSOR_DELAY_NORMAL sensor

rates which is extract sensor data every 200 milliseconds, i.e., 5 samples per second.

Figure 3.3 presents the timestamp and sensor data for the Y-axis for case (i).

Timestamp is given in milliseconds and linear acceleration sensor data on the Y-axis is

in m/s^2. The inter-sample time-interval is calculated by the timestamp difference

between two successive sensor events.

30

Figure 3. 3 Timestamp vs linear acceleration sensor data (200 milliseconds

sensor rate)

For our purpose to estimate accurate velocity and position, it requires higher sampling

rates at 100+ sample per second. Thus, we have started from

SENSOR_DELAY_FASTEST which produce sensor samples around every 5

milliseconds. Figure 3.4 shows timestamp and sensor data on the Y axis with 5ms

sensor rate.

184494659

184494860

184495062

184495263

184495465

184495666

184495867
184496069

184496270

184496472

184496673

184496875

184497076

184497277

184497479

184497680

184497882

184498083

184498284

184498486

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

1
8

4
4

9
4

4
0

0

1
8

4
4

9
4

6
0

0

1
8

4
4

9
4

8
0

0

1
8

4
4

9
5

0
0

0

1
8

4
4

9
5

2
0

0

1
8

4
4

9
5

4
0

0

1
8

4
4

9
5

6
0

0

1
8

4
4

9
5

8
0

0

1
8

4
4

9
6

0
0

0

1
8

4
4

9
6

2
0

0

1
8

4
4

9
6

4
0

0

1
8

4
4

9
6

6
0

0

1
8

4
4

9
6

8
0

0

1
8

4
4

9
7

0
0

0

1
8

4
4

9
7

2
0

0

1
8

4
4

9
7

4
0

0

1
8

4
4

9
7

6
0

0

1
8

4
4

9
7

8
0

0

1
8

4
4

9
8

0
0

0

1
8

4
4

9
8

2
0

0

1
8

4
4

9
8

4
0

0

1
8

4
4

9
8

6
0

0

1
8

4
4

9
8

8
0

0

Inter-sample time-interval (200 ms)

31

Figure 3. 4 Timestamp vs linear acceleration sensor data (5 milliseconds

sensor rate)

However, 5 milliseconds appeared too high to produce stabilized samples sometimes.

So, in our experiment, we set it to 10 milliseconds by explicitly entering the fixed

sensor delay value in microseconds in our prototype. Figure 3.5 illustrates timestamp

and sensor data on the Y axis with nearly 10ms sensor rate. Timestamp in milliseconds

and linear acceleration sensor data on the Y axis in m/s^2.

186496047

186496050

186496057

186496062

186496067186496072

186496077

186496080

186496085

186496090

186496095

186496101

186496106

186496111

186496116
186496121

186496126

186496132

186496137

186496142

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

186496040186496050186496060186496070186496080186496090186496100186496110186496120186496130186496140186496150

Inter-sample time-interval (5 ms)

32

Figure 3. 5 Timestamp vs linear acceleration sensor data (10 milliseconds

sensor rate)

3.5.1. Using Accelerometer Sensor

In Asus Nexus 7, the accelerometer sensor extract acceleration data with gravity

portion which is exactly similar to the Sony smartwatch 3 but, the only difference is in

Nexus 7 accelerometer, the sensor vendor is InvenSense. Figure 3.6 indicates

acceleration sensor data captured from ASUS Nexus 7 when the device is stable on the

table. So, the motion sensor data is closed to zero. Because of sensor errors, these data

are not exactly zero. Z axis measures acceleration with gravity so it is close to 9.8 m/s^2

[7].

188083128

188083136

188083148

188083158

188083168

188083178188083188

188083198

188083208

188083218

188083228

188083237

188083248
188083258

188083268188083279
188083289

188083299

188083309

188083319

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

188083110 188083140 188083170 188083200 188083230 188083260 188083290 188083320 188083350

Inter-sample time-interval (10 ms)

33

Figure 3. 6 Acceleration sensor data Series1-X Series2-Y Series3-Z

Figure 3.7 indicates acceleration sensor data captured from Asus Nexus 7 when the

device is moving. Data is captured around x, y and z axes. Z axis values are close to

9.8 m/s^2 because of gravity included inside the acceleration.

Figure 3. 7 Acceleration sensor data around device Y coordinate

-2

0

2

4

6

8

10

12

1

3
5

6
9

1
0

3

1
3

7

1
7

1

2
0

5

2
3

9

2
7

3

3
0

7

3
4

1

3
7

5

4
0

9

4
4

3

4
7

7

5
1

1

5
4

5

5
7

9

6
1

3

6
4

7

6
8

1

7
1

5

7
4

9

7
8

3

8
1

7

8
5

1

8
8

5

9
1

9

9
5

3

Acceleration sensor data

Series1 Series2 Series3

-5

-4

-3

-2

-1

0

1

2

3

1
1

7
3

3
4

9
6

5
8

1
9

7
1

1
3

1
2

9
1

4
5

1
6

1
1

7
7

1
9

3
2

0
9

2
2

5
2

4
1

2
5

7
2

7
3

2
8

9
3

0
5

3
2

1
3

3
7

3
5

3
3

6
9

3
8

5
4

0
1

4
1

7
4

3
3

4
4

9
4

6
5

4
8

1
4

9
7

5
1

3
5

2
9

5
4

5
5

6
1

5
7

7
5

9
3

6
0

9
6

2
5

6
4

1
6

5
7

6
7

3
6

8
9

7
0

5
7

2
1

7
3

7
7

5
3

7
6

9
7

8
5

8
0

1
8

1
7

8
3

3
8

4
9

8
6

5
8

8
1

8
9

7
9

1
3

9
2

9
9

4
5

9
6

1
9

7
7

9
9

3
1

0
0

9

Acceleration Sensor Data

34

3.5.2. Using Linear acceleration Sensor

Asus Nexus 7 linear acceleration sensor is similar to the Sony smartwatch 3 but

the only difference is in Nexus 7 linear acceleration, the sensor hardware designed by

Qualcomm. So, this sensor does not work as a secondary sensor which is exactly

working as a raw sensor. Figure 3.8 indicates linear acceleration sensor data captured

from Asus Nexus 7 when the device is stable on the table. So, the motion sensor data

is closed to zero. Because of sensor errors, these data are not exactly zero.

Figure 3. 8 Linear acceleration sensor data around device coordinates

Figure 3.9 shows linear acceleration sensor data captured from Asus Nexus 7 when the

device is moving. One can clearly see the acceleration motion increasing and

decreasing when device is moving otherwise motion values are close to zero.

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

Linear acceleration Sensor Data

X Y Z

35

Figure 3. 9 Linear acceleration sensor data around device Y coordinate

In summary, in this chapter we introduced prototypes to collect raw sensor data

using the Android Nexus 7 tablet. With the prototype system, we have collected the

acceleration and linear acceleration sensor data and observed their noisy properties.

This clearly shows the need for data processing to further enhance the accuracy of the

motion data which we will discuss in Chapter 5.

-4

-3

-2

-1

0

1

2

3

4

1
2

5
4

9
7

3
9

7
1

2
1

1
4

5
1

6
9

1
9

3
2

1
7

2
4

1
2

6
5

2
8

9
3

1
3

3
3

7
3

6
1

3
8

5
4

0
9

4
3

3
4

5
7

4
8

1
5

0
5

5
2

9
5

5
3

5
7

7
6

0
1

6
2

5
6

4
9

6
7

3
6

9
7

7
2

1
7

4
5

7
6

9
7

9
3

8
1

7
8

4
1

8
6

5
8

8
9

9
1

3
9

3
7

9
6

1
9

8
5

1
0

0
9

1
0

3
3

1
0

5
7

1
0

8
1

1
1

0
5

1
1

2
9

1
1

5
3

1
1

7
7

1
2

0
1

1
2

2
5

1
2

4
9

1
2

7
3

1
2

9
7

1
3

2
1

1
3

4
5

1
3

6
9

Linear acceleration Sensor Data

36

Chapter 4

4. Sensor-Web based Cloud Solution and Prototype

Designs

In this chapter, we will present our prototype design and describe the techniques to

capture sensor data from an Android Wear motion capture device, and then transfer

and store the collected data into the Cloud. The main goal of this research is to present

a framework that enables large amount of networked sensors to collect and transfer

data into the Cloud for real-time big data analytics and distributed collaborations.

