Wright State University
CORE Scholar

Academic Program Review Reports Accreditation & Assessment

1-11-2015

Computer Science & Engineering Academic Program Review,
2014

College of Engineering & Computer Science, Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/
academic_program_review_reports

Cf Part of the Educational Assessment, Evaluation, and Research Commons

Repository Citation
(2015). Computer Science & Engineering Academic Program Review, 2014. .
https://corescholar.libraries.wright.edu/academic_program_review_reports/5

This Report is brought to you for free and open access by the Accreditation & Assessment at CORE Scholar. It has
been accepted for inclusion in Academic Program Review Reports by an authorized administrator of CORE Scholar.
For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/academic_program_review_reports
https://corescholar.libraries.wright.edu/accreditation_assessment
https://corescholar.libraries.wright.edu/academic_program_review_reports?utm_source=corescholar.libraries.wright.edu%2Facademic_program_review_reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/academic_program_review_reports?utm_source=corescholar.libraries.wright.edu%2Facademic_program_review_reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/796?utm_source=corescholar.libraries.wright.edu%2Facademic_program_review_reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

College:
Engineering and Computer Science
Department:

Computer Science & Engineering

Academic Programs Reviewed:
Bachelors of Arts in Computer Science (BACS)
Bachelors of Science in Computer Science (BSCS)
Bachelors of Science in Computer Engineering (BSCE)
Master of Science in Computer Science (MSCS)
Master of Science in Computer Engineering (MSCE)

Master of Science in Cyber Security (MSCyS)

Program Review Committee:

Travis Doom, Associate Professor and Associate Chair, Computer Science & Engineering

Arthur Goshtasby, Professor and Graduate Program Director, Computer Science & Engineering

Karen Meyer, Senior Lecturer and Undergraduate Program Director, Computer Science & Engineering
T.K. Prasad, Professor and CSE Graduate Studies Committee Chair

Vance Saunders, Instructor and Cyber Security Program Director

Submitted: January, 2015

Mateen Rizki, Chair

Nathan Klingbiel, Dean

1|Page

Bachelors of Arts in Computer Science — BACS

Enrollment and Graduate History

Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013
Enrollment 29 44 36 46 45
Graduates 9 11 9 12 13

Program description

The Bachelor of Arts in Computer Science program prepares students for careers in computer systems
analysis and design, software development, system administration and web site development. The
Bachelor of Arts program allows for maximum flexibility of course study with fewer requirements in high
level math and science. Our Graduates can pursue a wide array of careers and develop a broad
understanding of multiple disciplines and the application of technology and computer systems in these
fields.

[PEO EXPERT] Graduates of the Computer Science BA program are employable as computing
professionals and will be recognized by their employers as well-prepared for their career in computing.
[PEO AGILE] Graduates understand that education is a lifelong process and are well prepared for
continuing studies. [PEO ENGAGED] Graduates demonstrate appreciation for the professional, social,
ethical and leadership roles of computing professionals. [PEO APPLIED] Graduates can apply computing
and software development principles to a diverse range of domains, such as analytics, data science,
informatics, management, etc.

Alignment with university mission, strategic plan

The Computer Science BA program educational objectives (PEOs) are in alignment with the university’s
core mission. The BA CS program builds a solid foundation for student success by preparing students
with the critical thinking, mathematical, communication, and technical skills necessary for meaningfully
engaging both as informed citizens and in the workplace [PEOs EXPERT, APPLIED]. The BA CS program
prepares students to enter into high-demand technical careers that help drive economic growth in the
region/state [PEOs EXPERT, APPLIED]. Most importantly, the BA CS program prepares students for the
process of lifelong education so that they can more easily continue to develop professionally,
intellectually, and personally after graduation [PEOs AGILE, ENGAGED].

Program distinctiveness

The Computer Science BA program shares most of its outstanding features with the department’s
externally accredited Computer Science BS and Computer Engineering BS programs. The distinguishing
feature of the CS BA program is a focus on the application of computing to a diverse range of domains.
The CS BA program requires less mandatory course work towards developing mathematically rigorous
scientific-method based skills. Instead, the CS BA program provides opportunity for students to develop
knowledge in other domains in which computing is applied. These potential domains of interest include
not only the sciences, but also business, the arts, health care, or any other area of university study.

2|Page

The BACS program has recently incorporated a new “fast track” advising program designed to provide a
BACS degree through 18 months of intensive study in the discipline of computer science to potential
students that already possess a baccalaureate degree in another discipline. In addition, the BACS
program has a recently implemented option to provide professional K-12 Teacher Licensure. All BACS
majors (including pre- and intending majors) are advised by professional advisors within the college of
Engineering and Computer Science.

Recognitions of quality of the program

This program is supported by the same faculty, core course sequence, and assessment infrastructure as
the department’s externally accredited (ABET) Bachelors of Science programs in Computer Science and
in Computer Engineering. As such, there is no doubt that the graduates of this program receive a high
quality experience similar in outcome to our BS programs.

Program learning outcomes
Students who complete the Bachelor of Arts in Computer Science will have:

an ability to apply knowledge of mathematics.

an ability to apply knowledge of science.

an ability to apply knowledge of theory of computation.

an ability to design and conduct experiments.

an ability to analyze and interpret data and report the results of the interpretation.

an ability to identify, formulate, and solve computer oriented problems as appropriate to the

discipline of computer science.

7. an ability to design software to meet desired needs.

8. an ability use the techniques, skills, and modern tools necessary for professional practice.

9. an ability to communicate effectively in written, graphical and oral forms.

10. an understanding of professional and ethical responsibility.

11. a knowledge of contemporary issues: social and ethical, as well as technical issues in local,
regional, national and international context.

12. the broad education necessary to understand the impact of science and technology in a global

and societal context: relevant to being a good citizen at the local, national, and international

levels.

oV ke wNE

Description of description of learning outcomes assessment program

The Computer Science Department Faculty have produced a mapping of Knowledge Topics prerequisite
or developed in each of the core/mandatory courses in our program. Achievements in these Knowledge
Topics are assessed in subsequent courses. A direct assessment of Knowledge Topics is made for every
student enrolled in every core course in the program every term. These direct assessments take place
as on-line prerequisite knowledge assessments at the beginning of courses that utilize and build on that
knowledge topic. SLOs are mapped to specific knowledge topics developed in specific core courses.
These direct assessments form the examination basis for program SLOs. Additionally, indirect
assessments are obtained from two formal groups, the department’s external advisory board and the
department’s student advisory board.

3|Page

Summary of assessment findings for past five years

The semester-based version of this program began Fall 2012. Given the short period of data collection
for semester-based program of study, very few significant actions have been taken on the collected
assessment data. Some potential concerns have been noted in our annual assessment report and
flagged for long-term observation. Please find the 2014 Departmental Assessment findings attached.

Major curricular changes since last review (or past five years)

The 2012-2013 academic year saw a complete redesign of all three undergraduate computer science &
engineering programs due to the university-wide transition to semester-based terms. As no assessment
data exists for the new semester-based courses or programs of study, assessment efforts during the
2012-2013 cycle has been largely focused on the development of direct assessment instruments and
collection of data for the newly offered programs/courses.

Three primary initiatives have been taken to improve student learning during this cycle:

e Delivery of inverted-lecture core sequence (SCALE-UP Classrooms - 152 RC & 355 RC)

e Development of program educational objectives with program constituents

e Preliminary development of infrastructure for continuous assessment of relevant retained
knowledge

Graduate placement data, employer satisfaction

The BA program is relatively new and does not yet have graduates with a “five-year out” history of
employment. Starting in 2014, graduating students are polled on expected placement. This effort will
help bridge the gap on assessing graduate placement until a significant and experienced cohort of
students have been employed in the field for a duration appropriate to gauge employer satisfaction.
Anecdotal evidence suggests that graduates of the Computer Science BA program are receiving many of
the same job offers as graduates of the Computer Science BS program and with similarly positive
employer satisfaction.

If program has professional accreditation, attach most recent review findings and recommendations

NA

4|Page

Bachelors of Science in Computer Science — BSCS

Enrollment and Graduate History

Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013
Enrollment 305 298 354 349 403
Graduates 29 41 47 54 50

Program description

The Department of Computer Science and Engineering has been part of the College of Engineering and
Computer Science at Wright State University since the college was founded in 1986. Prior to that time
the department's programs were organized in the College of Science and Mathematics. Our Bachelor of
Science in Computer Science (BSCS) degree program has a long history. It was established in 1968 —a
time when computer science was just becoming recognized as a major discipline in universities across
the country. The program has been accredited by ABET continuously since 1987. The last general
review of the BSCS program occurred in AY 2010-2011.

The Bachelor of Science in Computer Science degree offers a curriculum in the study of the software
aspects of computer systems including the study of algorithms and data structures, programming
languages, software methodology and tools, data management and analysis. [PEO EXPERT] Graduates
of the Computer Science program are employable as computing professionals and will be recognized by
their employers as well-prepared for their career in computing. [PEO AGILE] Graduates understand that
education is a lifelong process and are well prepared for continuing studies, including graduate studies.
[PEO ENGAGED] Graduates demonstrate appreciation for the professional, social, ethical and leadership
roles of computing professionals. [PEO FOCUSED] Graduates have a set of software theory and
development skills that emphasizes software construction, team-based project management, and
experience with contemporary software development tools/paradigms.

Alignment with university mission, strategic plan

The BSCS program educational objectives are consistent with the mission of Wright State University.
The University’s goal of “achieving learning outcomes through innovative, high quality programs for all
students” is well supported by PEO EXPERT. Further, Wright State University’s commitment to
“conducting scholarly research and creative endeavors” enables the faculty to remain on the leading
edge of the practice, and to continue to provide students with experiences developed toward meeting
PEOs EXPERT and FOCUSED. WSU’s commitment to “engaging in significant community service”
provides a clear example of social responsibility and ethical practice to our students, in support of PEO
ENGAGED. Finally, PEOs AGILE and ENGAGED are essential elements in achieving the overall aim of the
institution, to “transform the lives of our students and the communities we serve”.

5|Page

Program distinctiveness

1. The program is housed in the same department as the Computer Engineering program making it
easier for students to pursue both majors and/or enroll in computer science as well as computer
engineering elective courses.

2. Wright State University is located near Wright Patterson Air Force Base providing students with
unique opportunities to work in the Air Force Research Lab and other related employment
opportunities.

3. The Boffin Factory is a student centered research, activity and study area where students can pursue
specific interests, connect with other students and attend lectures hosted by faculty and staff.

4. The program is small enough that students can be involved in working in help rooms, labs and
recitations and have direct contact with their Professors, but large enough that they have access to
resources provided by the defense and private industry.

The BSCS program has recently incorporated a new “fast track” advising program designed to provide a
BSCS degree through 18 months of intensive study in the discipline of computer science to potential
students that already possess a baccalaureate of degree in another science. In addition, the BSCS
program has a recently implemented a “4+1” track that allows high achieving students to being progress
towards a graduate degree in computer science while completing senior-level electives in their
baccalaureate program of study. All BSCS majors (including pre- and intending majors) are advised by
professional advisors within the college of Engineering and Computer Science.

Recognitions of quality of the program
The program has been accredited by ABET/CAC continuously since 1987.
Program learning outcomes

Students who complete the BS in computer science will have:

1. an ability to apply mathematical foundations, algorithmic principles, and computer science
theory in the modeling and design of computer-based systems in a way that demonstrates
comprehension of the tradeoffs involved in design choices.

2. an ability to design and conduct experiments, coupled with an ability to analyze and interpret
data, and report the results of the interpretation.

3. an ability to apply design and development principles to design, implement, and evaluate
software systems (computer-based systems, processes, components, or programs) of varying
complexity to meet desired needs.

4. an ability to function effectively on teams to accomplish a common goal.

5. an ability to identify, formulate, and solve computer oriented problems as appropriate to the
discipline of computer science.

6. an understanding of professional, ethical, legal, security and social issues and responsibilities.

7. an ability to communicate effectively in written (prose as well as mathematical, scientific,and
engineering notations in technical reports), graphical (diagrams, charts, visualizations,
animations), and oral (discussions with colleagues, group meetings, and formal presentations)
forms.

6|Page

8. the broad education necessary to understand the impact of science and technology in a
contemporary global and societal context: relevant to being a productive and contributing
citizen at the local, national, and international levels.

9. arecognition of the need for, and an ability to engage in life-long learning of computer science
and related topics.

10. an ability to use the techniques, skills, and modern tools necessary for professional computing
practice such as software development environments, modern programming languages, and
computer hardware components.

Description of description of learning outcomes assessment program

The Computer Science Department Faculty have produced a mapping of Knowledge Topics prerequisite
or developed in each of the core/mandatory courses in our program. Achievement in these Knowledge
Topics are assessed in subsequent courses. A direct assessment of Knowledge Topics is made for every
student enrolled in every core course in the program every term. These direct assessments take place
as on-line prerequisite knowledge assessments at the beginning of courses that utilize and build on that
knowledge topic. SLOs are mapped to specific knowledge topics developed in specific core courses.
These direct assessments form the examination basis for program SLOs. Additionally, indirect
assessments are obtained from two formal groups, the department’s external advisory board and the
department’s student advisory board.

Summary of assessment findings for past five years

The semester-based version of this program began Fall 2012. Given the short period of data collection
for semester-based program of study, very few significant actions have been taken on the collected
assessment data. Some potential concerns have been noted in our annual assessment report and
flagged for long-term observation. Please find the 2014 Departmental Assessment findings attached.

Major curricular changes since last review (or past five years)

The 2012-2013 academic year saw a complete redesign of all three undergraduate computer science &
engineering programs due to the university-wide transition to semester-based terms. As no assessment
data exists for the new semester-based courses or programs of study, assessment efforts during the
2012-2013 cycle has been largely focused on the development of direct assessment instruments and
collection of data for the newly offered programs/courses.

Three primary initiatives have been taken to improve student learning during this cycle:

* Delivery of inverted-lecture core sequence (SCALE-UP Classrooms - 152 RC & 355 RC)

e Development of program educational objectives with program constituents

e Preliminary development of infrastructure for continuous assessment of relevant retained
knowledge

e Incorporation of mandatory Team Projects senior capstone experience

Graduate placement data, employer satisfaction

There have been no significant reports of CS students having difficulty finding immediately placement
locally or national. The CS skillset is in high demand and market forces seem to indicate significant

7|Page

continued demand for computer science graduates. Employer satisfaction (as communicated by the
departmental external advisory board) remains high.

If program has professional accreditation, attach most recent review findings and recommendations

Attached.

8|Page

Bachelors of Science in Computer Engineering — BSCE

Enrollment and Graduate History

Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013
Enrollment 227 220 235 242 248
Graduates 17 14 17 31 30

Program description

The Department of Computer Science and Engineering has been part of the College of Engineering and
Computer Science at Wright State University since the college was founded in 1986. Prior to that time
the department's programs were organized in the College of Science and Mathematics. Our Bachelor of
Science in Computer Science degree program was established in 1968 - a time when computer science
was just becoming recognized as a major discipline in universities across the country. Our Bachelor of
Science in Computer Engineering (BSCEG) was established in 1981. The program has been accredited by
ABET continuously since 1987. The last general review of the BSCEG program occurred in AY 2010-2011.

The Bachelor of Science in Computer Engineering degree offers a curriculum in the study of computer
systems including the design, construction, and overall operations with a major focus on hardware. It
includes the study of digital circuits, embedded systems programming languages and operating systems.
The program provides a solid mathematics, basic science, and engineering science base that is common
to all quality engineering programs. [PEO EXPERT] Graduates of the Computer Engineering program are
employable as computing professionals and will be recognized by their employers as well-prepared for
their career in computing. [PEO AGILE] Graduates understand that education is a lifelong process and
are well prepared for continuing studies, including graduate studies. [PEO ENGAGED] Graduates
demonstrate appreciation for the professional, social, ethical and leadership roles of computing
professionals. [PEO BROAD] Graduates have a knowledge of computing principles that includes all levels
of modern computational architectural/infrastructure, operating systems and component-based
hardware/embedded/software systems.

Alignment with university mission, strategic plan

The BSCEG program educational objectives are consistent with the mission of Wright State University.
The University’s goal of “achieving learning outcomes through innovative, high quality programs for all
students” is well supported by PEO EXPERT. The program aims to maintain a modern mix of hardware
and software experiences that keep up with the rapidly-changing environment of contemporary
computing. Further, Wright State University’s commitment to “conducting scholarly research and
creative endeavors” enables the faculty to remain on the leading edge of the practice, and to continue
to provide students with the modern laboratory, project, and design experiences mentioned in PEOs
EXPERT and BROAD. WSU’s commitment to “engaging in significant community service” provides a clear
example of social responsibility and ethical practice to our students, in support of PEO ENGAGED.
Finally, PEOs AGILE and ENGAGED are essential elements in achieving the overall aim of the institution,
to “transform the lives of our students and the communities we serve”.

9|Page

Program distinctiveness

1. The program is housed in the same department as the Computer Engineering program making it
easier for students to pursue both majors and/or enroll in computer science as well as computer
engineering elective courses.

