Quasi-Triangular Matrices

Joanne Dombrowski
Wright State University - Main Campus, joanne.dombrowski@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/math

Part of the Applied Mathematics Commons, Applied Statistics Commons, and the Mathematics Commons

Repository Citation
https://corescholar.libraries.wright.edu/math/55

This Article is brought to you for free and open access by the Mathematics and Statistics department at CORE Scholar. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
QUASITRIANGULAR MATRICES

J. DOMBROWSKI

Abstract. It is shown that there exist quasitriangular operators which
cannot be represented as quasitriangular matrices.

Introduction. A quasitriangular matrix is an infinite matrix \(A = [a_{ij}] \) in
which all entries below the subdiagonal are zero and the subdiagonal entries
cluster at zero (i.e., \(a_{ij} = 0 \) for \(i > j + 1 \) and \(\lim \inf |a_{i,j+1}| = 0 \)). A quasitri-
angular operator is an operator which can be expressed as the sum of a
triangular matrix (\(a_{ij} = 0 \) for \(i > j \)) and a compact one. The relationship
between quasitriangular matrices and quasitriangular operators, and the
significance of studying that relationship in conjunction with the invariant
subspace problem, are discussed by Halmos in [2]. It is shown in [2] that
every bounded quasitriangular matrix defines a quasitriangular operator.
Halmos then asks whether every cyclic quasitriangular operator has a quasi-
triangular matrix. It will be shown below that the answer is no. A few
preliminary ideas are needed.

Let \(A = \int_{\eta} dE_{\eta} \) be a bounded selfadjoint operator defined on a separable
Hilbert space \(\mathcal{H} \). By Weyl's theorem \(A \) is the sum of a diagonal operator and
a compact one. Hence \(A \) is quasitriangular. Denote by \(\mathcal{K}_a(A) \) the set of
elements \(x \) in \(\mathcal{H} \) for which \(\| E_{\eta} x \|^2 \) is an absolutely continuous function of \(\eta \).
The subspace \(\mathcal{K}_a(A) \) reduces \(A \) [1, p. 104] and the restriction of \(A \) to \(\mathcal{K}_a(A) \)
is called the absolutely continuous part of \(A \). A result due to Kato [3] and
Rosenblum [4] asserts that the absolutely continuous part of the operator \(A \)
remains stable under a trace class perturbation. In particular, if \(C \) is
selfadjoint and of trace class, and if \(B = A + C \), then the absolutely continu-
ous parts of \(A \) and \(B \) are unitarily equivalent.

Main result. The main result to be established is as follows.

Proposition. A selfadjoint operator with a nontrivial absolutely continuous
part cannot be represented as a quasitriangular matrix.

Proof. Let \(A \) be a selfadjoint operator with a nontrivial absolutely continu-
ous part. Suppose that with respect to some orthonormal basis, \(A \) can be
represented as a quasitriangular matrix. Clearly this matrix takes the form
with some subsequence of \(\{a_n\} \) converging to zero. Furthermore, the subsequence \(\{a_{n_k}\} \) can be chosen so that \(\sum |a_{n_k}| < \infty \).

Let \(B \) be the matrix obtained from \(A \) by replacing each \(a_{n_k} \) by zero. Then \(B \) has finite dimensional invariant subspaces. In fact, \(B \) has a pure point spectrum.

If \(C = A - B \) then \(C \) is the real part of a weighted shift with weight sequence \(\{c_n\} \) satisfying \(\sum |c_n| < \infty \). Hence \(C \) is of trace class. Since \(A \) has an absolutely continuous part it follows, from the Kato-Rosenblum theorem, that \(A - C = B \) has an absolutely continuous part. But this contradicts the fact that \(B \) has a pure point spectrum.

Corollary. The real part of the unilateral shift does not have a quasitriangular matrix.

References

Department of Mathematics, Wright State University, Dayton, Ohio 45435