Document Type

Article

Publication Date

6-1-2000

Abstract

Unintentionally doped and silicon doped GaN films prepared by molecular beam epitaxy using ammonia are investigated. Hall, secondary ion mass spectroscopy (SIMS), photoluminescence, and x-ray data are utilized for analysis of sources of autodoping of GaN epitaxial films in an effort to identify whether the n-type background electron concentration is of impurity origin or native defect origin. We identify and quantify an anomalous relationship between the Si doping concentration and free carrier concentration and mobility using temperature dependent Hall measurements on a series of 2.0-μm-thick GaN(0001) films grown on sapphire with various Si doping concentrations. SIMS is used to identify oxygen as the origin of the excess free carriers in lightly doped and undoped GaN films. Further, the source of the oxygen is positively identified to be dissociation of the sapphire substrate at the nitride-sapphire interface. Dissociation of SiC at the nitride-carbide interface is also observed. Finally, SIMS is again utilized to show how Si doping can be utilized to suppress the diffusion of the oxygen into the GaN layer from the sapphire substrate. The mechanism of suppression is believed to be formation of a Si–O bond and a greatly reduced diffusion coefficient of the subsequent Si–O complex in GaN.

Comments

Copyright © 2000, American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Applied Physics 87.12, and may be found at http://jap.aip.org/resource/1/japiau/v87/i12/p8766_s1.

DOI

10.1063/1.373608

Find in your library

Off-Campus WSU Users


Included in

Physics Commons

Share

COinS