
Wright State University Wright State University

CORE Scholar CORE Scholar

Academic Program Review Reports Accreditation & Assessment

1-11-2015

Computer Science & Engineering Academic Program Review, Computer Science & Engineering Academic Program Review,

2014 2014

College of Engineering & Computer Science, Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/

academic_program_review_reports

 Part of the Educational Assessment, Evaluation, and Research Commons

Repository Citation Repository Citation
(2015). Computer Science & Engineering Academic Program Review, 2014. .
https://corescholar.libraries.wright.edu/academic_program_review_reports/5

This Report is brought to you for free and open access by the Accreditation & Assessment at CORE Scholar. It has
been accepted for inclusion in Academic Program Review Reports by an authorized administrator of CORE Scholar.
For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/academic_program_review_reports
https://corescholar.libraries.wright.edu/accreditation_assessment
https://corescholar.libraries.wright.edu/academic_program_review_reports?utm_source=corescholar.libraries.wright.edu%2Facademic_program_review_reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/academic_program_review_reports?utm_source=corescholar.libraries.wright.edu%2Facademic_program_review_reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/796?utm_source=corescholar.libraries.wright.edu%2Facademic_program_review_reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

College:

Engineering and Computer Science

Department:

Computer Science & Engineering

Academic Programs Reviewed:

Bachelors of Arts in Computer Science (BACS)

Bachelors of Science in Computer Science (BSCS)

Bachelors of Science in Computer Engineering (BSCE)

Master of Science in Computer Science (MSCS)

Master of Science in Computer Engineering (MSCE)

Master of Science in Cyber Security (MSCyS)

Program Review Committee:

Travis Doom, Associate Professor and Associate Chair, Computer Science & Engineering

Arthur Goshtasby, Professor and Graduate Program Director, Computer Science & Engineering

Karen Meyer, Senior Lecturer and Undergraduate Program Director, Computer Science & Engineering

T.K. Prasad, Professor and CSE Graduate Studies Committee Chair

Vance Saunders, Instructor and Cyber Security Program Director

Submitted: January, 2015

Mateen Rizki, Chair ____________________________

Nathan Klingbiel, Dean _____________________________

1 | P a g e

Bachelors of Arts in Computer Science – BACS

Enrollment and Graduate History

Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013

Enrollment 29 44 36 46 45

Graduates 9 11 9 12 13

Program description

The Bachelor of Arts in Computer Science program prepares students for careers in computer systems

analysis and design, software development, system administration and web site development. The

Bachelor of Arts program allows for maximum flexibility of course study with fewer requirements in high

level math and science. Our Graduates can pursue a wide array of careers and develop a broad

understanding of multiple disciplines and the application of technology and computer systems in these

fields.

[PEO EXPERT] Graduates of the Computer Science BA program are employable as computing

professionals and will be recognized by their employers as well-prepared for their career in computing.

[PEO AGILE] Graduates understand that education is a lifelong process and are well prepared for

continuing studies. [PEO ENGAGED] Graduates demonstrate appreciation for the professional, social,

ethical and leadership roles of computing professionals. [PEO APPLIED] Graduates can apply computing

and software development principles to a diverse range of domains, such as analytics, data science,

informatics, management, etc.

Alignment with university mission, strategic plan

The Computer Science BA program educational objectives (PEOs) are in alignment with the university’s

core mission. The BA CS program builds a solid foundation for student success by preparing students

with the critical thinking, mathematical, communication, and technical skills necessary for meaningfully

engaging both as informed citizens and in the workplace [PEOs EXPERT, APPLIED]. The BA CS program

prepares students to enter into high-demand technical careers that help drive economic growth in the

region/state [PEOs EXPERT, APPLIED]. Most importantly, the BA CS program prepares students for the

process of lifelong education so that they can more easily continue to develop professionally,

intellectually, and personally after graduation [PEOs AGILE, ENGAGED].