37

4.1. Graphical Representation of Cloud based

Prototype

Figure 4. 1 Describe flow of our sensor-web based system prototype

Above, workflow describes the step-by-step work-flow of sending and

synchronizing huge sensor data between Android handheld and Android Wearable

device through Android Wearable APIs. It also provides mobile and cloud data

connectivity to accommodate further sensor data storage and analytics.

4.2. Sony Smartwatch 3 Sensors

We have discussed in the previous chapter about all kind of built-in sensors

available in the Sony smartwatch 3. In this work, in order to estimate object

38

positions/motions, we will collect data from the following sensors from Android Wear.

We have used both acceleration sensor data and linear acceleration sensor data [4].

1. Raw Sensors: Sensor.TYPE_ACCELEROMETER

As we discussed in an earlier chapter, accelerometer sensor in the Sony

smartwatch 3 measures acceleration applied to the device including the force of gravity.

Sony smartwatch 3 measure acceleration along the device coordination system: X, Y

and Z. During our initial testing experiments with Sony smartwatch 3 acceleration

sensor, we observed that, when the watch rests stably on a table and with no

acceleration, the X and Y axis acceleration readings are very close to zero while Z axis

closely measure the force of gravity, which is 9.81 m/s^2. If one moves the watch

toward its right, X acceleration value is positive; if one move the watch away from you,

Y acceleration value is positive; and if one move the watch up towards the sky, Z

acceleration value is positive.

Figure 4.2 presents the acceleration sensor data towards X, Y, Z axes when the

watch rests stable on a table. We can clearly see that the Z-axis accelerations stay close

to 9.8 m/s^2 because of gravity, while the other 2 axis accelerations are close to zero.

It is also clear the sensor readings are noisy, which is as expected. Figure 4.3 presents

the acceleration motion sensor data along the X, Y, Z axes when the watch is moving.

39

Figure 4. 2 Acceleration sensor data with all coordinates

Figure 4. 3 Acceleration sensor data with all coordinates

-5

0

5

10

15

1
2

7
1

5
4

1
8

1
1

1
0

8
1

1
3

5
1

1
6

2
1

1
8

9
1

2
1

6
1

2
4

3
1

2
7

0
1

2
9

7
1

3
2

4
1

3
5

1
1

3
7

8
1

4
0

5
1

4
3

2
1

4
5

9
1

4
8

6
1

5
1

3
1

5
4

0
1

5
6

7
1

5
9

4
1

6
2

1
1

6
4

8
1

6
7

5
1

7
0

2
1

7
2

9
1

7
5

6
1

7
8

3
1

8
1

0
1

8
3

7
1

8
6

4
1

8
9

1
1

9
1

8
1

9
4

5
1

9
7

2
1

9
9

9
1

1
0

2
6

1
1

0
5

3
1

1
0

8
0

1
1

1
0

7
1

1
1

3
4

1
1

1
6

1
1

1
1

8
8

1
1

2
1

5
1

1
2

4
2

1
1

2
6

9
1

1
2

9
6

1
1

3
2

3
1

1
3

5
0

1
1

3
7

7
1

1
4

0
4

1
1

4
3

1
1

1
4

5
8

1
1

4
8

5
1

1
5

1
2

1

Watch Acceleration Sensor Data

X Y Z

40

2. Synthetic Sensor: Sensor.TYPE_LINEAR_ACCELERATION

In the Sony smartwatch 3, linear acceleration sensor is a synthetic sensor and is

provided by AOSP (Android open source project). It measures the actual acceleration

without gravity along the device 3-axis coordinate system. Linear acceleration sensor

can also be used for further processing to estimate device position. Linear acceleration

works the same as acceleration. Their only difference is the gravity. All measurements

are in m/s^2 SI unit. One disadvantage of linear acceleration sensor is its offset, which

we need to remove before using for further motion/position estimation.

In our prototype, we have designed lowpass-highpass filter solutions to filter

out the gravity effect component from the acceleration raw data and to produce linear

acceleration for our further processing.

We conclude that accelerometer sensor in Sony smartwatch 3 Android Wear is

sufficient for measuring motion data to meet our need in this work. We will use the

accelerometer sensor data to do further processing to estimate device position data.

4.3. Android Wear Sensor API

Android Wear Sensor API classes can identify and extract sensor data from device

hardware. In this prototype, we have used the following classes [4].

1. SensorManager: This class is used to create an instance of a sensor service,

listing and identifying sensor list [7]. It is also used to register and unregister

sensors. We can also set the sensor sampling rate and accuracy. Once the sensor

is registered data will be extracted from the device hardware sensor chip.

41

2. Sensor: This class is used to create an instance of a particular sensor and their

capabilities. Sensor is used to get important information about maximum range,

minimum and maximum delay between two sensor event, sensor Name, Power,

Resolution, manufacturer (vendor) Name, type and version

3. SensorEventListener: It is used to receive notifications when the sensor event

has occurred. This class provide information about sensor type, accuracy,

timestamp, X, Y, Z three-dimensional values array. When the event occurs, we

are extracting accelerometer or linear acceleration sensor data timestamp and

X, Y, Z values stored as one string for one event or sample.

1. Accuracy: describe sensor accuracy which refers to what percentage of

sensor reliability or trust ability, which is not in terms of reading are

closely to actual physical value or not.

2. Timestamp: Timestamp is a time generated at the time of the event or

sensor data value changed which is in nanoseconds. But, later we are

converting into milliseconds to find object position.

4. Sensor Values: As we discussed, the device coordinates values for

acceleration and linear acceleration sensor data. Values contains X, Y, Z

three dimensional values.

4.3.1. Adjusting Sampling Rate

Sampling rates or sensor rates means the number of sensor data samples

extracting per second from Sony smartwatch 3. Sensormanager is used to register a

sensor listener. So, after we register a sensor event listener for a given sampling

frequency for a particular sensor, as soon as the sensor data become available from

42

hardware sensor, the event will be generated. Followings are the predefined rates in

Android sensor API: SENSOR_DELAY_NORMAL, SENSOR_DELAY_UI,

SENSOR_DELAY_FASTEST, SENSOR_DELAY_GAME. However, it should be

stressed that event maybe delivered faster or slower than the specified rate due to the

lack of strong real-time support in Android OS. Applications may choose different

sampling rate, depending on its need. In our initial testing experiments, we have tested

two parameters SENSOR_DELAY_NORMAL and SENSOR_DELAY_FASTEST for

Sony smartwatch 3. As shown, in Fig. 4.4 and 4.5, we have received sensor data every

60 milliseconds and 5 milliseconds, respectively. The inter-sample time-interval is

calculated by the timestamp difference between two successive sensor events.

For our purpose to estimate accurate velocity and position, it requires higher

sampling rates at 100+ sample per second. Thus, we have started from

SENSOR_DELAY_FASTEST which produce sensor samples around every 5

milliseconds. However, 5 milliseconds appeared too high to produce stabilized samples

sometimes. So, in our experiment, we set it to 7 milliseconds as shown in Fig. 4.6.

Alternatively, we can directly set the desired sensor delay between two sensor

events (i.e., inter-sample time-interval) in microseconds for Android API level 9 and

onwards which works for Android Wear Sony smartwatch 3.

