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LEAST-SQUARES APPROXIMATE SOLUTION OF
OVERDETERMINED SYLVESTER EQUATIONS∗

A. SCOTTEDWARD HODEL† AND PRADEEP MISRA‡

SIAM J. MATRIX ANAL. APPL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 2, pp. 279–290, April 1997 002

Abstract. We address the problem of computing a low-rank estimate Y of the solution X of
the Lyapunov equation AX + XA′ + Q = 0 without computing the matrix X itself. This problem
has applications in both the reduced-order modeling and the control of large dimensional systems
as well as in a hybrid algorithm for the rapid numerical solution of the Lyapunov equation via the
alternating direction implicit method. While no known methods for low-rank approximate solution
provide the two-norm optimal rank k estimate Xk of the exact solution X of the Lyapunov equation,
our iterative algorithms provide an effective method for estimating the matrix Xk by minimizing the
error ‖AY + Y A′ +Q‖F .

Key words. Sylvester equation, least squares, iterative, conjugate gradient

AMS subject classifications. 15A06, A5A24, 65F05

PII. S0895479893252337

1. Introduction. The Lyapunov equation

AX +XA′ +Q = 0,(1.1)

A,Q ∈ Rn×n, Q = Q′ plays a significant role in numerous problems in control, com-
munication systems theory, and power systems. Recent applications of the Lyapunov
equation include the design of reduced-order state estimators and controllers [2], [20],
[28], [29] and the solution of robust decentralized control problems [30], [33]. The
Lyapunov equation also has applications in stability analysis [21], [25]. Standard
methods for the numerical solution of the Lyapunov equation [1], [12] make use of the
real Schur decomposition A = USU ′, where U is an orthogonal matrix and S is quasi-
upper triangular. The matrix U is used to transform the Lyapunov equation (1.1)
into a form that is readily solved through forward substitution. More recently, Lu
[26] and Wachspress [34] proposed the use of the alternating direction implicit (ADI)
method for the iterative solution of Lyapunov equations for which all eigenvalues of
the matrix A (or of −A) are in the right half of the complex plane.

Recently proposed numerical techniques for the numerical solution of the Lya-
punov equation have involved iterative solution techniques [23], [19], [31] or low-rank
approximate solution techniques [17], [18], [22]. Each of these methods requires the
numerical solution of either a reduced-order Lyapunov equation

(V ′AV )ΣV + ΣV (V ′A′V ′) + V ′QV = 0(1.2)

or a least-squares problem

ΣV = arg min ‖AV ΣV V
′ + V ΣV V

′A′ +Q‖F .(1.3)
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280 A. SCOTTEDWARD HODEL AND PRADEEP MISRA

The numerical solution of generalized Lyapunov equations

AXB′ +BXA′ + C = 0

may be achieved through the use of a QZ decomposition [27] of the matrix pencil
(A,B) [7], [8]; low-rank approximate solution techniques may be applied to these
problems in a fashion analogous to the standard case (1.1).

In this paper, we address the least-squares solution of minimizations of the form

min
X
‖AXB′ + CXD′ + F‖F ,(1.4)

where (for simplicity in exposition) A,B,C, and D ∈ Rn×k, X ∈ Rk×k, F ∈ Rn×n,
and k � n. Note that (1.3) then simply reduces to a special case of (1.4). The
minimization (1.4) can be transformed to a minimization of the form

min
∥∥Āx̄+ b̄

∥∥
2

(1.5)

through a Kronecker product expansion; see [24]. Techniques for the solution of
large, sparse least-squares problems (1.5) have been addressed in several iterative
algorithms, e.g., [9], [13], [32]. It should be noted that, unlike the Kronecker product
expansion of the Lyapunov equation (1.1), the Kronecker product expansion (1.5)
of the least-squares minimization (1.4) yields a dense matrix Ā in general, since no
sparsity structure can be assumed for the matrices A, B, C, D, and F in applications
that do not involve Krylov subspaces [15], [16], [18], [19].

