Ga-Doped ZnO Grown by Pulsed Laser Deposition in H-2: the Roles of Ga and H

David C. Look
Wright State University - Main Campus, david.look@wright.edu

T. C. Droubay
J. S. McCloy
Z. H. Zhu
S. A. Chambers

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation
https://corescholar.libraries.wright.edu/physics/2

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Ga-doped ZnO grown by pulsed laser deposition in H₂: The roles of Ga and H

David C. Looka)
Semiconductor Research Center, Wright State University, Dayton, Ohio 45435

Timothy C. Droubay, John S. McCloy, Zihua Zhu, and Scott A. Chambersb)
Pacific Northwest National Laboratory, Richland, Washington 99352

(Received 20 August 2010; accepted 9 October 2010; published 11 January 2011)

Highly conductive thin films of ZnO doped with Ga were grown by pulsed laser deposition with 10 mTorr of H₂ in the growth chamber. Compared with a more conventional method of producing conductive films of ZnO, i.e., growth in O₂ followed by annealing in forming gas (5% H₂ in Ar), the H₂ method requires no postgrowth anneal and also produces higher carrier concentrations and lower resistivities with better depth uniformity. As an example, a 65-nm-thick sample had a room-temperature mobility of 32 cm²/V s, a concentration of 6.8 × 10²⁰ cm⁻³, and a resistivity of 2.9 × 10⁻⁴ Ω cm. From a scattering model, the donor and acceptor concentrations were calculated as 8.9 × 10²⁰ and 2.1 × 10²⁰ cm⁻³, respectively, as compared to the Ga and H concentrations of 1 × 10²⁰ and 1 × 10²⁰ cm⁻³. The authors conclude that growth in H₂ produces higher Ga-donor concentrations but that H-donors themselves do not play a significant role. © 2011 American Vacuum Society. [DOI: 10.1116/1.3523296]

I. INTRODUCTION

Transparent conductive oxides (TCOs) are being considered for many applications, including (1) electrodes for flat-panel displays and photovoltaic cells, (2) low-emissivity windows, (3) window defrosters, and (4) n-type layers in light-emitting and laser diodes. At present, the workhorse TCO is indium tin oxide (ITO) because ITO can reach resistivities as low as 1 × 10⁻⁴ Ω cm. However, ITO suffers from several deficiencies: (1) In has become very expensive, (2) In is somewhat toxic, (3) the thermal stability of ITO is rather poor, and (4) the transparency is only moderately good. Thus, there is a surge of interest in developing ZnO as a replacement for ITO because ZnO is cheap, nontoxic, stable, and highly transparent. Several groups have achieved room-temperature ZnO resistivities below 3 × 10⁻⁴ Ω cm, but only a very few have approached 1 × 10⁻⁴ Ω cm. To do better at this stage of development, it will be necessary to understand the fundamental components of resistivity ρ. Indeed, ρ involves the inverse product of mobility μ and carrier concentration n, but even more fundamentally, ρ is determined by donor N_D and acceptor N_A concentrations, and these quantities must be determined if the material is to be developed to its fullest potential. In this work, we employ a simple, analytical method to determine N_D and N_A from μ and n in degenerate semiconductor materials. This method is based on the fact that mobility in TCOs that are not too thin (say, >50 nm) is mainly determined by scattering from ionized donors and acceptors and can be described by the degenerate form of the Brooks–Herring formula: μ(n,K)

a)Electronic mail: david.look@wright.edu
b)American Vacuum Society member.
Li et al. found that PLD growth of pure ZnO (no Ga) in a H₂ atmosphere caused resistivities to decrease by about three orders of magnitude, to about 10⁻¹ Ω cm, with n in the mid-10¹⁸ cm⁻³ range. They also grew samples in D₂, rather than H₂, in order to get more accurate impurity concentrations. They also grew samples in D₂, rather than H₂, in order to get more accurate impurity concentration measurements by secondary-ion mass spectroscopy (SIMS). They found that the SIMS concentrations of H and D were within about a factor 2 of n and thus deduced that H₂O was responsible for the increase in n. Furthermore, there was evidence that H also passivates acceptors. Thus, we decided to grow ZnO with a Ga-doped target in an H₂ atmosphere so we could see if the presence of H would increase the conductivity over that produced by using the same target in an O₂ atmosphere. Somewhat surprisingly, as shown below, a H₂ ambient increases both the concentration of Ga and also the percentage of Ga participating as donor states. On the other hand, H itself contributes only about 10% of the donor states or less.