2. Wright State University is located near Wright Patterson Air Force Base providing students with
unique opportunities to work in the Air Force Research Lab and other related employment
opportunities.

3. The Boffin Factory is a student centered research, activity and study area where students can pursue
specific interests, connect with other students and attend lectures hosted by faculty and staff.

4. The program is small enough that students can be involved in working in help rooms, labs and
recitations and have direct contact with their Professors, but large enough that they have access to
resources provided by the defense and private industry.

The BSCEG program has a recently implemented a “4+1” track that allows high achieving students to
being progress towards a graduate degree in computer engineering while completing senior-level
electives in their baccalaureate program of study. All BSCEG majors (including pre- and intending
majors) are advised by professional advisors within the college of Engineering and Computer Science.

Recognitions of quality of the program

The program has been accredited by ABET continuously since 1987.
Program learning outcomes

Students who complete the BS in computer engineering will have:

1. an ability to apply knowledge of mathematics, science, and engineering.
an ability to design and conduct experiments as needed to evaluate artifacts and processes not
suitable to other analysis, coupled with an ability to analyze and interpret data possibly using
statistical, logical, inductive, graphical, analogical, etc. reasoning and report the results of the
interpretation.

3. an ability to design a system, component, or process to meet desired needs.

4. an ability to function on multidisciplinary teams such as in group projects.

5. an ability to identify, formulate, and solve engineering and science problems as appropriate to
the discipline of computer engineering.

6. an understanding of professional and ethical responsibility.

7. an ability to communicate effectively in written (prose as well as mathematical, scientific, and
engineering notations in technical reports), graphical (diagrams, charts, visualizations,
animations), and oral (discussions with colleagues, group meetings, and formal presentations)
forms.

8. the broad education necessary to understand the impact of engineering and scientific solutions
in a contemporary global , economic, environmental, and societal context: relevant to being a
productive and contributing citizen at the local, national, and international levels.

10|Page

9. arecognition of the need for, and an ability to engage in life-long learning of computer
engineering and related topics.

10. an ability to use the techniques, skills, and modern tools necessary for professional engineering
practice such as CAD tools and physical instruments, modern programming languages, and
computer hardware components.

Description of description of learning outcomes assessment program

The Computer Science Department Faculty have produced a mapping of Knowledge Topics prerequisite
or developed in each of the core/mandatory courses in our program. Achievement in these Knowledge
Topics are assessed in subsequent courses. A direct assessment of Knowledge Topics is made for every
student enrolled in every core course in the program every term. These direct assessments take place
as on-line prerequisite knowledge assessments at the beginning of courses that utilize and build on that
knowledge topic. SLOs are mapped to specific knowledge topics developed in specific core courses.
These direct assessments form the examination basis for program SLOs. Additionally, indirect
assessments are obtained from two formal groups, the department’s external advisory board and the
department’s student advisory board.

Summary of assessment findings for past five years

The semester-based version of this program began Fall 2012. Given the short period of data collection
for semester-based program of study, very few significant actions have been taken on the collected
assessment data. Some potential concerns have been noted in our annual assessment report and
flagged for long-term observation. Please find the 2014 Departmental Assessment findings attached.

Major curricular changes since last review (or past five years)

The 2012-2013 academic year saw a complete redesign of all three undergraduate computer science &
engineering programs due to the university-wide transition to semester-based terms. As no assessment
data exists for the new semester-based courses or programs of study, assessment efforts during the
2012-2013 cycle has been largely focused on the development of direct assessment instruments and
collection of data for the newly offered programs/courses.

Three primary initiatives have been taken to improve student learning during this cycle:

e Delivery of inverted-lecture core sequence (SCALE-UP Classrooms - 152 RC & 355 RC)

* Development of program educational objectives with program constituents

* Preliminary development of infrastructure for continuous assessment of relevant retained
knowledge

Graduate placement data, employer satisfaction

There have been no significant reports of CS students having difficulty finding immediately placement
locally or national. The CS skillset is in high demand and market forces seem to indicate significant
continued demand for computer science graduates. Employer satisfaction (as communicated by the
departmental external advisory board) remains high.

If program has professional accreditation, attach most recent review findings and recommendations

Attached.

11|Page

Enrollment and Graduate History

Master of Science in Computer Science

Fall 2009 Fall 2010 Fall 2011 Fall 2012 Fall 2013
Enrollment 49 47 42 36 106
Graduates 24 14 27 10 15

Program Description

The program offers a wide range of courses in computer science and the opportunity to develop
research skills in computer science areas. The program’s strengths include diverse faculty expertise,
various computer science laboratories, and a balance of theory and practice. Degree requirements focus
on the areas of software systems design and analysis, and computer science theory. Courses for the
program are offered mostly in the late afternoon and evening hours and some with added online
sections to serve the educational needs of practicing computer professionals.

Alignment with the University Mission and Strategic Plan

The program provides students with the solid educational foundation in advanced topics in computer
science necessary to support the critical needs of employers in our region and state. The scholarly
research of the faculty provides opportunities for students to explore emerging topics at the frontier of
computer science to support future economic development and entrepreneurial enterprises.

Program Distinctiveness

e Courses in emerging disciplines such as soft computing, data mining, machine learning, network
science, information retrieval, and semantic web.

e Thesis options in wide computer science areas.

e Evening and online courses.

e The option to take courses in computer engineering and cyber security as a part of the
graduation requirement.

Recognitions of Quality of the Program

* The program has been steadily growing since its inception in Sept. 1975.

e Supported by government and private sources for research in computer science areas of
national and local interest.

e Faculty publications appearing in top science and engineering journals and conferences.

e Program graduates being placed at various positions locally and nationally, some very
competitive.

e Adds Big and Smart Data Sciences educational certificate to provide a detailed technical
overview of Big Data analysis issues for working professionals.

Program Learning Outcomes
Graduates are able to demonstrate:

e The ability to integrate and apply graduate computer science knowledge to solve complex
computer science problems.

12| Page

* The ability to understand and integrate new knowledge within the field of computer science into
their daily professional activities.
* The ability to recognize the need for, and engage in, life-long learning.

Description of Learning Outcomes Assessment Program

To ensure that the Computer Science M.S. program meets the needs of our graduate students and their
employers, an annual assessment of the program is planned to evaluate the program’s strengths and
weaknesses, specifically in regard to the number of annual graduations, time to graduation, satisfaction
of graduates with the program, and preparedness of the graduates in tackling technical challenges at
work. An indicator of the program’s health is the ratio of students to faculty in the program. To measure
the preparedness of the graduates in research and tackling difficult problems, the ratio of graduates
seeking a doctoral degree is used.

Summary of Assessment Findings for the Past Five Years

Due to the increased need for software development in various engineering, scientific, and commercial
applications, job opportunities in computer science have been robust. Consequently, to meet the needs
of an increased number of applicants in computer science, during recent years the department has hired
a number of new faculty in emerging fields. The CS program at Wright State is currently considered one
of the strongest in the State of Ohio.

During recent years, the department has made considerable investments renovating instructional labs,
developing multimedia tools for teaching, and enhancing delivery techniques. The program has
competent faculty with diverse expertise, who have developed a strong curriculum in the program as
evidenced by the exit surveys of the graduates.

Major Curricular Changes During the Past Five Years

* The quarter system program was converted to the current semester system program.

e New courses were introduced to the program as new faculty joined the program.

e Existing course contents were updated as needed to reflect recent advances in computer
science.

Graduate Placement Data and Employer Satisfaction

Among the students that graduated between 2010 and 2013, 45% have stated that they already have a
position either at AFRL or at a company in the Dayton area and intend to continue working there after
graduation. About 40% of the graduates seek positions and some find employment before or shortly
after graduation. Many of the students who are not already employed represent international students
who will be doing practical training after graduation and will be looking for a position at a later date. The
graduates in this category may take jobs outside of Dayton and leave the area. The remaining 15% of the
graduates enter the Ph.D. program at Wright State.

Employers of the graduates of the program who are members of the department’s advisory board have
expressed satisfaction with the graduates.

If Program has Professional Accreditation, Attach Most Recent Findings and Recommendations
N/A

13 |Page

Program 2: Master of Science in Computer Engineering

Enrollment and Graduate History

Fall 2009 Fall 2010 Fall 2011 Fall 2012 Fall 2013
Enrollment 25 27 13 14 24
Graduates 22 14 10 11 12

Program Description

The program offers diverse courses in computer engineering and the opportunity to develop research
skills in computer engineering areas. The program’s strengths include a wide range of faculty expertise,
many computer engineering laboratories, and a balance of theory and practice. Degree requirements
include hardware and software systems design and analysis. Courses for the program are offered mostly
in the late afternoon and evening hours and some with added online sections to serve the educational
needs of practicing computer professionals.

Alignment with the University Mission and Strategic Plan

The program provides students with the solid educational foundation in advanced topics in computer
engineering necessary to support the critical needs of employers locally and within the state. The
scholarly research of faculty provides opportunities for students to explore emerging topics at the
frontier of computer engineering to support future economic development and entrepreneurial
enterprises.

Program Distinctiveness

e Courses in emerging disciplines such as embedded systems, distributed computing, mobile
computing, cloud computing, and computer vision.

e Thesis options in wide computer engineering areas.

e Evening and online courses.

e The option to take courses in computer science and cyber security as a part of the graduation
requirement.

Recognitions of Quality of the Program

e The program has been steadily growing since its inception in Sept. 1984.

e Supported by government and private sources for research in computer engineering areas of
national and local need.

e Faculty publications appearing in top science and engineering journal and conferences.

e Program graduates being placed at various positions locally and nationally, some very
competitive.

Program Learning Outcomes
Graduates are able to demonstrate:

e The ability to integrate and apply graduate computer engineering knowledge to solve complex
computer engineering problems.

e The ability to understand and integrate new knowledge within the field of computer engineering
into their professional activities.

* The ability to recognize the need for, and engage in, life-long learning.

14| Page

Description of Learning Outcomes Assessment Program

To ensure that the Computer Engineering M.S. program meets the needs of our graduate students and
their employers, an annual assessment of the program is planned to evaluate the program’s strengths
and weaknesses, specifically to determine the number of annual graduations, time to graduation,
satisfaction of graduates with the program, and preparedness of the graduates in tackling technical
challenges at work. An indicator of the program’s health is the ratio of students to faculty in the
program. To measure the preparedness of the graduates in research and tackling difficult problems, the
ratio of graduates seeking a doctoral degree is used.

Summary of Assessment Findings for the Past Five Years

During recent years, the department has made considerable investments renovating instructional labs,
developing multimedia tools for teaching, and enhancing delivery techniques. The program has
competent faculty with diverse expertise, offering a strong curriculum as evidenced by the exit surveys
of the graduates.

Major Curricular Changes During the Past Five Years

e The quarter system program was converted to the current semester system.

e New courses were introduced to the program as new faculty joined the program.

e Existing course contents were updated as needed to reflect recent advances in computer
engineering.

Graduate Placement Data and Employer Satisfaction

Among the students that graduated between 2010 and 2013, 50% stated that they already have a
position either at AFRL or at a company in the Dayton area and intend to continue working there after
graduation. 42% of graduates seek employment and the majority find employment before or shortly
after graduation. International students usually start practical training after graduation for about a year
and look for a job after that. The graduates in this category may leave the Dayton area if the job they
find is outside Dayton. The remaining 8% of the graduates enter the Ph.D. program or another degree
program at Wright State.

Employers of the graduates of the program who are members of the department’s advisory board have
expressed satisfaction with the graduates.

If Program has Professional Accreditation, Attach Most Recent Findings and Recommendations
N/A

15|Page

https://graduation.42

Program 3: Master of Science in Cyber Security

Enrollment and Graduate History:

Fall 2010 Fall 2011 Fall 2012 Fall 2013 Fall 2014
Enrollment 4 8 4 8 17
Graduates 0 0 0 0 1

Program Description

The program offers a wide range of courses in cyber security and the opportunity to develop research
skills in the field. The program strengths include a unique blend of faculty expertise, well-equipped
laboratory facilities, and a balance of theory and practice. The degree is focused on developing the
knowledge and skills applicable to protecting complex systems operating in cyberspace. Courses are
offered online and in residence.

Alignment with the University Mission and Strategic Plan

The program provides students with the solid educational foundation in advanced topics in cyber
security necessary to support the critical needs of employers in our region and the state. The scholarly
research of the faculty provides opportunities for students to explore emerging topics at the frontier of
cyber security to support future economic development and entrepreneurial enterprises.

Program Distinctiveness

e Adds Cyber Security Analytics educational certificate to provide a detailed technical overview of
cyberspace for working professionals in other disciplines and fields. These students do not need
an M.S. in Cyber Security; however, they do need a technical understanding of the impacts cyber
security may have on their specific professional discipline.

» Significantly expands the traditional internet/web definition of cyberspace providing students
with a more accurate frame of reference to address cyber security issues. This expanded
definition encompasses complex systems for air, land, sea, space, critical infrastructure and The
Internet of Things (loT).

e Establishes a Cooperative Research and Development Agreement (CRADA) with the Air Force
Research Laboratory (AFRL) at Wright Patterson Air Force Base (WPAFB) to support the
expanded definition of cyberspace involving aircraft and avionics systems.

e Establishes collaboration with the Air Force Institute of Technology (AFIT) to focus on analyzing
cyber attacks and defenses across a wide range of complex cyber physical systems.

e Provides extensive hands-on laboratory exercises conducted in our Virtual Cyber Security Lab
(VCSL) using current attack and defend tools and techniques.

Recognitions of Quality of the Program

e The program continues to grow since its inception in September 2012.
e ltis of great interest to AFRL researchers and employees of local government contractors.

Program learning outcomes:

e The ability to integrate and apply graduate cybersecurity knowledge to solve complex
cybersecurity issues and challenges.

* The ability to understand and integrate new knowledge within the field of cybersecurity into
their professional activities.

16 |Page

https://anM.S.in

* The ability to recognize the need for, and engage in, life-long learning.

e Obtain a deeper understanding of the breadth and depth of cyberspace and the inefficiencies
and shortcomings of our existing evaluation systems to deal with cybersecurity threats.

¢ Understand the unique characteristics of cyberspace and how these unique characteristics
affect/influence cybersecurity threats.

» |dentify social, political, and economic factors/impacts of cyber threats and be able to identify
and discuss ethical issues related to cybersecurity and privacy.

e Recognize the basic concepts of cyber security defense and be able to use software tools for
malware identification and elimination, data encryption and transmission, and key-based
authentication.

Description of Learning Outcomes Assessment Program
No assessment is yet available due to the short life of this program in the department.

Summary of Assessment Findings for the Past Five Years
N/A

Major Curricular Changes During the Past Five Years

Course CEG 6424 “Security Attacks and Defenses” was newly added as a required course — changing the
total required courses from 3 to 4.

Graduate Placement Data and Employer Satisfaction
N/A

If Program has Professional Accreditation, Attach Most Recent Findings and Recommendations
N/A

17 |Page

Departmental Summary: Computer Science & Engineering

Faculty demographics

2008 2009 2010 2011 2012
Full 7 8 8 8 9
Associate 6 6 6 6 9
Assistant 5 5 5 5 2
Inst/Lect 5 5 5 6 6
Total 23 24 24 25 26
Staffing Summary

2008 2009 2010 2011 2012
Unclassified 2 2 5 4 4
Classified 3 3 3 3 3
Total 5 5 8 7 7
Student/Faculty Ratio

2008 2009 2010 2011 2012
Student FTE/Fac FTE 14 14 15 13 13
Average Class Size
2010 2011 2012
Lecture 34 20 27
Lab only 25 14 20
Lecture/Lab 42 23 27
Student Data for All Programs and for Graduate Programs in Unit
Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013
Enroliment 653 649 701 719 855
Graduate 99 104 119 124 131
Total Courses Taught vs. Credit Hours Generated for Unit
Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013

Undergraduate | 218 /13,465 241 /13,871 254 /12,990 145 /11,492 164 /12,786
Graduate 195 /2,293 235/2,339 240/ 2,198 226 /2,169 251 /3,630
Total 413 /15,758 476 /16,210 494 / 15,188 371 /13,661 415/ 16,416

18| Page

Course Completions

2008 2009 2010 2011 2012
Undergraduate 79% 79% 78% 79% 78%
Master’s 92% 91% 96% 95% 93%

Expense per Student and Revenue to Expense Ratio

2008 2009 2010 2011 2012
Expense per Student $6307 $7126 $7307 $8499 $9928
Rev/Expense 2.77 2.30 2.23 1.86 1.79

Research and External Funding

2008 2009 2010 2011 2012

External Funding $1,452,949 | $1,337,741 | $2,099,268 | $1,858,682 | $1,207,236

Future employment projections for discipline (to be provided to unit)

Employment prospects for graduates in computer science, computer engineering, and cyber security are
very good. Demand for graduates in computer science and computer engineering has been strong and is
expected to remain strong for years to come due to expected continued demand in data analysis and
digital communications. The need for the graduates in cyber security is especially acute as such
expertise is in great demand in government and private agencies and this demand is expected to remain
strong for many years to come. Graduates in computer science, computer engineering, and cyber
security are expected to find jobs within their field of specialty without any difficulty.