It should be noted that a difficulty associated with flexible structures (second-
order PDEs) that does not usually occur in heat flow problems is that the discretiza-
tions ẋ = Ax+ Bu do not automatically satisfy the constraint A+ A′ < 0 discussed
in [15] and [16]. Hence, a least-squares approach as proposed in this paper becomes
preferable to a reduced-order Lyapunov equation (the approach studied at length in
[15] and [31]).

In the case k = n, (1.4) becomes a generalized Sylvester equation

AXB′ + CXD′ + F = 0,(1.6)

which can be solved by reduction of the matrix pencils (A,C) and (D,B) to Schur-
triangular form and Hessenberg-triangular form [27], respectively, and then by apply-
ing a modified version of the Golub–Nash–Van Loan algorithm [10]. Unfortunately,
this approach is not directly applicable to the minimization (1.4); in particular, if
rank

([
A C

])
= 2k then all of the generalized eigenvalues of the pencil (A− λC)

are zero, and no useful decomposition of the problem can be obtained. However, the
solution of (1.6) plays a key role in our algorithm for the solution of (1.4).

We propose the numerical solution of the minimization (1.4) through a precondi-
tioned conjugate gradient (CG) algorithm [6]; the development of our algorithm is as
follows. First, in section 2 we present an overview of Krylov subspace techniques as
related to the numerical solution of the Lyapunov equation. In section 3 we give an
overview of the minimization of (1.4) and present algorithms for its numerical solution
in section 4. Following this, we present numerical examples in section 5. In section 6
we make some concluding remarks.

2. Krylov subspaces and iterative techniques. Krylov subspace techniques
have gained increasing popularity in the solution of large, sparse systems of linear
equations

Ax = b.(2.1)
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SOLUTION OF OVERDETERMINED SYLVESTER EQUATIONS 281

A Krylov subspace K(A, v, k) is defined as

K(A, v, k) = span(
[
v Av · · · Ak−1v

]
),

where A ∈ Rn×n, v ∈ Rn, and k is an integer. One typically uses the Arnoldi algorithm
[11] or a variation thereof to compute an orthogonal matrix Vk ∈ Rn×k, or simply
V , such that span(V ) = K(A, v, k). The Arnoldi algorithm generates a sequence of
orthogonal matrices Vk such that AVk = Vk+1Hk+1, where Hk+1 ∈ Rk+1×k is an
upper Hessenberg matrix; i.e., i > j + 1⇒ Hij = 0.

The GMRES algorithm [32] uses Krylov subspace bases Vk obtained by the
Arnoldi algorithm to “project” the underlying problem (2.1) into a low-rank mini-
mization

y∗ = arg min
y

∥∥Hk+1y − Vk+1
′b
∥∥

2

and approximates the solution x of (2.1) as x ≈ Vky
∗. If the corresponding resid-

ual is too large, then the algorithm may either (1) increase the dimension k of the
Krylov subspace or (2) use iterative refinement on the residual with a rank k Krylov
subspace (GMRES(k)). Barring algorithm stagnation due to the identification of
an A-invariant subspace (a consequence of catastrophic breakdown in the Arnoldi
method) [4], the iterative application of GMRES(k) guarantees monotone decreasing
residuals corresponding to each iteration.

Hu and Reichel [19] propose an iterative algorithm, based on GMRES [32], for
the solution of large, sparse Sylvester equations

AX +XB + C = 0.(2.2)

Each iteration of the Hu–Reichel algorithm uses Krylov subspaces of G and H to
construct a minimization (1.4) with rank

([
A C

])
= rank

([
B D

])
= k + 1

whose solution X is obtained by a CG algorithm. A related approach is proposed by
Jaimoukha and Kasenally [23].