Before discussing our results, we should note that other workers, besides Li et al., have found that the addition of H increases the conductivity of ZnO. For example, Duenow et al. grew Al-doped ZnO layers by rf magnetron sputtering in an Ar ambient augmented by small amounts of H, from 0% to 2% H₂. They found that a very small amount of H (~0.3% H₂/Ar) increased the mobility, especially in layers only lightly doped with Al, and that excellent resistivities of 3–4 × 10⁻⁴ Ω cm could be obtained with 2 wt % Al₂O₃ in the target (reading from a graph, their Fig. 1). These results are important because sputtering is one of the dominant methods of producing ZnO for TCO applications. However, one drawback of sputtering in this context is that the growth rate (and thus thickness) depends strongly on the amount of H in the ambient.

Duenow et al. speculated that at least one of the roles of H in their material was to passivate defects. This conclusion is likely true; however, neither in this nor in any other former work, to our knowledge, has the role of H been discussed quantitatively. In this work, we compare the values of N_D and N_A, found from a unique mobility analysis, with Ga and H concentrations, found from SIMS measurements, to show that the major role of H, at least for our samples, is not to passivate acceptors or directly provide H-donors, but to allow more Ga to enter the growing crystal. This was a surprise to us and will likely be a surprise to many readers; indeed, it is a critical finding since H is an omnipresent background element in most ZnO growth environments and, in the past decade, has been often blamed for the pervasive propensity of ZnO to be n-type.

II. EXPERIMENT AND ANALYSIS

Two ZnO samples of different thicknesses were grown in a 10 mTorr H₂ atmosphere at the PNNL, and, for comparative purposes, two samples were also grown in O₂. Thicknesses were determined by measuring the depths of the respective SIMS craters with a profilometer. The two different thicknesses in each case allowed a rough check of depth uniformity through additional points would be needed to fully determine that characteristic. The substrate temperature was chosen to be 400 °C and the O₂ pressure was set at 10 mTorr in an attempt to match the previous work at the AFRL; however, one difference is that Al₂O₃ substrates were used for the PNNL growths, whereas SiO₂/Si substrates were used for those grown at the AFRL. In that regard, we should note that the electrical properties do not seem to depend strongly on the choice of substrate. Other details of growth in H₂ can be found in Refs. 7 and 8.

To determine donor N_D and acceptor N_A concentrations, temperature-dependent Hall-effect (T-Hall) measurements were carried out over a range of 15–320 K using a Lakeshore 7507 apparatus. The temperature dependences of n for the two thinnest samples (65 nm for the “H₂ layer” and 123 nm for the “O₂ layer”) are shown in Fig. 1. Clearly, they are degenerate (independent of temperature). The resistivity (Fig. 2) and mobility (not shown) are only slightly temperature-dependent because phonon scattering even at the higher temperatures is always much weaker than the ionized-impurity scattering. Figures 1 and 2 also include data for “annealed” samples, which will be discussed below.

We first compare the unannealed sample grown in H₂ with that grown in O₂. As seen in Fig. 1, n(O₂, unann, 300 K) = 0.84 × 10²⁰ cm⁻³ and n(H₂, unann, 300 K) = 6.7 × 10²⁰ cm⁻³, and in Fig. 2, ρ(O₂, unann, 300 K) = 2.2 × 10⁻³ Ω cm and ρ(H₂, unann, 300 K) = 3.0 × 10⁻³ Ω cm. Thus, clearly, growth in H₂ results in a significantly higher n and lower p. At first glance, this would seem to be no surprise because H is a
known shallow donor in ZnO. However, to test this model, we annealed both the 65 nm H2 film and the 123 nm O2 film at 600 °C in Ar, a process known to eliminate H in any ZnO sample.9,10 Indeed, as shown in Fig. 3, the sheet concentration \(n_s \) slightly changed for the O2 sample but greatly decreased for the H2 sample, which is seemingly consistent with our hypothesis. However, the only true test is to measure [Ga] and [H] by SIMS and compare these quantities with \(N_D \).