During the recent recession, national employment for computer scientists did not rise above 6% and
returned to pre-recession levels well before average unemployment indicators. Employment projects
for common career paths for computer scientists are included below. National data on common career
paths is collected from the Occupational Outlook Handbook, Bureau of Labor Statistics
(http://www.bls.gov, Oct 2014). Quick Facts are based on data collected by BLS in 2012.

e Computer and information system managers: $120,850. Entry level education: Bachelor’s
degree; Number of jobs: 332,700; Job Outlook 2012-2022: +15% (Faster than average)

e Computer programmers; Median Pay: $74,280. Entry level education: Bachelor’s degree;
Number of jobs: 343,700; Job Outlook 2012-2022: +8% (As fast as average)

e Computer systems analysts; Median Pay: $79,680. Entry level education: Bachelor’s degree;
Number of jobs: 520,600; Job Outlook 2012-2022: +25% (Much faster than average)

* Database Administrators; Median Pay: $77,080. Entry level education: Bachelor’s degree;
Number of jobs: 118,700; Job Outlook 2012-2022: +15% (Faster than average)

* Information security analysts; Median Pay: $86,170. Entry level education: Bachelor’s degree;
Number of jobs: 75,100; Job Outlook 2012-2022: +37% (Much faster than average)

* Software developer; Median Pay: $94,350. Entry level education: Bachelor’s degree; Number of
jobs: 1,018,000; Job Outlook 2012-2022: +22% (Much faster than average)

19|Page

http://www.bls.gov,Oct2014).QuickFacts

» Web developers; Median Pay: $62,500. Entry level education: Associate’s degree; Number of
jobs: 141,400; Job Outlook 2012-2022: +20% (Faster than average)

Description of how unit programs and curricula are “mission critical” to the core Wright State
educational experience

It is the mission of Wright State University to transform the lives of students and the community it
serves by: 1) building a solid foundation for student success at all levels through high-quality, innovative
programs; 2) conducting scholarly research and creative endeavors that impact the quality of life; 3)
engaging in meaningful community service; 4) driving the economic revitalization of our region and our
state; and 5) empowering all of our students, faculty, staff, and alumni to develop professionally,
intellectually, and personally.

The computer science, computer engineering, and cyber security curriculums help the university meet
its mission by offering very competitive programs in disciplines that are in great demand and by
graduating competent individuals who can then help the organizations they join to sharpen their
technological edge. This will, in turn, revitalize the local and state economy through the delivery of
numerous capabilities that are in great demand today.

Technology has changed rapidly in the past few years—so has the need for technologically competent
citizens and skilled workers in computer and information science/engineering. Awareness of technology
is becoming a de-facto core educational competency. The faculty of Wright State University have
recognized the importance of technological awareness by recognizing two courses offered by the
department as fulfilling general education competencies in the Wright State core.

Computation has become a de facto necessity for nearly all quantitative scholarly research. The
department supports scholarly efforts throughout the institution (and region) by producing graduates
and providing access to contributing state-of-the art computational experts. The impact of computation
on the mission of universities is on the rise. Nation-wide, many academic institutions have embraced
the mission critical nature of computation by investing significant resources into the founding of entire
Colleges dedicated to Computing, Computing Sciences, and Computer/Information Science.

Faculty accomplishments and recognitions

The department currently consists of 34 full-time faculty members including 9 professors, 10 associate
professors, 5 assistant professors, 3 senior lecturers, 2 lecturers and 5 instructors. The faculty includes 7
female faculty members (women are considered an underrepresented group in computer science &
engineering). 26 of the faculty members in the department hold doctoral degrees from a variety of
universities.

Faculty in computer science, computer engineering, and cyber security regularly receive funding to do
research in areas of national and local need. Active projects funded by government and state agencies
include:

e Instructional laboratories for cloud computing education (NSF)

e Afederated semantic service platform for material sciences (DoD, AFRL)
e Fusion of multimodal video streams (AFRL)

e Developing large-scale language models (NSF)

e The Ohio consortium for bioinformatics (OBR)

20| Page

Programs and areas of recognized excellence with supporting evidence

Bachelor of Science in Computer Science

The Bachelor of Science in Computer Science degree offers a curriculum in the study of the software
aspects of computer systems including the study of algorithms and data structures, programming
languages, software methodology and tools, data management and analysis.

Bachelor of Science in Computer Engineering

The Bachelor of Science in Computer Engineering degree offers a curriculum in the study of computer
systems including the design, construction, and overall operations with a major focus on hardware. It
includes the study of digital circuits, embedded systems programming languages and operating systems.
The program provides a solid mathematics, basic science, and engineering science base that is common
to all quality engineering programs

Bachelor of Arts in Computer Science

The Bachelor of Arts in Computer Science program prepares students for careers in computer systems
analysis and design, programming, network administration and web site development. The Bachelor of
Arts program allows for maximum flexibility of course study with fewer requirements in high level math
and science. Our Graduates can pursue a wide array of careers and develop a broad understanding of
multiple disciplines and the application of technology and computer in these fields.

Master of Science in Computer Science

The Department of Computer Science and Engineering offers a program of graduate study leading to a
Master of Science degree in Computer Science. The program strengths include the unique blend of
faculty expertise, well-equipped computer science laboratory facilities, and a balance of theory,
practice, hardware, and software. Degree requirements concentrate on the areas of software system
design and analysis. Courses for the program are offered in the late afternoon and evening hours to
serve the educational needs of practicing computer professionals.

Master of Science in Computer Engineering

The Department of Computer Science and Engineering offers a program of graduate study leading to the
Master of Science in Computer Engineering degree. The program strengths include the unique blend of
faculty expertise, well-equipped computer engineering laboratory facilities, and a balance of theory,
practice, hardware, and software. Degree requirements concentrate on the areas of computer system
design and analysis. Courses for the program are offered in the late afternoon and evening hours to
serve the educational needs of practicing computer professionals.

Master of Science in Cyber Security

The Master of Science in Cyber Security is designed for individuals who want to develop skills to identify
and resolve Cyber Security threats. The degree is focused developing knowledge and skill applicable to
protecting computer systems and computer networks. Program strengths include the unique blend of
faculty expertise, the well-equipped computer engineering laboratory facilities, and the balance of
theory, practice, hardware, and software.

Doctor of Philosophy in Computer Science and Engineering
The Department of Computer Science and Engineering offers a program of graduate study leading to the

21| Page

Doctor of Philosophy degree in Computer Science and Engineering. The Ph.D. degree is awarded in
recognition of demonstrated, scholarly excellence in study and research that results in a significant
contribution to the fields of computer science and/or computer engineering.

Capacity for growth of programs

The capacity crisis in Computer Science was a topic at the Jan 2014 NSF Priorities workshop. Dr. Eric
Roberts (Stanford) reports IPEDS data, SIGCSE panels, and anecdotal evidence all indicate that CS
enrollments are drastically increasing nationwide but that these increases are NOT keeping pace with
the skyrocketing demand for computing professionals.

Annual enrollment in introductory computer science courses
at Berkeley, Stanford, and Washington

2500
g
2 2000
-
E 1500
a ===Rerkeley
1000
E s—=Stanford
é 2o ——Washington
0
2004 200520062007 20082009 201020112012 2013
Year
Phil Levis, http://csl.stanford .edu/~palfed/
B Dociorate
B Master's 161,857
[Bachelor's

B .Job openings 120,045

Physical Sciences Biclogical Sciences Engineering Computer Science

Universities nation-wide are failing to produce the number of computer scientists required to sustain
economic growth. The table above [Phil Levis, Stanford University] demonstrates the gap between
annual degrees granted (using IPEDS data 2008-2009) and employment data (Department of Labor,
Occupational Outlook Handbook, 2010-2011).

The problem of the 2000s was insufficient student demand. The NSF Priorities presentation indicates
that the problem of the 2010s will be insufficient university capacity. Computer science is poised to face
a “success disaster” due to be unprepared to handle its overwhelming growth/need.

22| Page

Historical evidence (from a similar situation in the 1980s) suggests that universities do not currently
have the capacity to satisfy the growing demand. Workloads for faculty will increase substantially, some
faculty members will leave for greener pastures, and replacement faculty will be increasingly difficult to
find as students turn away from academic careers (or indeed, graduate studies altogether) to enter into
immediately high-paying careers in the demand-rich job market.

Wright State University’s department of Computer Science & Engineering will require substantial and
continued investment in order to prepare for and meet the anticipated need BEFORE qualified faculty
members become very difficult to recruit and retain.

At the graduate level, significant opportunity for growth is expected in the department’s new online
M.S. program in cyber security.

New program opportunities

The discipline of computer science/engineering is constantly redefining itself as technological needs and
opportunities grow. The department is responsive to the changing needs of our students, the university,
the state, and the nation. The department has recently created new programs in Cyber Security (MS-
Cyber) and certificates in Cyber Security and in Big Data / Data Science.

The expected increase in computer science students nationwide will require new opportunities to meet
more general needs for graduate students with less technical backgrounds. New programs under
consideration should include not only new technical opportunities (such as a Master of Science in Data
Analytics), but also less technical programs to meet the expended nation-wide demand for computer
science professionals. These programs may include the developing of technical talent in individuals who
have already demonstrated non-technical excellence, such as a Masters of Arts in Information Systems,
“Fast track” BS programs for students possessing baccalaureate degrees in other disciplines, and similar
opportunities.

Proposals to enhance programs (if desired)

e Promote excellence by improving teaching techniques to broaden the accessibility of the
undergraduate program to a wider range of incoming student experience

e Promote excellence by increasing graduate and undergraduate participation in research by
promoting the thesis option

e Continually adjusting admission standards as data suggests appropriate pre-admission metrics
for predicting student success and ability to successfully complete the program

23 |Page

Assessment report, Fall 2014: Computer Science

Kathleen Timmerman, Travis Doom
Wright State University, Dayton, OH 45431-0001
Email: timmerman.16@wright.edu

Continuous assessment of student learning allows directed continuous improvement of the learn-
ing experience. Learning is multidimensional and requires multiple methods of collection in or-
der to produce meaningful data. Direct methods of assessment measure student performance
against some rubric of success. Indirect methods of assessment more often measure the student’s
(or observer’s) perception of attainment. While both methods of assessment have their place, di-
rect measures of assessment have been used for decades to provide a means for quality assur-
ance. Historically, direct examinations such as the ACT and SAT have been used to measure the
educational achievement of high-school students applying to college. Similarly, examinations
such as the GRE, subject GRE, and Fundamentals of Engineering (FE) examination have been
used to measure student educational achievement in University and to partially gauge profes-
sional competency.

Examinations of this sort provide validation against a set of external criteria that demonstrate that
the retained knowledge of each student is relevant to the current national standard. Unfortu-
nately, end-of-program examinations of this sort make poor tools for continuous program im-
provement. It is difficult, if not impossible, to provide a linkage between overall examination
performance and specific actions or pedagogies employed in the educational process that led to
greater or lesser success.

Continuous periodic direct measurements provide the best opportunity for measuring the perfor-
mance effects of specific changes to programs, courses, and pedagogies. However, such data
collection efforts are practically limited due to the sometimes massive effort required from ad-
ministration, faculty, and students.

We use here an infrastructure to assess program effectiveness with the following goals:
1. The assessment provides continuous periodic direct measurements of retained relevant
knowledge.
2. The assessment outcome is immediately valuable to the assessment participants (students
and faculty) as well as the continuous improvement of the program.
3. The assessment is not unduly burdensome.

Assessment knowledge topics

The goal of assessment is to provide data to measure (or illustrate a need for) improvement. The
definition of the assessment standards then set a target goal towards which a program continu-
ously strives to better meet. Although program objectives differ significantly among institutions,
certain knowledge and skills are expected of graduates of engineering programs. We believe that
the standard towards which programs should strive in Engineering is best communicated not
only by the accreditation agencies but also by the appropriate discipline-specific international

mailto:timmerman.16@wright.edu

professional society. These societies maintain and regularly update the themes, knowledge ar-
eas, and professional practices expected of those entering their discipline.

For example, in computer science, the Joint Task Force on Computing Curricula between the As-
sociation for Computing Machinery (ACM) and IEEE-Computer Society provides regularly up-
dated standards in curriculum, most recently in the volume Computer Science Curricula 2013
(CS2013) [1]. The CS2013 Body of Knowledge organizes the expectations of Computing gradu-
ates into 18 Knowledge Areas (KA) which are created, revised, and removed as the discipline
changes over time (Figure 1, below). Each of these KAs is further specified as a set of
Knowledge Units (Figure 2, below) each of which specifies a set of Knowledge Topics (Figure
3, below) expected at the time of graduation.

While acknowledging that every program has differing educational objectives, use of profes-
sional society standards provides metrics which can gauge the success of the program against a
national model. Such metrics suggest an infrastructure for direct assessment that allows compar-
ison against discipline-wide expectations and to allow reflection on the need, causes, and appro-
priateness of any major deviations from the widespread consensus proposed by the discipline’s
professional society.

AL Algorithms and Complexity
AR Architecture and Organization

CN Computational Science

DS Discrete Structures

GV Graphics and Visualization

HC Human Computer Interaction
TAS Information Assurance

IM Information Management

IS Intelligent Systems

NC Networking and Communication

0S Operating Systems
PD Parallel and Distributed Computing

PL Programming Languages

SDF | Software Development Fundamentals
SE Software Engineering

SF System Fundamentals

SP Social and Professional Practice

Figure 1: CS2013 Knowledge Areas [CS2013]

Algorithms and Complexity (AL)

AL/Basic Analysis

AL/Algorithmic Strategies

AL/Fundamental Data Structures and Algorithms
AL/Basic Automata Computability and Complexity
Figure 2: Sample Knowledge Units in the Algorithms and Complexity Knowledge Area [CS2013]

AL/Fundamental Data Structures and Algorithms
« Simple numerical algorithms, such as computing the average of a list of numbers, finding the min, max, and
mode in a list, approximating the square root of a number, or finding the greatest common divisor
+ Sequential and binary search algorithms
» Worst case quadratic sorting algorithms (selection, insertion)
» Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort)
* Hash tables, including strategies for avoiding and resolving collisions
* Binary search trees
» Common operations on binary search trees such as select min, max, insert, delete, iterate over tree
* Graphs and graph algorithms
» Representations of graphs (e.g., adjacency list, adjacency matrix)
* Depth- and breadth-first traversals
* Graphs and graph algorithms
« Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)
* Minimum spanning tree (Prim’s and Kruskal’s algorithms)
+ Pattern matching and string/text algorithms (e.g., substring matching, regular expression matching, longest
common subsequence algorithms)

Figure 3: Sample Knowledge Topics in the Algorithms and Complexity: Fundamental Data Structures and
Algorithms Knowledge Unit [CS2013]

Continuous periodic direct measurements of retained relevant knowledge

We have worked with our program faculty to produce a mapping of which CS2013 Knowledge
Topics are prerequisite to or developed in each of the core/mandatory courses in our computer
science program. Our initial assessment framework is limited to mandatory “core” courses. Stu-
dents will gain additional experience in many core knowledge topics in their elective course-
work. However, the topics and amount of coverage will necessarily vary based upon the selected
electives. Thus, initial observations are limited only to core/mandatory courses.

For each course, the faculty has indicated what knowledge topics are developed or assumed (pre-
requisite) in the semester-based course offerings. We propose that the current method to assess
relevant retained knowledge is to perform a direct assessment of each knowledge topic not only
in the course that develops that knowledge, but when possible, at the beginning of a subsequent
course (or courses) that utilizes and builds on the topic.

Summative grading rubrics are, when possible, deployed at the start of the next course in the core
course sequence (Figure 4, below). These assessment points allow better evaluation retention of

expertise as measured prerequisite knowledge coming into each course. Assessment of prerequi-
site knowledge also allows assessment of differences among learning pathways, and are less sub-
ject to instructor- or course- related bias.

@® Assessment points

Figure 4: Assessment points in the first two years of the core curriculum. Additional assessment points exist
in advanced core courses including Software Engineering, Operating Systems, and the Capstone Design Se-
guence. These assessment points are not illustrated. The assessments point for Capstone Design takes places
at the end of that course sequence as there is no subsequent required course in the program.

Immediate value to participants

We encouraged that the assessments be required of all students entering a course but that the re-
sults not affect their upcoming grade in their current course. In our experience, students are very
open about their level of mastery of concepts assessed in surveys of prerequisite knowledge. The
feedback from these assessments is immediately useful to students as it calls up old ideas (help-
ing them to be ready for new related knowledge) and can reduce anxiety regarding the suffi-
ciency of their mastery of assumed prerequisite knowledge or identify specific areas where they
can be coached to better prepare for succeed in a new course. As students find the feedback val-
uable to them personally, they are more likely to give significant and frank effort in the assess-
ment process. As this effort is not associated with a course grade there is no need to proctor or
use valuable classroom time on the assessment. The assessments are simply delivered as on-line
standardized quizzes (Figure 5, below). Some instructors have chosen to use the first laboratory
period (or other underutilized first week block of scheduled class time) to deliver the assessment
surveys.