43

Figure 4. 4 Acceleration sensor data with 60 milliseconds sampling rate

Figure 4. 5 Acceleration sensor data with 5 milliseconds sampling rate

1.48159E+18
1.48159E+18

1.48159E+18
1.48159E+181.48159E+18

1.48159E+18
1.48159E+18

1.48159E+181.48159E+18

1.48159E+18

1.48159E+18

1.48159E+18

1.48159E+18

1.48159E+18

1.48159E+18

1.48159E+18
1.48159E+18

1.48159E+18

1.48159E+18

1.48159E+18

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1.482E+18 1.482E+18 1.482E+18 1.482E+18 1.482E+18

Inter-sample time-interval (60 ms)

-10

-5

0

5

10

1
5

0
9

9
1

4
8

1
9

7
2

4
6

2
9

5
3

4
4

3
9

3
4

4
2

4
9

1
5

4
0

5
8

9
6

3
8

6
8

7
7

3
6

7
8

5
8

3
4

8
8

3
9

3
2

9
8

1
1

0
3

0
1

0
7

9
1

1
2

8
1

1
7

7
1

2
2

6
1

2
7

5
1

3
2

4
1

3
7

3
1

4
2

2
1

4
7

1
1

5
2

0
1

5
6

9
1

6
1

8
1

6
6

7
1

7
1

6
1

7
6

5
1

8
1

4
1

8
6

3
1

9
1

2
1

9
6

1
2

0
1

0
2

0
5

9
2

1
0

8
2

1
5

7
2

2
0

6
2

2
5

5
2

3
0

4
2

3
5

3
2

4
0

2
2

4
5

1
2

5
0

0
2

5
4

9
2

5
9

8
2

6
4

7

Sensor Data Inter-sample time-interval (5ms)

44

Figure 4. 6 Acceleration sensor data with 7 milliseconds sampling rate

4.4. Interaction between Android Wear-based

Watch and Android handheld

In this work, we use Android Asus Nexus 7 as a handheld device and Android

Sony smartwatch 3 as a wearable device for our prototype design. An operator will

control the start and stop of a sensor activity by tapping on the Android handheld, which

then will send an actuation message to the Android Wearable watch to notify the

start/stop of a sensor service. Once actuated, the sensor service on the watch will collect

accelerometer sensor data and send them from the Android Wearable to the android

handheld device. In this section, we will discuss the interaction protocol design.

-15

-10

-5

0

5

10
1

3
4

6
7

1
0

0
1

3
3

1
6

6
1

9
9

2
3

2
2

6
5

2
9

8
3

3
1

3
6

4
3

9
7

4
3

0
4

6
3

4
9

6
5

2
9

5
6

2
5

9
5

6
2

8
6

6
1

6
9

4
7

2
7

7
6

0
7

9
3

8
2

6
8

5
9

8
9

2
9

2
5

9
5

8
9

9
1

1
0

2
4

1
0

5
7

1
0

9
0

Inter-sample time-interval with 7 ms

45

4.4.1. Established Connection between Android

Handheld and Android Wearable

As we discussed in the earlier chapter,

Sony smartwatch 3 provides connectivity

with other devices through Bluetooth 4.0. We

use Android Studio IDE (Integrated

development environment), Android Wear

SDK (Software development kit) version 4.4

or later, and Android handheld SDK version

4.3 or later. Together, they provide us with

the development environment and required

libraries. Figure 4.7 shows that a successful

connection has been established between

Asus Nexus 7 and Sony smartwatch 3 by

pairing, and both devices are ready to

debugging over Bluetooth. After pairing Android Wearable with a handheld, the next

step is to establish debugging over Bluetooth. This is completed by enabling USB

debugging on the Android handheld device, and enabling ADB debugging and Debug

over Bluetooth on the Android Wearable [9].

Following are the steps to correctly set up a Debugging Session [9].

1. Open the Android Wear Companion App.

2. Android handheld is connected with machine through USB.

3. Go to Android sdk platform tools and run following commands.

Figure 4. 7 The Bluetooth

connection between the two nodes

46

We can use any available port number to connect Android Wear device.

adb forward tcp:4444 localabstract:/adb-hub

adb connect 127.0.0.1:4444

4. In the companion app, if both Host and Target are connected then we

successfully established connection between Android Wear and handheld

for development purpose.

4.4.2. Sending and Syncing Sensor Data between

Android Wear and Android Handheld

We will use Android Wear APIs to synchronize data between the Sony

smartwatch 3, as a motion-capturing device, and the Nexus 7 Android Tablet, as a base

station. In this section, we discuss our interaction and messaging protocols.

47

As illustrated in Fig. 4.1, for the actuation interactions, the operator will control

the start and stop of a sensor activity by tapping on the Android handheld, which then

will send an actuation message to Android Wear to notify the start/stop of a sensor

service. In our prototype, as shown in the

Fig. 4.8 The START TO SYNC DATA

button is tapped to send a message from

android handheld application to Sony

smartwatch 3 to start collecting data, while

STOP TO SYNC DATA button is tapped

to send message from android handheld

application to Sony smartwatch 3 to stop

collecting data. We have used Android

Wear Node and Message APIs to

implement this messaging function.

4.4.2.1. Android Wear Node API

Before sending any message in a mobile/distributed environment, we first

have to identify the local and the connected nodes. In Android Wear, Node API

is used to identify local as well as all the connected nodes, such that we can

deliver one message to all or one particular connected node [8].

Figure 4. 8 Android handheld application

design

48

4.4.2.2. Android Wear Message API

Android Wear worked in a way similar to RPC (Remote Procedure Call)

which is used to request a service from another node or network [8]. Two items

are attached with the message [11].

1. A path that uniquely identifies the message’s action.

2. Message details.

A unique path is

important because

multiple devices

may connect with a

user’s handheld

device

simultaneously.

Each connected

device is considered

as one slave node

and has to be

uniquely identified. In Android Wear Message, nodes are distinguished from

each other through its unique path. As illustrated in Fig. 4.9, once a paired

device is identified through Node API, the Android handheld can send a

message to that node. On the other hand, on the watch, Message API is again

used to receive the messages from the Android handheld. We will use a

concurrent thread running in parallel for synchronous communication. Thread

Figure 4. 9 Message transmission between two nodes

49

is a lightweight process used to perform a task in parallel and provide

concurrency within the process.

4.4.2.3. Solution of data loss happens when higher sampling

rate

Initially we had built a prototype that uses a 60 milliseconds sampling delay

to collect sensor data and simultaneously send the sensor data sample to the

handheld side through parallel thread. The system worked without any issue.

However, when we lifted the sampling rate higher, we observed frequent data

loss. This was due to the resources consumed by the increasing number of

threads running in parallel when the sensor events became much more frequent.

To address this issue, we redesign the data transfer protocols to limit the

number of concurrent threads. Instead of processing and sending the sensor data

upon the notification of each sensor event, we make use of local storage at the

watch by cumulating multiple samples of sensor readings and then making one

packet to send to the handheld from the watch. We make use of the Android

Data Item API to manage the storage and synchronize sensor data between the

nodes. Data Item consists of following entities [10]:

1. DataMap: Datamap is a key-value pair data structure contains a key

which represents datamap and value contains 20 samples buffer. It

works as a byte array and the limitation of dataitem API is 100 KB of

data storage while sending and syncing;

50

2. Path: A unique path to identify the node on other side.

Figure 4. 10 Syncing data from Android Wear to handheld through DataItem.

As illustrated in Fig. 4.10, extracted sensor data from Android Wear are

first locally stored into DataMap, and then, in groups, sent to Android handheld

in real-time. The number of samples being grouped together has to be carefully

considered in order to limit the transfer delay for real-time applications. On the

other hand, the receiver at the handheld will extract the data from DataMap and

store it into the local database.

51

4.5. Interaction Between Android and the Cloud

Android handheld receives sensor data and then save the data to its local SQLite

database for storage purpose. As illustrated in Fig. 4.1, in order to augment the sensory

system processing and storage capabilities, we will attach the sensor system to the

cloud to construct a sensor web system. To sync data to the cloud-based service, we

will use the Android asynchronous task APIs which will send data to the cloud

concurrently in the background, whereas the main process is simultaneously receiving

sensor data from the Android Wear. Moreover, the sensor-web based cloud-solution

has the following advantages:

1. Easily synchronize large amount of sensor data between local storage and

cloud storage.

2. Accessible from anywhere and anytime for any authorized applications.

3. Able to perform efficient insert, update, delete and extract operations for

sensor data use.

4. Can support potentially large number of sensor systems simultaneously by

using transactions to deal with concurrency control in the common dataset

accesses.

5. Provide unlimited computing power for further sensor data Analytics and

processing.

6. Provide Data Backup and recovery facility in face of failures.

7. More secure, scalability, reliable and cost-efficient.

52

4.6. Prototype Advantages

Throughout this chapter, we discussed our prototype to collect sensor data at real-

time from Sony smartwatch 3 and store it into cloud database. Following are the

advantages and results of this prototype.

1. Successfully sending and syncing large amount of sensor data between

Android Wear and android handheld device.

2. Extracting a raw Accelerometer sensor data in real-time from Android

Wear.