Hodel and Poolla [17] and Hodel, Tenison, and Poolla [18] iteratively compute
estimates of the dominant invariant subspace of the solution X of the Lyapunov
equation (1.1). Similarly, Hodel [16] proposes gradient-based schemes that attempt
to identify a low-rank subspace basis V that minimizes the associated residual of the
Lyapunov equation. Since each of these algorithms identifies a subspace basis V ∈
Rn×k and not a low-rank approximate solution X̂ ∈ Rn×n of the Lyapunov equation
(1.1), either of these algorithms may be used in tandem with the minimization of
(1.4) to obtain a low-rank estimate X̂ = V ΣV ′, where Σ is computed from (1.4).
This approach does not necessarily yield estimates X̂ that lie in a Krylov subspace.

Saad [31] obtains a low-rank approximate solution of the Lyapunov equation (1.1)
by applying Krylov subspaces to the identity

X =

∫ ∞
0

eA
′tQeAtdt,(2.3)

where A is stable (all eigenvalues lie in the left half plane); the evaluation of this
integral is clearly undesirable when A is not stable. This algorithm computes an
estimate X̂ = V ΣV ′ of X by solving a reduced-order Lyapunov equation (1.2). This
approach is applied in [22] to construct low-order models/controllers for very large,
sparse linear dynamic systems. While error bounds are available for this approach,
care must be taken in its application, especially when the matrix (A + A′) is not
negative definite; see [17]. Further issues in the use of the integral (2.3) are discussed
in [15].
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282 A. SCOTTEDWARD HODEL AND PRADEEP MISRA

3. Reduction of problem dimension. The minimization (1.4) can be rewrit-
ten as a standard least-squares problem (1.5) through a Kronecker product expansion.
More precisely, in (1.5) we let Ā = (B ⊗ A + D ⊗ C), x̄ = vec(X), and b̄ = vec(F ),
where Y ⊗ Z =

[
yijZ

]
is the Kronecker product of two arbitrary matrices Y and

Z, and vec(A) is the vector stack of the matrix A; e.g., if Z ∈ Rn×m, then

vec(Z) =
[
Z·1
′ · · · Z·m

′ ]′,
where Z·j is the jth column of the matrix Z. (Observe that vec(ABC) = (C ′ ⊗
A) vec(B) [3].) The Kronecker product expansion of (1.4) yields an overdetermined
sparse system of n2 equations in k2 unknowns so that a naive application of a QR
algorithm would require O(n2k4 + k6) flops to obtain the optimal solution X. If
k < n/3, then the dimension of the minimization may be reduced, as shown in the
following lemma.

Lemma 3.1. Let A,B,C,D ∈ Rn×k, F ∈ Rn×n, and let A1, A2, B1, C1, D1, D2 ∈
Rk×k satisfy the QR factorizations

[
Q

(1)
1 Q

(1)
2 Q

(1)
3

] C1 A1

0 A2

0 0

 =
[
C A

]
,

[
Q

(2)
1 Q

(2)
2 Q

(2)
3

] B1 D1

0 D2

0 0

 =
[
B D

]
,

where Q
(j)
1 , Q

(j)
2 ∈ Rn×k and Q

(j)
3 ∈ Rn×n−2k, and [Q

(j)
1 Q

(j)
2 Q

(j)
3 ] is an orthogonal

basis of Rn, j = 1, 2. Then X ∈ Rk×k minimizes ‖AXB′ + CXD′ + F‖F if and only
if X minimizes ∥∥∥∥∥∥

 A1XB1
′ + C1XD1

′

A2XB1
′

C1XD2
′

+

 F̂11

F̂21

F̂12

∥∥∥∥∥∥
F

,(3.1)

where F̂ij = Q
(1)
i

′
FQ

(2)
j .