First, we must determine \(N_D \) and \(N_A \) from \(n_s \) and \(\mu \). Since the electrons are degenerate and \(n_s \) is independent of temperature, we can get one relationship immediately: \(n_s = N_D - N_A \).

The second relationship comes from the low-temperature mobility, which includes ionized-impurity and boundary scattering terms, combined by Matthiessen’s rule, which is exactly valid for degenerate electrons,

\[
\mu(d,n,K) = \left[\mu_{ii}(n,K)^{-1} + \mu_{bdry}(d,n,C)^{-1} \right]^{-1},
\]

where

\[
\mu_{bdry}(d,n,C) = \frac{e}{h} \left(\frac{d}{C} \right) \left(\frac{d}{3\pi n} \right)^{1/3} = 10.58 \frac{d_{mm}}{C} \frac{d_{mm} \text{ cm}^2}{n_{20}^2} \text{ V s}^{-1}.
\]

and

\[
\mu_{ii}(n,K) = \frac{24\pi^3 e^2 k^3 n}{Z^2 e^2 m^* n_{20}^2 N_{ii} \ln(1 + y(n))} \left(\frac{y(n)}{1 + y(n)} \right)
\]

\[
= \frac{146.9}{\ln(1 + 6.46 n_{20}^{1/3})} \left(\frac{1 - K \text{ cm}^2}{1 + K \text{ V s}^{-1}} \right)^{1/3},
\]

Here, \(d_{mm} \) is the layer thickness in units of nanometers, \(n_{20} \) is the carrier concentration in units of \(10^{20} \text{ cm}^{-3} \), \(K = N_A/N_D \), and \(C \) is an empirical constant, which depends on the details of surface and interface scattering. For the samples discussed in Refs. 5 and 6, a value of \(C = 4 \) best fits the data, and we will use that value here. At 20 K, the electrical parameters of the 65 nm H2 sample are \(\mu = 34.1 \text{ cm}^2/\text{V s} \), \(n = 6.80 \times 10^{20} \text{ cm}^{-3} \), and \(\rho = 2.69 \times 10^{-4} \text{ \Omega cm} \), and those of the 123 nm O2 sample are \(\mu = 33.7 \text{ cm}^2/\text{V s} \), \(n = 8.40 \times 10^{20} \text{ cm}^{-3} \), and \(\rho = 2.20 \times 10^{-3} \text{ \Omega cm} \). Thus, from Eq. (2), we can calculate \(\mu_{bdry}(H_2) = 90.7 \) and \(\mu_{bdry}(O_2) = 344 \text{ cm}^2/\text{V s} \), each of which is much higher than the corresponding experimental value of mobility. In other words, the boundary scattering is much weaker than the ionized-impurity scattering, and thus a more accurate value of \(C \) is not too important in these cases. The only unknown now is \(K \), and by using Eqs. (1)–(3), we get \(K(H_2,\text{unann}) = 0.237 \) and \(K(O_2,\text{unann}) = 0.562 \text{ cm}^2/\text{V s} \). Finally, \(N_D = n/(1-K) \) and \(N_A = nK/(1-K) \), giving \(N_D \) and \(N_A \) values that are listed in Table I. Before discussing these results, we note that Fig. 3 also contains the sheet carrier concentrations of a 174-nm-thick layer grown in H2 and a 344 nm sample grown in O2. The purpose of these growths was to get a rough idea of the boundary scattering is much weaker than the ionized-impurity scattering, and thus a more accurate value of \(C \) is not too important in these cases. The only unknown now is \(K \), and by using Eqs. (1)–(3), we get \(K(H_2,\text{unann}) = 0.237 \) and \(K(O_2,\text{unann}) = 0.562 \text{ cm}^2/\text{V s} \). Finally, \(N_D = n/(1-K) \) and \(N_A = nK/(1-K) \), giving \(N_D \) and \(N_A \) values that are listed in Table I. Before discussing these results, we note that Fig. 3 also contains the sheet carrier concentrations of a 174-nm-thick layer grown in H2 and a 344 nm sample grown in O2. The purpose of these growths was to get a rough idea of the thickness uniformity, and the conclusion is that the uniformity appears to be much better than that of the samples grown in O2 and annealed in forming gas (discussed in Refs. 5 and 6). However, more samples of different thicknesses would have to be examined to make this conclusion firm.