As a direct assessment of student preparedness, this data should be less biased than indirect as-
sessments that ask students their opinion of their ability. Differences in self-expectation that
may exist among students due to experience or demographic are removed. Thus, students/faculty
get a more accurate measure of how well each student is prepared.

Consider the following segment of code in a java-like programming
language. Assume that there are no syntax errors.
int[l m={2,3,4,5,6};
intn=0;
intx=0;
for (int val = 0; val < m.length; val++)
{
if (val % 2 ==1)
{

n=n+mlval];

X=x+1;

}// end-if

}// end-for
What is the most likely use for the code segment above?

A) Calculating the total sum of the values held in array m.

B) Calculating the average of the values held in array m.

C) Calculating the number of even values held in array m.

D) Calculating the average of odd values held in array m.

E) Calculating the number of values held in array m.
Figure 5: Sample Question to assess the Knowledge Topic AL/Fundamental Data Structures: Numerical Al-
gorithms. This topic is developed in Computer Science | and built upon in Computer Science Il. Thus, this
guestion would appear in the assessment of prerequisite knowledge at the start of Computer Science I1.

Equally important, the results of these perquisite surveys can be made immediately available to
the faculty teaching the course in which the examination is held. If the faculty member sees
weakness in prerequisite knowledge then they are able act to help address the problem immedi-
ately. The assessment can help identify individual students that might require additional help as
well as identify potential systemic deficiencies introduced by previous poor instruction, variation
in schedule due to weather/emergency, differing pathways for preparation (such as transfer
courses), or the like. Based upon assessed performance, the faculty can tailor any necessary re-
view of prerequisite topics appropriately to the needs of each term’s student preparation.

Assessment overhead and administrative burden

Ease of assessment delivery allows the potential direct assessment of every student every term in
every core course. As these assessments are delivered as on-line standardized examination, they
require very little class time or faculty effort to administer. Each knowledge topic is mapped to
relevant ABET engineering criteria 2000 CAC/EAC a-k criteria listed in ABET’s Criterion 3:
Student Outcomes [2,3]. This allows the data to be used by class or longitudinally by student to
assess continuous improvement of the program overall against ABET Engineering criteria in a
well-defined and straight-forward manner.

The most significant administrative burden is in the initial development, validation, and continu-
ous improvement of the assessment questions. The initial burden of assessment development re-
quires significant faculty involvement and may require multiple years of effort to construct as-
sessment questions for every core course. The measurements for a knowledge area may be
skewed by a set of poor assessment questions, thus continuous improvement of the questions in
parallel with the improvement of curriculum remains an ongoing administrative effort.

Program ~
BSCS.

Sum of Exemplary | Sum of Good | sum of Adequate | sum of Marginal | sum of Unacceptable

[Totals]

Number of students, 2007-2011

 Sum o scemplary
B Sum of Geod
 Sumof Adeauate
 Sum of Marginal

B Sum of Unacceptable

1 2 3 Il 5 3 7 B E

Student Outcomes Summary

10

Figure 6: CSE Self-study results from previous assessment plan. The evaluation looks at Student Learning
Outcomes and evaluates their coverage using a 5 point rubric measure for student performance: 1-Not at all,

2-To a limited extent, 3-To a moderate extent, 4-To a great extent, 5-To a very great extent

Assessment results used for Computer Science/Engineering self-study

Prior CSE assessment plans collected a rotating set of assignments so that each of the program’s
Student Learning Outcomes (SLOs) was assessed at least once every three years. The student’s
mastery of SLOs was assessed with an evaluation rubric ranging from 1 to 5 and summarized

graphically using a device such as that show in Figure 6.
1. Notatall
2. To a limited extent
3. To amoderate extent
4. To agreat extent
5. To avery great extent

This style of visualization allowed for the identification of learning outcomes which had the most
room for improvement. However, due to the timing consuming data collection (allowing for as-
sessment of each SLO once every third year) it was difficult to use changes in measured out-

comes in a meaningful way.

The new assessment system attempts to correct some of the issues that arose from the old sys-
tem. First it uses a direct assessment system rather than an indirect summarized rubric measure.
This reduces the subjective element that might cause inconsistency in determining how well ex-
pectations were met and also gives a numerical value that allows for meaningful measure of
change significance. When there is a significant change, it is now possible to determine the cause
of the change. Collecting data continuously (every SLO, every core course, every term) allows

potential issues to be identified and addressed more rapidly.

What follows was created with the new assessment system as a web page.

New Self Assessment Report 2014

The richer data set of the new assessment infrastructure is maintained in a database allowing for specific drill down comparisons to compare different course
preparation pathways, pedagogical styles, or any other variable of potential impact. For example, we can specifically address the question, is there a
different in SLO achievement for students that take the two-semester intro-ductory computer science sequence for fully prepared incoming freshman
(CS1180, CS1181) versus students that take the three course sequence for less prepared incoming students (CS1160, CS1161, CS1181).

Student Learning Outcomes 2014

2000

1500

1000

Number of answers

500 l l
[O L

[Spring 2014 correct M Spring 2014 incorrect Summer 2014 correct Summer 2014 incorrect [Fall 2014 correct [Fall 2014 incorrect

Highcharts.com
CAPTION: A comparison of how many assessment questions were answered correctly versus incorrectly during the Fall, Spring, and Summer terms of the
2014 school year. Each bar represents a student learning outcome for a given semester (number questions answered correctly to number answered
incorrectly).

This chart shows the results of the assessment questions mapped to SLOs including the number of questions answered. The next chart shows similar data but
presents it as percentage answered correctly based over term. By continuing to collect this data, we are able to watch for correlations such as impact of
class size on student performance. Both charts are an example of the data that was collected for the self-study under the new system.

In addition to being able to look at the Student Learning Outcomes as a collective, this new as-sessment system makes it easier to break down the manner in
which the data can be explored. It can be broken down based on courses, demographics, course preparedness, final grades, and stu-dent learning outcomes.
Once broken down it can provide data providing feedback on the suc-cess or failure of changes to curriculum such as pathway options and teaching styles.
The charts below are provided to show just some of the things that the new data collection system can ex-amine. Note that some of the visualizations are
labeled “demonstration only” as data may take several semesters of assessment before delivering statistically significant results.

SLO combine table

Title Correct Incorrect

a 2801 2470

b 1770 1642

C 1613 1439

h 58 58

I 206 37

j 117 23

k 624 340

https://Highcharts.com

SLO Assessment 2014 —

Source: WorldClimate.com

0.9
- I
[[A e
K 038 —— —
= T o— *a
@ b
S 0.7 c
@ 4 h
% A i
5 06 : o
2 k
o
2
[
3 0.5
0.4

Spring summer fall
Highcharts.com
A different view of the comparison made in the above chart on how many assessment questions were answered correctly versus incorrectly during the Fall,
Spring, and Summer terms of the 2014 school year. Here percentage answered correctly is used.

SLOs by Semesters 2014

Title Spring Correct Spring Incorrect Summer Correct Summer Incorrect Fall Correct Fall Incorrect

a 981 901 364 315 576 484
b 607 543 247 210 285 282
c 551 466 219 185 268 246
h 20 16 9 9 7 4

I 82 14 29 6 36 6

j 52 11 13 4 34 7

k 218 122 94 48 86 52

Different Pathways
Within our program, there are several different paths that a student could take (See Figure 4). It is assumed that the same knowledge is obtained from all

the courses, but with the new assessment system, it can be easily monitored by performance on pre-assessment exams. In the next data sets the student
results are broken down by pathways: those who took CS 1160/1, and those who did not (they either started in CS 1180 or transferred).

Grades Based on 1160 Pathway

1.25
1 -
: .
€ -
U
S 075
&
il
o
3 o5
€
=3
z
o - — - . -
: []]
CEG 3310 CS1180 CcS 1181 CS 3100
[0 1160 Students A M 1160 Students B 1160 Students C [1160 Students D M 1160 Students F [l Other Students A Other Students B
[Other Students C [Other Students D Other Students F

Highcharts.com

Students in 1160

https://Highcharts.com
https://WorldClimate.com

Course A B (o} D F

CEG 2350 20 23 18 12 16
CEG 3310 12 16

CEG 3320 6 5

CS 1150 10 18 2

CS 1160 83 91 42 24 62
CS 1161 50 36 22

CS 1180 10 10 15 4 7
Cs 1181 14 25 22 3 10
CS 1200 44 66 73 29 32
CS 2200 8 32 47 13 10
Cs 3100 9 6 0 1
MTH 2240 1 0 0 0 0
MTH 2280 3 2 1 3 4
MTH 2300 4 20 13 7 2
MTH 2310 1 8 3 3 3
MTH 2570 5 8 15 1 3

Students who started in CS 1180 or transfered

Course A B (o) D F

CEG 2350 82 71 51 17 21
CEG 3310 100 97 60 8 12
CEG 3320 51 61 40 17 16
CS 1150 12 14 9 12 3
CS 1180 102 118 76 15 40
CS 1181 71 90 76 11 17
CS 1200 2 4 5 0 4
CS 2200 20 18 14 4 6
CS 3100 51 60 41 6 20
MTH 2240 2 0

MTH 2280 5 5 8 5

MTH 2300 27 48 63 22 16
MTH 2310 28 36 49 23 15
MTH 2570 67 76 98 17 19

The next chart looks simply at how many students took the course. This allows us to observe if there is a significant drop off of students from one of the
pathways at some point through the core sequence.

Number Students who took course

400
300
2
c
[
el
=}
a
% 200
o
[
Qo
£
3
z
100
0
CEG 3310 Cs 1180 Cs 1181 Cs3100

1160 Students [l Other Students

Highcharts.com

https://Highcharts.com

The next data set is similar to the previous but it looks compares students who took CS 1200 and(or) CS 2200 versus those students who took MTH 2570.
Both these pathways look at Discrete structures but the CS 1200/2200 sequence was designed for under prepared students.

Grades Based on Discrete Pathway

1.25

1
2
<
B
S 0.75
&a
—
s}
2 05
€
S
z

0 []
CEG 3310 CS 1180 Cs 1181 CS 3100
70 MTH 2570 Students A [l MTH 2570 Students B MTH 2570 Students C] MTH 2570 Students D [MTH 2570 Students F
B CS 1200 and(or) CS 2200 Students A CS 1200 and(or) CS 2200 Students B Ml CS 1200 and(or) CS 2200 Students C
I CS 1200 and(or) CS 2200 Students D CS 1200 and(or) CS 2200 Students F

Highcharts.com

Students in MTH 2570

Course A B C D F
CEG 2350 55 47 35 7 16
CEG 3310 49 51 21 0 4
CEG 3320 28 23 14 5 6
CS 1150 5 2 0 1 0
CS 1160 13 12 4 3 2
CS 1161 11 6 1 0
CS 1180 80 84 53 9 19
CS 1181 52 62 45 7 10
CS 1200 5 1 6 2 3
CS 2200 1 2 0 0 1
CS 3100 26 23 11 3 1
MTH 2240 2 3 1 0 0
MTH 2280 2 2 2 1 1
MTH 2300 20 37 31 15 7
MTH 2310 23 26 17 11 6
MTH 2570 72 84 113 18 22

Students in CS 1200 and(or) CS 2200

Course A B (o} D F
CEG 2350 27 29 20 17 15
CEG 3310 17 16 13 2
CEG 3320 6 10
CS 1150 11 15 3 4
CS 1160 70 81 39 20 56
CS 1161 43 32 21 1 6
CS 1180 17 22 29 6 12
CS 1181 19 31 33 3 11
CS 1200 46 70 78 29 36
CS 2200 28 50 61 17 16
CS 3100 13 8 0 2
MTH 2280 3 4 2 4 3
MTH 2300 3 18 21 8 3
MTH 2310 0 7 5 6 5
MTH 2570 1 5 10 1 1

The next chart looks simply at how many students took the course. This allows us to observe if there is a significant drop off of students from one of the

pathways at some point through the core sequence.

Number Students who took course

300

250

200

150

Number of Students

CEG 3310 Cs 1180

100
.]

cs 1181

CS 3100

7 Mth 2570 Students [l CS 1200 and(or) CS 2200 Students

Highcharts.com

What follows is a breakdown of student answers by both knowledge topic and then question. While this is a little more cumbersome, it allows for specific

problems to be identified.

Knowledge Topic Totals

Title

Time and space trade-offs in algorithms

Asymptotic analysis of upper and average complexity bounds

Big O notation

Binary search trees

Boolean Statements

Brute-force algorithms

Complexity classes, such as constant, logarithmic, linear, quadratic, and exponential
Depth- and breadth-first traversals

Differences among best, average, and worst case behaviors of an algorithm
Divide-and-conquer

Dynamic Programming

Empirical measurements of performance

Encoding

Exponents

Functions

Graphs and graph algorithms

Worst case quadratic sorting algorithms (selection, insertion)

Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort)
fields, methods, and constructors;

use;only;1

All

Arithmetic and geometric progressions

Arrays

Asymptotic analysis of upper and average complexity bounds

Basic modular arithmetic

Basic organization of the von Neumann machine

Basic syntax and semantics of a higher-level language

Correct Incorrect

538

w

378

N W N DM - WO

478
674

O N W Ww N

130
101
112

a4
87
58

436

https://Highcharts.com

Binary Search Trees 57
Bits, bytes, and words 34
Comparison of algorithm efficiency 50
Complexity Classes 46
Compound types build from other types (e.g., records, unions, arrays, lists, functions) 82
Concept and properties 181
Conditional and iterative control structures 71
Counting arguments 37
Debugging strategies 32
Divide-and-conquer strategies 87
Documentation and program style 78
Doom1 7
Doom2 2
Events and event handlers 123
Exponents 65
Expressions and assignment 105
Fixed and floating-point systems 54
Functions 44
Functions and parameter passing 75
Fundamental design concepts and principles 218
Heap vs. Stack vs. Code segments 93
Induction 6
Iterative and recursive mathematical functions 80
Iterative and recursive traversal of data structure 72
Logical connectives 296
Method call 136
Numeric data representation 6
Numeric data representation and number bases 74
Numerical Algorithms 166
Object-Oriented design 103
Permutations and Combinations 180
Primative Types 135
Primitive types (e.g., numbers, Booleans) 94
Program correctness 47
Records 6
Recursive backtracking 107
Reference types 123
References and aliasing 101
Relations 48
Representation of records and arrays 33
Search 78
Sets 37
Simple linked structures 74
Stacks, queues, priority queues, sets & maps 63
Strategies for choosing the appropriate data structure 206
Strings 106
Subroutine call and return mechanisms 81
Subtyping 285
Sum and Product Rule 79
The concept and properties of algorithms 10
The concept of recursion 75
The pigeonhole principle 104
UNCLASSIFIED 2013 (Exponents) 177
Uninformed Search 88

Question Totals

Title

<address>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.

boolean A = true;
boolean B = false;
boolean C = true;

70

193
82
34
74
45
90
84
29
38

11
132
13
11
61
83
41
25
34

36
44
132
120

41
91
24
54
120
23
81
13
20

142
79
95
49
90
170
181
37
137
47
98
48

41
23
33
39

Correct Incorrect

boolean D = A || C;
boolean E = A ∓∓ B || C;
boolean F = 217 39

A || B && C;

At the end of this segment of code, what is the value of the variable E?

</address>

<address>private List values;
 /** @return true if for every k in the range 0 < k < values.size(),
 *
 values.get(k) is less than values.get(k-1).
 *

 false otherwise
 */
 public boolean isDecreasing() {

 boolean isDecr;
 /* statement 1 */
 for (int k = 1; k < values.size(); k++) {

int prev = values.get(k-1).intValue();
 int curr = values.get(k).intValue();
 /* statement 2 */

 } // end for
 return isDecr;
 } // end method isDecreasing</address> <pre> </pre> <p> 1
Consider the following replacements for statements 1 and 2</p> <p> /* statement 1 */
 /* statement 2 */</p> <p>I. isDecr = true;
 if (curr >= prev) isDecr = false;</p> <p>II. isDecr = false; if (curr
< prev) isDecr = true;</p> <p>IIL isDecr = true; isDecr = isDecr
&& (curr < prev);</p> <p> </p> <p>Which of the proposed replacements can be used so that isDecreasing()
 will work as intented?</p>

<address>private List<Integer> values;
 /** @return true if for every k in the range 0 < k < values.size(),
 * values.get(k) is less than values.get(k-1).