Program distinctiveness

The Computer Science BA program shares most of its outstanding features with the department’s

externally accredited Computer Science BS and Computer Engineering BS programs. The distinguishing

feature of the CS BA program is a focus on the application of computing to a diverse range of domains.

The CS BA program requires less mandatory course work towards developing mathematically rigorous

scientific-method based skills. Instead, the CS BA program provides opportunity for students to develop

knowledge in other domains in which computing is applied. These potential domains of interest include

not only the sciences, but also business, the arts, health care, or any other area of university study.

2 | P a g e

The BACS program has recently incorporated a new “fast track” advising program designed to provide a

BACS degree through 18 months of intensive study in the discipline of computer science to potential

students that already possess a baccalaureate degree in another discipline. In addition, the BACS

program has a recently implemented option to provide professional K-12 Teacher Licensure. All BACS

majors (including pre- and intending majors) are advised by professional advisors within the college of

Engineering and Computer Science.

Recognitions of quality of the program

This program is supported by the same faculty, core course sequence, and assessment infrastructure as

the department’s externally accredited (ABET) Bachelors of Science programs in Computer Science and

in Computer Engineering. As such, there is no doubt that the graduates of this program receive a high

quality experience similar in outcome to our BS programs.

Program learning outcomes

Students who complete the Bachelor of Arts in Computer Science will have:

1. an ability to apply knowledge of mathematics.

2. an ability to apply knowledge of science.

3. an ability to apply knowledge of theory of computation.

4. an ability to design and conduct experiments.

5. an ability to analyze and interpret data and report the results of the interpretation.

6. an ability to identify, formulate, and solve computer oriented problems as appropriate to the

discipline of computer science.

7. an ability to design software to meet desired needs.

8. an ability use the techniques, skills, and modern tools necessary for professional practice.

9. an ability to communicate effectively in written, graphical and oral forms.

10. an understanding of professional and ethical responsibility.

11. a knowledge of contemporary issues: social and ethical, as well as technical issues in local,

regional, national and international context.

12. the broad education necessary to understand the impact of science and technology in a global

and societal context: relevant to being a good citizen at the local, national, and international

levels.

Description of description of learning outcomes assessment program

The Computer Science Department Faculty have produced a mapping of Knowledge Topics prerequisite

or developed in each of the core/mandatory courses in our program. Achievements in these Knowledge

Topics are assessed in subsequent courses. A direct assessment of Knowledge Topics is made for every

student enrolled in every core course in the program every term. These direct assessments take place

as on-line prerequisite knowledge assessments at the beginning of courses that utilize and build on that

knowledge topic. SLOs are mapped to specific knowledge topics developed in specific core courses.

These direct assessments form the examination basis for program SLOs. Additionally, indirect

assessments are obtained from two formal groups, the department’s external advisory board and the

department’s student advisory board.

3 | P a g e

Summary of assessment findings for past five years

The semester-based version of this program began Fall 2012. Given the short period of data collection

for semester-based program of study, very few significant actions have been taken on the collected

assessment data. Some potential concerns have been noted in our annual assessment report and

flagged for long-term observation. Please find the 2014 Departmental Assessment findings attached.

Major curricular changes since last review (or past five years)

The 2012-2013 academic year saw a complete redesign of all three undergraduate computer science &

engineering programs due to the university-wide transition to semester-based terms. As no assessment

data exists for the new semester-based courses or programs of study, assessment efforts during the

2012-2013 cycle has been largely focused on the development of direct assessment instruments and

collection of data for the newly offered programs/courses.

Three primary initiatives have been taken to improve student learning during this cycle:

• Delivery of inverted-lecture core sequence (SCALE-UP Classrooms - 152 RC & 355 RC)

• Development of program educational objectives with program constituents

• Preliminary development of infrastructure for continuous assessment of relevant retained

knowledge

Graduate placement data, employer satisfaction

The BA program is relatively new and does not yet have graduates with a “five-year out” history of

employment. Starting in 2014, graduating students are polled on expected placement. This effort will

help bridge the gap on assessing graduate placement until a significant and experienced cohort of

students have been employed in the field for a duration appropriate to gauge employer satisfaction.