III. DISCUSSION

As stated earlier, to firmly establish the role of H, it is necessary to measure its concentration [H] and then compare it with \(N_D \), determined by Eqs. (1)–(3). Since we know that \(N_D \) is in the mid-\(10^{20} \text{ cm}^{-3} \) range, the only potential impurity-related candidates for donors are Ga and H, and these were measured by SIMS (Refs. 7 and 8) at the PNNL.

Table I. Values of donor \(N_D \) and acceptor \(N_A \) concentrations compared with Ga and H concentrations.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(d) (nm)</th>
<th>Ambient</th>
<th>(N_D) (cm(^{-3}))</th>
<th>(N_A) (cm(^{-3}))</th>
<th>(N_D + N_A) (cm(^{-3}))</th>
<th>[Ga] (cm(^{-3}))</th>
<th>[H] (cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>610B</td>
<td>123</td>
<td>O(_2)</td>
<td>1.9 \times 10^{20}</td>
<td>1.1 \times 10^{20}</td>
<td>3.0 \times 10^{20}</td>
<td>5.7 \times 10^{20}</td>
<td>0.5 \times 10^{20}</td>
</tr>
<tr>
<td>Ann’l’d</td>
<td>Ar, 600 °C</td>
<td>H(_2)</td>
<td>2.2 \times 10^{20}</td>
<td>1.0 \times 10^{20}</td>
<td>3.2 \times 10^{20}</td>
<td>5.5 \times 10^{20}</td>
<td>0.1 \times 10^{20}</td>
</tr>
<tr>
<td>610C</td>
<td>65</td>
<td>O(_2)</td>
<td>1.9 \times 10^{20}</td>
<td>0.8 \times 10^{20}</td>
<td>2.7 \times 10^{20}</td>
<td>12.0 \times 10^{20}</td>
<td>0.3 \times 10^{20}</td>
</tr>
</tbody>
</table>
The SIMS-derived impurity concentrations were calibrated against ion-implanted Ga and H standards, with absolute uncertainties estimated at about 20% and with relative uncertainties at about 10%. The results for the 65 nm(H2) and 123 nm(O2) samples are given in Table I, and it should be noted that the results for the thicker samples are consistent with these. From Table I, we can draw at least four conclusions as follows:

1. Growth in H2 produces donor concentrations significantly higher than those achieved by growth in O2.
2. Surprisingly, however, [H] ≪ ND in all cases, and thus H makes very little direct contribution to the donor concentration.
3. The overall concentration of Ga is about twice as high for growth in H2 than for growth in O2, and thus Ga can account for all of the donors and even the acceptors (i.e., the possibility of GaZnVZn acceptors).
4. The 600 °C anneal in Ar has little effect on the O2-grown layer but greatly decreases ND in the H2-grown layer. However, again surprisingly, it does not decrease [Ga].

Thus, we must conclude that the major role of H is to induce more Ga into the growing layer and to induce a higher percentage of the Ga into active donor states. Inactive donor states involving Ga would perhaps include Ga2O3 inclusions and GaZn–O1 neutral complexes. These inactive species should be more prevalent in the layer grown in O2 and, indeed, we note that [Ga] > ND + NA in this sample. Also, the anneal in Ar would likely produce O vacancies VO and interstitials O1 on the surface, and some of the O1 could diffuse into the bulk and passivate the GaZn donors. Further studies will be necessary to validate some of these ideas.

IV. SUMMARY

Ga-doped ZnO samples grown in a H2 atmosphere by pulsed laser deposition have greatly increased conductivity with respect to samples grown in the usual atmosphere, O2. However, the main role of H is not to add donors but to facilitate a higher incorporation of Ga and also to induce a higher percentage of the Ga into active donor states.

ACKNOWLEDGMENTS

The work of D.C.L. was partially supported by AFOSR Grant No. FA9550-10-1-0079 (K. Reinhardt) and by NSF Grant No. DMR0803276 (L. Hess). The work of T.C.D., J.S.M., Z.Z., and S.A.C. was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering and was performed in the Environmental Molecular Sciences Laboratory at PNNL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the U.S. Department of Energy by Battelle under Contract No. DE-AC05-76RL01830.