3. Avoid data loss issue.

4. Provide local as well as cloud storage solution to store big sensor data for

further data analytics purpose.

5. User can wear android Sony smartwatch 3 and connect with android

handheld, through this prototype capture motion sensor data and store into

cloud to further process to measure acceleration, velocity and position data

of user movement.

53

Chapter 5

5. Estimate Acceleration, velocity and Position

through sensor data Filtering techniques

In this chapter, we will discuss sensor data noise and errors, and present our cloud-

based sensory data processing techniques in detail. Specifically, we will start with

discussing the sensor noise and errors presented in raw sensor data, and then provide a

Kalman filter based signal estimation solution to obtain enhanced-precision

acceleration, velocity and position data by mitigating the noisy effect of acceleration

sensor, and the cumulative errors during the integration process to obtain velocity and

position.

5.1. Observed Problems in Collected Sensory Data

Figure 5. 1 Linear acceleration Sensor Y Axis raw noisy data with errors.

-6

-4

-2

0

2

4

6

8

1
1

3
2

5
3

7
4

9
6

1
7

3
8

5
9

7
1

0
9

1
2

1
1

3
3

1
4

5
1

5
7

1
6

9
1

8
1

1
9

3
2

0
5

2
1

7
2

2
9

2
4

1
2

5
3

2
6

5
2

7
7

2
8

9
3

0
1

3
1

3
3

2
5

3
3

7
3

4
9

3
6

1
3

7
3

3
8

5
3

9
7

4
0

9
4

2
1

4
3

3
4

4
5

4
5

7
4

6
9

4
8

1
4

9
3

5
0

5
5

1
7

5
2

9
5

4
1

5
5

3
5

6
5

5
7

7
5

8
9

6
0

1
6

1
3

6
2

5
6

3
7

6
4

9
6

6
1

6
7

3
6

8
5

6
9

7
7

0
9

7
2

1
7

3
3

Linear acceleration Sensor Raw Data

54

As illustrated in Figure 5.1, Linear acceleration raw sensor data collected from Google

Nexus 7 may be effected by the following errors [4].

5.1.1. Raw Sensor Data Errors

Major errors observed in the raw sensor data include:

1. Noise: As shown in Fig. 5.1, linear acceleration sensor data are clearly

noisy. Noise is a random fluctuation of measured sensor data and carries no

useful information, which has to be removed by processing in order to

obtain the actual data of interest. For motion sensor, noisy sensor data may

be caused by vibration, temperatures, etc. So, without proper filtering, this

kind of undesirable signal sensor data produce inaccurate results of

acceleration, velocity and position.

2. Drift: Drift moves sensor data away from the real value. Linear acceleration

raw sensor data has drift in its readings. Drift may be occurring due to sensor

degradation occurring over time. Also drift is presented after integrating

acceleration data to obtain velocity and then positions.

3. Offset or Bias: Linear acceleration raw sensor data always has an offset

inside that, as illustrated in Fig. 5.2. Clearly, sensor data x, y, z axes values

are not exactly zero when at rest on a table, indicating constant offset in the

readings.

55

Figure 5. 2 Linear acceleration Data with Offset/Bias Error

5.1.2. Integration Errors

Initially, we tried to integrate raw linear acceleration sensor data to get velocity

and again through integration to find position. Unfortunately, the initial experimental

results are not accurate because of following reasons [5]:

1. Linear acceleration sensor data has drift inside, resulting in distorted

estimates when we integrate them to generate velocity. In such cases, even

a small offset will cumulate at each iteration of integration to make data

drift away from real value quickly.

2. The Sampling rate of motion sensors is not consistent through the

experiment, resulting in a mismatch when the processing algorithm assume

the same inter-sample delays. Furthermore, for fast motion, a low sampling

rate limits its capabilities to track the fast movement. This requires the use

of a higher sampling rate, which, unfortunately, causes even more

fluctuations in the sampling rate.

-0.2

-0.1

0

0.1

0.2

0.3

1
4

1
8

1
1

2
1

1
6

1
2

0
1

2
4

1
2

8
1

3
2

1
3

6
1

4
0

1
4

4
1

4
8

1
5

2
1

5
6

1
6

0
1

6
4

1
6

8
1

7
2

1
7

6
1

8
0

1
8

4
1

8
8

1
9

2
1

9
6

1
1

0
0

1
1

0
4

1
1

0
8

1
1

1
2

1
1

1
6

1
1

2
0

1
1

2
4

1
1

2
8

1
1

3
2

1

Linear acceleration Data with Offset

56

3. To use linear acceleration sensor data to calculate velocity and position, we

must know the initial velocity and position which cannot be made available

through the motion sensors alone.

5.2. Overview of Solution

In this section, we have designed two filtering techniques low-pass/high-pass

filtering and Kalman filter techniques. Low-pass/high pass filtering is used to remove

gravity component from collected raw acceleration sensor data [12]. Kalman filter is

used to mitigate the random noise and estimate the corresponding acceleration, velocity

and position from the filtered acceleration sensor data [13].

5.3. Low Pass/High Pass Filter

In our Sony smartwatch 3 based sensor data collection prototype, acceleration

sensor readings include the gravity. So, we have used low-pass/high-pass filter to filter

out the gravity effects from raw acceleration sensor data [12]. Specifically, low pass

filter is used to identify the force of gravity and then high pass filter is used to subtract

that gravity data from raw acceleration sensor data. Here we are producing synthetic

linear acceleration sensor using raw acceleration sensor data and the filtering technique.

57

Figure 5. 3 Block Diagram of Low-pass and High-pass Filtering

Low-pass filter passes signal with the frequency lower than the cut-off

frequency. To choose cut-off frequency we are using α parameter. The α value is

calculated by the following formula [12].

α = t / (t + dt),

Where t is the low-pass filter time constant and dt is the sampling rate. When

filtering Sony smartwatch 3 sensor data, dt (sampling rate) is around 5 milliseconds,

and t depends on the latency the filter adds into the sensor event, which is 20

milliseconds. As a result, α = 0.83f in our case to identify gravity from raw acceleration

sensor data.

Once gravity is identified by the low-pass filter, the high-pass filter is used to

remove it from raw acceleration data. High pass filter passes signals with frequency

above the cutoff frequency. Here we are using this filter to subtract from raw data. Fig.

58

5.4 presents the raw acceleration sensor data and linear acceleration sensor data

produced by the low-pass/high-pass filter.

Figure 5. 4 Linear acceleration Data before and After Low-pass High-pass

Filtering

5.4. Kalman Filter based De-noising and Motion

Data Estimation

We have designed Kalman filter-based sensor data analytics prototype running in

the cloud to filter sensor noise and drift, remove and/or minimize sensor and integration

errors in order to calculate acceleration, velocity and position. Figure 5.5 presents the

workflow of our system operations in detail.

-4

-2

0

2

4

6

8

10

12

14

1
7

0
1

3
9

2
0

8
2

7
7

3
4

6
4

1
5

4
8

4
5

5
3

6
2

2
6

9
1

7
6

0
8

2
9

8
9

8
9

6
7

1
0

3
6

1
1

0
5

1
1

7
4

1
2

4
3

1
3

1
2

1
3

8
1

1
4

5
0

1
5

1
9

1
5

8
8

1
6

5
7

1
7

2
6

1
7

9
5

1
8

6
4

1
9

3
3

2
0

0
2

2
0

7
1

2
1

4
0

2
2

0
9

2
2

7
8

Low-pass High-pass Filtering

After Filtering Original Data

59

Figure 5. 5 Workflow of acceleration, velocity and position estimation using

Kalman Filter

5.4.1. Calibration Step to Remove an Offset

As we discussed earlier, even when the device is stable on the table, the

observed x, y, z coordinates sensor readings are not exactly or close to zero due to the

offset within the linear acceleration sensor data. We have to remove it to obtain the

correct measures. Moreover, without removing the offset, the cumulative nature of the

integration steps to calculate the velocity and position will further worsen the problem

and lead to in-correct results. Thus, we have designed techniques to remove an offset

from raw sensor data [4]. In our prototype, we have applied the following steps to

remove an offset.

1. Take a number of samples while the device is static.

2. Estimate the offset at each axes x, y and z based on the collected samples.

60

3. Then subtract the corresponding estimated offset from each measured value

at the particular axis.