Anecdotal evidence suggests that graduates of the Computer Science BA program are receiving many of

the same job offers as graduates of the Computer Science BS program and with similarly positive

employer satisfaction.

If program has professional accreditation, attach most recent review findings and recommendations

NA

4 | P a g e

Bachelors of Science in Computer Science – BSCS

Enrollment and Graduate History

Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013

Enrollment 305 298 354 349 403

Graduates 29 41 47 54 50

Program description

The Department of Computer Science and Engineering has been part of the College of Engineering and

Computer Science at Wright State University since the college was founded in 1986. Prior to that time

the department's programs were organized in the College of Science and Mathematics. Our Bachelor of

Science in Computer Science (BSCS) degree program has a long history. It was established in 1968 – a

time when computer science was just becoming recognized as a major discipline in universities across

the country. The program has been accredited by ABET continuously since 1987. The last general

review of the BSCS program occurred in AY 2010-2011.

The Bachelor of Science in Computer Science degree offers a curriculum in the study of the software

aspects of computer systems including the study of algorithms and data structures, programming

languages, software methodology and tools, data management and analysis. [PEO EXPERT] Graduates

of the Computer Science program are employable as computing professionals and will be recognized by

their employers as well-prepared for their career in computing. [PEO AGILE] Graduates understand that

education is a lifelong process and are well prepared for continuing studies, including graduate studies.

[PEO ENGAGED] Graduates demonstrate appreciation for the professional, social, ethical and leadership

roles of computing professionals. [PEO FOCUSED] Graduates have a set of software theory and

development skills that emphasizes software construction, team-based project management, and

experience with contemporary software development tools/paradigms.

Alignment with university mission, strategic plan

The BSCS program educational objectives are consistent with the mission of Wright State University.

The University’s goal of “achieving learning outcomes through innovative, high quality programs for all

students” is well supported by PEO EXPERT. Further, Wright State University’s commitment to

“conducting scholarly research and creative endeavors” enables the faculty to remain on the leading

edge of the practice, and to continue to provide students with experiences developed toward meeting

PEOs EXPERT and FOCUSED. WSU’s commitment to “engaging in significant community service”

provides a clear example of social responsibility and ethical practice to our students, in support of PEO

ENGAGED. Finally, PEOs AGILE and ENGAGED are essential elements in achieving the overall aim of the

institution, to “transform the lives of our students and the communities we serve”.

5 | P a g e

Program distinctiveness

1. The program is housed in the same department as the Computer Engineering program making it

easier for students to pursue both majors and/or enroll in computer science as well as computer

engineering elective courses.

2. Wright State University is located near Wright Patterson Air Force Base providing students with

unique opportunities to work in the Air Force Research Lab and other related employment

opportunities.

3. The Boffin Factory is a student centered research, activity and study area where students can pursue

specific interests, connect with other students and attend lectures hosted by faculty and staff.

4. The program is small enough that students can be involved in working in help rooms, labs and

recitations and have direct contact with their Professors, but large enough that they have access to

resources provided by the defense and private industry.

The BSCS program has recently incorporated a new “fast track” advising program designed to provide a

BSCS degree through 18 months of intensive study in the discipline of computer science to potential

students that already possess a baccalaureate of degree in another science. In addition, the BSCS

program has a recently implemented a “4+1” track that allows high achieving students to being progress

towards a graduate degree in computer science while completing senior-level electives in their

baccalaureate program of study. All BSCS majors (including pre- and intending majors) are advised by

professional advisors within the college of Engineering and Computer Science.

Recognitions of quality of the program

The program has been accredited by ABET/CAC continuously since 1987.

Program learning outcomes

Students who complete the BS in computer science will have:

1. an ability to apply mathematical foundations, algorithmic principles, and computer science

theory in the modeling and design of computer-based systems in a way that demonstrates

comprehension of the tradeoffs involved in design choices.