Proof. Let Qj = [Q
(j)
1 Q

(j)
2 Q

(j)
3 ], j = 1, 2, so that

[
C A

]
= Q1

 C1 A1

0 A2

0 0

 , [
B D

]
= Q2

 B1 D1

0 D2

0 0


and define

F̂ = Q1
′FQ2 =

 F̂11 F̂12 F̂13

F̂21 F̂22 F̂23

F̂31 F̂32 F̂33

 .
Then

min ‖AXB′ + CXD′ + F‖F
= min

∥∥Q1
′ (AXB′ + CXD′ + F )Q2

∥∥
F
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SOLUTION OF OVERDETERMINED SYLVESTER EQUATIONS 283

= min

∥∥∥∥∥∥
 A1

A2

0

X [ B1
′ 0 0

]
+

 C1

0
0

X [ D1
′ D2

′ 0
]

+ F̂

∥∥∥∥∥∥
F

= min

∥∥∥∥∥∥
 A1XB1

′ + C1XD1′ + F̂11 C1XD2
′ + F̂12 F̂13

A2XB1
′ + F̂21 F̂22 F̂23

F̂31 F̂32 F̂33

∥∥∥∥∥∥
F

.

Since F̂13, F̂22, F̂23, F̂31, F̂32, and F̂33 are constant for all values of X, the above min-
imization is unaffected by these terms, and the lemma follows.

Remark 3.1. The practical reduction of (1.4) to (3.1) for the general case (F does
not possess a sparse or other exploitable structure) can be accomplished in O(n2k)
flops as follows.

1. Compute and store the Householder vectors h
(j)
i , i = 1, 2k, j = 1, 2, obtained

in the QR factorizations of
[
C A

]
and

[
D B

]
in O(nk2) flops.

2. Accumulate Householder reflections H
(j)
i = (I − (2/h

(j)
i

′
h

(j)
i )h

(j)
i h

(j)
i

′
) to ob-

tain

Q̄j =
[
Q

(j)
1 Q

(j)
2

]
,

i = 1, . . . , 2k, j = 1, 2, in O(nk2) flops.
3. Compute Z = FQ̄2 ∈ Rn×2k in O(n2k) flops.
4. Compute [

F̂11

F̂21

]
= Q̄′1Z and F̂12 = Q

(1)
1

′
Z

 0k×k
Ik
0


(i.e., multiply by the last k columns of Z) in O(nk2) flops.

Observe that the dominant computational cost of O(n2k) flops occurs in step 3. This
cost can be greatly reduced if matrix-vector products Fv can be computed in much
less than n2 flops, e.g., if F is sparse or low-rank. The latter will be the case in con-
troller/model reduction applications such as [28]. Since the number of inputs/outputs
is greatly exceeded by the number of states in a typical dynamic system, the matrix F
is given by B̂B̂′, B ∈ Rn×m, m� n. Then step 3 above can be computed in O(mnk)
time, rendering the overall complexity to O(nmk) or O(nk2) (whichever is smaller).

Remark 3.2. If the least-squares minimization (1.4) is obtained via Krylov sub-
spaces as in [19], then the corresponding minimization has A,B,C,D ∈ R(k+1)×k,
which obviates the need for the above reduction.

4. Iterative solution by CG methods. We shall henceforth assume that the
minimization (1.4) has been posed in the form of Lemma 3.1; i.e., we wish to solve
the least-squares problem

min

∥∥∥∥∥∥
 A1XB1

′ + C1XD1
′

A2XB1
′

C1XD2
′

+

 F̂11

F̂21

F̂12

∥∥∥∥∥∥
F

.(4.1)

As in the case of (1.4), (4.1) can be solved by a Kronecker product expansion (1.5)
with

Ā =

 L1

L2

L3

 ∆
=

 B1 ⊗A1 +D1 ⊗ C1

B1 ⊗A2

D2 ⊗ C1

 ,(4.2)
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284 A. SCOTTEDWARD HODEL AND PRADEEP MISRA

x̄ = vec(X), and b̄ =

 b̄1
b̄2
b̄3

 ∆
=

 vec(F̂11)

vec(F̂21)

vec(F̂12)

 .
The QR method allows the computation of a matrix X that minimizes (4.1) in O(k6)
flops.