Figure 5.6 presents the sensor data before and after performing calibration.

Figure 5. 6 Linear acceleration Sensor Y Axis sensor data before and after

removing Offset

5.4.2. Kalman Filter

We have started with using simple low pass filter to denoise the collected data.

However, the performance is very limited. So, we decided to investigate the

performance of using Kalman filter for motion data processing. Kalman filter is a data

processing algorithm that filter out noisy sensor data and produce improved estimate

of data being observed, which has been widely used in digital signal processing [13].

It is generally more complicated processing algorithm compared to other low-pass

filtering algorithm, resulting in higher computation demand, particularly for high-

dimensional signal processing applications. However, this is not of major concern for

-6

-4

-2

0

2

4

6

8

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

6
3

9

6
6

1

6
8

3

7
0

5

7
2

7

Calibration Step on Linear acceleration Raw Data

Original Data After Calibration

61

our application as our motion data are of limited dimensions and we only have to deal

with limited order of matrices. Furthermore, we have designed a multi-staged Kalman

filtering approach to further reduce the computational complexity. Our prototype

implementation and experimental studies have demonstrated it as highly suitable for

real-time processing.

5.4.2.1. Implementing Kalman Filter

Kalman filter can be used to predict the state of a system when there is a lot

of noise in the input sensor data. To implement the Kalman filter, we need to

understand all the matrices, parameters and their effect on removing noise and

correct error, thus producing more accurate results. In particular, we apply the

Kalman filter based algorithm to filter out noisy linear acceleration sensor data

to get an accurate acceleration. We also apply the Kalman filter to filter and

minimize integration errors after each integration in our algorithm to calculate

the corresponding velocity and position.

We have designed a three-dimensional Kalman filter to filter out noise over

all the three coordinates. To implement the three dimensional Kalman filter, we

follow these two steps: prediction and corrections [13]. Each step involves

different matrix operations as described below [13].

1. Prediction Step: Projecting the state ahead of your current stage is called

prediction. For instance, when one wants to filter the acceleration,

velocity or position data, first this step will be called:

62

X0 = F. times(X). plus (B. times(U));

P0 = F. times(P). times (F. transpose ()). plus(Q);

2. Correction Step: We will pass the measurement matrix or input sensor

data output from previous prediction step to our algorithmic workflow,

producing an accurate estimate of the corresponding motion state as the

output.

Matrix S = H. times(P0). times (H. transpose ()). plus(R);

Matrix K = P0. times (H. transpose ()). times (Inverse ());

Matrix Y = Z. minus (H. times(X0));

X = X0. plus (K. times(Y));

Matrix I = Matrix. Identity (3,3);

P = (I. Minus (K. times(H))). times(P0);

Below is a description about each matrix and parameter used in the

above equations. Also, all the values of these matrices and parameters

we have selected based on our experimental results.

 F - state transition matrix

X - state vector

B - input gain or control input matrix

U - input vector

P - error covariance matrix

Q - process noise covariance matrix

 X0 and P0 - output of prediction step

H - measurement matrix

R – measurement noise covariance matrix

Z - measurement vector as an input unfiltered sensor data

S, K, Y - intermediate matrices variables to store equations output value for

further usage.

63

5.4.2.2. Selecting the Kalman Filter Parameters

Initially, we have used 6x6 (combination of either acceleration & velocity,

or velocity & position) and 9x9 (combination of acceleration & velocity &

position) Kalman filter. However, after checking all cases, we have reached to

a 3-stage 3x3 (progressively, in the order of acceleration, velocity, position)

Kalman filter design. Following are the values and parameters used for the

matrices and vectors [13].

1. F - The state transition matrix is a 3 rows and 3 columns matrix which

initially set to {{1,0,0}, {0,1,0}, {0,0,1}}.

2. X - The state vector represents the output of the Kalman filter after each

correction step and is further used to predict the next state value and

correct the next sensor data samples. The state vector is initialized to

all-zero vector and then updated every time in the Kalman filter process.

For instance, the initial value of this vector is {0,0,0} which is indicate

of {Ax, Ay, Az} – the accelerations along X, Y, Z axes. Then its values

are updated accordingly at each filtering round.

3. B – The input gain or control input matrix which is set to 3x3 identity

matrix.

4. U - The input vector which is set to {0,0,0}.

5. P – The error covariance matrix initially set to 3x3 identity matrix. P is

updated at each round for the estimated error.

6. H – The measurement matrix which is 3x3 identity matrix.

64

7. Z – The measurement vector as an input unfiltered sensor data. This

vector works as an input sensor data. Pass the input sensor data sample

x, y, z as a measurement vector in the Kalman filter correction step.

8. Q - Process noise covariance matrix which is a 3x3 matrix that

characterizes the process noise.

9. R – The measurement noise covariance matrix which is a 3x3 matrix

that characterizes the sensor noise.

10. K – The Kalman gain in above equation.

5.4.2.3. Selecting the Kalman Filter Parameters for Linear

acceleration Data

Now, we will look at the Kalman-filtered linear acceleration data with

different values of Q and R [14]. It is a challenge to choose the appropriate

values for process noise Q and covariance noise R. However, sensor data

smoothing and accuracy is sensitive to and depending on proper choices of Q

and R matrices.

In our following experiment assessment, we have used different value

settings for the Kalman filter, and presents the results in Fig. 5.7-10, and

conclude that the values of, Q = 0.0625 and R = 4, have shown the best

performance, which will set [14]:

Q matrix = {{0.0625,0,0}, {0,0.0625,0}, {0,0,0.0625};

R matrix = {{4,0,0}, {0,4,0}, {0,0,4}}.

65

 First, Figure 5.7 presents the filtering results with Q = 128 and R = 10.

1. Q = 128 and R = 10

Figure 5. 7 Linear acceleration Sensor Y Axis sensor data filtering with

Q=128 and R=10

There is no impact on the data by the filtering. Both original and after

filtering sensor data are the same. Then, we reduce Q to 4.

2. Q = 4 and R = 10

As shown in Fig. 5.7, the Kalman filter with the new setting show

improved de-noising performance, but still significant noise exists.

Then, we continue the trend and set the values to (Q = 0.125 or 0.0625).

As shown in Fig. 5.8 and 5.9, the decreasing value of Q lead to smoother

results in the sensor data. However, we also can observe increasing lag

between the actual sensor readings and the filtered results, which may

cause unnecessarily high latency in the tracking system.

-6

-4

-2

0

2

4

6

8

1

2
2

4
3

6
4

8
5

1
0

6

1
2

7

1
4

8

1
6

9

1
9

0

2
1

1

2
3

2

2
5

3

2
7

4

2
9

5

3
1

6

3
3

7

3
5

8

3
7

9

4
0

0

4
2

1

4
4

2

4
6

3

4
8

4

5
0

5

5
2

6

5
4

7

5
6

8

5
8

9

6
1

0

6
3

1

6
5

2

6
7

3

6
9

4

7
1

5

7
3

6

sensor data filtering Q= 128 and R = 10

After Filtering Original Data

66

Figure 5. 8 Linear acceleration Sensor Y Axis sensor data filtering with Q=4

and R=10

3. Q = 0.125 and R = 10

Figure 5. 9 Linear acceleration Sensor Y Axis sensor data filtering with

Q=0.125 and R=10

-6

-4

-2

0

2

4

6

8
1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3
1

2
9

1
4

5
1

6
1

1
7

7
1

9
3

2
0

9
2

2
5

2
4

1
2

5
7

2
7

3
2

8
9

3
0

5
3

2
1

3
3

7
3

5
3

3
6

9
3

8
5

4
0

1
4

1
7

4
3

3
4

4
9

4
6

5
4

8
1

4
9

7
5

1
3

5
2

9
5

4
5

5
6

1
5

7
7

5
9

3
6

0
9

6
2

5
6

4
1

6
5

7
6

7
3

6
8

9
7

0
5

7
2

1
7

3
7

sensor data filtering Q=4 and R =10

Original Data After Filtering

-6

-4

-2

0

2

4

6

8

1
1

6
3

1
4

6
6

1
7

6
9

1
1

0
6

1
2

1
1

3
6

1
5

1
1

6
6

1
8

1
1

9
6

2
1

1
2

2
6

2
4

1
2

5
6

2
7

1
2

8
6

3
0

1
3

1
6

3
3

1
3

4
6

3
6

1
3

7
6

3
9

1
4

0
6

4
2

1
4

3
6

4
5

1
4

6
6

4
8

1
4

9
6

5
1

1
5

2
6

5
4

1
5

5
6

5
7

1
5

8
6

6
0

1
6

1
6

6
3

1
6

4
6

6
6

1
6

7
6

6
9

1
7

0
6

7
2

1
7

3
6

sensor data filtering Q=0.125 and R=10

Original Data After Filtering

67

4. Q = 0.0625 and R = 10

Figure 5. 10 Linear acceleration Sensor Y Axis sensor data filtering with

Q=0.0625 and R=10

To limit the lag between the actual sensor readings and the filtered

results, we reduce the value of R to give more weight to the actual sensor

samples in the filtering process. As shown in Fig. 5.11, the resulting data

show a better balance between the de-noising and the sensor samplings

as the filtered curve follows more closely with the actual readings both

temporally and amplitude-wise.