2. an ability to design and conduct experiments, coupled with an ability to analyze and interpret

data, and report the results of the interpretation.

3. an ability to apply design and development principles to design, implement, and evaluate

software systems (computer-based systems, processes, components, or programs) of varying

complexity to meet desired needs.

4. an ability to function effectively on teams to accomplish a common goal.

5. an ability to identify, formulate, and solve computer oriented problems as appropriate to the

discipline of computer science.

6. an understanding of professional, ethical, legal, security and social issues and responsibilities.

7. an ability to communicate effectively in written (prose as well as mathematical, scientific,and

engineering notations in technical reports), graphical (diagrams, charts, visualizations,

animations), and oral (discussions with colleagues, group meetings, and formal presentations)

forms.

6 | P a g e

8. the broad education necessary to understand the impact of science and technology in a

contemporary global and societal context: relevant to being a productive and contributing

citizen at the local, national, and international levels.

9. a recognition of the need for, and an ability to engage in life-long learning of computer science

and related topics.

10. an ability to use the techniques, skills, and modern tools necessary for professional computing

practice such as software development environments, modern programming languages, and

computer hardware components.

Description of description of learning outcomes assessment program

The Computer Science Department Faculty have produced a mapping of Knowledge Topics prerequisite

or developed in each of the core/mandatory courses in our program. Achievement in these Knowledge

Topics are assessed in subsequent courses. A direct assessment of Knowledge Topics is made for every

student enrolled in every core course in the program every term. These direct assessments take place

as on-line prerequisite knowledge assessments at the beginning of courses that utilize and build on that

knowledge topic. SLOs are mapped to specific knowledge topics developed in specific core courses.

These direct assessments form the examination basis for program SLOs. Additionally, indirect

assessments are obtained from two formal groups, the department’s external advisory board and the

department’s student advisory board.

Summary of assessment findings for past five years

The semester-based version of this program began Fall 2012. Given the short period of data collection

for semester-based program of study, very few significant actions have been taken on the collected

assessment data. Some potential concerns have been noted in our annual assessment report and

flagged for long-term observation. Please find the 2014 Departmental Assessment findings attached.

Major curricular changes since last review (or past five years)

The 2012-2013 academic year saw a complete redesign of all three undergraduate computer science &

engineering programs due to the university-wide transition to semester-based terms. As no assessment

data exists for the new semester-based courses or programs of study, assessment efforts during the

2012-2013 cycle has been largely focused on the development of direct assessment instruments and

collection of data for the newly offered programs/courses.

Three primary initiatives have been taken to improve student learning during this cycle:

• Delivery of inverted-lecture core sequence (SCALE-UP Classrooms - 152 RC & 355 RC)

• Development of program educational objectives with program constituents

• Preliminary development of infrastructure for continuous assessment of relevant retained

knowledge

• Incorporation of mandatory Team Projects senior capstone experience

Graduate placement data, employer satisfaction

There have been no significant reports of CS students having difficulty finding immediately placement

locally or national. The CS skillset is in high demand and market forces seem to indicate significant

7 | P a g e

continued demand for computer science graduates. Employer satisfaction (as communicated by the

departmental external advisory board) remains high.

If program has professional accreditation, attach most recent review findings and recommendations

Attached.

8 | P a g e

Bachelors of Science in Computer Engineering – BSCE

Enrollment and Graduate History

Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013

Enrollment 227 220 235 242 248

Graduates 17 14 17 31 30

Program description

The Department of Computer Science and Engineering has been part of the College of Engineering and

Computer Science at Wright State University since the college was founded in 1986. Prior to that time

the department's programs were organized in the College of Science and Mathematics. Our Bachelor of

Science in Computer Science degree program was established in 1968 - a time when computer science

was just becoming recognized as a major discipline in universities across the country. Our Bachelor of

Science in Computer Engineering (BSCEG) was established in 1981. The program has been accredited by

ABET continuously since 1987. The last general review of the BSCEG program occurred in AY 2010-2011.