We may also minimize (4.1) in O(k5) flops by applying the CG algorithm [14] to
the normal equations Ā′Āx̄ = −Ā′b̄ as follows.

Algorithm 1. Solution of (4.1) by CGs.
Inputs A1, A2, B1, C1, D1, D2, F̂11, F̂21, F̂12 ∈ Rk×k.
Outputs X ∈ Rk×k satisfying the minimization (4.1).

1. X0 = 0, j = 0, R
(0)
11 = F̂11, R

(0)
21 = F̂21, R

(0)
12 = F̂12,

R0 = A1
′F̂11B1 + C1

′F̂11D1 +A2
′F̂21B1 + C1

′F̂12D2

2. while Rj 6= 0
(a) j = j + 1
(b) if j = 1

Pj = R0

(c) else βj =
vec(Rj−1)

′
vec(Rj−1)

vec(Rj−2)
′
vec(Rj−2)

, Pj = Rj−1 + βjPj−1

(d) end if

(e) Compute W
(j)
11 = A1PjB1

′ + C1PjD1
′, W

(j)
21 = A2PjB1

′, and W
(j)
12

= C1PjD2
′, and let Wj = [ vec(W

(j)
11 )
′

vec(W
(j)
21 )
′

vec(W
(j)
12 )
′

]
′
.

(f) αj =
vec(Rj−1)

′
vec(Rj−1)

vec(Pj)
′
Āpj

(g) Xj = Xj−1 + αjPj
(h) Compute residuals

R
(j)
11 = A1Xj−1B1

′ + C1Xj−1D1
′ + F̂11 R

(j)
21 = A2Xj−1B1

′ + F̂21

R
(j)
12 = C1Xj−1D2

′ + F̂12

Rj = A1
′R

(j)
11 B1 + C1

′R
(j)
11 D1 +A2

′R
(j)
21 B1 + C1

′R
(j)
12 D2

3. end while
4. X = Xj

In exact arithmetic, the CG algorithm will converge in at most k2 iterations; if
Ā′Ā is a rank l modification to the identity matrix, then the CG algorithm will con-
verge in at most l iterations; see [11] and [14] for details. The chief disadvantage of the
CG method is the loss of (Ā′Ā) orthogonality between the vectors pj as j increases;
that is, computed vectors pj do not satisfy the relation pj

′Ā′Ā
[
p1 · · · pj−1

]
= 0.

Because of this numerical behavior, the CG algorithm has come to be regarded as
a purely iterative method for large, sparse linear systems of equations. However, if
rank

(
L2
′L2 + L3

′L3

)
is not too large, as in [19], then convergence can be acceler-

ated by using a preconditioned conjugate gradient (PCG) algorithm [6]. The PCG
algorithm is based on the use of a splitting (Ā′Ā) = M +N , where M is symmetric,
positive definite, and easy to invert and “near” Ā. The PCG algorithm is as follows.

Algorithm 2. Generalized CGs.
Inputs M,N ∈ Rn×n, both symmetric, M positive definite and (by assumption)

Ā = M +N positive definite, and b ∈ Rn.
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SOLUTION OF OVERDETERMINED SYLVESTER EQUATIONS 285

Outputs x ∈ Rn satisfying Āx+ b = 0.
1. x−1 = x0 = 0, j = 0, r0 = b
2. while rj 6= 0

(a) j = j + 1; compute zj := −M−1rj−1.

(b) γj =
zj
′Mzj

zj ′Āzj

(c) ωj = 1 if j = 1, else ωj =

(
1− γj(zj

′Mzj)

ωj−1γj−1(zj−1
′Mzj−1)

)−1

(d) xj = xj−2 + ωj (γjzj + xj−1 − xj−2).
(e) rj = Āxj + b̄.

