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ABSTRACT 

 

Patel, Dhruvkumar Navinchandra. M.S. Department of Computer Science and 

Engineering, Wright State University, 2016. Miniatured Inertial Motion and Position 

Tracking and Visualization Systems Using Android Wear Platform. 

 

 

 

In this thesis, we have designed and developed a motion tracking and 

visualization system using the latest motion tracking sensory technologies. It is one of 

the enabling technologies for our novel visual-inertial odometer and human anatomy 

based 3D Locating, Mapping and Navigation system for endoscopy and drug delivery 

capsules used inside GI tract. In particular, we have: i) designed and completed a cloud-

based sensory data collecting, processing and storage system to provide the reliable 

computing and storage platform; ii) explored different data processing methods to 

obtain improved-quality motion results from extremely noisy raw data, e.g., by using a 

low pass and high pass filter, and Kalman filters; iii) developed low-complexity 

algorithms to support real-time data analysis; and, iv) provided real-time 3 dimensional 

visualizations by a Unity 3D based visualizer. 

In this thesis, we have also showcased the use of application processors, which 

are widely used in smartphones and tablets, to develop a potentially low-cost sensor 

system and networks with enhanced computing, storage and networking capabilities. 

Specifically, we have explored Android/Android Wear, Google’s open source mobile 

OS’s, enabled smart devices, such as Sony Smartwatch 3, and their built-in sensory 

capabilities to build our sensory system. The completeness and maturity of such a 

widely used mobile platform ensure a fast prototype design and development process, 

as well as significantly better reliability and usability. The reliability of our sensory 
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system is further improved through the use of a database approach, such as transactions, 

for the data flow from sensors to mobile platform and eventually to the cloud. Thus, 

our prototype design provides a working model to collect sensor data from Android 

Wear, and then transfer and store them into the cloud for further processing and 

disseminations.  
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Chapter 1  

1. Introduction 

The motivation of this research is to demonstrate the latest capabilities in motion 

capture and analysis and their applications in Healthcare domain to help people live 

healthier lives. It has been reported that nowadays 40% of the people suffer from Lower 

Back Pain [1]. For instance, for those people who sit almost the whole day in front of 

the computers, research shows that almost everyone (up to 85-90%) among them has 

suffered from lower back pain at some point in his/her life [1]. One of our goal is to 

develop technologies to help identify the cause of lower back pain and assist the 

corresponding therapy process. Another potential application of this research is to 

enable automatic locating and mapping capabilities inside GI tract system in order to 

provide the high-precision navigation capabilities for endoscopy and drug delivery 

capsules used in GI medicine. We expect that these proposed new technologies will 

provide improved workflow, accuracy and efficiency in sports, fitness and healthcare 

fields. 

1.1. Overview of Motion Technology 

Motion capture devices have been widely used to measure motion and movement 

of an object in various fields, such as entertainment, sports, military and health care 

applications [3]. In this thesis, we are primarily interested in developing position and 
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motion tracking technologies in the health care domain for such applications as human 

body joint gait analysis, locating and mapping the endoscopy and drug-delivery 

capsules within the GI tract, and etc. As a result, we are particularly interested in 

designing non-optical and miniaturized motion 

tracking systems, such as inertial motion tracking 

capabilities as evident in motion sensors used in most 

smartphones, such as the 3x3x1 mm 9-axis motion 

sensors by InvenSense as shown in Fig.1.1. [2]. 

The combination of Accelerometer, Gyroscope and Magnetometer in a single 

Inertial Measurement Unit (IMU) has been commonly used in most of today’s motion 

tracking sensors [3]. Such highly miniaturized sensors are made possible by MEMS 

(microelectromechanical systems) technologies, as shown in related products by 

InvenSense, Qualcomm, EM Micro and other vendors. Such motion units enable the 

motion tracking capabilities on the smartphone and wearable technologies, and Virtual 

and Augmented Reality (VR/AR) technologies [3]. 

As evident in such popular devices as Apple Watch and Microsoft Band, such 

inertial sensors can be used for capturing accelerations and orientation data of an 

objects and then, through sensor data fusion algorithms and applications, to produce 

motion analysis in velocity and position, leading to meaningful applications in different 

areas. Moreover, wearable devices with embedded IMUs can enable clinical specialists 

to track, manage and train the patient on a certain movement. It will also help in sports 

where athletes can study movement, and then refine and improve their techniques [3]. 

Figure 1. 1 3x3x1 

mm InvenSense’s MPU-

925x Motion tracking unit 

(3-axis gyroscope, 3-axis 

accelerometer and 3-axis 

compass) [2] 
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1.2. Overview of Android Wear and Handheld 

Technology 

Android is an operating system based on Linux kernel designed for mobile devices 

such as smartphones, tablets and also for wearable devices such as android watches. As 

an open source technology, it provides us freely the Application Programming Interface 

(API) for application development. APIs provide commonly used utilities, and are 

made available for speeding up the development with enhanced efficiency and 

reliability, for broad spectrum of usage in various applications. Following are the 

features that attract us to use this operating system for our related prototype 

developments. 

1. Most of the Android devices have built in sensors for motion, orientation and 

other environmental conditions. Thus, we can directly use these types of devices 

as a motion capture device. It provides a much more cost-efficient alternative 

to use the related development kits from the IMU vendors. This is particularly 

beneficial for research purpose. 

2. Android provides a reliable, secure and consistent OS for development and 

distribution of new applications. 

3. Android devices support intuitive interactions between user and application 

using Graphical User Interface. 

4. Android device’s functionalities are written in Android software development 

kit (SDK), which uses Java and sometimes C/C++ programming languages that 

have access to the Android APIs. 
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5. Android platform provides Automatic Memory Management functionality and 

it is also easy to integrate and customize the operating system. 

 

In short, Android Wearable and handheld devices are low in price and gives us nice 

features for development purpose. Wearable technology and research opens new areas 

of innovation, particularly when connected and attached with the Cloud’s big data 

capabilities, to support sports, fitness, virtual reality and healthcare. It is important to 

note that Android/Android Wear provide fully-fledged networking capabilities to be 

connected through a handheld using, e.g., Bluetooth, to the Internet and Cloud. As a 

result, in this research we will build our prototype system of 3D human body motion 

tracking and visualization using Android/Android Wear devices’ built-in sensor 

capabilities. 

1.3. Cloud Based Prototype to Collect Sensor Data 

using Android Wear 

In this section, we discussed our system that collects data from Android Wear 

Motion sensors. We will establish a communication channel between Android 

Handheld and Android Wear devices for actuation/control and data transfer. Here, we 

are presenting an approach for the complete data flows: i.) to send and synchronize 

large sensor datasets between android handheld and Android Wear; ii.) followed by 

storing the motion sensor data in Database on Android handheld, and then iii.) transfer 

that dataset into Cloud for storage and processing. 
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We will then process the collected sensor data to find 3-Dimensional accelerations, 

velocity and position using sensor filter techniques and use Unity 3D-based 

‘Visualizer’ to visualize 3D position trajectory system. Following are the major 

advantages of this approach. 

1. Motion sensor data is collected through the well-established Android Wear OS. 

Thus large dataset can be conveniently and reliably synchronized between 

nodes. 

2. Provide Bluetooth connectivity and data transfer facility between handheld and 

Android Wear. 

3. Provide local Database to store on handheld side when connectivity is not 

available; and later store in Cloud for access from anywhere. 

4. Android Wear can be easily attached with human body, so we can accurately 

track human body motion activity with minimized interference to the person. 

 

We have developed a prototype system to show the entire workflows. We will 

discuss technical details, development procedure and implementation details in later 

chapters of this thesis. 
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Chapter 2 

2. Sensor System and Motion Capture Devices 

In this chapter, we will discuss in detail what sensor capabilities and devices we need 

for our system, and why we choose Android Wear and Handheld Technologies. 

Particularly, we want to illustrate the viability of using mobile application processors 

and mobile OS for wireless sensors and network system designs.  

2.1. What we need for our System 

To detect the 3-dimensional human body motion and position tracking and 

visualization, we need high quality miniatured motion sensors, especially with high 

sampling rate and processing capabilities. Thus, we chose to explore the use of 9 Axis 

accelerometer+gyroscope+compass sensor hub, which can produce, through sensory 

data fusion, virtual or synthetic sensors like linear acceleration, gravity, rotation vector 

and orientation for various applications. These sensors are widely available today, e.g., 

by MEMS, InvenSense, QUALCOMM, EM Micro and others, thanks to the huge 

market demand in smartphones and tablets. The synthetic sensors can be developed, 

e.g., by AOSP (Android Open Source Project) [4]. 

Conventionally, for research prototype development, you can use the Development 

Kits from the vendor together with the sensor hub chip and Arduino boards.  Arduino 

is an open source electronics platform for hardware and software applications. It can 

be used to read inputs from sensors and process and turn it into the desired output. 
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Programs based on Arduino programming language will be developed for data 

processing. However, there are serious limitations of this approach in cost, effort and 

complexity. Individually and collectively, the components required to build a prototype 

could be very costly. For example, InvenSense 9 Axis IMU development Kit alone 

costs over $500 [2]. Additional Arduino boards to augment the sensory system 

capabilities in computing, storage and networking may add up too much higher prices. 

Moreover, this approach requires significant developing and testing effort and time due 

to its primitive hardware/software co-design nature. 

As a result, in this thesis, we want to illustrate the viability of using mobile 

application processors and mobile OS for wireless sensors and network system designs. 

