Pressure (≤4 ATA) Increases Membrane Conductance and Firing Rate in the Rat Solitary Complex

Document Type

Article

Publication Date

9-2003

Abstract

Neuronal sensitivity to pressure, barosensitivity, is illustrated by high-pressure nervous syndrome, which manifests as increased central nervous system excitability when heliox or trimix is breathed at >15 atmospheres absolute (ATA). We have tested the hypothesis that smaller levels of pressure (≤4 ATA) also increase neuronal excitability. The effect of hyperbaric helium, which mimics increased hydrostatic pressure, was determined on putative CO2/H+-chemoreceptor neurons in the solitary complex in rat brain stem slices by intracellular recording. Pressure stimulated firing rate in 31% of neurons (barosensitivity) and decreased input resistance. Barosensitivity was retained during synaptic blockade and was unaffected by antioxidants. Barosensitivity was distributed among CO2/H+-chemosensitive and -insensitive neurons; in CO2/H+-chemosensitive neurons, pressure did not significantly reduce neuronal chemosensitivity. We conclude that moderate pressure stimulates certain solitary complex neurons by a mechanism that possibly involves an increased cation conductance, but that does not involve free radicals. Neuronal barosensitivity to ≤4 ATA may represent a physiological adaptive response to increased pressure or a pathophysiological response that is the early manifestation of high-pressure nervous syndrome.

DOI

10.​1152/​japplphysiol.​00865.​2002

Find in your library

Off-Campus WSU Users


Share

COinS