 * false otherwise
 */
 public boolean isDecreasing() {

 boolean isDecr;
 /* statement 1 */
 for (int k = 1; k < values.size(); k++) {

 int prev = values.get(k-1).intValue();
 int curr = values.get(k).intValue();
 /*
statement 2 */
 } // end for
 return isDecr;
 } // end method isDecreasing</address> <pre></pre>
<p>Consider the following replacements for statements 1 and 2</p> <p> /* statement 1 */
 /* statement 2 */</p> <p>I. isDecr = true;
 if (curr >= prev) isDecr = false;</p> <p>II. isDecr = false;
if (curr < prev) isDecr = true;</p> <p>IIL isDecr = true; isDecr = isDecr
&& (curr < prev);</p> <p></p> <p>Which of the proposed replacements can be used so that isDecreasing()
will work as intented?</p>

<p> Availnode is a pointer variable that points to the next available node in a singly linked list of available nodes. If p points to a
node currently being accessed in a program, then the program fragment

if p = nil then
 error<br 2
/>else
 p~.next:=availnode;
 availnode:=p
end</p>

<p></p> <address>Q.init();</address>
<address>Q.enqueue(rootNodeOfTreeShownAbove); </address><address>while (! Q.isEmpty()) {</address><address>
 Q.dequeue(a); </address><address> if (!a.isNil()) {</address><address> a.print();
</address><address> Q.enqueue(a.left()); </address><address> Q.enqueue(a.right());
</address><address> } // end-if</address><address>} // end-while</address><address></address> <p>If the
algorithm above is applied to the tree in the figure above, which of the following is the output?</p> <address></address>

<p></p> <p>Text Version of Tree:</p> <p>A (Root)
-> B (Left Child of A) -> D (Left Child of B)</p> <p>
 ->
 E (Right Child of B)</p> <p> -> C (Right Child of A) -> F
(Left Child of C)</p> <p>
 -> G (Right Child of C)</p> <p>Code:</p> <pre>
Q.init(); </pre> <pre><span style="font-family:
'courier new', courier;">Q.enqueue(rootNodeOfTreeShownAbove); </pre> <pre><span style="font-family:
'courier new', courier;">while (! Q.isEmpty()) {</pre> <pre><span style="font-family: 'courier new’, 35
courier;"> Q.dequeue(a); </pre> <pre><span style="font-family: 'courier new',
courier;"> if (!a.isNil()) {</pre> <pre><span style="font-family: 'courier new’,
courier;"> a.print(); </pre> <pre><span style="font-family: 'courier new',
courier;"> Q.enqueue(a.left()); </pre> <pre><span style="font-family: 'courier new',
courier;"> Q.enqueue(a.right()); </pre> <pre><span style="font-family: 'courier new',
courier;"> } // end-if</pre> <pre>} // end-
while</pre> <address></address> <p>If the algorithm above is applied to the tree in the figure (or text) above,
which of the following is the output?</p> <address></address>

<p></p> <pre><span style="font-family:
'courier new', courier;">Q.init();</pre> <pre><span style="font-family: 'courier new',
courier;">Q.enqueue(rootNodeOfTreeShownAbove); </pre> <pre><span style="font-family: 'courier new’,
courier;">while (! Q.isEmpty()) {</pre> <pre>8
 Q.dequeue(a); </pre> <pre> if
('a.isNil()) {</pre> <pre> a.print();
</pre> <pre>8 Q.enqueue(a.left());
</pre> <pre> Q.enqueue(a.right());
</pre> <pre> } // end-if
</pre> <pre>} // end-while</pre> <address>
</address> <p>If the algorithm above is applied to the tree in the figure above, which of the following is the output?</p> <address>
</address>

<p></p> <p></p> <p>Which of the following lists of nodes

7
correspond to a postorder traversal of the binary tree in the figure shown?</p> 8

<p></p> <p>The edges of the digraph above are labelled by flow capacities

(in, for example, gallons per hour). What is the maximum flow for this system from source A to sink K. In other 40
words, what is the maximum flow (in, for examples, gallons per hour) possible from node A to node K.</p>

<p>public static void main(String[] args)
 <span style="font-

family: 'Courier’; font-size: 9.7pt;">{
 <span style="font-family: 'Courier’;
font-size: 9.7pt;"> A a = new B();

 a.method();
 }
 <span style="font-
family: 'Courier'; font-size: 9.7pt;">
 public class A
{
 public void method(){

 System.out.printin("In Parent");

 }
 <span style="font-family: 8
'Courier'; font-size: 9.7pt;">}

 public class B extends A {
 <span style="font-family: 'Courier’; font-size:
9.7pt;"> @Override

public void method(){
 <span style="font-family: 'Courier'; font-size:

190

41

120

20

49

87

9.7pt;"> System.out.printin("In child");
 <span style="font-family:
'‘Courier'; font-size: 9.7pt;"> }
 }
 If the code above is run what will be printed?</p>

<p>Consider a 16-bit data type such as java's integer data type. How many unique/distinct possible values could a variable of

1
that type potentially be assigned? Choose the closest approximate answer.</p> 06

<p>Consider a 32-bit data type such as java's integer data type. How many unique/distinct possible values could a variable of

that type potentially be assigned? Choose the closest approximate answer.</p> 255

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.
</p> <address>int[] m = {2,3,4,5,6};</address><address>int n = 0;</address><address>int x = 0;</address>
<address>for (int val = 0; val < m.length; val++) {</address><address> if (m[val] % 2 == 1) {</address><address>
 n = n + m[val]; </address><address> x = x + 1;</address><address> } // end-
if</address><address>} // end-for</address> <p>Which of the following is the most likely intent for the code segment above?

</p>

22

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.
</p> <address>int[] m = {2,3,4,5,6}; </address><address>int n = 0;</address><address>int x = 0;</address>
<address>for (int val = 0; val &t; m.length; val++) {</address><address> if (val % 2 == 1) {</address><address>
 n = n + m[val]; </address><address> x = x + 1;</address><address> } // end-
if</address><address>} // end-for</address> <p>Which of the following is the most likely intent for the code segment above?

</p>

40

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.
</p> <address>int[] m = {2,3,4,5,6};</address><address>int n = 0;</address><address>int x = 0;</address>

<address>for (int val = 0; val < m.length; val++) {</address><address> if (val % 2 == 1) {</address><address> 91
 n = n + val; </address><address> x = x + 1;</address><address> } // end-if</address>
<address>} // end-for</address> <p>What is the most likely use for the code segment above?

</p>

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.
</p> <address>int[] m = {2,3,4,5,6};</address><address>int n = 0;</address><address>int x = 0;</address>

<address>for (int val = 0; val &t; m.length; val++) {</address><address> if (val % 2 == 1) {</address><address> 13
 n = n + val;</address><address> x = x + 1;</address><address>} </address> <p>What

is the most likely use for the code segment above?

</p>

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.
</p> <address>public class Example {</address><address> private int x; </address><address> public void
method (int y) {</address><address> y = y * 2;</address><address> x = y;</address><address>
} // end method method</address><address> public int getValue() {</address><address> return x;</address>
<address> } // end method getValue</address><address>} // end class Example</address><address></address> <p>The
following code segment appears in a method in another class.</p> <address>Example obj = new Example ();</address><address>int y
= 10;</address><address>obj.method(y); </address><address>obj.method(y); </address><address>System.out.printin(y + " " +
obj.getValue()); </address><address> </address> <p>What is printed as a result of executing the code segement?</p>

136

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.

boolean A = true;
boolean B = false;
boolean C = true;

boolean D = A || C;
boolean E = A ∓& B || C;
boolean F = 149
A || B ∓& C;

At the end of this segment of code, what is the value of the variable D?

</p>

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.

boolean A = true;
boolean B = false;
boolean C = true; 137

boolean D = A || C;
boolean E = A ∓& B || C;
boolean F =
A || B && C;

At the end of this segment of code, what is the value of the variable E?</p>
<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.

boolean A = true;
boolean B = false;
boolean C = true;

boolean D = A || C;
boolean E = A & mp;& B || C;
boolean F =
A || B && C;

At the end of this segment of code, what is the value of the variable F?</p>

135

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.

int[] arr;
arr = new int[5];</p> <p><span style="font-family: 'courier

new', courier;">arr[0] = 0;</p> <p>for (int i=1; i < 5; 82
i++) {
 arr[i] = arr[i-1] + (2 * i);

}</p> <p>
At the end of

this segment of code, what is the value of arr[4]?</p>

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.

inta = 7;
int b = 2;
int ¢;</p> <p>c = a/b; </p> <p>
At the end of this segment 94
of code, what is the value of the variable c?</p>

<p>Consider the following segments of java code. Assume that there are no intentional syntax errors.</p>
<address>import javax.swing.*; </address><address>import java.awt.event.*; </address><address>public class Observer
implements ActionListener {</address><address> public void buildGUI () {
</address><address> JFrame frame = new
JFrame();
</address><address> IButton button = new JButton("Click me"); </address><address>
 frame.add
(button); 123
</address><address> /* MISSING STATEMENT */
</address><address> frame.setVisible
(true);
</address><address> } // end method buildGUI</address><address>

</address><address> public void actionPerformed (ActionEvent event) {</address><address>
 System.out.printin("Click"); </address><address> } // end method actionPerformed</address>
<address>} // end class Observer</address><address>
</address> <p>Which of the

51

157

17

57

15

120

20

22

34

23

132

following statements best replaces /* MISSING STATEMENT */ in the code segment above?</p>

<p>The programming style in which design begins by specifying complex pieces and then dividing them into successively smaller 218
pieces is know as:</p>

<p>You need to store a set of twenty objects in a computer program. The size of the collection is not going to change.
 Of the following options, which data structure would likely be the most efficient (in terms of execution time and memory usage) 206
if used to store this collection?</p>

<p>A 0-2 binary tree is a rooted tree such that every node has either no children or two children. The height of a binary tree is

the maximum number of edges on a path from the root to the leaf. Let n(h) be the minimum number of nodes in a 0-2 binary tree 2
of height h, and let N(h) be the maximum number. For all h > 0, (n(h), N(h)) =</p>

<p>A 0-2 binary tree is defined to be a rooted tree such that evyer node has either no child or two children. What is the maximum

height of a 0-2 binary tree that has 5 nodes?</p> 77
<p>A Graduate student says "I can write a super-merge sort which splits an array into 4 components (unlike a regular merge sort which
splits an array into 2 components) and then recursively sorts the 4 subarrays and then merges them. Through similar to merge 2
sort, it is faster and I call it SuperMerge4!." What is true?</p>

<p>A certain algorithm A has been shown to have running time O(N^{2.5}), where N is the size of the input. Which of the

following is NOT true about algorithm A?</p> °
<p>A complete binary tree of level 5 has how many nodes?</p> 3
<p>A die is tossed 7 times. What is the probability that all six faces appear at least once?</p> 38

<p>A double linked list contains references to both the predecessor and the successors elements and thus allows travel along the list in

both directions. Consider a double linked list whose elements are declared as:</p> <address>class Element {</address>
<address> int value; </address><address> Element forward, backward; </address><address>} // end class
Element </address> <p>In this definition, forward and backwardd represent forward and backward links to adjacent elements in 10
the list.</p> <p>Which of the following segments of code deletes the element pointed to by X from the doubly linked list, if it is assumed
that X points to neither the first nor the last element of the list?</p>

<p>A heap H is used to implement a priority queue. The following values are inserted into the heap in this order: 44, 22, 55, 11,

2
44, 11, 33, 55.</p> <p>What value is stored at the right-most leaf of the bottom level of the heap?</p>

<p>A heap H is used to implement a priority queue. The following values are inserted into the heap in this order: 44, 22, 55, 11,

44, 11, 33, 55.</p> <p>What value is stored at the root of the heap?</p> 7

<p>A singly linked list is implemented in two arrays, value[] and link[], in which link[i] points to the successor of value[i]. If an
element is not initially in the list assigned to value[j], then the program fragment</p> <address> link[j] = link[i]; 19
</address><address>8 link[i] = j;</address> <p>is one that:</p>

<p>A singly linked list is implemented in two arrays, value[] and next[], in which next[i] points to the successor of value[i]. If
value[j] is an element not currently in the list, then what does the following the program fragment accomplish?</p> <address> 55
 next[j] = next[i];</address><address> next[i] = j;</address>

<p>A time complexity function G was formulated for a program. What term asymptotically dominates G:</p> <p>G(x) = 9999999x -
0.0001x² + x * log (log(x)) + x²/(x-99) + 0.9^x</p>

<p>A two dimentional array A[1..row,1..col] is stored in memory begining at location S. Which of the following expressions points

3
to the correct memory location for any arbitrary element A[i,j]?</p>

<p>A two dimentional array A[1..row,1..col] is stored in row-major order in memory begining at location S. Which of the following 30
expressions points to the correct memory location for any arbitrary element A[i,j]?</p>

<p>An Internal hash table has 5 buckets, numbered 0, 1, 2, 3, 4. Keys are integers, and the hash function h(i) = I modulo 5 is used (i.e.

h(i) = I % 5), with linear resolution of collisions (i.e. if bucket j(i) iis filled the buckets h(i) + 1, h(i) + 2, … are tried

successively with all bucket numbers computed modulo 5).</p> <p>If elements with keys 13, 8, 24, 10, and 3 are inserted, in that °
order, into an initially blank hash table, then the content of the bucket numbered 2 is:</p>
<p>An algorithm that relies on recursion to break the problem into smaller more manageable pieces is a</p> 10

<p>Array ary is shown below</p> <table class="MsoTableGrid" border="1" cellspacing="0" cellpadding="0" style="border-collapse:
collapse; border: none;"> <tbody> <tr> <td width="31" valign="top" style="width: 23.4pt; border: solid windowtext 1.0pt; padding: Oin
5.4pt Oin 5.4pt;"> <p class="MsoNormal" style="line-height: normal;">&Isquo;h’</p> </td> <td width="30" valign="top"
style="width: 22.5pt; border: solid windowtext 1.0pt; border-left: none; padding: 0in 5.4pt Oin 5.4pt;"> <p class="MsoNormal"
style="line-height: normal;">‘i’</p> </td> <td width="24" valign="top" style="width: .25in; border: solid windowtext
1.0pt; border-left: none; padding: Oin 5.4pt Oin 5.4pt;"> <p class="MsoNormal" style="line-height: normal;">&Isquo;j’</p> </td>
<td width="24" valign="top" style="width: .25in; border: solid windowtext 1.0pt; border-left: none; padding: 0in 5.4pt Oin 5.4pt;"> <p
class="MsoNormal" style="line-height: normal;">®&Isquo;k’</p> </td> </tr> </tbody> </table> <p>
If 2 is passed to the
method printArray below, what will the output be?

public static void printArray(int index){
8 if (index == 0){</p> <p>8
 System.out.print(ary[index]);</p> <p> }
8 else {

 printArray(index -1);

System.out.print(ary[index]);
 }
}</p>

<p>Assume array A is initialized with no syntax errors as:</p> <p>int[] A = new int[12]; </p> <p>Inside the variable A is a

reference to a memory location.</p> 10

<p>Bob writes down a number between 1 and 1000. Mary must identify that number by asking & dquo;yes/no” questions of
Bob. Mary knows Bob always tells the truth. If Mary uses an optimal binary search strategy, then she will determine the answer at the 11
end of exactly how many questions in the worst case?</p>

<p>Bob writes down a nhumber between 1 and 1000. Mary must identify that number by asking & dquo;yes/no” questions of
Bob. Mary knows Bob always tells the truth. If Mary uses an sequential search strategy, then she will determine the answer at the end of 12
exactly how many questions in the average case?</p>

<p>Consider N employee records to be stored in memory for on-line retrieval. Each employee record is uniquely identified by a social
security number. Consider the following ways to store N records.
(I) An array sorted by social security number
 (II)
 A linked list sorted by social security number
(III) A linked list not sorted
(IV) A balanced binary search tree 11
with social security number as key</p> <p>For the structures I-1V, respectively, the average time for an efficient program to find an
employee record, given the social security number as key, is which of the following?</p>

<p>Consider a floating-point number system used by a modern computer for solving large numerical problems. Let +

25

50

89

11

70

100

10

85

_{fp} denote the floating-point addition in this system. Which of the following statements is true about this system? 60
</p>

<p>Consider a routine in a C-like or java-like language that takes four integer arguments and returns an integer value. Which of

the following approaches could be _reasonably_ used to _prove_ that the routine is correct?</p> <p>I. A complete test of all 43
possible inputs.</p> <p>II. A mathematical proof of correctness.</p> <p>IIl. Testing a few well chosen test cases.</p>

<p>Consider a routine in a C-like or java-like language that takes four integer arguments and returns an integer value. Which of
the following approaches could be reasonably used to prove that the routine is correct?</p> <p>I A complete test of all possible 4
inputs.</p> <p>II A mathematical proof of correctness.</p> <p>III Testing a few well chosen test cases.</p>

<p>Consider a routine that merges together two unsorted linked lists into a single unsorted linked list. The unsorted linked lists
are of size m and size n. What is the optimal average complexity for this routine?</p>

<p>Consider the Abstract Data Type (ADT) “set of integers” which is maintains an unsorted set of integers in which
duplicates are allowed.</p> <p>Consider the following java-like code segments that are part of a proposed implementation of this ADT.
</p> <address>public static IntSet S = new IntSet(); </address><address> </address><address>final int MAX = 100; </address>
<address></address><address>public class IntSet {</address><address> int Last = -1;</address>
<address> int V[] = new int[MAX+1];
 } // end class IntSet</address><address></address><address>
</address> <p>The “add element” operation on an object S is implemented by storing the value of the element in
S.V[S.Last + 1] and incrementing S.Last, unless Last = Max, in which case an error flag is raised. </p> <p>
The following 9
code fragment mutates concrete IntSet objects.
 </p> <address>public void P(IntSet S, int x)
{
8 int k = 1;
8 while (k <= S.Last) {
 if (S.V[k] = x) {