We are looking at smartphones and wearable devices as an alternative platform, which 

provide all our needs for sensor capabilities, computing and networking, and provide 

us with a convenient development environment 

For example, most Android Wearable devices contain all the required features 

and processing capabilities to demonstrate wireless sensors and network designs. 

Furthermore, Android Wearable can connect with Android handheld device to augment 

its capabilities in storage, processing and networking, through synchronization of a 

high volume of sensor data. We will also look at cloud-based solutions to further 

augment these capabilities, so one can store, process and retrieve a high volume of 

sensor data.  

Next, we will discuss Android Wear sensory compatibility, processing 

compatibility and other advantages in the following sections, and provide arguments 
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for Android Wear devices as a better choice over others for our prototype 

developments. 

2.2. Android Wear as a Motion Capture Device 

There are many commercially available Android Wear devices, particularly watch-like 

devices, with different sizes, shapes, styles and features, like, e.g., Moto 360, Samsung 

gear live, Sony smartwatches, etc. [18]. In our research, we will use Sony smartwatch 

3, which runs Android Wear, as a motion capture device. Priced at about $150, it 

provides a very low-cost but highly robust, reliable and capable platform for developers 

as well as users [18]. 

2.2.1. Sony Smartwatch 3(SWR50) Specification 

Sony Smartwatch 3 Android Wear is a standalone smart device with built-in 

processors, storage and sensory capabilities. It also provides connectivity to Android 

Phone or Tablet (Android Handheld) devices with version 

Android 4.3 or later [6]. It has maximum scratch resistance 

and durability, waterproof protection and a stainless-steel 

body. It also provides other features for Android Wear 

development purpose as illustrated in the following 

specifications in Table 2.1 [6]. 

 

 

 

Figure 2. 1 

Sony Smartwatch 

3 (SWR50) 
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Processor 1.2 GHz, Quad-core ARM® CortexTM  A7 

Size 36 x 10 x 51 mm 

Weight 38 grams 

Display Transflective TFT LCD, multi touch Capacitive, 320x320 pixels 

resolution 

Memory  4 GB internal storage, 512 MB RAM 

Sensors Accelerometer, Magnetometer, Gyro, Ambient light sensor 

Connectivity 4.0 Bluetooth, Wi-Fi, GPS, NFC,USB 

Battery 420 mAh Li-polymer, less than 1 hour charge time, standby up 

to 96 hours 

Price Around 150 USD 

Operating 

System 

Compatibility 

Android version 4.3 and later 

 

Table 2. 1 Android Wear Teardown and Specification [6] 
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2.3. Why we choose Android Wear (Sony 

Smartwatch 3) 

Following are the brief descriptions about advantages and features of Android Wear 

as networked sensor platforms. 

2.3.1. Processing Capabilities 

Sony Smartwatch 3 adopts a new wearable platform from Broadcom. It is based 

on the Broadcom System-on-chip (SoC) platform which contains a 1.2 GHz Quad-core 

ARM Cortex A7 processor with a highly integrated power management IC that assures 

low power consumption [6]. Ultra-low power circuits, energy efficient communication 

and displays become important components in making of new smartwatches. The OS - 

Android Wear provides efficient memory and storage management and processing of 

the 512MB RAM and 4GB storage, capable of managing high volume of data 

sufficiently for most sensory system’s needs [6]. This processing capability is 

significantly better when compared to other platforms such as Arduino. In addition, 

EM Microelectronics provides the motion tracking sensors built into the SoC chip. 

2.3.2. Sensors Capabilities 

The device’s sensory capabilities are the main reason behind using Sony 

smartwatch 3 as a part of this research. Here we are describing availability of each 

sensor, particularly on those useful for motion tracking.  



11 

 

2.3.2.1. Overview of Android/Android Wear Built-in 

Sensors 

Most if not all Android Wear devices have a sensor hub chip that contains 

either a 9-Axis or 6-Axis MEMS (Microelectromechanical Sensors) motion 

sensor that is made from a silicon chip. These sensors are capable of providing 

raw sensor data in high rate (about 200 sample per second) and precision to use 

in three-dimensional motion tracking devices. The Android platform supports 

the following different kinds of sensors [7]. 

1. Motion Sensors: accelerometer, gyroscope, gravity and rotational 

vector sensors used to measure acceleration and rotational forces 

along axes. 

2. Position Sensors: GPS, orientation and magnetometer sensors. 

3. Environmental Sensors: barometer, photometers, thermometers 

sensors used to measure various environmental parameters. 

4. Radio Sensors: Transceivers also provide radio signal strength at 

certain radio bands. 

 

In this thesis, we will use Android-provided Sensor APIs to extract raw 

sensor data from these sensors. Android sensors can be classified into two 

different classes: i.) raw sensors, and ii.) synthetic sensors [4]. Android raw 

sensors abstract directly relate to one of the physical sensors available on the 

device, e.g., accelerometer, gyroscope and compass sensors. Synthetic sensors, 
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on the other hand, are abstract or virtual sensors that are created by fusing data 

from two or more raw sensors. For example, the Linear acceleration Sensor is 

produced in some devices by using Accelerometer + gyroscope sensors.  

Next, we will look at Google Asus Nexus 7 and Sony Smartwatch 3, as specific 

cases, for more details on Android sensory capabilities. 

2.3.2.2. Google Asus Nexus 7 sensor specification 

Google Asus Nexus 7 can be used as an Android motion capture device. 

This device contains a sensor chip with 9-axis accelerometer, gyro and compass 

sensors, as well as other raw and synthetic sensors. We have used a sensor API 

to list out all the available sensors in a Nexus 7 tablet [7]. As detailed in Table 

2.2, we can use MPL accelerometer or linear acceleration sensor for sensor data 

collection before further processing to estimate velocity and position. 
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Sensor Name Vendor 

Details 

Use of Sensor 

MPL accelerometer InvenSense Measure Acceleration applied to devices including 

gravity 

AKM 

magnetometer 

AKM Measure magnetic field 

MPL gyroscope InvenSense Measure the rotation around axis 

Orientation Qualcomm Measure orientation combination of angle and axis  

Light sensor LSC Detect current ambient light 

Rotation Vector Qualcomm Measure orientation of device 

Gravity sensor Qualcomm Measure direction and magnitude of gravity 

Linear acceleration Qualcomm Measure acceleration excluding gravity 

 

Table 2. 2 List of Available Sensors 
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2.3.2.3. Nexus 7 Device Coordinate System 

Each motion sensor extracts a sensor data along one of its three coordinate 

axes. Following are details of sensor data coordinates and values for Nexus 7 

[4].  

1. X axis is horizontal with a positive value on right and negative on 

left. 

2. Y axis is vertical with a positive value upwards and negative value 

downwards. 

3. Z axis is positive values in front of the screen. 

 

Device coordinates do not change 

when the device is in portrait mode or 

landscape mode. Figure 2.2 displays the 

device coordinate system in Asus Nexus 

7 Tablet. 

 

 

 

2.3.2.4. Available Sensors in Sony Smartwatch 3 

We can conveniently use Android Sensor API to find out what sensors are 

available in Sony smartwatch 3 and its corresponding vendor. This information 

Figure 2. 2 Nexus 7 Device Coordinate System [7] 
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is obtained through sensor. getVendor () and sensor. getName () methods [7]. 

We will look at each motion-related sensor as has been listed in Table 2.3. 

   

Sensor Name Vendor 

Details 

Use of Sensor 

em8170 

accelerometer 

EM Micro Measure Acceleration applied to devices including 

gravity 

em8170 

magnetometer 

EM Micro Measure magnetic field 

em8170 gyroscope EM Micro Measure the rotation around axis 

em8170 quaternion EM Micro Represent orientation and rotation in three 

dimensional 

em8170 orientation EM Micro Measure orientation combination of angle and axis  

BH1721 Light sensor Rohm Detect current ambient light 

em8170 step counter EM Micro Count the number of steps by user 
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(i) Raw sensors: Accelerometer, magnetometer and gyro are the main three 

raw sensors available in Sony smartwatch 3 Android Wear. Brief 

descriptions of these sensors are below [4]. 

 

1. Accelerometer: Sony Smartwatch 3 contains a 6-Axis 

Accelerometer and gyroscope IMU, so each sensor provides 

data over 3 axes. Accelerometer sensor measures the 

acceleration along three axes. The measurement is reported 

towards X, Y, Z fields. Accelerometer measures both gravity 

and physical acceleration. For example, we can use 

accelerometer sensor data to analyze a hand movement 

which is of interest in sports, health and other fields. 

However, Accelerometer and gyroscope sensory data 

processing are necessary and complicated due to its dynamic 

em8170 step detector EM Micro Notify when user take a step 

em8170 tilt sensor EM Micro Measuring tilting in reference plane 

Gravity sensor AOSP Measure direction and magnitude of gravity 

Linear acceleration AOSP Measure acceleration excluding gravity 

Table 2. 3 List of Built-in Motion Sensors in Sony smartwatch 3 Android 

Wear 
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range, wide operation frequency, high sensitivity and noisy 

nature. 

2. Gyroscope: This sensor is used to measure rotation of the 

device around three axes. Rotation is positive towards 

counterclockwise direction which describes positive values 

of X, Y, Z field axes. The readings are calibrated using 

temperature compensation, factory scale compensation and 

online bias compensation. 

3. Magnetometer: This is a non-wake up sensor that reports the 

ambient magnetic field together with a hard iron calibration 

estimate. It can be used to produce synthetic sensors such as 

orientation and rotation vector sensors with collaboration of 

accelerometer and gyroscope. 

 

(ii) Synthetic sensors: linear acceleration, gravity and orientation sensors 

[4]. 

