2014

Special Session 8 Introduction: Fundamentals to Applications in 2D Materials

Gregory Kozlowski
Wright State University - Main Campus, gregory.kozlowski@wright.edu

Patrick Soukiassian

John J. Boeckl
john.boeckl@us.af.mil

Follow this and additional works at: https://corescholar.libraries.wright.edu/ss8_2014

Part of the Physics Commons

Repository Citation
https://corescholar.libraries.wright.edu/ss8_2014/1

This Article is brought to you for free and open access by the Special Session 8 at CORE Scholar. It has been accepted for inclusion in Special Session 8: Fundamentals to Applications in 2D Materials by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Special Session 8

Fundamentals to Applications in 2D Materials (SS8)

The enormous success of graphene has stimulated the research and development of complementary, atomically thin, 2D materials that can generate a broad range of novel layered compounds. In many ways, this new generation of atomically thin materials augment graphene, ushering in a variety of new attributes that can produce unprecedented electronic, optical, magnetic, mechanical, chemical, thermal, and sensing properties. The research community exploring 2D materials is rapidly expanding with new entrants from different disciplines such as materials science, physics, chemistry and electrical engineering. Encouraging work has already been reported emphasizing novel synthesis approaches for various material systems such as nitrides (e.g., h-BN), dichalcogenides (e.g., MoS₂), topological insulators (e.g., Bi₂Se₃ or Bi₂Te₃) and even oxides. There is enormous interest in building devices and functional materials based on these 2D materials including but not limited to their integration with graphene. The isolation, synthesis, and an overall fundamental understanding of these novel 2D materials are critical to the development of a manufacturing technology for them. Enormous scientific challenges in these areas need to be addressed through synergistic experimental/theoretical efforts. Both exploratory materials research and applications based on these materials are encouraged.

Publication:
THE JOURNAL OF NANO RESEARCH, (Selected Papers)
http://www.dsl-conference.com/publication.html

Webpage:

Organiser(s)/Contact:
Prof. Gregory Kozlowski, D.Sc.
Wright State University, USA
gregory.kozlowski@wright.edu

Prof. Patrick Soukiassian
Universite de Paris-Sud/Orsay, France
patrick.soukiassian@cea.fr

Dr. John Boeckl
Materials and Manufacturing Directorate, AFRL, USA
john.boeckl@us.af.mil