 S.V[k] := S.V[S.Last];
 S.Last := S.Last – 1

 } else {
 k = k + 1;</address><address> } // end-if-else

 } // end-while
8 } // end method P

Which of the following abstract operations of & dquo;set of
integers” does P implement?</address>

<p>Consider the Abstract Data Type (ADT) “set of integers” which is maintains an unsorted set of integers in which

duplicates are allowed.</p> <p>Consider the following java-like code segments that are part of a proposed implementation of this ADT.
</p> <address>public static IntSet S = new IntSet();</address><address></address><address>final int MAX = 100;</address>
<address></address><address>public class IntSet {</address><address> int Last = -1;</address>
<address> int V[] = new int[MAX+1];
 } // end class IntSet</address><address></address><address> 4
</address> <p>The “add element” operation on an object S is implemented by storing the value of the element in

S.V[S.Last + 1] and incrementing S.Last, unless Last = Max, in which case an error flag is raised. </p> <p>Let A be a

mathematical function that represents a & dquo;set of integers” such that, for each concrete object S of type IntSet, A(S) is the set
of integers represented by S. A(S) can be written as:</p>

<p>Consider the Abstract Data Type (ADT) “set of integers” which is maintains an unsorted set of integers in which
duplicates are allowed.</p> <p>Consider the following java-like code segments that are part of a proposed implementation of this ADT.
</p> <address>public static IntSet S = new IntSet();</address><address></address><address>final int MAX = 100;</address>
<address></address><address>public class IntSet {</address><address> int Last = -1;</address>
<address> int V[] = new int[MAX+1];
 } // end class IntSet</address><address></address><address>
</address> <p>The “add element” operation on an object S is implemented by storing the value of the element in
S.V[S.Last + 1] and incrementing S.Last, unless Last = Max, in which case an error flag is raised. </p> <p>What is the worse cast
run time complexity of the "add element" operation for this proposed implementation?</p>

10

<p>Consider the code for a C function bump:</p> <address>int bump (int x) {</address><address>
8 int a;</address><address> a = x + 1;</address><address> return a;
</address><address>7} // end function bump</address> <p>Some of the entries in the activation record for bump are
placed on the stack by the function that calls bump; some are written by bump itself. Which are written by
bump?</p> <p>I. Local variable a</p> <p>II. Arguement x</p> <p>IIl. Dynamic/Return link address</p> <p>

</p>

12

<p>Consider the code for a C function bump:</p> <address>int bump (int x) { </address><address>
8 int a;</address><address> a = x + 1;</address><address> return a;
</address><address>7} // end function bump</address> <p>Some of the entries in the activation record for bump are
placed on the stack by the function that calls bump; some are written by bump itself. Which are written by
bump?</p> <p>I. Local variable a</p> <p>Il. Argument x</p> <p>III. Dynamic/Return link address</p> <p>

</p>

69

<p>Consider the code for a C function bump:</p> <address>int bump (int x) {</address><address>
8 int y;</address><address> y = x + 1;</address><address> return y;
</address><address>7} // end function bump</address><address>
</address> <p>Where does the
storage space for variable y exist in memory??</p> <p>I. a Code Segment</p> <p>IIL. the Heap</p> <p>IIlL the Stack</p>

93

<p>Consider the following code segment, assume all variables are defined and initialized elsewhere.</p> <address>for (int item = n;
item >= 2; item--)</address><address> {</address><address> large = list[1];</address>
<address> index = 1;</address><address> for (inti = 2; i <= item; i++)</address><address>
 {</address><address> if (list[i] > large)</address><address> {</address>
<address> large = list[i]; </address><address> index = i;</address><address>
 } // end if</address><address> list[index] = list[item]; </address><address> list[item] =
large; </address><address> } // end for i</address><address>} // end for item</address> <p>The number of
comparisions made by this algorithm is given by:</p>

<p>Consider the following code segment:</p> <address>if (x % 2 == 0)</address><address> x = x - 1;</address>
<address>if (x % 2 != 0)</address><address> x = x + 1;</address> <p></p> <p>If x is greater than 0 before the code

segment is executed, which of the following states is (are) true regarding the final value of x after the code segment has executed?</p> 130
<p></p> <p>I. The final value of x is always even.</p> <p>IIL. The final value of x is equal to its initial value when x is
initially even.</p> <p>IIL. The final value of x is equal to its initial value when x is initially odd.</p>

<p>Consider the following instance variables and incomplete method that will be used for computing a final quiz score. A final quiz score
is computed by adding all the quiz scores and dropping the lowest score from the total. The method
calculateFinalQuizScore8 performs the computation and updates the variable finalQuizScore.
 Assume that the instance variables are properly initialized.</p> <address>private int[] quizScores; </address><address>private
int finalQuizScore; </address><address> </address> <address>public void calculateFinalQuizScore() {</address><address> int

67

65

16

46

34

125

total = 0;</address><address> int least = quizScores[0]; </address><address> for (int k = 0; k < quizScores.length; 181
k++) {</address><address> total = total + quizScores[k];</address><address> if (quizScores[k] <

least) {</address><address> least = quizScores[k]; </address><address> } // end-if</address>
<address> } // end-for</address><address></address><address> /* MISSING STATEMENT */</address><address>} //

end method calculateFinalQuizScore</address><address></address> <p>Which of the following can be used to replace /*

MISSING STATEMENT */ so that calculateFinalQuizScore will work as intended?</p>

<p>Consider the following mathematical function:</p> <p>f(n) =8 f(n-1) + 2; f(0) =

17</p> <p>How can a computer program be written to determine the value of f(n) for any value 33
of n?</p>

<p>Consider the following mathematical function:</p> <p>f(n) =8 f(n-1) + 2</p>

<p>How can a computer program be written to determine the value of f(n) for any value of 47
n?</p>

<p>Consider the following method: </p> <address>Number max (Number x, Number y) {</address><address> if x.lessthan(y)
{</address><address> return y;</address><address> }</address><address> return x;</address>
<address>} // end method max</address><address></address> <p>In an object oriented programming language, which of the 67
following is true?</p> <p>I. x and y can be of type Number</p> <p>II. x and y can of any type that is a subtype of

Number</p> <p>III. x and y can be of any type that implements lessthan()</p>

<p>Consider the following program segment for finding the minimum value of an array:</p> <address><span style="font-family:
‘courier new', courier;">public static double minValueIlnArray(double[] a) </address><address><span style="font-family:
'courier new', courier;">{
 int i, j;
 j = 1;

 for (i = 2; i < a.length; i = i + 1) </address><address><span style="font-family: 'courier new',
courier;"> {
 if (a[i] < a[j])
</address><address> {
<span 9
style="font-family: 'courier new', courier;"> j = i;
<span style="font-family: 'courier
new', courier;"> } // end-if
 } //
end-for
 return a[j];
<span style="font-
family: 'courier new', courier;">3} // end method minValuelnArray</address> <p>Which of the following conditions is (are) true
EACH time the condition of the IF statement is tested?</p> <p>I. 2 <= i <= a.length</p> <p>IIL. a[j] <= a[k] for all k such
that 1<= k < i</p> <p>III. a[j] <= a[k] for all k such that 2 <= k <= i</p>

<p>Consider the following program segment for finding the minimum value of an array:</p> <address>public static double
minValuelnArray(double[] a) {
 inti, j;
 j = 1;
 for (i = 2; i < a.length; i =i + 1) {
 if (a[i] < a[j]) {
]
=i;
 } // end-if
 } // end-for
 return a[j];
 } // end method minValuelnArray</address> <p>Which of the 3
following conditions is (are) true EACH time the condition of the IF statement is tested?</p> <p>I. 2 <= i <= N</p> <p>IIL

a[j] <= a[k] for all k such that 1<= k < i</p> <p>IIL. a[j] <= a[k] for all k such that 2 <= k <= i</p>

<p>Consider the following program segment for finding the minimum value of an array:</p> <address>public static double
minValuelnArray(double[] a) {
 int i, j;
 j = 1;
 for (i = 2; i < a.length; i =i
+ 1) {
 if (a[i] < a[j]) {
 j = i;
 } //
end-if
 } // end-for
 return a[j];
 } // end method minValuelnArray</address> <p>Which of
the following conditions is (are) true EACH time the condition of the IF statement is tested?</p> <p>I. 2 <= i <=
a.length</p> <p>IIL. a[j] &t;= a[k] for all k such that 1<= k < i</p> <p>IIlL. a[j] <= a[k] for all k such that 2 <= k <= i</p>

<p>Consider the following program segment for finding the minimum value of an array:</p> <pre><span style="font-family: 'courier
new!', courier;">public static double minValueInArray(double[] a) {
 int

i, j;
 j = 1;
<span style="font-family: 'courier new’,
courier;"> for (i = 2; i < a.length; i =i + 1) {
 if (a[i] < a[j])
{
 j = i;
<span style="font-family: 'courier new’,

courier;"> } // end-if
 } // end-for
<span style="font- 15
family: 'courier new', courier;"> return a[j];
%} // end method
minValuelnArray</pre> <p>Which of the following conditions is (are) true EACH time the condition of the IF statement is tested?
</p> <p>I. 2 <=i <= N</p> <p>IlL. a[j] <= a[k] for all k such that 1<= k < i</p> <p>IIIL. a[j] <= a[k] for all k

such that 2 <= k <= i</p>

<p>Consider the following recursive definition of 4-Permutation (meaning permutations of 4 distinct objects):</p> <p>
1234 is a 4-Permutation</p> <p> If wxyz is a 4-Permutation then so are zyxw and 6
xyzw</p> <p>According to this rule, the total number of permutations are:</p>

<p>Consider the following recursive function, written in a java-like language: </p> <pre class="prettyprint"><span style="font-family:
'courier new', courier;">public static int fact(int n)
{</pre> <pre class="prettyprint"> int
 result;

</pre> <pre
class="prettyprint"> result = n * fact(n - 1); 75
</pre> <pre class="prettyprint"> return result;
</pre> <pre class="prettyprint">}</pre> <pre
class="prettyprint">
</pre> <p
class="prettyprint">When this function is called as follows: fact(5)
, what value will be returned?</p> <p class="prettyprint">
</p>

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors. The
operation (i % 2) returns 1 for odd values of i and 0 for even values of i.</p> <p>int sum = 0;
for (inti = 0; i < 10; i++) {</p> <p><span style="font-

family: 'courier new', courier;">8 if (i % 2 == 0) {
 sum = sum + i;
 } else {
 71
 sum = sum - i;
 } </p> <p>} </p> <p>At the end of this segment of code, what is the value of the

variable sum?</p>

<p>Consider the following segment of code in a java-like programming language. Assume that there are no syntax errors.
<br

74

14

22

60

38

17

83

54

121

41

45

/>inta = 7;
intb = 4;
int c;</p> <p>c =2+ 3 *a + b;</p> <p>
At the end of this segment of code, what is the 105
value of the variable c?</p>

<p>Consider the following segment of java code:

int[] arr;
arr = new int[5];</p> <p>arr[0] = 0;</p> <p>

// The following line has an error:
for (int i=1; i <= 5; i++) {
 arr[i] = arr[i-1] + (2 *i); 58

}</p> <p>
Considering the error indicated by the comment, which of the following statements is correct:</p>
<p>Consider the following segment of java-like code. Assume that there are no intentional syntax errors.</p> <address>public
abstract class Dog {</address><address> public abstract void speak();</address><address>} // end class Dog</address>
<address></address><address> </address> <address> </address><address>public class LoudDog extends Dog {</address>
<address> public void speak() {</address><address> System.out.print("WOOF "); </address><address> }
// end method speak</address><address>} // end class LoudDog</address> <address></address><address></address><address>
</address><address>public class BabyLoudDog extends LoudDog {</address><address> public void speak () {</address>
<address> System.out.print("yip ");</address><address> } // end method speak</address><address>} // end
class BabyLoudDog</address><address></address> <p>Consider the following code segment.</p> <address> LoudDog fido =
new LoudDog(); </address><address> BabyLoudDog rover = new BabyLoudDog();</address><address> fido.speak();
</address><address>8 rover.speak();</address> <p>What is printed as a result of executing the code segment?</p>

218

<p>Consider the following sequence of operations on an initially empty Queue Q.</p> <address>Q.enqueue(1);</address><address>Q.
enqueue(2);</address><address>x = Q.dequeue();</address><address>Q.enqueue
(3);</address><address>Q.enqueue(4);</address><address>Q.enqueue(5);</address><address>y=
Q.dequeue();</address><address>Q.enqueue(6);</address><address>z = Q.
dequeue();</address><address></address><address></address> <address>After these operations,
what value is z?</address>

10

<p>Consider the following sequence of operations on an initially empty stack S.</p> <address>S.push(1);</address>
<address>S.push(2);</address><address>x = S.pop(); </address><address>S.push(3); </address><address>S.push(4); </address>
<address>S.push(5); </address><address>y= S.pop();</address><address>S.push(6); </address><address>z = S.pop();</address>
<address> </address><address>After these operations, what value is at the TOP of the stack?</address>

12

<p>Consider the geometric progression:</p> <p>sum(n) = 1 + 1/2 + 1/4 + 1/8 + ... + 1/(2(n-1)) + 1/(2n)</p> <p></p> <p>As n

101
approaches infinity, what integer does sum(n) closely approach?</p>

<p>Consider the part of the two-dimentional integer grid bounded by the point A = (0,0) at the "southwest" corner and by point B = (n,n)

at the "northeast" corner. How many different ways are there of walking from A to B on grid lines, always moving between any 37
two grid points either east or north?</p>

<p>Consider the recursive routine, below:</p> <address></address><address>int X (int n) {</address><address> if (n < 3)
{</address><address> return 1;</address><address> } else {</address><address>
 return X(n-1) + X(n-3) + 1;</address><address> }</address><address>} // end method X</address> <p>How many
times is the function X called when X(X(5)) is evaluated?</p>

<p>Following is a recursive function for computing the sum of integers from 0 to N:</p> <address>public static int sum (int n) {
 if (n == 0) {
 return 0;
 }
 // MISSING SEGMENT OF
CODE
3} // end method sum</address><address></address> <p>In order to perform correctly, the missing segment of code
would be best replaced by:</p>

107

<p>For x >= 0, y >= 0, define A(x,y) by:</p> <p> A(0,y) =y + 1,</p> <p> A(x+1,0) = A(x,1),
and</p> <p>8 A(x+1,y+1) = A(x, A(x+1, y)).</p> <p>Then, for all non-negative integers y, A(1,y) is:</p>
<p>Given the following sets :</p> <p>A ={0,1,2,3,4,5,6,7}</p> <p>B ={0,1,2,3,4,5,8,9}</p> <p>What is the Result of A - B :</p> 7
<p>Given the hash function:</p> <p>h = Data Item mod 60</p> <p>If the chaining method is used, and if seven integer data items

are stored in the hash table in the following order:</p> <p>65 121 123 242 63 122 183</p> <p>How many comparisions would it take 2
to find integer data item 183?</p>

44

<p>How long, on average, does it take to find a item in an unsorted list of size 10?</p> <p>Select the closest value below.</p> 88
<p>How many Bytes (groupings of eight binary digits) end in the sequence 000?</p> 79
<p>How many comparisons are required to sort an array of length 5 if a straight selection sort is used and the array is already sorted in

the opposite order?</p> 0
<p>How many different values can be represented using 8 bits?</p> 91
<p>How many distinct values can be encoded for storage using one byte (8 binary digits) of memory per encoding?</p> 104
<p>If you are not careful in your choice of hash functions, it is possible to have collisions in which the search time goes to the a
order of O(?) in a search table of size n:</p>

<p>In Java, variables that store reference types can be:</p> <p>I. used to implement call by reference</p> <p>II. 81

 potentially subject to aliasing</p> <p>III. used to implement call by value</p>

<p>In Java/C-like languages, variables that store reference types are:</p> <p>I. Call by reference</p> <p>II. Potentially 31
subject to aliasing</p> <p>II. Call by value</p>

<p>In Java/C-like languages, variables that store reference types are:</p> <p>I. Call by reference</p> <p>II. Potentially 11
subject to aliasing</p> <p>III. Call by value</p>

<p>In a survey of what types of courses students were enrolled in one term, it was found that:</p> <p>520 students took a CS
course</p> <p>416 students took a Math course</p> <p>320 students took a CEG course</p> <p>152 students took CS and Math</p>
<p>96 students too CS and CEG</p> <p>124 took Math and CEG</p> <p>60 took CS, Math, and CEG</p> <p>Using Venn 37
Diagrams and the Counting Principle (inclusion/exclusion), compute how many students are taking exactly ONE of the three types of

courses (no more, no less).</p>

<p>In how many unique ways can the letters in the word "ABOUT" be arranged?</p> 89
<p>In most contemporary C-like programming languages, a String is stored as:</p> <p>I. A primative data type</p> <p>IIL