5. Q= 0.0625 and R = 4

-6

-4

-2

0

2

4

6

8
1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3
1

2
7

1
4

1
1

5
5

1
6

9
1

8
3

1
9

7
2

1
1

2
2

5
2

3
9

2
5

3
2

6
7

2
8

1
2

9
5

3
0

9
3

2
3

3
3

7
3

5
1

3
6

5
3

7
9

3
9

3
4

0
7

4
2

1
4

3
5

4
4

9
4

6
3

4
7

7
4

9
1

5
0

5
5

1
9

5
3

3
5

4
7

5
6

1
5

7
5

5
8

9
6

0
3

6
1

7
6

3
1

6
4

5
6

5
9

6
7

3
6

8
7

7
0

1
7

1
5

7
2

9

sensor data filtering Q=0.0625 and r=10

Original Data After Filtering

68

Figure 5. 11 Linear acceleration Sensor Y Axis sensor data filtering with

Q=0.0625 and R=4

5.4.3. Filter Linear acceleration through the Kalman

Filter

Based on these comparison results, we have decided to use the following

settings for the Kalman filter when processing the linear acceleration sensor data in our

work: Q = 0.0625 and R = 4, which has shown the best performance and set:

Q matrix = {{0.0625,0,0}, {0,0.0625,0}, {0,0,0.0625};

R matrix = {{4,0,0}, {0,4,0}, {0,0,4}}.

-6

-4

-2

0

2

4

6

8
1

1
9

3
7

5
5

7
3

9
1

1
0

9
1

2
7

1
4

5
1

6
3

1
8

1
1

9
9

2
1

7
2

3
5

2
5

3
2

7
1

2
8

9
3

0
7

3
2

5
3

4
3

3
6

1
3

7
9

3
9

7
4

1
5

4
3

3
4

5
1

4
6

9
4

8
7

5
0

5
5

2
3

5
4

1
5

5
9

5
7

7
5

9
5

6
1

3
6

3
1

6
4

9
6

6
7

6
8

5
7

0
3

7
2

1
7

3
9

sensor data filtering Q=0.0625 and R=4

Original Data After Filtering

69

5.4.4. Estimate the Velocity

To estimate the velocity from the linear acceleration data, we have to follow the

mathematical integration process. We have developed the following formulas.

 Equations:

Velocity data Calculation:

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑥 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑥 + 𝐿𝑖𝑛𝑒𝑎𝑟_𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 * dt;

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑦 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑦 + 𝐿𝑖𝑛𝑒𝑎𝑟_𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 * dt;

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑧 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑧 + 𝐿𝑖𝑛𝑒𝑎𝑟_𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑧 * dt;

where,

dt = current timestamp - previous timestamp.

Before applying this formula, linear acceleration sensor data must be drift- and

sensor noise-free; otherwise, such integration process may amply such drift and noise

to distort the results. To reduce this effect, we have used the Kalman filter solution

before the integration step. Furthermore, after every integration step, the integration

error can again be suppressed using the Kalman filter at the velocity-level. Another

potential problem is the initial values of velocity. Here, the initial velocity is unknown

to the motion sensors, so we can assume initial velocity as zero, which is reasonable as

the object in applications under consideration always starts from a stationary state. In

this section, we perform the analysis using the same dataset as shown in Figure 5.6-11.

70

5.4.4.1. Effects of Sampling rate on Velocity Estimation

As shown in the above formula to calculate velocity, we obtain the dt from

the timestamps. Timestamp is a value in nanoseconds when the sensor event is

generated. So, we will convert timestamp from nanoseconds to seconds, then

find the difference between two successive timestamps. We will get velocity in

meter per second. The choice of sampling rate is an important factor in

integration. Higher sampling rate means small step-size and higher granularity,

leading to more accurate integration results. For instance, if the sampling rate

is low (for example: - 200 milliseconds or 60 milliseconds), then the sensor data

multiply with larger value, resulting in less accurate estimate. Our prototype,

e.g., as we discussed earlier, collected sensor samples from Google Nexus 7

every 10 milliseconds. Another important thing is sampling rate may not be

consistent, and need to be tracked for each data sample.

5.4.4.2. Velocity Filtering through the Kalman Filter

Obtaining velocity through integration algorithm from linear acceleration

may result in a velocity with significant offset and drift away from its actual

values [5]. So, the Kalman filter is again used to remove drift and noise in order

to minimize integration error. The Kalman filter generates more accurate

velocity estimate by suppressing the noise. For that, we pass the unfiltered

velocity data (Vx, Vy, Vz) as a measurement vector input into the Kalman filter.

Figure 5.12 shows the velocity before and after Kalman filtering.

71

Figure 5. 12 velocity results before and after Kalman Filter

5.4.5. Estimate the Position

To estimate the position from the velocity data, we have to follow another

mathematical integration process. We have developed the following formulas.

Equations:

Position data Calculation:

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥 +((𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑥 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑥) / 2) * dt;

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑦 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑦 +((𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑦 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑦) / 2) * dt;

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧 +((𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑧 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑧) / 2) * dt;

Where, dt = current timestamp - previous timestamp.

-1.5

-1

-0.5

0

0.5

1

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

6
3

9

6
6

1

6
8

3

7
0

5

7
2

7

Velocity Results

Before Filtering After Filtering

72

Since the initial position is unknown, we assume initial zero position. In real-

life application, the initial position can be provided through out-of-band methods, such

as GPS for driver-less car, Kinect for body motion tracking, and etc. Similar to

calculating the velocity from acceleration, effects of different and varying sampling

rate are also considered in this process. Kalman filtered velocity is fed into the

algorithms. We will process the same dataset as presented in Figure 5.12 to estimate

the corresponding position.

5.4.5.1. Position Filtering through the Kalman Filter

Integration from velocity resulted in position with offset and drift away from the

actual values [5]. So, the Kalman filter is again used to remove drift and noise to

minimize integration error. The Kalman filter generate more accurate position estimate

by suppressing the noise. For that, we pass the unfiltered position data (Px, Py, Pz) as

a measurement vector input into the Kalman filter. Figure 5.13 display the estimated

position before and after Kalman filtering.

Figure 5. 13 position results before and after Kalman Filter

-1.5

-1

-0.5

0

0.5

1
2

3
4

5
6

7
8

9
1

1
1

1
3

3
1

5
5

1
7

7
1

9
9

2
2

1
2

4
3

2
6

5
2

8
7

3
0

9
3

3
1

3
5

3
3

7
5

3
9

7
4

1
9

4
4

1
4

6
3

4
8

5
5

0
7

5
2

9
5

5
1

5
7

3
5

9
5

6
1

7
6

3
9

6
6

1
6

8
3

7
0

5
7

2
7

Position Results

Before Filtering After Filtering

73

Figure 5. 14 Series1: Linear acceleration, Series2: Velocity, Series3: Position

In summary, Figure 5.14 presents all together the final analysis results for

Acceleration, Velocity, and Position Data.

The velocity and, especially, the position results start show the effect of

cumulative errors from the integration processes as the subject advances in time and

space, indicating the need for additional velocity and/or position data in order to correct

the cumulative errors. These side information could be obtained, e.g., through a digital

map of the area, either well-established ahead of deployment, or, on the fly by

Simultaneous Locating and Mapping based on visual and distance sensors, such as

Google-Tango technologies.