The Bachelor of Science in Computer Engineering degree offers a curriculum in the study of computer

systems including the design, construction, and overall operations with a major focus on hardware. It

includes the study of digital circuits, embedded systems programming languages and operating systems.

The program provides a solid mathematics, basic science, and engineering science base that is common

to all quality engineering programs. [PEO EXPERT] Graduates of the Computer Engineering program are

employable as computing professionals and will be recognized by their employers as well-prepared for

their career in computing. [PEO AGILE] Graduates understand that education is a lifelong process and

are well prepared for continuing studies, including graduate studies. [PEO ENGAGED] Graduates

demonstrate appreciation for the professional, social, ethical and leadership roles of computing

professionals. [PEO BROAD] Graduates have a knowledge of computing principles that includes all levels

of modern computational architectural/infrastructure, operating systems and component-based

hardware/embedded/software systems.

Alignment with university mission, strategic plan

The BSCEG program educational objectives are consistent with the mission of Wright State University.

The University’s goal of “achieving learning outcomes through innovative, high quality programs for all

students” is well supported by PEO EXPERT. The program aims to maintain a modern mix of hardware

and software experiences that keep up with the rapidly-changing environment of contemporary

computing. Further, Wright State University’s commitment to “conducting scholarly research and

creative endeavors” enables the faculty to remain on the leading edge of the practice, and to continue

to provide students with the modern laboratory, project, and design experiences mentioned in PEOs

EXPERT and BROAD. WSU’s commitment to “engaging in significant community service” provides a clear

example of social responsibility and ethical practice to our students, in support of PEO ENGAGED.

Finally, PEOs AGILE and ENGAGED are essential elements in achieving the overall aim of the institution,

to “transform the lives of our students and the communities we serve”.

9 | P a g e

Program distinctiveness

1. The program is housed in the same department as the Computer Engineering program making it

easier for students to pursue both majors and/or enroll in computer science as well as computer

engineering elective courses.

2. Wright State University is located near Wright Patterson Air Force Base providing students with

unique opportunities to work in the Air Force Research Lab and other related employment

opportunities.

3. The Boffin Factory is a student centered research, activity and study area where students can pursue

specific interests, connect with other students and attend lectures hosted by faculty and staff.

4. The program is small enough that students can be involved in working in help rooms, labs and

recitations and have direct contact with their Professors, but large enough that they have access to

resources provided by the defense and private industry.

The BSCEG program has a recently implemented a “4+1” track that allows high achieving students to

being progress towards a graduate degree in computer engineering while completing senior-level

electives in their baccalaureate program of study. All BSCEG majors (including pre- and intending

majors) are advised by professional advisors within the college of Engineering and Computer Science.

Recognitions of quality of the program

The program has been accredited by ABET continuously since 1987.

Program learning outcomes

Students who complete the BS in computer engineering will have:

1. an ability to apply knowledge of mathematics, science, and engineering.

2. an ability to design and conduct experiments as needed to evaluate artifacts and processes not

suitable to other analysis, coupled with an ability to analyze and interpret data possibly using

statistical, logical, inductive, graphical, analogical, etc. reasoning and report the results of the

interpretation.

3. an ability to design a system, component, or process to meet desired needs.

4. an ability to function on multidisciplinary teams such as in group projects.

5. an ability to identify, formulate, and solve engineering and science problems as appropriate to

the discipline of computer engineering.

6. an understanding of professional and ethical responsibility.

7. an ability to communicate effectively in written (prose as well as mathematical, scientific, and

engineering notations in technical reports), graphical (diagrams, charts, visualizations,

animations), and oral (discussions with colleagues, group meetings, and formal presentations)

forms.

8. the broad education necessary to understand the impact of engineering and scientific solutions

in a contemporary global , economic, environmental, and societal context: relevant to being a

productive and contributing citizen at the local, national, and international levels.

10 | P a g e

9. a recognition of the need for, and an ability to engage in life-long learning of computer

engineering and related topics.

