Relationship among fMRI, Contract Sensitivity and Visual Acuity

Document Type


Publication Date



The purpose of this study was to ascertain whether visual acuity or contrast sensitivity function (CSF) is proportional to visual cortical function based on fMRI volume and level of activation or Z-score. Forced choice procedures were utilized to measure the monocular log minimal angle of resolution (logMAR) visual acuity and CSF. The CSF data were collapsed into a single index by the use of weighted mean contrast sensitivity (WMCS), being defined as the mean of the products of each spatial frequency multiplied by its corresponding contrast sensitivity. fMRI data had been obtained with a 1.5 T GE Signa scanner with visual stimuli including 1.0 and 2.0 c/deg vertical sinusoidal gratings. Subjects consisted of eight normal adults and five amblyopic patients, with the amblyopic subjects added to gauge whether the outcome was due to a restricted range of scores or the small number of study participants. In normal subjects, the fMRI volume and level of activation exhibited no statistically significant correlation with visual acuity at P < 0.05. Statistically significant correlations were obtained between WMCS and fMRI volume (R = 0.765, P = 0.027) and fMRI level of activation (R = 0.645, P = 0.007), with right eye stimulation using the 1.0 c/deg grating. On the whole, statistically significant correlations between WMCS and fMRI parameters were maintained when subject age was held constant and when data from the five amblyopic subjects were included to expand the range of values and increase the number of data sets for analysis. fMRI volume and Z-score were more closely associated with the CSF, as defined by WMCS, than visual acuity. The results suggest that the CSF reflects the underlying visual cortical cells responsible for fMRI volume and the level of activation.



Find in your library

Off-Campus WSU Users