-4

-2

0

2

4

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

6
3

9

6
6

1

6
8

3

7
0

5

7
2

7

Linear acceleration- Velocity-Position

Series1 Series2 Series3

74

5.5. In-Cloud Processing of Sensory Data from the

Sony Smartwatch 3 based Sensor Web

In this section, we will present the experiments results of our Sensor-web based

Cloud Solution using the completed prototype systems and processing inside the cloud.

As discussed in earlier chapters, our sensor-web collects motion data from the Sony

Smartwatch 3, and then deliver the data to the cloud database. We will apply the

processing algorithms from the preceding sections to analyze sensor data and produce

the motion analysis reports. Sony Smartwatch 3 is capable of capturing acceleration

data every 4 milliseconds, i.e., sampling rate at 250 samples per second. Figure 5.15

displays the raw acceleration sensor data collected by Sony Smartwatch 3 along the X,

Y, Z coordinates.

75

Next, we will pass the acceleration Z axis sensor data to our Low-pass/High-pass filter

to remove the gravity and generate the Linear acceleration. Fig. 5.16 presents the linear

acceleration data produced by using low-pass high-pass filter technique.

-6

-4

-2

0

2

4

6

1
7

0
1

3
9

2
0

8
2

7
7

3
4

6
4

1
5

4
8

4
5

5
3

6
2

2
6

9
1

7
6

0
8

2
9

8
9

8
9

6
7

1
0

3
6

1
1

0
5

1
1

7
4

1
2

4
3

1
3

1
2

1
3

8
1

1
4

5
0

1
5

1
9

1
5

8
8

1
6

5
7

1
7

2
6

1
7

9
5

1
8

6
4

1
9

3
3

2
0

0
2

2
0

7
1

2
1

4
0

2
2

0
9

2
2

7
8

Acceleration Data towards X

-15

-10

-5

0

5

10

15

1
7

0
1

3
9

2
0

8
2

7
7

3
4

6
4

1
5

4
8

4
5

5
3

6
2

2
6

9
1

7
6

0
8

2
9

8
9

8
9

6
7

1
0

3
6

1
1

0
5

1
1

7
4

1
2

4
3

1
3

1
2

1
3

8
1

1
4

5
0

1
5

1
9

1
5

8
8

1
6

5
7

1
7

2
6

1
7

9
5

1
8

6
4

1
9

3
3

2
0

0
2

2
0

7
1

2
1

4
0

2
2

0
9

2
2

7
8

Acceleration Data towards Y

0

2

4

6

8

10

12

14

1
7

0
1

3
9

2
0

8
2

7
7

3
4

6
4

1
5

4
8

4
5

5
3

6
2

2
6

9
1

7
6

0
8

2
9

8
9

8
9

6
7

1
0

3
6

1
1

0
5

1
1

7
4

1
2

4
3

1
3

1
2

1
3

8
1

1
4

5
0

1
5

1
9

1
5

8
8

1
6

5
7

1
7

2
6

1
7

9
5

1
8

6
4

1
9

3
3

2
0

0
2

2
0

7
1

2
1

4
0

2
2

0
9

2
2

7
8

Acceleration Data towards Z

Figure 5. 15 Acceleration Data along the 3 device coordinate axes of Sony

Smartwatch 3

76

Figure 5. 16 Linear acceleration Data After Low-pass High-pass Filtering

Then, we will analyze these data set to estimate the acceleration, velocity and position

as described in the preceding sections. Fig. 5.17-19 shows the estimates produced by

our system for acceleration, velocity and position, respectively.

Figure 5. 17 Linear acceleration Kalman Filter Result Analysis

-4

-2

0

2

4

6

8

10

12

14
1

7
0

1
3

9
2

0
8

2
7

7
3

4
6

4
1

5
4

8
4

5
5

3
6

2
2

6
9

1
7

6
0

8
2

9
8

9
8

9
6

7
1

0
3

6
1

1
0

5
1

1
7

4
1

2
4

3
1

3
1

2
1

3
8

1
1

4
5

0
1

5
1

9
1

5
8

8
1

6
5

7
1

7
2

6
1

7
9

5
1

8
6

4
1

9
3

3
2

0
0

2
2

0
7

1
2

1
4

0
2

2
0

9
2

2
7

8

Low-pass High-pass Filtering

After Filtering Original Data

-15

-10

-5

0

5

10

15

1

6
5

1
2

9

1
9

3

2
5

7

3
2

1

3
8

5

4
4

9

5
1

3

5
7

7

6
4

1

7
0

5

7
6

9

8
3

3

8
9

7

9
6

1

1
0

2
5

1
0

8
9

1
1

5
3

1
2

1
7

1
2

8
1

1
3

4
5

1
4

0
9

1
4

7
3

1
5

3
7

1
6

0
1

1
6

6
5

1
7

2
9

1
7

9
3

1
8

5
7

1
9

2
1

1
9

8
5

2
0

4
9

2
1

1
3

2
1

7
7

2
2

4
1

2
3

0
5

Linear acceleration Kalman Filtering

Original Data After Filtering

77

After that, we are using Integration step to calculate Velocity and pass into the Kalman

filter to filter out velocity output. Fig. 5.18 describes velocity results before and after

Kalman filter step.

Figure 5. 18 Velocity Output Before and After Kalman Filter

After that, we are using Integration step to calculate position and pass into the Kalman

filter to filter out position output. Fig. 5.19 describes position results before and after

Kalman filter step.

-1.5

-1

-0.5

0

0.5

1

1
7

0
1

3
9

2
0

8
2

7
7

3
4

6
4

1
5

4
8

4
5

5
3

6
2

2
6

9
1

7
6

0
8

2
9

8
9

8
9

6
7

1
0

3
6

1
1

0
5

1
1

7
4

1
2

4
3

1
3

1
2

1
3

8
1

1
4

5
0

1
5

1
9

1
5

8
8

1
6

5
7

1
7

2
6

1
7

9
5

1
8

6
4

1
9

3
3

2
0

0
2

2
0

7
1

2
1

4
0

2
2

0
9

2
2

7
8

Velocity Results

Before Filtering After Filtering

78

Figure 5. 19 Position Output After Kalman Filter

Again, the velocity and position results also start show the effect of cumulative

errors from the integration processes as the subject advances in time and space,

indicating the need for additional velocity and/or position data in order to correct the

cumulative errors. These side information may be obtained, e.g., through a digital map

of the area, either well-established ahead of deployment, or, on the fly by Simultaneous

Locating and Mapping based on visual and distance sensors, such as Google-Tango

technologies.

-5

-4

-3

-2

-1

0
1

6
8

1
3

5
2

0
2

2
6

9
3

3
6

4
0

3
4

7
0

5
3

7
6

0
4

6
7

1
7

3
8

8
0

5
8

7
2

9
3

9
1

0
0

6
1

0
7

3
1

1
4

0
1

2
0

7
1

2
7

4
1

3
4

1
1

4
0

8
1

4
7

5
1

5
4

2
1

6
0

9
1

6
7

6
1

7
4

3
1

8
1

0
1

8
7

7
1

9
4

4
2

0
1

1
2

0
7

8
2

1
4

5
2

2
1

2
2

2
7

9

Position Results

Before Filtering After Filtering

79

Chapter 6

6. Conclusion and Future Work

In this section, we have concluded overall work from all the above chapters as well as

describes a lot of new opportunities which can be done in the future using this research

work.

6.1. Conclusions

In this thesis, we have concluded the motion tracking and visualization capabilities

using the latest motion sensory technologies such as Android Wear Sony smartwatch 3

and google Asus Nexus 7 devices. Android Wearable and handheld devices are low in

price and give nice features for development. We analyzed Android Sony smartwatch 3

sensor capabilities, processing capabilities and network capabilities. Also, we have

designed sensor web-based cloud solution prototype to collect accelerometer sensor data

real-time with higher sampling rate, accuracy, and store huge dataset on a cloud for

further processing. We have designed a Stand-alone Motion Capture prototype for

Google Nexus 7 device to capture and analyze accelerometer, linear acceleration sensor

data with higher sampling rate and store into file for further processing. We have

monitored raw noisy sensor data errors and developed low complexity algorithms to

support real-time data analysis. Explored different data processing methods to obtain

improved-quality motion results from extremely noisy raw data, e.g., by using low pass

and high pass filter, and the Kalman filters. We believe this work helps tremendously in

Healthcare to identify the causes of lower back pain and assist with the corresponding

80

therapy process. Also, another potential application of this research, is to enable

automatic locating and mapping capability inside the GI tract system in order to provide

the high-precision navigation capabilities for endoscopy and drug delivery capsules used

in GI medicine. We expect that these proposed new technologies will provide improved

workflow, accuracy, and efficiency in sports, fitness, and healthcare fields.