 

1. Linear acceleration: In Sony smartwatch 3, linear 

acceleration is provided by Android open source project 

(AOSP) which is developed using accelerometer and 

gyroscope (if present); otherwise, using accelerometer and 

magnetometer. Linear acceleration measures device 

acceleration force excluding gravity. In other words, you can 
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calculate linear acceleration by subtracting the output of 

gravity sensor from the output of accelerometer sensor. In 

this research, we will use the linear acceleration data to 

estimate the position trajectory which is further described in 

later chapter of this thesis. 

2. Gravity: This sensor is used to measure direction and 

magnitude of gravity in the device coordinate frame. When 

the device is on, gravity sensor readings are the same as 

Accelerometer sensor readings when at rest, around 9.8 

m/s^2. 

3. Orientation: This sensor is deprecated and produced using 

Accelerometer, Gyroscope and magnetometer raw sensors. 

It is used to measure azimuth (angle between magnetic north 

direction and the Y axis), pitch (rotation around X axis, with 

positive values when the Z axis moves towards the y axis) 

and roll (rotation around Y axis, with positive values when 

the X axis moves towards the Z axis) around the axis. 

 

2.3.2.5. Device Coordinate System in Sony Smartwatch 3 

In Sony Smartwatch 3, the 6-axis accelerometer and gyroscope, and 3-Axis 

magnetometer sensor hub reports values using the device coordinate system. 

The device coordinate system is depending on each type of device. Sony 
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Smartwatch 3 measures three-dimensional sensor reading using the following 

coordinate system which is when the device is viewed in default orientation [4]. 

1. X – Axis is horizontal with positive values on right and negative on 

left. 

2. Y – Axis is vertical with positive values on upwards and negative 

on downwards. 

3. Z – Axis is positive values in front of the screen. 

The coordinate system is fixed and not changed when the device goes from 

portrait to landscape mode. 

 

Figure 2. 3 Coordinate System in Sony Smartwatch 3 
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2.3.2.6. Sensor Performance: Sampling Rates & Accuracy 

1. Sampling Rate: Sampling rate is the average number of samples 

obtained per second by the sensor [4]. Higher sampling rate implies 

higher temporal resolution of the sensor, but at a cost of higher 

power consumption. Today’s MEMS sensors can provide a range of 

different sampling rates to fit different needs. Through the Sensor 

API, we can control the sampling rate by setting the inter-sample 

period. It also provides the corresponding Timestamp of the reading, 

a measurement in nanoseconds at which events occur. We can track 

the actual inter-sample time-interval for each measure by calculating 

the difference between successive timestamps. Sony smartwatch 3 

supports sampling rate up to 200 samples per second, which is 

equivalent to 5 milliseconds in average. However, we have observed 

that the actual inter-sample time-interval may be varying within a 

small range around 5 milliseconds. As a result, it is also important 

to track the actual inter-sample time-interval when we process the 

data to estimate velocity and position information. In our research, 

we have pushed the envelope of the sensory capabilities of the 

device, and operated it at its highest sampling rate in order to 

sufficiently capture the high-speed motions. However, it should be 

noted that it is not always necessary to operate at such a high rate. 

We should choose the appropriate operating rate based on the 

application’s need, and also consider the factors in battery usage, 
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storage and processing demand. A major challenge when operating 

at higher sampling rate was the potential data loss when sending and 

syncing a large amount of sensor data between Android handheld 

and Android Sony smartwatch 3. We will discuss the whole 

prototype to gain a higher sampling rate, solve the data loss problem 

and solve the synchronization issue in a later chapter of this thesis. 

 

2. Accuracy: Accuracy of the sensor can be measured by the difference 

between the actual value and the measurement obtained by the 

sensor [4]. High accuracy means the measured reading is very close 

to the actual value. Post-processing, like data filtering, can be 

applied to suppress the noise in the raw sensor data, and make 

estimate with enhanced accuracy and reliability. We have designed 

data filtering techniques to achieve improved accuracy and precision 

of motion tracking. 
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2.3.3. Network Connectivity 

Android Sony Smartwatch 3 provides power-efficient networking connectivity 

via 4.0 Bluetooth, Wi-Fi, GPS, NFC and USB [6]. Figure 2.4 illustrates how Sony 

smartwatch 3 connects as an IoT (Internet of Things) device through an Android 

handheld to the Cloud in order to transfer 

and sync a high volume of sensor data, to 

receive notifications, to send-receive 

messages, etc. 

 

 

 

 

 

2.4. Android Sensor Problems & Limitations 

In this section, we want to discuss the limitations and problems occurred when 

using raw sensor data extracted from Android Wear sensors. It is important to recognize 

and understand these issues when we develop Android based sensor system 

applications. 

1. Human Error and Systematic Error: Human errors are mistakes made by 

humans while reading or extracting sensor data from a device. Systematic 

Figure 2. 4 Interaction between Android Wear and Android Handheld devices 

[8] 

 

Figure 2. 5 Interaction between Android Wear and Android Handheld devices 

[8] 
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errors, e.g., a constant offset inside raw sensor data reading, may affect the 

accuracy of a measurement, if not properly handled [4].  

2. Random Noise: Random noise or errors, on the other hand, occur because 

there is a random noise inside raw sensor data measurement, and have to be 

handled differently, e.g., through statistical methods. Noise is an undesired, 

but unavoidable, signal present in the raw sensor signal. Without proper 

noise filtering, sensor raw data may appear meaningless. Various filtering 

techniques have been developed over the last century to deal with noise of 

different natures, such as white noise, Brownian noise, etc. [4]. 

3. Drift: Drift means some undesired data inside the raw sensor data that 

makes sensor raw data away from the correct values. Drift can happen due 

to sensor reading degrading over time. If we integrate sensor value, then 

there will be drift inside the integration result. There will be a constant value 

added to each iteration of the integration step which makes resulting sensor 

data reading drift away from the actual values [4]. 

4. Offset: When a device is in stationary situation, the value of motion sensor 

reading should be zero. Otherwise, there may exist an offset. For example, 

if device is not moving, then accelerometer sensor reading should actually 

looks like (0,0, -9.8 m/s^2). But, the measured sensor data is not exactly 

zero for x, y and -9.81 m/s^2 for Z axis due to bias or offset [4]. 

5. Sensor Time Delay and Data Loss: As we discussed earlier, higher sampling 

rate can capture higher-speed motion. But, at a higher sampling rate there 

may be increasing losses of data between two handheld and wearable. This 
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happens because Android is not a real-time operating system, and 

sometimes sensor delay may cause incorrect timestamp. 

6. Integration Errors: To estimate correct position of an Android Wear, we 

need to double integrate Linear acceleration sensor data, which may cause 

integration errors. Mainly, we observed the following two type of errors [5]. 

1. Acceleration Drift: When we estimate the position based on the 

acceleration data, each iteration of an integration may add constant 

offset into the resulting sensor data. This drift can be accumulated 

in the integration, which will result in a poor position estimate. 

2. Initial Conditions: To find positions based on acceleration, we may 

assume there is zero velocity and zero position initially. 

 

In chapter 3, we will present a motion capture and analysis prototype using an 

Android handheld device. Then in chapter 4, we will discuss a novel motion capture 

and analysis system using Android Wear smart watch and their sensor capabilities. 
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Chapter 3 

3. Prototype of a Stand-alone Motion Capture 

Device Using an Android Device 

In this chapter, we will describe the use of Android handheld devices as a 

motion capture device.  We will first review the sensor capabilities of Google Asus 

Nexus 7 Tablet device, and then our prototype and experimental studies. 

 

3.1. Prototype Workflows 

Figure 3.1 describes the workflow of our prototype of a stand-alone motion capture 

device that collects motion sensor data using an Android tablet. 

 

 

In this work, we have designed a prototype which can specify sampling rates and 

particular sensor type to capture data of interest in device coordinate systems and store 

Figure 3. 1 Workflow to collect sensor data from Asus Nexus 7 Tablet. 
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corresponding timestamps, three-dimensional sensor data into a Microsoft Excel (.csv) 

file. This file is then used for further data analytics. Our motivation behind this is to 

design a Kalman filter base sensor data filtering algorithm to filter tablet linear 

acceleration sensor data and evaluate velocity and position. Later, use that algorithm to 

filter watch sensor data 

3.2. Android Sensor API 

Android Sensor API classes can identify and extract sensor data from device 

hardware. In this prototype, we have used the following classes [4]: 

1. SensorManager: This class is used to create an instance of a sensor service, 

listing and identifying sensor list [7]. It is also used to register and unregister 

sensors. We can also set the sensor sampling rate and accuracy. Once sensor is 

registered, data will be extracted from the device hardware sensor chip. 

2. Sensor: This class is used to create an instance of a particular sensor and their 

capabilities [7]. Sensor used to get important information about maximum 

range, minimum and maximum delay between two sensor event, sensor Name, 

Power, Resolution, manufacturer (vendor) Name, type and version. 

3. SensorEventListener: It is used to receive notification when the sensor event is 

occurred [7]. This class provide information about sensor type, accuracy, 

timestamp, x, y, z three dimensional values array. When the event occurs, we 

are extracting accelerometer or linear acceleration sensor data timestamp and x, 

y, z values stored as one string for one event or sample [7]. 
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1. Accuracy: describe sensor accuracy which refers to what percentage of 

sensor reliability or trust ability which is not in terms of reading are 

closely to the actual physical value or not. 

2. Timestamp: Timestamp is a time generate at the time of the event occurs 

or sensor data value has changed which is in nanoseconds. But, later we 

are converting into milliseconds to find object position. 