3. end while
4. x = xj

We apply the PCG algorithm to the minimization (4.1) as follows. The normal
equations corresponding to (4.1) are

(L′L)x = −L′f̄ .

Observe that L′L = L1
′L1 +L2

′L2 +L3
′L3, and so this problem decomposes naturally

to the splitting M = L1
′L1, N =

(
L2
′L2 + L3

′L3

)
. In order to solve Mzj = −rj ,

observe that if L1 is nonsingular then zj satisfies

0 = L1
′L1zj + L1

′r
(j−1)
1 + L2

′r
(j−1)
2 + L3

′r
(j−1)
3

= L1zj + r
(j−1)
1 + L1

−T
(
L2
′r

(j−1)
2 + L3

′r
(j−1)
3

)
,

which may be solved in matrix form in O(k3) flops as

0 = A1
′TjB1 + C1

′TjD1 −
(
A2
′R

(j−1)
21 B1 + C1

′R
(j−1)
12 D2

)
,

0 = A1ZjB1
′ + C1ZjD1

′ + (R
(j−1)
11 + Tj).

The resulting matrix-valued PCG algorithm is shown below.
Algorithm 3. Solution of (4.1) by PCGs.

Inputs A1, A2, B1, C1, D1, D2, F̂11, F̂21, F̂12 ∈ Rk×k.
Outputs X ∈ Rk×k satisfying the minimization (4.1).

1. X−1 = X0 = 0, j = 0, R
(0)
11 = F̂11, R

(0)
21 = F̂21, R

(0)
12 = F̂12,

R0 = A1
′F̂11B1 + C1

′F̂11D1 +A2
′F̂21B1 + C1

′F̂12D2

2. while Rj 6= 0
(a) j = j + 1; Solve for Tj and Zj :

0 = A1
′TjB1 + C1

′TjD1 −
(
A2
′R

(j−1)
21 B1 + C1

′R
(j−1)
12 D2

)
0 = A1ZjB1

′ + C1ZjD1
′ + (R

(j−1)
11 + Tj)

(b) Compute W
(j)
11 = A1ZjB1

′ + C1ZjD1
′, W

(j)
21 = A2ZjB1

′, and W
(j)
12

= C1ZjD2
′, and let Wj = [ vec(W

(j)
11 )
′

vec(W
(j)
21 )
′

vec(W
(j)
12 )
′

]
′
.

(c) γj =
−vec(Zj)

′
vec(Rj−1)

vec(Wj)
′
vec(Wj)

D
ow

nl
oa

de
d 

09
/2

5/
12

 to
 1

30
.1

08
.1

21
.2

17
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



286 A. SCOTTEDWARD HODEL AND PRADEEP MISRA

u(t)

y3y2y1

. . .

yNyN−1

Fig. 5.1. Mass-spring-dashpot system.

(d) ωj = 1 if j = 1, else ωj =

(
1− γj(zj

′rj−1)

ωj−1γj−1(zj−1
′rj−2)

)−1

(e) Xj = Xj−2 + ωj (γjZj +Xj−1 −Xj−2).
(f) Compute residuals

R
(j)
11 = A1Xj−1B1

′ + C1Xj−1D1
′ + F̂11 R

(j)
21 = A2Xj−1B1

′ + F̂21

R
(j)
12 = C1Xj−1D2

′ + F̂12

Rj = A1
′R

(j)
11 B1 + C1

′R
(j)
11 D1 +A2

′R
(j)
21 B1 + C1

′R
(j)
12 D2

3. end while
4. X = Xj

Remark 4.1. If rank
([

L2 L3

])
is small (� k2), then in exact arithmetic this

algorithm should converge much faster than CG (Algorithm 1); see [6, pp. 319–320].
For example, minimizations (4.1) that arise in [19] can be solved in only 2k iterations,
or O(k4) work. However, it should be pointed out that the PCG algorithm is not
necessarily numerically superior to the CG algorithm; in particular, the operator M
is explicitly inverted in step 2a of Algorithm 1; this is undesirable when L1 is poorly
conditioned.