Particularly, in this thesis chapter 4, we have designed and developed Sensor-Web

based Cloud Solution and Prototype Designs to collect sensor data real-time. We

illustrated development capabilities of Android Wear connected with android handheld

via Bluetooth using different Android Wear APIs. We concluded accelerometer raw

sensor data results from android Sony smartwatch 3. However, linear acceleration

sensor is synthetic sensor and not extracting sensor data for Sony smartwatch 3 device

case. Also, we have provided cloud based large data storage solution per further

processing raw data. Using this prototype, we analyzed higher sampling data rate which

is around 4 milliseconds for android watch. A Higher sampling rate is extremely helpful

to find accurate velocity and position from acceleration data. We monitored sensor

errors present in raw accelerometer sensor data such as noise, drift, offset, gravity, etc.

Overall, we provided a cloud based solution to avoid data loss issue, successfully

collect sensor data, and store into cloud for further processing.

We have also designed a Stand-alone Motion Capture prototype to collect sensor

data from google Nexus 7. The reason behind this is the google Nexus 7 linear

acceleration provides good results. So, we are using this data in Kalman filter based

low complexity algorithm to estimate acceleration, velocity, and position. We have

monitored 10 milliseconds sampling data rate for google Nexus 7 acceleration, linear

81

acceleration sensor data extraction. We are storing data into file for further processing.

We have analyzed sensor errors present in raw linear acceleration sensor data such as

noise, drift, offset, gravity etc.

Specifically, we have developed low complexity based algorithm to remove sensor

errors from raw sensor data and estimate motion results such as velocity and position

from acceleration. We discussed raw sensor data and integration errors for raw linear

acceleration sensor data samples. We used a low pass filter to identify gravity and a

high pass filter to produce linear acceleration from the raw acceleration data. We

provided Kalman Filter based De-noising and Motion Data Estimation algorithm for

step by step processing to estimate acceleration, velocity and position. We discussed

results of this algorithm for both Android Wear and google Nexus 7 datasets. Following

are advantages and limitations of our low complexity estimation algorithm:

Advantages:

1. Remove constant offset from Linear acceleration raw sensor data.

2. Filter sensor and process noise through the Kalman filter implementation.

3. Minimize integration error and calculate accurate acceleration, velocity and

position sensor data.

4. Using Higher and consistent sampling rate deduct sensor errors while

integration.

5. Estimate the current location of smartwatch or linear acceleration sensor data.

6. Correct Microsoft Kinect Human body movement position data to remove

unused data to make movement more adjustable and accurate. Since it requires

82

small amount of memory we can transfer data through online without any kind

of delay.

Limitations:

1. Challenge to find a right value for process noise Q and sensor noise R and also

difficulty to set other parameters of the Kalman filter.

In summary, we have designed and developed prototypes to analyze motion

tracking capabilities of Android Wear and google Nexus 7. After that analyze sensor

errors and develop low complexity based filter techniques algorithms to analyze motion

results. These technologies are extremely helpful in healthcare, sports and fitness fields.

6.2. Future Work

In the future work, one could combine sensor-web based cloud solution prototype

and the Kalman filter based prototype together. We are extracting a sensor data real-

time, but in future, we will use Kalman filter and lowpass-highpass filter techniques

for data processing in android handheld platform, which can produce motion results

real-time and display on android handheld application.

On the motion results, velocity and position results become not as accurate as

subject advances in time and space, we could use dead reckoning technique to make

velocity and position more accurate by utilize additional velocity and position data

made available through other means. Dead reckoning is the process of calculating one's

83

current position by using a previously determined position, or fix, and advancing that

position based upon known or estimated speeds over elapsed time and course.

We believe these future works will help mature this technology for the real-world

sport, fitness and healthcare fields.

84

7. References

[1] xsens.com, “The idea behind Valedo” [Online].

Available:https://www.xsens.com/customer-cases/valedo-back-pain-therapy-xsens-

technology/

[2] invensense.com, “Overview,” 9 Axis Motion Tracking. [Online]

Available: https://www.invensense.com/products/motion-tracking/9-axis/

[3] Hol, J. (2011). Sensor fusion and calibration of inertial sensors, vision, ultra-

wideband and GPS (Unpublished doctoral dissertation). Diss. Linköping: Linköpings

universitet.

[4] Milette, G., & Stroud, A. (2012). Professional Android sensor programming.

Indianapolis, IN: Wiley.

[5] Slifka, L. (2004). AN ACCELEROMETER BASED APPROACH TO

MEASURING DISPLACEMENT OF A VEHICLE BODY

[6] sonymobile.com. “Sony White paper on SWR50 Smartwatch 3” [Online].

Available: http://www-support-

downloads.sonymobile.com/swr50/whitepaper_EN_swr50_smartwatch3_2.pdf

[7] ______, “Sensor API Overview” [Online]

Available: https://developer.android.com/guide/topics/sensors/sensors_overview.html

[8] ______, “Sending and Syncing Data” [Online]

https://www.xsens.com/customer-cases/valedo-back-pain-therapy-xsens-technology/
https://www.xsens.com/customer-cases/valedo-back-pain-therapy-xsens-technology/
https://www.invensense.com/products/motion-tracking/9-axis/
http://www-support-downloads.sonymobile.com/swr50/whitepaper_EN_swr50_smartwatch3_2.pdf
http://www-support-downloads.sonymobile.com/swr50/whitepaper_EN_swr50_smartwatch3_2.pdf
https://developer.android.com/guide/topics/sensors/sensors_overview.html

85

Available: https://developer.android.com/training/wearables/data-layer/index.html

[9] ______, “Debugging over Bluetooth” [Online]

Available: https://developer.android.com/training/wearables/apps/bt-debugging.html

[10] _____, “DataItem API Overview” [Online]

Available: https://developer.android.com/training/wearables/data-layer/data-

items.html

[11] _____, “Message API Overview” [Online]

Available: https://developer.android.com/training/wearables/data-layer/messages.html

[12] _____, “Filter for Motion Sensors” [Online] Available:

https://developer.android.com/guide/topics/sensors/sensors_motion.html#sensors-

motion-accel

[13] richard@UTCS, “Kalman Filter Simulation” [Online]

Available: https://www.cs.utexas.edu/~teammco/misc/Kalman_filter/

[14] Interactive Matter Lab, “Filtering Sensor Data with a Kalman Filter”

Available:http://interactive-matter.eu/blog/2009/12/18/filtering-sensor-data-with-a-

Kalman-filter/

[15] Wikipedia, the free encyclopedia, “Android Wear” [Online]

Available: https://en.wikipedia.org/wiki/Android_Wear

https://developer.android.com/training/wearables/data-layer/index.html
https://developer.android.com/training/wearables/apps/bt-debugging.html
https://developer.android.com/training/wearables/data-layer/data-items.html
https://developer.android.com/training/wearables/data-layer/data-items.html
https://developer.android.com/training/wearables/data-layer/messages.html
https://developer.android.com/guide/topics/sensors/sensors_motion.html#sensors-motion-accel
https://developer.android.com/guide/topics/sensors/sensors_motion.html#sensors-motion-accel
https://www.cs.utexas.edu/~teammco/misc/kalman_filter/
http://interactive-matter.eu/blog/2009/12/18/filtering-sensor-data-with-a-kalman-filter/
http://interactive-matter.eu/blog/2009/12/18/filtering-sensor-data-with-a-kalman-filter/
https://en.wikipedia.org/wiki/Android_Wear

86

[16] Megha Dattatrey Dalvi, (Jan. 2017). Customizable 3-D Virtual GI Tract Systems

for Locating, Mapping and Navigation inside Human Gastrointestinal Tract

	Miniatured Inertial Motion and Position Tracking and Visualization Systems Using Android Wear Platform
	Repository Citation

	tmp.1506696132.pdf.PL4zU