3. Sensor Values: As we discussed, device coordinates values for 

acceleration and linear acceleration sensor data. Values contains x, y, z 

three dimensional values. 

 

3.2.1. Adjusting Sampling Rate 

Sampling rate or sensor rates means number of sensor data samples extracting 

per second from Google Nexus 7. Sensormanager is used to register a sensor listener. 

So, after we register a sensor event listener for a given sampling frequency for a 

particular sensor, as soon as the sensor data becomes available from the hardware 

sensor, the event will be generated. Followings are the predefined rates in Android 

sensor API: SENSOR_DELAY_NORMAL, SENSOR_DELAY_UI, 

SENSOR_DELAY_FASTEST, SENSOR_DELAY_GAME [7]. However, it should be 

stressed that event may be delivered faster or slower than the specified rate due to the 

lack of strong real-time support in Android OS. Applications may choose different 

sampling rates, depending on its need. In our initial testing experiments, we have tested 

two parameters SENSOR_DELAY_NORMAL and SENSOR_DELAY_FASTEST for 

Nexus 7. 
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Alternatively, we can directly set the desired sensor delay between two sensor 

events (i.e., inter-sample time-interval) in microseconds for Android API level 9 and 

onwards which works for android Nexus 7 [7].  

3.3. Capture Sensor Data 

We have designed an Android application that selects sensor type between 

Acceleration and linear acceleration sensor and then chooses sampling rates 

SENSOR_DELAY_NORMAL, SENSOR_DELAY_FASTEST, or, alternatively, we 

can specify a sensor delay value in a microsecond. Fig. 3.2. shows the app GUI. 

 

 

 

Figure 3. 2 Nexus 7 Android Prototype 
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3.4. Data Storage 

According to our prototype sensor data which contains timestamp, three 

dimensional x, y, z values automatically store into a Microsoft Excel (.csv) file inside 

a tablet SD card. File storage is used to plot sensor data in graphical format as well as 

for further processing in sensor filtering and velocity, position estimation. 

 

3.5. Experimental Studies 

With this prototype, our goal is to demonstrate the various sampling rate 

capabilities and data sensory data quality and appropriate post-processing. We have 

carried out experiments for two different cases: i) when device is stably rested on a 

table, and ii) when device is in motion. We used SENSOR_DELAY_NORMAL sensor 

rates which is extract sensor data every 200 milliseconds, i.e., 5 samples per second. 

Figure 3.3 presents the timestamp and sensor data for the Y-axis for case (i). 

Timestamp is given in milliseconds and linear acceleration sensor data on the Y-axis is 

in m/s^2. The inter-sample time-interval is calculated by the timestamp difference 

between two successive sensor events. 
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Figure 3. 3 Timestamp vs linear acceleration sensor data (200 milliseconds 

sensor rate) 

 

For our purpose to estimate accurate velocity and position, it requires higher sampling 

rates at 100+ sample per second. Thus, we have started from 

SENSOR_DELAY_FASTEST which produce sensor samples around every 5 

milliseconds. Figure 3.4 shows timestamp and sensor data on the Y axis with 5ms 

sensor rate. 

184494659

184494860

184495062

184495263

184495465

184495666

184495867
184496069

184496270

184496472

184496673

184496875

184497076

184497277

184497479

184497680

184497882

184498083

184498284

184498486

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

1
8

4
4

9
4

4
0

0

1
8

4
4

9
4

6
0

0

1
8

4
4

9
4

8
0

0

1
8

4
4

9
5

0
0

0

1
8

4
4

9
5

2
0

0

1
8

4
4

9
5

4
0

0

1
8

4
4

9
5

6
0

0

1
8

4
4

9
5

8
0

0

1
8

4
4

9
6

0
0

0

1
8

4
4

9
6

2
0

0

1
8

4
4

9
6

4
0

0

1
8

4
4

9
6

6
0

0

1
8

4
4

9
6

8
0

0

1
8

4
4

9
7

0
0

0

1
8

4
4

9
7

2
0

0

1
8

4
4

9
7

4
0

0

1
8

4
4

9
7

6
0

0

1
8

4
4

9
7

8
0

0

1
8

4
4

9
8

0
0

0

1
8

4
4

9
8

2
0

0

1
8

4
4

9
8

4
0

0

1
8

4
4

9
8

6
0

0

1
8

4
4

9
8

8
0

0

Inter-sample time-interval (200 ms)



31 

 

 

Figure 3. 4 Timestamp vs linear acceleration sensor data (5 milliseconds 

sensor rate) 

However, 5 milliseconds appeared too high to produce stabilized samples sometimes. 

So, in our experiment, we set it to 10 milliseconds by explicitly entering the fixed 

sensor delay value in microseconds in our prototype. Figure 3.5 illustrates timestamp 

and sensor data on the Y axis with nearly 10ms sensor rate. Timestamp in milliseconds 

and linear acceleration sensor data on the Y axis in m/s^2. 
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Figure 3. 5 Timestamp vs linear acceleration sensor data (10 milliseconds 

sensor rate) 

 

3.5.1. Using Accelerometer Sensor 

In Asus Nexus 7, the accelerometer sensor extract acceleration data with gravity 

portion which is exactly similar to the Sony smartwatch 3 but, the only difference is in 

Nexus 7 accelerometer, the sensor vendor is InvenSense. Figure 3.6 indicates 

acceleration sensor data captured from ASUS Nexus 7 when the device is stable on the 

table. So, the motion sensor data is closed to zero. Because of sensor errors, these data 

are not exactly zero. Z axis measures acceleration with gravity so it is close to 9.8 m/s^2 

[7]. 
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Figure 3. 6 Acceleration sensor data Series1-X Series2-Y Series3-Z 

 

Figure 3.7 indicates acceleration sensor data captured from Asus Nexus 7 when the 

device is moving. Data is captured around x, y and z axes. Z axis values are close to 

9.8 m/s^2 because of gravity included inside the acceleration. 

 

Figure 3. 7 Acceleration sensor data around device Y coordinate 
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3.5.2. Using Linear acceleration Sensor 

Asus Nexus 7 linear acceleration sensor is similar to the Sony smartwatch 3 but 

the only difference is in Nexus 7 linear acceleration, the sensor hardware designed by 

Qualcomm. So, this sensor does not work as a secondary sensor which is exactly 

working as a raw sensor. Figure 3.8 indicates linear acceleration sensor data captured 

from Asus Nexus 7 when the device is stable on the table. So, the motion sensor data 

is closed to zero. Because of sensor errors, these data are not exactly zero. 

 

Figure 3. 8 Linear acceleration sensor data around device coordinates 

 

Figure 3.9 shows linear acceleration sensor data captured from Asus Nexus 7 when the 

device is moving. One can clearly see the acceleration motion increasing and 

decreasing when device is moving otherwise motion values are close to zero. 
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Figure 3. 9 Linear acceleration sensor data around device Y coordinate 

 

In summary, in this chapter we introduced prototypes to collect raw sensor data 

using the Android Nexus 7 tablet. With the prototype system, we have collected the 

acceleration and linear acceleration sensor data and observed their noisy properties. 

This clearly shows the need for data processing to further enhance the accuracy of the 

motion data which we will discuss in Chapter 5. 
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Chapter 4 

4. Sensor-Web based Cloud Solution and Prototype 

Designs 

In this chapter, we will present our prototype design and describe the techniques to 

capture sensor data from an Android Wear motion capture device, and then transfer 

and store the collected data into the Cloud. The main goal of this research is to present 

a framework that enables large amount of networked sensors to collect and transfer 

data into the Cloud for real-time big data analytics and distributed collaborations. 
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4.1. Graphical Representation of Cloud based 

Prototype  

 

Figure 4. 1 Describe flow of our sensor-web based system prototype 

 

Above, workflow describes the step-by-step work-flow of sending and 

synchronizing huge sensor data between Android handheld and Android Wearable 

device through Android Wearable APIs. It also provides mobile and cloud data 

connectivity to accommodate further sensor data storage and analytics. 

4.2. Sony Smartwatch 3 Sensors  

We have discussed in the previous chapter about all kind of built-in sensors 

available in the Sony smartwatch 3. In this work, in order to estimate object 
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positions/motions, we will collect data from the following sensors from Android Wear. 

We have used both acceleration sensor data and linear acceleration sensor data [4]. 

1. Raw Sensors: Sensor.TYPE_ACCELEROMETER 

As we discussed in an earlier chapter, accelerometer sensor in the Sony 

smartwatch 3 measures acceleration applied to the device including the force of gravity. 

Sony smartwatch 3 measure acceleration along the device coordination system: X, Y 

and Z. During our initial testing experiments with Sony smartwatch 3 acceleration 

sensor, we observed that, when the watch rests stably on a table and with no 

acceleration, the X and Y axis acceleration readings are very close to zero while Z axis 

closely measure the force of gravity, which is 9.81 m/s^2. If one moves the watch 

toward its right, X acceleration value is positive; if one move the watch away from you, 

Y acceleration value is positive; and if one move the watch up towards the sky, Z 

acceleration value is positive. 

Figure 4.2 presents the acceleration sensor data towards X, Y, Z axes when the 

watch rests stable on a table. We can clearly see that the Z-axis accelerations stay close 

to 9.8 m/s^2 because of gravity, while the other 2 axis accelerations are close to zero. 