106
 A reference data type</p> <p>IIl. An array of characters</p>
<p>In order to traverse a binary tree using the inorder traversal method, the statements in the code segment
shown below should be:</p> <address>public class Node</address><address>{</address><address> Datatype
data; </address><address> Node left, right; </address><address>} // end class Node</address><address> 1

</address> <address>public void method traverse (Node current)</address><address>{</address><address> if
(Node.data != nil) {</address><address> // WHAT CODE GOES HERE?</address><address>
 } // end-if</address><address>} // end method traverse</address>

11

58

38

26

90

20

83

39
48

26
23

74

32

15

90

28

<p>In the following form of binary search one can determine whether some particular integer x is present in a sorted (in ascending

order) array a[L..R] using the following steps in the order shown.</p> <p>Let M= (L + R) / 2
If x = a[M], then
terminate (success).
If x < a[M] and M > L, use the same algorithm on a[L .. (M-1)]
If x > a[M] and M < R, use the
same algorithm on a[(M+1) .. R].
Otherwise terminate (failure).</p> <p>Which of the following statements is (are) true about
binary search in a[1..N], where N is a large positive integer?
 7
(I) If x is present in a[1..N],
then x is always found within O(log N) comparisons.</p> <p>

(II) If x is not present in a[1..N], then
failure is always reached within O(log N) comparisons</p> <p>

(III) Searching for two different values of x, neither

which is present in a[1..N], always takes the same number of steps to determine failure.</p>

<p>In the following program segment, assume that when the execution of the segment begins, that m <= n AND that a[m-1]
<= v <= a[n+1].</p> <address>inti = m - 1;
 intj = n+ 1;
 while (i < j) {
 do {

 i++;
 } while (a[i] < v);
 do {
 j--;

 } while (a[j] > v);
 if (i<j) {
 temp = a[i];
 a[i] = 50
a[jl;
 a[j] = temp;
 } // end-if
 } // end-while</address> <pre></pre> <pre>For
large values of n-m, which of the following best approximates the sum of the number of times the assignments i++ and j-- are executed?
</pre>

<p>Inheritance makes it easier to:</p> 3
<p>Inherited attributes are</p> 0

<p>Let A be a sorted array of n = 10 elements. Which of the following denotes the average successful time for finding an arbitrary
element x in A using a BINARY SEARCH?</p> <p>Assume that only one comparision is required to determine whether the target is equal 57
to, less than, or greater than A[i].</p>

<p>Some programming languages pass parameters to methods/functions by value, while others pass

parameters by reference. If a function is passed two parameters by value, which of the 75
following statements is most correct: </p>

<p>Suppose you are asked to write a function that finds the largest value in an array of integers. Which of the following

statements is true.</p> 72
<p>TBD</p> 6
<p>The Boolean expression:</p> <p>NOT(A OR A AND B)</p> <p>is equivalent to:</p> 36
<p>The average time required to perform a successful sequential search for an element in an array of size n is given by:</p> 78
<p>The basic organizational units of a modern computer are:</p> 87
<p>The binary relation on the integers defined by</p> <p></p> <p>R = { (x,y) : | y - x | <= 1 }</p> <p>has which of the 48
following properties?</p> <p>I. Reflexivity</p> <p>II. Symmetry</p> <p>IIL. Transitivity</p>

<p>The key attribute(s) that a problem just have in order for dynamic programming to be applicable are:</p> <p>i) linear 3
consumption</p> <p>ii) optimal substructure</p> <p>iii) overlapping subproblems</p>

<p>The number of 1's in the binary representation of</p> <p>13 * 16³8 + 11* 82

16² + 9 * 16 + 3</p> <p>is which of the following?</p>
<p>What is 2⁰?</p> 379
<p>What is 2^{10 }x<span style="font-
size: 9px;">8 2¹⁰?</p> <p>

</p> <p></p> <p>Please choose the closest 341
answer.</p> <p></p> <p></p> <p></p> <p></p> <p>

</p> <p></p>

<p>What is the powerset of {a,b,c}?</p> 7
<p>What will the following program segment accomplish:

</p> <p>Scanner inData = new Scanner(new File("infile.txt"));

</p> <p>PrintWriter outData = new PrintWriter("outfile.txt"); </p> <p>while(inData.hasNext()){</p> <p> 10
 outData.printLine(inData.nextLine()); </p> <p>}</p> <p>inData.close();</p> <p>outData.close();</p>

<p>Which of the following best seems a reasonable use for modular arithmetic?</p> 44
<p>Which of the following is not in important element of good programming style:</p> 78
<p>Which of the following lines of code will delete two successive nodes of a singly linked linear list (WITH MORE THAN 2 NODES)? 7
Assume this code is in the main program, not a subprocedure.</p>

<p>Which of the following shows the correct relationship among some of the more common computing times for algorithms?</p> 3
<p>Which of the following shows the correct relationship amoung some of the more common computing times for algorithms?</p> 46
<p>Which of the following sorting algorithms can be characterized as using a divide-and-conquer strategy.</p> 87
<p>Which of the following sorting algorithms has average-case and worst-case running times of O(n * log(n))?</p> 3
<p>Which of the following sorting algorithms yield approximately the same worst-case and average-case running time behavior in O(n *

log n)?</p>

<p>Which sort will operating in quadradic time relative to the number of elements in the array (on the average)?</p> 3
<p>Which statement about objects is true?</p> 103
<p>Your Java program seems to compile correctly. When run, however, it runs forever with no output. Which of the

following debugging strategies is the most likely to help you find the error?</p> 32
<p>f(x) = kx^{2 }- 4</p> <p>If f(4) = 4, then what is f(7)?</p> 308
<p>f(x) = x^{28 }- 4</p> <p>What is f(3)?</p> 366
<p>if class a is derived from class b and class b is derived from class c, polymorphism allows</p> 8

<pre>public class Point {</pre> <pre> int x;
 int y;</pre> <pre></pre> <pre> public Point (int x, int y) {</pre> <pre> this.x

= X;</pre> <pre> this.y = y;</pre> <pre> } // end constructor</pre> <pre></pre> <pre> public static void main(String[]

args) {</pre> <pre> Point p1 = new Point(1,2);
 Point p2 = new Point(3,4);
 p2 = p1;
 pl.x = 5;
 101
System.out.printin(p2.x);</pre> <pre> } // end method main</pre> <pre></pre> <pre>} // end class Point</pre> <pre></pre>
<pre>Consider the code segment above? What value is output for p2.x?</pre>

10

70

41

44

13

91
49
40

79

45

32

70

83
38

82
29

24

84

103
45

142

A algorithm that tests every possible solution until the solution is found is a 8 2

A component that speeds up computer processes and stores frequently used data is the 10 0
A data structure where elements can be added or removed at either end but not in the middle is called a … 3

A simple (undirected or directed) graph is one in which there are no self loops and no multiple edges. An undirected graph is
acyclic if it has no cycles. What is the maximum possible number of edges in an n-node, simple, acyclic, undirected graph?

An Exception is thrown due to: 5 6

Consider a data type whose elements are integers and whose operations are INSERT, DELETE, and FINDCLOSEST, with FINDCLOSEST(y)

defined to be some element x in the current set such that Ix - yl <= Ix_i- yl for all x_i in the current set.

Let
T = max (T_{INSERT},T_{DELETE},T_{FINDCLOSEST})
where T_{OP} denotes the 6 7
worst-case time complexity for the given operation OP. Which of the following data structures would be best to use in order to minimize

T?

How many explicit constructors can a class have? 7 3

In a height-balanced binary search tree, the heights of the left and right descendents of any node differ by at most 1. Which of the

following are true of such a tree?

(I) Worst-case search time is
logarithmic in the number of nodes.

(II) Average-case search time is 8 5
logarithmic in the number of nodes.
(III) Best-case

search time is proportional to the height of the tree.

(IV) The height of the tree is logarithmic in the number

of nodes.

Of the following sorting algorithms, which has a running time that is LEAST dependent on the initial ordering of the input? 11 12
The intersection of the two regular languages below:
L₁= (a+b)*a and L₂= b(a+b)*
is given by: 2 8
The proper operator precedence groupings, from most binding to least binding, are: 6
What purpose does class construct serve? 8 2
Which of the follow is true? 10 0
Which of the following sorting algorithms has average-case and worst-case running times of O(n log n)? 7 6
Which sorting algorithm considers the elements one at a time, inserting each element in its suitable place among those already 9 1
considered (keeping them sorted)?
Which statement is true? (members = fields and methods) 7
With inheritance, the derived class 10

is when a computers system is in a constant state of paging. 6

Flexibility with the New Assessment System

It is important to note that anything that is based on pre-assessment grade can easily be linked to student learning outcomes and program educational
objectives since all the questions are mapped to what they test. Similarly, anything that shows student learning outcomes or program educational objectives
can be broken down into specific knowledge topics, questions, and students who answered those questions. Since all the results are linked back to a specific
student, all the questions can be broken down by demographics, year began, pathways, or even previous performance in a course or on a pre-assessment
quiz. This makes the items displayed in this paper easy to mix and match. Also note that while charts were largely used in this paper for ease of viewing, all
the values in the charts have hard numbers backing them up. Statistical tests can be run on areas of interest to determine if a change really occurred before
any action is taken. Additionally, the results can be presented as exact sample size or as percentages.

Conclusion

This assessment infrastructure allows for an assessment of retained knowledge, topic by topic, for each individual student, course, and term. When collected
with appropriate demographic information, these assessments allow the differential measurements of knowledge retention under any number of pedagogical
variables. The success of new instructional styles, laboratory techniques, or technologies for developing knowledge can be assessed against different
approaches.

Every contemporary engineering discipline has a professional society that helps identify the core concepts of the discipline. Indeed, most engineering
disciplines have standardized examinations of some sort that are used to demonstrate student proficiency for licensure or graduate studies. Questions of this
sort can be used at the start of core courses or time points to assess student knowledge of prerequisite topics developed earlier in any program of study.
These assessments can be delivered as online questions to minimize cost and maximize participation. When collected with appropriate demographic
information, this rich set of data can guide program improvement more effectively than many existing program assessment plans. Although we present this
infrastructure in the context of Computer Science, we believe that the approach can be applied to implement an infrastructure for effective assessment
program for any engineering discipline.

Biblography

[1] ACM/IEEE-CS Joint Task Force. Computer Science Curricula 2013 (CS2013). http://ai.stan=ford.edu-/users-/sahami-/CS-2013/. Strawman draft, Feb
2012.

[2] ABET. Computing Accreditation Commission (CAC) Criteria. http://www.abet.org/accreditation-criteria-policies-documents/

http://www.abet.org/accreditation�criteria�policies�documents
http://ai.stan�ford.edu�/users�/sahami�/CS�2013

[3] ABET. Engineering Accreditation Commission (EAC) Criteria. http://www.abet.org/accreditation-criteria-policies-documents/

http://www.abet.org/accreditation�criteria�policies�documents

Computing Accreditation Commission

Final Statement of Accreditation

to

WRIGHT STATE UNIVERSITY
Fairborn, OH

2011 — 2012 Accreditation Cycle

Final Statement WRIGHT STATE UNIVERSITY Final Statement

FINAL STATEMENT

This is a confidential statement from the Computing Accreditation Commission to the
institution. It is intended for internal use only and is not for release except as allowed by
policies of ABET.

l. INTRODUCTION

Founded in 1964 and granted full university status in 1967, Wright State University is a
comprehensive, state-supported university located in Fairborn, Ohio, with a satellite campus in
Grand Lake St. Marys, Ohio. Wright State has nearly 20,000 students of which over 15,000 are
full-time students and approximately 4000 are graduate and professional students. The
university has 760 full-time faculty members supporting 19 associate, 91 undergraduate, and 76
graduate and professional degree programs.

The following programs at the institution were evaluated during the 2011-12 cycle for possible
accreditation under the CAC/ABET “Criteria for Accrediting Computing Programs” (Criteria)
dated October 30, 2010:

e BS Degree in Computer Science, evaluated under the General Criteria and the Computer
Science Program Criteria. The BS program in Computer Science was previously evaluated
in 2005. As a result of that accreditation action, the institution was required to submit an
interim report in July 2007. As a result of the evaluation of the interim report, the institution
was required to submit an additional interim report in July 2009. As a result of this second
evaluation of the interim report, the institution would have been required to submit an
additional Interim Report in July 2011; however, since the cycle for the evaluation of that
interim report coincided with its NGR cycle, no report was required.

e BS in Business Degree in Management Information Systems, evaluated under the General
Criteria and the Information Systems Program Criteria. The BS program in Management
Information Science was previously evaluated in 2005. As a result of that accreditation
action, the institution was required to submit an interim report in 2007. As a result of the
evaluation of the interim report, accreditation was extended to 2012.

The programs listed above were evaluated under the CAC/ABET “Criteria for Accrediting
Computing Programs” (Criteria) dated October 30, 2010 by the peer review team shown below.

e Team Chair: David Gibson, United States Air Force Academy

e Program Evaluator: David Bover, Western Washington University

e Program Evaluator: Subhasish Dasgupta, George Washington University
e Editor One: Judith Solano, University of North Florida

e Editor Two: Harold Grossman, Clemson University

Final Statement WRIGHT STATE UNIVERSITY Final Statement

Please note that program accreditation decisions are made solely by the respective Commissions
of ABET. Reference to the professional affiliations of the volunteer peer evaluators in no way
constitutes or implies endorsement or recommendation of the programs by the listed professional
affiliations.

1. REPORT OF FINDINGS

The Criteria is composed of the General Criteria and Program Criteria. Each criterion provides
the underlying principles that each program must meet. A program must meet both the General
Criteria and all applicable Program Criteria to be accredited.

This section contains the findings from the time of the visit. It also includes an evaluation of any
information provided by the program during the due process response. CAC considers the
following comments to relate directly to its accreditation actions.

A program’s accreditation action will be based upon the findings summarized in this statement.
Actions will depend on the program’s range of compliance or non-compliance with the criteria.
This can be determined from the following terminology:

o Deficiency: A deficiency indicates that a criterion, policy, or procedure is not satisfied.
Therefore, the program is not in compliance with the criteria.

e \Weakness: A weakness indicates that a program lacks the strength of compliance with a
criterion, policy, or procedure to ensure that the quality of the program will not be
compromised. Therefore, remedial action is required to strengthen compliance with the
criterion, policy, or procedure prior to the next evaluation.

e Concern: A concern indicates that a program currently satisfies a criterion, policy, or
procedure; however, the potential exists for the situation to change such that the criterion,
policy, or procedure may not be satisfied.

e Observation: An observation is a comment or suggestion that does not relate directly to
the accreditation action but is offered to assist the institution in its continuing efforts to
improve its programs.

Final Statement WRIGHT STATE UNIVERSITY Final Statement

Computer Science Program

The B.S. in Computer Science is offered by the Department of Computer Science and
Engineering in the College of Engineering and Computer Science. Students majoring in
computer science may choose from five options: Bioinformatics, Business, Computational
Science, General, and Visualization. The department also offers MS and PhD degrees in
computer science as well as BS, MS, and PhD degrees in Computer Engineering. The BS in
Computer Engineering program is accredited by the Engineering Accreditation Commission of
ABET. The department has 26 full-time faculty members supporting both the Computer Science
and Computer Engineering programs. There are 306 students enrolled in the CS major. All
programs are properly differentiated in university publications.

Program Strength

The Department of Computer Science and Engineering has a faculty member with exceptional
experience and skill in technical writing. As a result, students in the computer science program
receive instruction in technical writing at a level of quality and rigor significantly above that
normally found in such programs. Interviews with students confirmed the extraordinary value
placed on this course. As a result, students from the program are exceptionally well prepared in
technical writing.

Status of Shortcomings from the Previous Review

Weakness

1. Criterion I. Objectives and Assessments. The following factors contribute to this weakness:
a. (Standard I-3) There is a lack of documentation to show how the data collected are used
to identify opportunities for program improvement.
b. (Standard I-6) There is a lack of documentation to show how program improvements are
related to program assessment findings.

Status: This weakness has been resolved.

Findings from the Current Review

Weaknesses

1. Criterion 3, Student Qutcomes. The program has adopted the characteristics listed in the
criterion as its outcomes. Outcome (b) requires that the program must enable students to
attain, by the time of graduation, an ability to analyze a problem, and identify and define the
computing requirements appropriate to its solution. The team observed that only one course
includes work in problem analysis, providing minimal opportunity to develop problem
analysis and requirements specification skills. As a result, graduates of the program may
lack developed skills in problem analysis and requirements specification.

Final Statement WRIGHT STATE UNIVERSITY Final Statement

Due-process response: Since the visit, the program has increased problem analysis
requirements on two assignments in the required Computer Science 111 course (CS 242). The
program has also increased emphasis on problem analysis in the required senior-level
Introduction to Software Engineering course (CEG 460) with two additional lessons on
analysis, incorporating use of a visual modeling tool, and addition of more analysis work in
homework assignments and on the course project. These changes were put into place during
the Winter 2012 quarter. The program has also initiated a curriculum change that will
require a two-semester capstone sequence, Team Projects | and 11 (CS 4980 and CS 4981)
required for all Computer Science majors in the graduating class of 2016 and perhaps as
early as the graduating class of 2013. This proposed change is expected to receive formal
approval by the university’s Faculty Senate in May or June 2012.

