DNA barcoding of sea turtle leeches (Ozobranchus spp.) in Florida coastal waters

Triet Minh Truong
Wright State University - Main Campus

Audrey E. McGowin Ph.D.
Wright State University - Main Campus, audrey.mcgowin@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/chem_student

Part of the Chemistry Commons

Repository Citation
https://corescholar.libraries.wright.edu/chem_student/1

This Presentation is brought to you for free and open access by the Chemistry at CORE Scholar. It has been accepted for inclusion in Chemistry Student Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
DNA barcoding of sea turtle leeches (*Ozobranchus* spp.) in Florida coastal waters

Triet M. Truong and Audrey E. McGowin, Ph.D.*
Wright State University, Department of Chemistry, Dayton, OH 45435, USA

Introduction

Fibropapillomatosis (FP) is a neoplastic disease originally identified only on green sea turtles (*Chelonia mydas*). While the disease has been reported throughout the world, the etiological agent of FP remains unknown. Although numerous FP outbreaks have been documented, FP outbreaks have only occurred in marine turtle habitats. The disease appears to be dependent on the host species. Therefore, a system of identification that is reliable for both *Chelonia* species may give valuable insight on these two possibilities.

Methods

Natural leeches were obtained from St. Johns County, St. Lucie, the St. Lucie Nuclear Power Plant, and other parts of Florida. The host species was identified, and their DNA was sequenced by the automatic dye-terminator method using the ABI Prism 3700 DNA Analyzer (Applied Biosystems, Foster City, CA, USA). DNA sequences were submitted to NCBI GenBank. A DNA barcode was elucidated by comparing the COI sequences of *Ozobranchus* species with those of other marine leeches. The DNA barcode requires that it incorporate genetics, morphology, species behavior, geographic information, and other valid species designation attributes.

Results and Conclusions

Genetic sequencing of leeches from eight Florida sites reveals two different haplotypes for *Ozobranchus branchiatus*. These results support the hypothesis that *Ozobranchus* leeches have the ability to infect green sea turtles. Further research may be needed to determine if the leeches are indeed a causal agent of FP outbreaks. The discovery of a specific marine disease and the ability to identify the species of marine leeches will contribute to a better understanding of FP outbreaks.

Acknowledgements

The authors thank the following for their contributions to this research. Dean Rider, PhD provided additional sequencing of leech samples useful for verification purposes. Adrian M. Corbett, PhD (Wright State University) generously provided special equipment and laboratory setting for portions of the research. John O. Stireman III, PhD (Research Group, Inc.) for leeches from the St. Lucie Nuclear Power Plant and Barracouta Key West. John O. Stireman III, PhD for leeches from Indian River Lagoon, and Dave Clark and Stephen T. Weege (Inwater Services) for samples of *Ozobranchus* spp. (McGowin AE, Truong TM, Corbett AM, Bagley DA, Ehrhart LM, Bresette MJ, Weege ST, Clark D. (2011) Genetic barcoding of marine leeches (*Ozobranchus* spp.) in Florida coastal waters. Marine Environmental Research 99, 189-198). Special thanks to Tammy Bolerjack (Marine Science Center, Ponce Inlet) who collected leeches from Daytona Beach, Ponce Inlet, Ocean Intracoastal, and Vero Beach.

References