It is also clear the sensor readings are noisy, which is as expected. Figure 4.3 presents 

the acceleration motion sensor data along the X, Y, Z axes when the watch is moving. 
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Figure 4. 2 Acceleration sensor data with all coordinates 

 

 

Figure 4. 3 Acceleration sensor data with all coordinates 
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2. Synthetic Sensor: Sensor.TYPE_LINEAR_ACCELERATION 

In the Sony smartwatch 3, linear acceleration sensor is a synthetic sensor and is 

provided by AOSP (Android open source project). It measures the actual acceleration 

without gravity along the device 3-axis coordinate system. Linear acceleration sensor 

can also be used for further processing to estimate device position. Linear acceleration 

works the same as acceleration. Their only difference is the gravity. All measurements 

are in m/s^2 SI unit. One disadvantage of linear acceleration sensor is its offset, which 

we need to remove before using for further motion/position estimation. 

In our prototype, we have designed lowpass-highpass filter solutions to filter 

out the gravity effect component from the acceleration raw data and to produce linear 

acceleration for our further processing. 

We conclude that accelerometer sensor in Sony smartwatch 3 Android Wear is 

sufficient for measuring motion data to meet our need in this work. We will use the 

accelerometer sensor data to do further processing to estimate device position data.  

4.3. Android Wear Sensor API 

Android Wear Sensor API classes can identify and extract sensor data from device 

hardware. In this prototype, we have used the following classes [4]. 

1. SensorManager: This class is used to create an instance of a sensor service, 

listing and identifying sensor list [7]. It is also used to register and unregister 

sensors. We can also set the sensor sampling rate and accuracy. Once the sensor 

is registered data will be extracted from the device hardware sensor chip. 
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2. Sensor: This class is used to create an instance of a particular sensor and their 

capabilities. Sensor is used to get important information about maximum range, 

minimum and maximum delay between two sensor event, sensor Name, Power, 

Resolution, manufacturer (vendor) Name, type and version 

3. SensorEventListener: It is used to receive notifications when the sensor event 

has occurred. This class provide information about sensor type, accuracy, 

timestamp, X, Y, Z three-dimensional values array. When the event occurs, we 

are extracting accelerometer or linear acceleration sensor data timestamp and 

X, Y, Z values stored as one string for one event or sample. 

1. Accuracy: describe sensor accuracy which refers to what percentage of 

sensor reliability or trust ability, which is not in terms of reading are 

closely to actual physical value or not. 

2. Timestamp: Timestamp is a time generated at the time of the event or 

sensor data value changed which is in nanoseconds. But, later we are 

converting into milliseconds to find object position. 

4. Sensor Values: As we discussed, the device coordinates values for 

acceleration and linear acceleration sensor data. Values contains X, Y, Z 

three dimensional values. 

4.3.1. Adjusting Sampling Rate 

Sampling rates or sensor rates means the number of sensor data samples 

extracting per second from Sony smartwatch 3. Sensormanager is used to register a 

sensor listener. So, after we register a sensor event listener for a given sampling 

frequency for a particular sensor, as soon as the sensor data become available from 
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hardware sensor, the event will be generated. Followings are the predefined rates in 

Android sensor API: SENSOR_DELAY_NORMAL, SENSOR_DELAY_UI, 

SENSOR_DELAY_FASTEST, SENSOR_DELAY_GAME. However, it should be 

stressed that event maybe delivered faster or slower than the specified rate due to the 

lack of strong real-time support in Android OS. Applications may choose different 

sampling rate, depending on its need. In our initial testing experiments, we have tested 

two parameters SENSOR_DELAY_NORMAL and SENSOR_DELAY_FASTEST for 

Sony smartwatch 3. As shown, in Fig. 4.4 and 4.5, we have received sensor data every 

60 milliseconds and 5 milliseconds, respectively. The inter-sample time-interval is 

calculated by the timestamp difference between two successive sensor events. 

For our purpose to estimate accurate velocity and position, it requires higher 

sampling rates at 100+ sample per second. Thus, we have started from 

SENSOR_DELAY_FASTEST which produce sensor samples around every 5 

milliseconds. However, 5 milliseconds appeared too high to produce stabilized samples 

sometimes. So, in our experiment, we set it to 7 milliseconds as shown in Fig. 4.6. 

Alternatively, we can directly set the desired sensor delay between two sensor 

events (i.e., inter-sample time-interval) in microseconds for Android API level 9 and 

onwards which works for Android Wear Sony smartwatch 3. 
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Figure 4. 4 Acceleration sensor data with 60 milliseconds sampling rate 

 

 

 

 

Figure 4. 5 Acceleration sensor data with 5 milliseconds sampling rate 
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Figure 4. 6 Acceleration sensor data with 7 milliseconds sampling rate 
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then will send an actuation message to the Android Wearable watch to notify the 
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4.4.1. Established Connection between Android 

Handheld and Android Wearable 

As we discussed in the earlier chapter, 

Sony smartwatch 3 provides connectivity 

with other devices through Bluetooth 4.0. We 

use Android Studio IDE (Integrated 

development environment), Android Wear 

SDK (Software development kit) version 4.4 

or later, and Android handheld SDK version 

4.3 or later. Together, they provide us with 

the development environment and required 

libraries. Figure 4.7 shows that a successful 

connection has been established between 

Asus Nexus 7 and Sony smartwatch 3 by 

pairing, and both devices are ready to 

debugging over Bluetooth. After pairing Android Wearable with a handheld, the next 

step is to establish debugging over Bluetooth. This is completed by enabling USB 

debugging on the Android handheld device, and enabling ADB debugging and Debug 

over Bluetooth on the Android Wearable [9]. 

Following are the steps to correctly set up a Debugging Session [9]. 

1. Open the Android Wear Companion App. 

2. Android handheld is connected with machine through USB. 

3. Go to Android sdk platform tools and run following commands. 

Figure 4. 7 The Bluetooth 

connection between the two nodes 
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We can use any available port number to connect Android Wear device.  

adb forward tcp:4444 localabstract:/adb-hub 

adb connect 127.0.0.1:4444 

4. In the companion app, if both Host and Target are connected then we 

successfully established connection between Android Wear and handheld 

for development purpose. 

 

4.4.2. Sending and Syncing Sensor Data between 

Android Wear and Android Handheld 

We will use Android Wear APIs to synchronize data between the Sony 

smartwatch 3, as a motion-capturing device, and the Nexus 7 Android Tablet, as a base 

station. In this section, we discuss our interaction and messaging protocols. 
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As illustrated in Fig. 4.1, for the actuation interactions, the operator will control 

the start and stop of a sensor activity by tapping on the Android handheld, which then 

will send an actuation message to Android Wear to notify the start/stop of a sensor 

service. In our prototype, as shown in the 

Fig. 4.8 The START TO SYNC DATA 

button is tapped to send a message from 

android handheld application to Sony 

smartwatch 3 to start collecting data, while 

STOP TO SYNC DATA button is tapped 

to send message from android handheld 

application to Sony smartwatch 3 to stop 

collecting data. We have used Android 

Wear Node and Message APIs to 

implement this messaging function. 

 

 

4.4.2.1. Android Wear Node API 

Before sending any message in a mobile/distributed environment, we first 

have to identify the local and the connected nodes. In Android Wear, Node API 

is used to identify local as well as all the connected nodes, such that we can 

deliver one message to all or one particular connected node [8]. 

Figure 4. 8 Android handheld application 

design 
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4.4.2.2. Android Wear Message API 

Android Wear worked in a way similar to RPC (Remote Procedure Call) 

which is used to request a service from another node or network [8]. Two items 

are attached with the message [11]. 

1. A path that uniquely identifies the message’s action. 

2. Message details. 

A unique path is 

important because 

multiple devices 

may connect with a 

user’s handheld 

device 

simultaneously. 

Each connected 

device is considered 

as one slave node 

and has to be 

uniquely identified. In Android Wear Message, nodes are distinguished from 

each other through its unique path. As illustrated in Fig. 4.9, once a paired 

device is identified through Node API, the Android handheld can send a 

message to that node. On the other hand, on the watch, Message API is again 

used to receive the messages from the Android handheld. We will use a 

concurrent thread running in parallel for synchronous communication. Thread 

Figure 4. 9 Message transmission between two nodes 
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is a lightweight process used to perform a task in parallel and provide 

concurrency within the process. 

 

4.4.2.3. Solution of data loss happens when higher sampling 

rate 

Initially we had built a prototype that uses a 60 milliseconds sampling delay 

to collect sensor data and simultaneously send the sensor data sample to the 

handheld side through parallel thread. The system worked without any issue. 

However, when we lifted the sampling rate higher, we observed frequent data 

loss. This was due to the resources consumed by the increasing number of 

threads running in parallel when the sensor events became much more frequent. 

To address this issue, we redesign the data transfer protocols to limit the 

number of concurrent threads. Instead of processing and sending the sensor data 

upon the notification of each sensor event, we make use of local storage at the 

watch by cumulating multiple samples of sensor readings and then making one 

packet to send to the handheld from the watch. We make use of the Android 

Data Item API to manage the storage and synchronize sensor data between the 

nodes. Data Item consists of following entities [10]: 

1. DataMap: Datamap is a key-value pair data structure contains a key 

which represents datamap and value contains 20 samples buffer. It 

works as a byte array and the limitation of dataitem API is 100 KB of 

data storage while sending and syncing; 
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2. Path: A unique path to identify the node on other side. 

 

 

Figure 4. 10 Syncing data from Android Wear to handheld through DataItem. 