Remark 4.2. Unfortunately, it is not immediately obvious how the conditioning
of L1 relates to the original matrices A, B, C, D. Hence, an explicit bound on
the conditioning of L1

′L1 appears impossible to determine. However, one may use
Byers’s condition estimator [5] to determine when an ill-conditioned system occurs;
a variant of this algorithm may be employed with the preconditioner in the present
algorithm. The response to an ill-conditioned estimator depends on the scenario in
which it occurs; one may simply increase the dimension of V (as in Krylov subspace-
based algorithms) or one may dispense with the preconditioner to use either the
CG algorithm or (if applicable) the algorithms presented in [19] or [23]. When well
conditioned, the PCG algorithm in this paper provides an improvement in algorithm
speed.

5. Numerical examples. Algorithms 1 and 3 were tested on a lumped mass-
spring-damper model of a vibrating system (see Figure 5.1); such models arise in
numerous engineering applications. In Figure 5.1, yj denotes the displacement of
mass j from its rest position; u(t) is an external (controlled) force; and all N masses,
springs, and dashpots are assumed to be identical with mass m, stiffness ρ, and
damping δ, respectively. The first-order dynamic model of the system is

ẋ = Ax+Bu,D
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Table 5.1

Flop counts vs. k for implementations of Algorithms 1 and 3.

k Algorithm 1 Algorithm 3
5 6635 3.918E+04
10 5.043E+04 3.232E+05
15 1.674E+05 1.172E+06

where A = [ 0
A21

In
−(δ/m)In

] ∈ R2N×2N ,

A21 =
ρ

m



−2 1 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 · · · 0 1 −1


, and B =


0
...
0
1

 .

Example systems were run with N = 100, 200, 300, and 400. Results presented in
this section are for N = 300 with parameters (ρ, δ,m) selected as either (1, 0.1, 1)
or (10, 10−3, 10−2), respectively. The second set of parameters yields a very lightly
damped system.

A solution X was sought to the minimization

min
X∈Rk×k

‖(AV )XV ′ + V X(A′V ′) +BB′‖F ,

where V was an orthogonal basis of the Krylov subspace

span
([

b Ab · · · Ak−1b
])

for k = 5, 10, and 15. Numerical implementation of Algorithms 1 and 3 was done
using MATLAB version 4.2a on a Sun Sparc-10. Table 5.1 shows returned flop counts
per iteration for the two algorithms vs. problem dimension parameter k. Figure
5.2 shows the plots of the residual of the normal equations for the CG and PCG
iterations; system parameters were δ = 0.1, ρ = 1, and m = 1. Observe that the PCG
method residual reaches its equilibrium value in roughly k iterations, consistent with
its expected convergence behavior. Both algorithms are sensitive to the condition
of the underlying system; Figure 5.3 shows the residuals for δ = 10−3, ρ = 10, and
m = 0.01. The deterioration in performance is due to the wide spread in singular
values of L′L associated with lightly damped, high-frequency modes of the system
(see equation (4.2)).

6. Conclusions. The numerical solution of overdetermined Sylvester equations
(1.4) has applications in both the reduced-order modeling and the control of large
dimensional systems as well as low-rank approximate solution of Lyapunov equations
(1.1) and Sylvester equations (2.2). Our solution procedure involves the reduction of
the original problem to a minimization of dimension at most 3k×k, followed by either
a CG algorithm for the general case, or a PCG algorithm for minimizations (1.4) that
are low-rank perturbations of a reduced-order general Sylvester equation (1.6). A
CG algorithm requires O(k5) flops before convergence, while a PCG algorithm may
require as few as O(k4) flops before convergence.
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Fig. 5.2. Residual plot: δ = 0.1, ρ = 1, m = 1.

Fig. 5.3. Residual plot: δ = 10−3, ρ = 10, m = 0.01.
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