Due-process evaluation: The weakness remains unresolved. The program has taken
appropriate steps to increase problem analysis and requirements specification in the current
academic year. The program will change to a semester-based curriculum next fall. If the
proposal for requiring the 2-semester capstone sequence is formally approved and changes
made to Computer Science Il this past Winter quarter are carried into the new semester-
based curriculum as planned, future graduates of the program will have appropriate
experiences in problem analysis and requirements specification. However, until the new
capstone sequence is approved, this weakness remains unresolved.

Post due-process response: The program has reported formal WSU University Curriculum
Committee approval of the requirement for all computer science majors, starting with the
graduating class of 2014, to take the two-semester capstone sequence, Team Projects | and 11
(CEG 4980 and CEG 4981). The program also provided updated syllabi for these courses
showing course outcomes and content addressing problem analysis and requirements
specification.

Post due-process evaluation: The weakness is now cited as a concern. The program has
taken appropriate steps to increase the coverage of problem analysis and requirements
specification content in courses required for the computer science major. Coverage of these
topics has been expanded and taught in the required Computer Science Il (CS 242) and
Software Engineering (CEG 460) courses. The recently approved new courses, Team
Projects | and 1l (CEG 4980 and CEG 4981), should provide for even more thorough
coverage of the topics when the courses are regularly taught. This level of coverage of
problem analysis and requirements specification needs to be maintained throughout the
period of accreditation.

2. Criterion 4, Continuous Improvement. The Continuous Improvement criterion requires that
the program must regularly use appropriate, documented processes for assessing and
evaluating the extent to which both the program educational objectives and the student
outcomes are being attained. The results of these evaluations must be systematically utilized
as input for the continuous improvement of the program. The team observed that although
the department has implemented a process for collection of assessment data in a database,
they are not yet able to demonstrate systematic utilization of that data for continuous

Final Statement WRIGHT STATE UNIVERSITY Final Statement

improvement. As a result, the program may miss opportunities for improvement based on
program assessment.

Due-process response: The program asserted that it has been systematically utilizing the
results of assessment data for program improvement. However, the program noted that
materials from the program’s annual assessment retreats were not clearly identified during
the visit. The program provided copies of the slides and minutes from their Spring 2011
Annual Program Assessment Retreat and copy of their 2009-2010 Program Assessment
Report.

Due-process evaluation: The weakness has been resolved. The additional materials provided
in the due-process response demonstrate that the program does annually review assessment
data and, when appropriate, use that data for program improvement.

Program Observation

Wright State University’s Management Information Systems program has developed and uses
the web-based assessment management program called Assess My Program. This tool supports
maintenance and tracking of assessment questions, assessment data, and program improvement
decisions linked to assessment data. The tool has been presented at the annual ABET
Symposium. The Department of Computer Science and Engineering may want to consider using
this system for its own programs.

/ABEY:

Engineering Accreditation Commission

Final Statement of Accreditation
to

Wright State University

Dayton, Ohio

2011-12 Accreditation Cycle

Leadership and Quality Assurance in Applied Science, Computing, Engineering, and Technology Education

FINAL STATEMENT WRIGHT STATE UNIVERSITY

ABET
ENGINEERING ACCREDITATION COMMISSION

WRIGHT STATE UNIVERSITY
Dayton, OH

FINAL STATEMENT

Visit Dates: November 6-8, 2011
Accreditation Cycle Criteria: 2011-12

Introduction & Discussion of Statement Construct

The Engineering Accreditation Commission (EAC) of ABET has evaluated the biomedical
engineering, computer engineering, electrical engineering, engineering physics, industrial and
systems engineering, materials science and engineering, and mechanical engineering programs of

Wright State University.

This statement is the final summary of the EAC evaluation, at the institutional and engineering
program levels. It includes information received during due process, including information
submitted with the seven-day response. This statement consists of two parts: the first deals with
the overall institution and its engineering operation, and the second deals with the individual
engineering programs. It is constructed in a format that allows the reader to discern both the

original visit findings and subsequent progress made during due process.

A program’s accreditation action IS based upon the findings summarized in this statement.
Actions depend on the program’s range of compliance or non-compliance with the criteria. This

range can be construed from the following terminology:

e Deficiency: A deficiency indicates that a criterion, policy, or procedure is not satisfied.

Therefore, the program is not in compliance with the criterion, policy, or procedure.

e Weakness: A weakness indicates that a program lacks the strength of compliance with a

criterion, policy, or procedure to ensure that the quality of the program will not be

FINAL STATEMENT WRIGHT STATE UNIVERSITY

compromised. Therefore, remedial action is required to strengthen compliance with the

criterion, policy, or procedure prior to the next evaluation.

e Concern: A concern indicates that a program currently satisfies a criterion, policy, or
procedure; however, the potential exists for the situation to change such that the criterion,
policy, or procedure may not be satisfied.

e Observation: An observation is a comment or suggestion that does not relate directly to
the accreditation action but is offered to assist the institution in its continuing efforts to

improve its programs.

Wright State University, founded in 1964 and granted full university status in 1967, is a regional
university in the state of Ohio higher education system. Enrollment in the university is
approximately 19,600 undergraduate students and over 3,000 graduate students. Undergraduate
programs are offered in six colleges: Business, Education and Human Services, Engineering and

Computer Science, Liberal Arts, Science and Mathematics, and Nursing and Health.

The College of Engineering and Computer Science (CECS) consists of four departments that
offer the seven engineering programs under review: the Department of Biomedical, Industrial &
Human Factors Engineering, the Department of Computer Science and Engineering, the
Department of Electrical Engineering, and the Department of Mechanical and Materials
Engineering. The college also offers eight master’s programs and has 11 PhD focus areas in
engineering and computer science. Enrollment in the college at the time of the visit was
approximately 1,650 undergraduate and 400 graduate students. There are approximately 76 full-
time faculty members in the college. The dean is new to the college and university, as of July
2010.

The following supporting units of the CECS were reviewed: Office of the Registrar, biology,
chemistry, humanities/social sciences, library, mathematics, and physics. All supporting areas

appear to adequately support the undergraduate engineering programs.

FINAL STATEMENT WRIGHT STATE UNIVERSITY

Institutional Strengths

1. There appears to be continued strong institutional support for the CECS. The dean, new to
his office, appears to have the full support and confidence of the administration to carry out
the mission of the college. The university has been approved as a center of excellence by the

state in four areas including the engineering programs in the CECS.

2. The institution’s physical plant, including the Russ Engineering Center and the attached Joshi
Research Center is excellent. Buildings, classrooms, laboratories, faculty offices and public
areas are well maintained and present a pleasing atmosphere conducive to the learning

process.

3. The CECS enjoys a high level of industrial and government support for the engineering
programs. The participation of the nearby industries in senior design projects and internships
strengthens the engineering programs.

FINAL STATEMENT WRIGHT STATE UNIVERSITY

Computer Engineering
Program

Introduction

The computer engineering program is administered by the Department of Computer Science and
Engineering that also offers a master’s degree in computer engineering and bachelor’s and
master’s degrees in computer science, and a doctoral degree in computer science and
engineering. At the time of the visit the computer engineering program had 180 undergraduate
students, 26 tenured or tenure-track faculty members and five part-time faculty members. The

program graduated six students in the most recent academic year.

Program Strengths

1. The program has an outstanding faculty that shows commendable attention to students and to
research. Faculty members benefit from close ties to the local industries and the nearby Air

Force Research Lab.

2. The program has an excellent cooperative education program and incorporates input from the

program as part of the assessment of student outcomes.

Program Weaknesses

1. Criterion 2. Program Educational Objectives This criterion requires that there be a

documented and effective process involving program constituencies, for the periodic review
and revision of the program educational objectives. The documented process to periodically
review and revise the program educational objectives has not involved all of the program’s
constituencies. Without the involvement of all program constituencies, the program is unable
to ensure its program educational objectives remain consistent with the needs of the

program’s constituents. Thus, the program lacks strength of compliance with this criterion.

e Due—process response: The EAC acknowledges receipt of documentation related to the

review and revision process for the program educational objects. The current review and

revision process now provides for participation on the part of all the program’s

FINAL STATEMENT WRIGHT STATE UNIVERSITY

constituencies. Students now participate via a student advisory board composed entirely
of undergraduate computer science and computer engineering students. Since no input
has been provided by the student advisory board for the program educational objectives,
it is not clear how such information will be separated to provide reviews for both the
computer science program and the computer engineering program. Therefore, it may not
be possible to use the student advisory board input in a meaningful way for review of the
computer engineering program educational objectives. Although a previous review
process has been in place since 2006, the team was unable to view documents generated
by the previous process during the on-site visit. In the due-process response the program
indicated that the results of review of the program educational objectives in 2006, 2007,
and 2011 resulted in changes to them. The due-process documentation did not contain
reports or summary reports related to these prior reviews. Further, reports concerning
prior reviews were not mentioned in the program’s self-study report. Although there
appears to be documentation of review of the program educational objectives that goes
back to 2006, the program has not provided this data. Further, no data have been
furnished from the student advisory board. Thus, the program lacks strength of

compliance with this criterion.

e The weakness remains and will be a focus of the next review. In preparation for this
review, the EAC anticipates evidence of a documented and effective process for the

periodic review and revision of the program educational objectives

2. Criterion 4. Continuous Improvement This criterion requires that the program regularly use

appropriate, documented processes for assessing and evaluating the extent to which both the
program educational objectives and the student outcomes are being attained. The results of
these evaluations must be systematically utilized as input for the continuous improvement of
the program. Other available information may also be used to assist in the continuous
improvement of the program. The program is gathering data for assessing and evaluating the
extent to which the program educational objectives and the student outcomes are being
attained. However, the results of the evaluations have not been systematically utilized as
input for the continuous improvement of the program. Thus, the program lacks strength of

compliance with this criterion.

FINAL STATEMENT WRIGHT STATE UNIVERSITY

e Due-process response: The EAC acknowledges receipt of documentation that
demonstrates continuous improvements in the program resulting from the periodic

assessment process of student outcomes.
e This weakness is resolved.

Program Concerns

1. Criterion 3. Student Outcomes This criterion requires the program to have documented

student outcomes that prepare graduates to attain the program educational objectives.
Student outcomes are outcomes (a) through (k) plus any additional outcomes that may be
articulated by the program. Outcome (c) for the program did not list the realistic constraints
such as economic, environmental, social, political, ethical, health and safety,
manufacturability, and sustainability. Although student work indicated that some of these
constraints were considered, the program did not include all of them in their outcome (c) list.

Hence there is the potential that future compliance with this criterion could be jeopardized.

e Due-—process response: The EAC acknowledges receipt of documentation demonstrating

that student outcomes (a) through (k) have been included in the program’s student
outcomes. The self-study report had inadvertently left out a phrase in the outcomes
listing, but the assessment process considered all outcomes for this criterion.

e The concern is resolved.

2. Criterion 5. Curriculum: This criterion requires that the students be prepared for engineering

practice through a curriculum culminating in a major design experience based on the
knowledge and skills acquired in earlier course work and incorporating appropriate
engineering standards and multiple realistic constraints. Although the major design projects
incorporate multiple realistic constraints, there is little evidence that engineering standards
have been incorporated into the senior project. In particular, the course syllabus does not
refer to the use of engineering standards. In an overall sense this criterion is satisfied.
However, future compliance may be jeopardized if there is not adequate attention to

appropriate engineering standards incorporated in the major design experience.

10

FINAL STATEMENT WRIGHT STATE UNIVERSITY

e Due—process response: The EAC acknowledges receipt of documentation demonstrating

that changes have been made to ensure that students consider multiple realistic
constraints including engineering standards. Standards are now listed in the course’s

syllabi and standards will be considered for each senior design project.
e The concern is resolved.

3. Program Criteria Program criteria for electrical, computer and similarly named engineering

programs require that that the curriculum include applications of probability and statistics
appropriate to the program name. A review of the course materials and discussion with the
faculty provided limited evidence of such applications. Thus, there is the potential that future

compliance with this criterion could be jeopardized.

e Due—process response: The EAC acknowledges receipt of documentation demonstrating

that the curriculum has three courses that include applications of probability and statistics

appropriate to the program.

e The concern is resolved.

11

Engineering Accreditation Commission

Final Statement of Accreditation
to

Wright State University
Dayton, OH

2013-2014 Accreditation Cycle

Assuring Quality ® Stimulating Innovation

FINAL STATEMENT WRIGHT STATE UNIVERSITY

ABET
ENGINEERING ACCREDITATION COMMISSION

WRIGHT STATE UNIVERSITY
Dayton, OH

FINAL STATEMENT

Report submitted: July 01, 2013
Accreditation Cycle Criteria: 2013-2014

Introduction and Discussion of Statement Construct

The Engineering Accreditation Commission (EAC) of ABET has conducted an evaluation of the
computer engineering program of Wright State University relative to shortcomings remaining after
the 2011-12 general EAC review. The institution elected for this review to be conducted under
the 2013-2014 Criteria for Accrediting Engineering Programs.

This statement is the final summary of the EAC evaluation. The first part of the statement
addresses the institution and its overall engineering educational unit; the second addresses the
computer engineering program. Its format allows the reader to discern both the original report
findings and subsequent progress made durirg due process.

A program’s accreditation action is based upon the findings summarized in this statement. Actions
will depend on the program’s range of compliance or non-compliance with the criteria. This range

can be construed from the following terminology:

e Deficiency: A-deficiency indicates that a criterion, policy, or procedure is not satisfied.

Therefore, the program is not in compliance with the criterion, policy, or procedure.

e Weakness: A weakness indicates that a program lacks the strength of compliance with a
criterion, policy, or procedure to ensure that the quality of the program will not be
compromised. Therefore, remedial action is required to strengthen compliance with the

criterion, policy, or procedure prior to the next review.

e Concern: A concern indicates that a program currently satisfies a criterion, policy, or
procedure; however, the potential exists for the situation to change such that the criterion,

policy, or procedure may not be satisfied.

1

FINAL STATEMENT WRIGHT STATE UNIVERSITY

e Observation: An observation is a comment or suggestion that does not relate directly to
the current accreditation action but is offered to assist the institution in its continuing efforts

to improve its programs.

Wright State University was founded in 1964 and granted full university status in 1967. It serves
primarily as a regional university in the state of Ohio higher education system. Enrollment in the
university is approximately 13,600 undergraduate students and over 3,400 graduate students. In
addition to the College of Engineering and Computer Science (CECS), undergraduate programs
are offered in Business, Education and Human Services, Liberal Arts, Science and Mathematics,
and Nursing and Health. CECS consists of four departments that offer eight engineering programs:
the Department of Biomedical, Industrial & Human Factors Engineering, the Department of
Computer Science and Computer Engineering, the Department of Electrical Engineering, and the
Department of Mechanical and Materials Engineering. The college offers 11 master’s programs
and has 8 Ph.D. focus areas in engineering and computer science. Enrollment in the college is
currently 2,135 undergraduate and 834 graduate students. There are 78 full-time faculty members

and 30 part-time faculty members in the college.

FINAL STATEMENT WRIGHT STATE UNIVERSITY

Computer Engineering
Program

Program Criteria for Electrical, Computer, and Similarly Named Engineering Programs

Introduction

The computer engineering program is administered by the Department of Computer Science and
Engineering. The department also offers Bachelor of Science and Bachelor of Arts degrees in
computer science, Master’s degrees in computer engineering and computer science, and a Doctoral
degree in computer science and engineering. Currently the computer engineering program has 248
undergraduate students. The department has 20 tenured or tenure-track faculty members and 12
part-time faculty members. In the most recent academic year, the department graduated 91
students in all three undergraduate degree programs, 26 of whom were in computer engineering.
The institution elected for this review to be conducted under the 2013-2014 Criteria for

Accrediting Engineering Programs.

Program Weakness

1. Criterion 2. Program Educational Objectives The previous review cited that the program had

published educational objectives that were not based on the input of all of the program
constituencies. Specifically, the program’s process of periodic review of these objectives did
not offer substantive documentation that demonstrated the explicit inclusion of one of the
identified constituencies, namely students currently enrolled in the bachelor of science
computer engineering program. Criterion 2 requires that a program must have a documented,
systematically utilized, and effective process, involving program constituencies, for the
periodic review of these program educational objectives that ensures they remain consistent

with the institutional mission, the program’s constituents’ needs, and the Engineering Criteria.

The report included a revised process flow chart for review of program educational objectives
that explicitly identifies the role of input from computer engineering majors, as well as all other
constituencies. Excerpts from the minutes of recent meetings of the student advisory board,
which includes both computer engineering and computer science students, in March 2013, and
the external advisory board, in November 2012 and June 2013, provided evidence that the

program educational objectives have now been reviewed by all program constituencies.

FINAL STATEMENT WRIGHT STATE UNIVERSITY

Revision of the program educational objectives by the program based on documented input

from all constituencies using the new process will be considered in fall 2013.

e The weakness is resolved.

	Computer Science & Engineering Academic Program Review, 2014
	Repository Citation