 

As illustrated in Fig. 4.10, extracted sensor data from Android Wear are 

first locally stored into DataMap, and then, in groups, sent to Android handheld 

in real-time. The number of samples being grouped together has to be carefully 

considered in order to limit the transfer delay for real-time applications. On the 

other hand, the receiver at the handheld will extract the data from DataMap and 

store it into the local database. 
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4.5. Interaction Between Android and the Cloud 

Android handheld receives sensor data and then save the data to its local SQLite 

database for storage purpose. As illustrated in Fig. 4.1, in order to augment the sensory 

system processing and storage capabilities, we will attach the sensor system to the 

cloud to construct a sensor web system. To sync data to the cloud-based service, we 

will use the Android asynchronous task APIs which will send data to the cloud 

concurrently in the background, whereas the main process is simultaneously receiving 

sensor data from the Android Wear. Moreover, the sensor-web based cloud-solution 

has the following advantages: 

1. Easily synchronize large amount of sensor data between local storage and 

cloud storage. 

2. Accessible from anywhere and anytime for any authorized applications. 

3. Able to perform efficient insert, update, delete and extract operations for 

sensor data use. 

4. Can support potentially large number of sensor systems simultaneously by 

using transactions to deal with concurrency control in the common dataset 

accesses. 

5. Provide unlimited computing power for further sensor data Analytics and 

processing. 

6. Provide Data Backup and recovery facility in face of failures. 

7. More secure, scalability, reliable and cost-efficient. 
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4.6. Prototype Advantages 

Throughout this chapter, we discussed our prototype to collect sensor data at real-

time from Sony smartwatch 3 and store it into cloud database. Following are the 

advantages and results of this prototype. 

1. Successfully sending and syncing large amount of sensor data between 

Android Wear and android handheld device. 

2. Extracting a raw Accelerometer sensor data in real-time from Android 

Wear. 

3. Avoid data loss issue. 

4. Provide local as well as cloud storage solution to store big sensor data for 

further data analytics purpose. 

5. User can wear android Sony smartwatch 3 and connect with android 

handheld, through this prototype capture motion sensor data and store into 

cloud to further process to measure acceleration, velocity and position data 

of user movement. 
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Chapter 5 

5. Estimate Acceleration, velocity and Position 

through sensor data Filtering techniques 

In this chapter, we will discuss sensor data noise and errors, and present our cloud-

based sensory data processing techniques in detail. Specifically, we will start with 

discussing the sensor noise and errors presented in raw sensor data, and then provide a 

Kalman filter based signal estimation solution to obtain enhanced-precision 

acceleration, velocity and position data by mitigating the noisy effect of acceleration 

sensor, and the cumulative errors during the integration process to obtain velocity and 

position. 

5.1. Observed Problems in Collected Sensory Data 

 

Figure 5. 1 Linear acceleration Sensor Y Axis raw noisy data with errors. 
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As illustrated in Figure 5.1, Linear acceleration raw sensor data collected from Google 

Nexus 7 may be effected by the following errors [4]. 

5.1.1. Raw Sensor Data Errors 

Major errors observed in the raw sensor data include: 

1. Noise: As shown in Fig. 5.1, linear acceleration sensor data are clearly 

noisy. Noise is a random fluctuation of measured sensor data and carries no 

useful information, which has to be removed by processing in order to 

obtain the actual data of interest. For motion sensor, noisy sensor data may 

be caused by vibration, temperatures, etc. So, without proper filtering, this 

kind of undesirable signal sensor data produce inaccurate results of 

acceleration, velocity and position. 

2. Drift: Drift moves sensor data away from the real value. Linear acceleration 

raw sensor data has drift in its readings. Drift may be occurring due to sensor 

degradation occurring over time. Also drift is presented after integrating 

acceleration data to obtain velocity and then positions.  

3. Offset or Bias: Linear acceleration raw sensor data always has an offset 

inside that, as illustrated in Fig. 5.2. Clearly, sensor data x, y, z axes values 

are not exactly zero when at rest on a table, indicating constant offset in the 

readings. 
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Figure 5. 2 Linear acceleration Data with Offset/Bias Error 

 

5.1.2. Integration Errors 

Initially, we tried to integrate raw linear acceleration sensor data to get velocity 

and again through integration to find position. Unfortunately, the initial experimental 

results are not accurate because of following reasons [5]: 

1. Linear acceleration sensor data has drift inside, resulting in distorted 

estimates when we integrate them to generate velocity. In such cases, even 

a small offset will cumulate at each iteration of integration to make data 

drift away from real value quickly. 

2. The Sampling rate of motion sensors is not consistent through the 

experiment, resulting in a mismatch when the processing algorithm assume 

the same inter-sample delays. Furthermore, for fast motion, a low sampling 

rate limits its capabilities to track the fast movement. This requires the use 

of a higher sampling rate, which, unfortunately, causes even more 

fluctuations in the sampling rate.   
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3. To use linear acceleration sensor data to calculate velocity and position, we 

must know the initial velocity and position which cannot be made available 

through the motion sensors alone. 

5.2. Overview of Solution 

In this section, we have designed two filtering techniques low-pass/high-pass 

filtering and Kalman filter techniques. Low-pass/high pass filtering is used to remove 

gravity component from collected raw acceleration sensor data [12]. Kalman filter is 

used to mitigate the random noise and estimate the corresponding acceleration, velocity 

and position from the filtered acceleration sensor data [13]. 

5.3. Low Pass/High Pass Filter 

In our Sony smartwatch 3 based sensor data collection prototype, acceleration 

sensor readings include the gravity. So, we have used low-pass/high-pass filter to filter 

out the gravity effects from raw acceleration sensor data [12]. Specifically, low pass 

filter is used to identify the force of gravity and then high pass filter is used to subtract 

that gravity data from raw acceleration sensor data. Here we are producing synthetic 

linear acceleration sensor using raw acceleration sensor data and the filtering technique.  
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Figure 5. 3 Block Diagram of Low-pass and High-pass Filtering 

 

Low-pass filter passes signal with the frequency lower than the cut-off 

frequency. To choose cut-off frequency we are using α parameter. The α value is 

calculated by the following formula [12]. 

α = t / (t + dt),  

Where t is the low-pass filter time constant and dt is the sampling rate. When 

filtering Sony smartwatch 3 sensor data, dt (sampling rate) is around 5 milliseconds, 

and t depends on the latency the filter adds into the sensor event, which is 20 

milliseconds. As a result, α = 0.83f in our case to identify gravity from raw acceleration 

sensor data. 

Once gravity is identified by the low-pass filter, the high-pass filter is used to 

remove it from raw acceleration data. High pass filter passes signals with frequency 

above the cutoff frequency. Here we are using this filter to subtract from raw data. Fig. 
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5.4 presents the raw acceleration sensor data and linear acceleration sensor data 

produced by the low-pass/high-pass filter. 

 

Figure 5. 4 Linear acceleration Data before and After Low-pass High-pass 

Filtering 

 

5.4. Kalman Filter based De-noising and Motion 

Data Estimation 

We have designed Kalman filter-based sensor data analytics prototype running in 

the cloud to filter sensor noise and drift, remove and/or minimize sensor and integration 

errors in order to calculate acceleration, velocity and position. Figure 5.5 presents the 

workflow of our system operations in detail. 
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Figure 5. 5 Workflow of acceleration, velocity and position estimation using 

Kalman Filter 

 

5.4.1. Calibration Step to Remove an Offset 

As we discussed earlier, even when the device is stable on the table, the 

observed x, y, z coordinates sensor readings are not exactly or close to zero due to the 

offset within the linear acceleration sensor data. We have to remove it to obtain the 

correct measures. Moreover, without removing the offset, the cumulative nature of the 

integration steps to calculate the velocity and position will further worsen the problem 

and lead to in-correct results. Thus, we have designed techniques to remove an offset 

from raw sensor data [4]. In our prototype, we have applied the following steps to 

remove an offset. 

1. Take a number of samples while the device is static. 

2. Estimate the offset at each axes x, y and z based on the collected samples. 
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3. Then subtract the corresponding estimated offset from each measured value 

at the particular axis. 

Figure 5.6 presents the sensor data before and after performing calibration.  

 

Figure 5. 6 Linear acceleration Sensor Y Axis sensor data before and after 

removing Offset 

 

5.4.2. Kalman Filter 

We have started with using simple low pass filter to denoise the collected data. 

However, the performance is very limited. So, we decided to investigate the 

performance of using Kalman filter for motion data processing. Kalman filter is a data 

processing algorithm that filter out noisy sensor data and produce improved estimate 

of data being observed, which has been widely used in digital signal processing [13]. 

It is generally more complicated processing algorithm compared to other low-pass 

filtering algorithm, resulting in higher computation demand, particularly for high-

dimensional signal processing applications. However, this is not of major concern for 
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our application as our motion data are of limited dimensions and we only have to deal 

with limited order of matrices. Furthermore, we have designed a multi-staged Kalman 

filtering approach to further reduce the computational complexity. Our prototype 

implementation and experimental studies have demonstrated it as highly suitable for 

real-time processing. 

5.4.2.1. Implementing Kalman Filter 

Kalman filter can be used to predict the state of a system when there is a lot 

of noise in the input sensor data. To implement the Kalman filter, we need to 

understand all the matrices, parameters and their effect on removing noise and 

correct error, thus producing more accurate results. In particular, we apply the 

Kalman filter based algorithm to filter out noisy linear acceleration sensor data 

to get an accurate acceleration. We also apply the Kalman filter to filter and 

minimize integration errors after each integration in our algorithm to calculate 

the corresponding velocity and position. 

We have designed a three-dimensional Kalman filter to filter out noise over 

all the three coordinates. To implement the three dimensional Kalman filter, we 

follow these two steps: prediction and corrections [13]. Each step involves 

different matrix operations as described below [13]. 

1. Prediction Step: Projecting the state ahead of your current stage is called 

prediction. For instance, when one wants to filter the acceleration, 

velocity or position data, first this step will be called: 
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X0 = F. times(X). plus (B. times(U)); 

P0 = F. times(P). times (F. transpose ()). plus(Q); 

2. Correction Step: We will pass the measurement matrix or input sensor 

data output from previous prediction step to our algorithmic workflow, 

producing an accurate estimate of the corresponding motion state as the 

output. 

Matrix S = H. times(P0). times (H. transpose ()). plus(R); 

Matrix K = P0. times (H. transpose ()). times (Inverse ()); 

Matrix Y = Z. minus (H. times(X0)); 

X = X0. plus (K. times(Y)); 

Matrix I = Matrix. Identity (3,3); 

P = (I. Minus (K. times(H))). times(P0); 

Below is a description about each matrix and parameter used in the 

above equations. Also, all the values of these matrices and parameters 

we have selected based on our experimental results. 

  F - state transition matrix  

X -  state vector 

B -  input gain or control input matrix 

U - input vector 

P - error covariance matrix 

Q - process noise covariance matrix 

  X0 and P0 - output of prediction step 

H - measurement matrix 

R – measurement noise covariance matrix 

Z - measurement vector as an input unfiltered sensor data 

S, K, Y - intermediate matrices variables to store equations output value for 

further usage. 
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5.4.2.2. Selecting the Kalman Filter Parameters 

Initially, we have used 6x6 (combination of either acceleration & velocity, 

or velocity & position) and 9x9 (combination of acceleration & velocity & 

position) Kalman filter. However, after checking all cases, we have reached to 

a 3-stage 3x3 (progressively, in the order of acceleration, velocity, position) 

Kalman filter design. Following are the values and parameters used for the 

matrices and vectors [13]. 

1. F - The state transition matrix is a 3 rows and 3 columns matrix which 

initially set to {{1,0,0}, {0,1,0}, {0,0,1}}. 

2. X - The state vector represents the output of the Kalman filter after each 

correction step and is further used to predict the next state value and 

correct the next sensor data samples. The state vector is initialized to 

all-zero vector and then updated every time in the Kalman filter process. 

For instance, the initial value of this vector is {0,0,0} which is indicate 

of {Ax, Ay, Az} – the accelerations along X, Y, Z axes. Then its values 

are updated accordingly at each filtering round.  

3. B – The input gain or control input matrix which is set to 3x3 identity 

matrix. 

4. U - The input vector which is set to {0,0,0}. 

5. P – The error covariance matrix initially set to 3x3 identity matrix. P is 

updated at each round for the estimated error. 

6. H – The measurement matrix which is 3x3 identity matrix. 
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7. Z – The measurement vector as an input unfiltered sensor data. This 

vector works as an input sensor data. Pass the input sensor data sample 

x, y, z as a measurement vector in the Kalman filter correction step. 

8. Q - Process noise covariance matrix which is a 3x3 matrix that 

characterizes the process noise. 

9. R – The measurement noise covariance matrix which is a 3x3 matrix 

that characterizes the sensor noise. 

10. K – The Kalman gain in above equation. 

 

5.4.2.3. Selecting the Kalman Filter Parameters for Linear 

acceleration Data 

Now, we will look at the Kalman-filtered linear acceleration data with 

different values of Q and R [14]. It is a challenge to choose the appropriate 

values for process noise Q and covariance noise R. However, sensor data 

smoothing and accuracy is sensitive to and depending on proper choices of Q 

and R matrices.  

In our following experiment assessment, we have used different value 

settings for the Kalman filter, and presents the results in Fig. 5.7-10, and 

conclude that the values of, Q = 0.0625 and R = 4, have shown the best 

performance, which will set [14]:  

Q matrix = {{0.0625,0,0}, {0,0.0625,0}, {0,0,0.0625}; 

R matrix = {{4,0,0}, {0,4,0}, {0,0,4}}.  
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    First, Figure 5.7 presents the filtering results with Q = 128 and R = 10. 

1. Q = 128 and R = 10 

 

Figure 5. 7 Linear acceleration Sensor Y Axis sensor data filtering with 

Q=128 and R=10 

 

There is no impact on the data by the filtering. Both original and after 

filtering sensor data are the same. Then, we reduce Q to 4. 

2. Q = 4 and R = 10 

As shown in Fig. 5.7, the Kalman filter with the new setting show 

improved de-noising performance, but still significant noise exists. 

Then, we continue the trend and set the values to (Q = 0.125 or 0.0625). 

As shown in Fig. 5.8 and 5.9, the decreasing value of Q lead to smoother 

results in the sensor data. However, we also can observe increasing lag 

between the actual sensor readings and the filtered results, which may 

cause unnecessarily high latency in the tracking system. 
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Figure 5. 8 Linear acceleration Sensor Y Axis sensor data filtering with Q=4 

and R=10 

3. Q = 0.125 and R = 10 

 

Figure 5. 9 Linear acceleration Sensor Y Axis sensor data filtering with 

Q=0.125 and R=10 
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4. Q = 0.0625 and R = 10 

 

Figure 5. 10 Linear acceleration Sensor Y Axis sensor data filtering with 

Q=0.0625 and R=10 

 

To limit the lag between the actual sensor readings and the filtered 

results, we reduce the value of R to give more weight to the actual sensor 

samples in the filtering process. As shown in Fig. 5.11, the resulting data 

show a better balance between the de-noising and the sensor samplings 

as the filtered curve follows more closely with the actual readings both 

temporally and amplitude-wise. 

5. Q= 0.0625 and R = 4 
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Figure 5. 11 Linear acceleration Sensor Y Axis sensor data filtering with 

Q=0.0625 and R=4 

 

5.4.3. Filter Linear acceleration through the Kalman 

Filter 

Based on these comparison results, we have decided to use the following 

settings for the Kalman filter when processing the linear acceleration sensor data in our 

work: Q = 0.0625 and R = 4, which has shown the best performance and set: 

Q matrix = {{0.0625,0,0}, {0,0.0625,0}, {0,0,0.0625}; 

R matrix = {{4,0,0}, {0,4,0}, {0,0,4}}.  
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5.4.4. Estimate the Velocity 

To estimate the velocity from the linear acceleration data, we have to follow the 

mathematical integration process. We have developed the following formulas. 

   Equations: 

Velocity data Calculation: 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑥 =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑥 + 𝐿𝑖𝑛𝑒𝑎𝑟_𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑥 * dt; 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑦 =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑦 + 𝐿𝑖𝑛𝑒𝑎𝑟_𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑦 * dt; 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑧 =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑧 + 𝐿𝑖𝑛𝑒𝑎𝑟_𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑧 * dt; 

where,  

dt = current timestamp - previous timestamp. 

Before applying this formula, linear acceleration sensor data must be drift- and 

sensor noise-free; otherwise, such integration process may amply such drift and noise 

to distort the results. To reduce this effect, we have used the Kalman filter solution 

before the integration step. Furthermore, after every integration step, the integration 

error can again be suppressed using the Kalman filter at the velocity-level. Another 

potential problem is the initial values of velocity. Here, the initial velocity is unknown 

to the motion sensors, so we can assume initial velocity as zero, which is reasonable as 

the object in applications under consideration always starts from a stationary state. In 

this section, we perform the analysis using the same dataset as shown in Figure 5.6-11. 
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5.4.4.1. Effects of Sampling rate on Velocity Estimation 

As shown in the above formula to calculate velocity, we obtain the dt from 

the timestamps. Timestamp is a value in nanoseconds when the sensor event is 

generated. So, we will convert timestamp from nanoseconds to seconds, then 

find the difference between two successive timestamps. We will get velocity in 

meter per second. The choice of sampling rate is an important factor in 

integration. Higher sampling rate means small step-size and higher granularity, 

leading to more accurate integration results. For instance, if the sampling rate 

is low (for example: - 200 milliseconds or 60 milliseconds), then the sensor data 

multiply with larger value, resulting in less accurate estimate. Our prototype, 

e.g., as we discussed earlier, collected sensor samples from Google Nexus 7 

every 10 milliseconds. Another important thing is sampling rate may not be 

consistent, and need to be tracked for each data sample. 

5.4.4.2. Velocity Filtering through the Kalman Filter 

Obtaining velocity through integration algorithm from linear acceleration 

may result in a velocity with significant offset and drift away from its actual 

values [5]. So, the Kalman filter is again used to remove drift and noise in order 

to minimize integration error. The Kalman filter generates more accurate 

velocity estimate by suppressing the noise. For that, we pass the unfiltered 

velocity data (Vx, Vy, Vz) as a measurement vector input into the Kalman filter. 

Figure 5.12 shows the velocity before and after Kalman filtering. 
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Figure 5. 12 velocity results before and after Kalman Filter 

 

5.4.5. Estimate the Position 

To estimate the position from the velocity data, we have to follow another 

mathematical integration process. We have developed the following formulas. 

Equations: 

Position data Calculation: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥 =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥 +( (𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑥 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑥) / 2) * dt; 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑦 =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑦 +( (𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑦 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑦) / 2) * dt; 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧 =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧 +( (𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑧 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑧) / 2) * dt; 

Where, dt = current timestamp - previous timestamp. 
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Since the initial position is unknown, we assume initial zero position. In real-

life application, the initial position can be provided through out-of-band methods, such 

as GPS for driver-less car, Kinect for body motion tracking, and etc. Similar to 

calculating the velocity from acceleration, effects of different and varying sampling 

rate are also considered in this process. Kalman filtered velocity is fed into the 

algorithms. We will process the same dataset as presented in Figure 5.12 to estimate 

the corresponding position. 

5.4.5.1. Position Filtering through the Kalman Filter 

Integration from velocity resulted in position with offset and drift away from the 

actual values [5]. So, the Kalman filter is again used to remove drift and noise to 

minimize integration error. The Kalman filter generate more accurate position estimate 

by suppressing the noise. For that, we pass the unfiltered position data (Px, Py, Pz) as 

a measurement vector input into the Kalman filter. Figure 5.13 display the estimated 

position before and after Kalman filtering. 

 

Figure 5. 13 position results before and after Kalman Filter 

 

-1.5

-1

-0.5

0

0.5

1
2

3
4

5
6

7
8

9
1

1
1

1
3

3
1

5
5

1
7

7
1

9
9

2
2

1
2

4
3

2
6

5
2

8
7

3
0

9
3

3
1

3
5

3
3

7
5

3
9

7
4

1
9

4
4

1
4

6
3

4
8

5
5

0
7

5
2

9
5

5
1

5
7

3
5

9
5

6
1

7
6

3
9

6
6

1
6

8
3

7
0

5
7

2
7

Position Results

Before Filtering After Filtering



73 

 

 

Figure 5. 14 Series1: Linear acceleration, Series2: Velocity, Series3: Position 

In summary, Figure 5.14 presents all together the final analysis results for 

Acceleration, Velocity, and Position Data.  

The velocity and, especially, the position results start show the effect of 

cumulative errors from the integration processes as the subject advances in time and 

space, indicating the need for additional velocity and/or position data in order to correct 

the cumulative errors. These side information could be obtained, e.g., through a digital 

map of the area, either well-established ahead of deployment, or, on the fly by 

Simultaneous Locating and Mapping based on visual and distance sensors, such as 

Google-Tango technologies. 
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5.5. In-Cloud Processing of Sensory Data from the 

Sony Smartwatch 3 based Sensor Web 

In this section, we will present the experiments results of our Sensor-web based 

Cloud Solution using the completed prototype systems and processing inside the cloud. 

As discussed in earlier chapters, our sensor-web collects motion data from the Sony 

Smartwatch 3, and then deliver the data to the cloud database. We will apply the 

processing algorithms from the preceding sections to analyze sensor data and produce 

the motion analysis reports. Sony Smartwatch 3 is capable of capturing acceleration 

data every 4 milliseconds, i.e., sampling rate at 250 samples per second. Figure 5.15 

displays the raw acceleration sensor data collected by Sony Smartwatch 3 along the X, 

Y, Z coordinates. 
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Next, we will pass the acceleration Z axis sensor data to our Low-pass/High-pass filter 

to remove the gravity and generate the Linear acceleration. Fig. 5.16 presents the linear 

acceleration data produced by using low-pass high-pass filter technique.  
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Figure 5. 15 Acceleration Data along the 3 device coordinate axes of Sony 

Smartwatch 3 
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Figure 5. 16 Linear acceleration Data After Low-pass High-pass Filtering 

 

Then, we will analyze these data set to estimate the acceleration, velocity and position 

as described in the preceding sections. Fig. 5.17-19 shows the estimates produced by 

our system for acceleration, velocity and position, respectively. 

 

Figure 5. 17 Linear acceleration Kalman Filter Result Analysis 
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After that, we are using Integration step to calculate Velocity and pass into the Kalman 

filter to filter out velocity output. Fig. 5.18 describes velocity results before and after 

Kalman filter step. 

 

Figure 5. 18 Velocity Output Before and After Kalman Filter 

 

After that, we are using Integration step to calculate position and pass into the Kalman 

filter to filter out position output. Fig. 5.19 describes position results before and after 

Kalman filter step. 
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Figure 5. 19 Position Output After Kalman Filter 

 

Again, the velocity and position results also start show the effect of cumulative 

errors from the integration processes as the subject advances in time and space, 

indicating the need for additional velocity and/or position data in order to correct the 

cumulative errors. These side information may be obtained, e.g., through a digital map 

of the area, either well-established ahead of deployment, or, on the fly by Simultaneous 

Locating and Mapping based on visual and distance sensors, such as Google-Tango 

technologies. 
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Chapter 6 

6. Conclusion and Future Work 

In this section, we have concluded overall work from all the above chapters as well as 

describes a lot of new opportunities which can be done in the future using this research 

work.  

6.1. Conclusions 

In this thesis, we have concluded the motion tracking and visualization capabilities 

using the latest motion sensory technologies such as Android Wear Sony smartwatch 3 

and google Asus Nexus 7 devices. Android Wearable and handheld devices are low in 

price and give nice features for development. We analyzed Android Sony smartwatch 3 

sensor capabilities, processing capabilities and network capabilities. Also, we have 

designed sensor web-based cloud solution prototype to collect accelerometer sensor data 

real-time with higher sampling rate, accuracy, and store huge dataset on a cloud for 

further processing. We have designed a Stand-alone Motion Capture prototype for 

Google Nexus 7 device to capture and analyze accelerometer, linear acceleration sensor 

data with higher sampling rate and store into file for further processing. We have 

monitored raw noisy sensor data errors and developed low complexity algorithms to 

support real-time data analysis. Explored different data processing methods to obtain 

improved-quality motion results from extremely noisy raw data, e.g., by using low pass 

and high pass filter, and the Kalman filters. We believe this work helps tremendously in 

Healthcare to identify the causes of lower back pain and assist with the corresponding 
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therapy process. Also, another potential application of this research, is to enable 

automatic locating and mapping capability inside the GI tract system in order to provide 

the high-precision navigation capabilities for endoscopy and drug delivery capsules used 

in GI medicine. We expect that these proposed new technologies will provide improved 

workflow, accuracy, and efficiency in sports, fitness, and healthcare fields. 

Particularly, in this thesis chapter 4, we have designed and developed Sensor-Web 

based Cloud Solution and Prototype Designs to collect sensor data real-time. We 

illustrated development capabilities of Android Wear connected with android handheld 

via Bluetooth using different Android Wear APIs. We concluded accelerometer raw 

sensor data results from android Sony smartwatch 3. However, linear acceleration 

sensor is synthetic sensor and not extracting sensor data for Sony smartwatch 3 device 

case. Also, we have provided cloud based large data storage solution per further 

processing raw data. Using this prototype, we analyzed higher sampling data rate which 

is around 4 milliseconds for android watch. A Higher sampling rate is extremely helpful 

to find accurate velocity and position from acceleration data. We monitored sensor 

errors present in raw accelerometer sensor data such as noise, drift, offset, gravity, etc. 

Overall, we provided a cloud based solution to avoid data loss issue, successfully 

collect sensor data, and store into cloud for further processing. 

We have also designed a Stand-alone Motion Capture prototype to collect sensor 

data from google Nexus 7. The reason behind this is the google Nexus 7 linear 

acceleration provides good results. So, we are using this data in Kalman filter based 

low complexity algorithm to estimate acceleration, velocity, and position. We have 

monitored 10 milliseconds sampling data rate for google Nexus 7 acceleration, linear 
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acceleration sensor data extraction. We are storing data into file for further processing. 

We have analyzed sensor errors present in raw linear acceleration sensor data such as 

noise, drift, offset, gravity etc.  

Specifically, we have developed low complexity based algorithm to remove sensor 

errors from raw sensor data and estimate motion results such as velocity and position 

from acceleration. We discussed raw sensor data and integration errors for raw linear 

acceleration sensor data samples. We used a low pass filter to identify gravity and a 

high pass filter to produce linear acceleration from the raw acceleration data. We 

provided Kalman Filter based De-noising and Motion Data Estimation algorithm for 

step by step processing to estimate acceleration, velocity and position. We discussed 

results of this algorithm for both Android Wear and google Nexus 7 datasets. Following 

are advantages and limitations of our low complexity estimation algorithm: 

Advantages: 

1. Remove constant offset from Linear acceleration raw sensor data. 

2. Filter sensor and process noise through the Kalman filter implementation. 

3. Minimize integration error and calculate accurate acceleration, velocity and 

position sensor data. 

4. Using Higher and consistent sampling rate deduct sensor errors while 

integration. 

5. Estimate the current location of smartwatch or linear acceleration sensor data. 

6. Correct Microsoft Kinect Human body movement position data to remove 

unused data to make movement more adjustable and accurate. Since it requires 
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small amount of memory we can transfer data through online without any kind 

of delay. 

Limitations: 

1. Challenge to find a right value for process noise Q and sensor noise R and also 

difficulty to set other parameters of the Kalman filter. 

 

In summary, we have designed and developed prototypes to analyze motion 

tracking capabilities of Android Wear and google Nexus 7. After that analyze sensor 

errors and develop low complexity based filter techniques algorithms to analyze motion 

results. These technologies are extremely helpful in healthcare, sports and fitness fields.  

6.2. Future Work 

In the future work, one could combine sensor-web based cloud solution prototype 

and the Kalman filter based prototype together. We are extracting a sensor data real-

time, but in future, we will use Kalman filter and lowpass-highpass filter techniques 

for data processing in android handheld platform, which can produce motion results 

real-time and display on android handheld application. 

On the motion results, velocity and position results become not as accurate as 

subject advances in time and space, we could use dead reckoning technique to make 

velocity and position more accurate by utilize additional velocity and position data 

made available through other means. Dead reckoning is the process of calculating one's 
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current position by using a previously determined position, or fix, and advancing that 

position based upon known or estimated speeds over elapsed time and course. 

We believe these future works will help mature this technology for the real-world 

sport, fitness and healthcare fields. 
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