10. an ability to use the techniques, skills, and modern tools necessary for professional engineering

practice such as CAD tools and physical instruments, modern programming languages, and

computer hardware components.

Description of description of learning outcomes assessment program

The Computer Science Department Faculty have produced a mapping of Knowledge Topics prerequisite

or developed in each of the core/mandatory courses in our program. Achievement in these Knowledge

Topics are assessed in subsequent courses. A direct assessment of Knowledge Topics is made for every

student enrolled in every core course in the program every term. These direct assessments take place

as on-line prerequisite knowledge assessments at the beginning of courses that utilize and build on that

knowledge topic. SLOs are mapped to specific knowledge topics developed in specific core courses.

These direct assessments form the examination basis for program SLOs. Additionally, indirect

assessments are obtained from two formal groups, the department’s external advisory board and the

department’s student advisory board.

Summary of assessment findings for past five years

The semester-based version of this program began Fall 2012. Given the short period of data collection

for semester-based program of study, very few significant actions have been taken on the collected

assessment data. Some potential concerns have been noted in our annual assessment report and

flagged for long-term observation. Please find the 2014 Departmental Assessment findings attached.

Major curricular changes since last review (or past five years)

The 2012-2013 academic year saw a complete redesign of all three undergraduate computer science &

engineering programs due to the university-wide transition to semester-based terms. As no assessment

data exists for the new semester-based courses or programs of study, assessment efforts during the

2012-2013 cycle has been largely focused on the development of direct assessment instruments and

collection of data for the newly offered programs/courses.

Three primary initiatives have been taken to improve student learning during this cycle:

• Delivery of inverted-lecture core sequence (SCALE-UP Classrooms - 152 RC & 355 RC)

• Development of program educational objectives with program constituents

• Preliminary development of infrastructure for continuous assessment of relevant retained

knowledge

Graduate placement data, employer satisfaction

There have been no significant reports of CS students having difficulty finding immediately placement

locally or national. The CS skillset is in high demand and market forces seem to indicate significant

continued demand for computer science graduates. Employer satisfaction (as communicated by the

departmental external advisory board) remains high.

If program has professional accreditation, attach most recent review findings and recommendations

Attached.

11 | P a g e

Master of Science in Computer Science

Enrollment and Graduate History

Fall 2009 Fall 2010 Fall 2011 Fall 2012 Fall 2013

Enrollment 49 47 42 36 106

Graduates 24 14 27 10 15

Program Description

The program offers a wide range of courses in computer science and the opportunity to develop

research skills in computer science areas. The program’s strengths include diverse faculty expertise,

various computer science laboratories, and a balance of theory and practice. Degree requirements focus

on the areas of software systems design and analysis, and computer science theory. Courses for the

program are offered mostly in the late afternoon and evening hours and some with added online

sections to serve the educational needs of practicing computer professionals.

Alignment with the University Mission and Strategic Plan

The program provides students with the solid educational foundation in advanced topics in computer

science necessary to support the critical needs of employers in our region and state. The scholarly

research of the faculty provides opportunities for students to explore emerging topics at the frontier of

computer science to support future economic development and entrepreneurial enterprises.

Program Distinctiveness

• Courses in emerging disciplines such as soft computing, data mining, machine learning, network

science, information retrieval, and semantic web.

• Thesis options in wide computer science areas.

• Evening and online courses.

• The option to take courses in computer engineering and cyber security as a part of the

graduation requirement.

Recognitions of Quality of the Program

• The program has been steadily growing since its inception in Sept. 1975.

• Supported by government and private sources for research in computer science areas of

national and local interest.

• Faculty publications appearing in top science and engineering journals and conferences.

• Program graduates being placed at various positions locally and nationally, some very

competitive.

• Adds Big and Smart Data Sciences educational certificate to provide a detailed technical

overview of Big Data analysis issues for working professionals.

Program Learning Outcomes

Graduates are able to demonstrate:

• The ability to integrate and apply graduate computer science knowledge to solve complex

computer science problems.

12 | P a g e

• The ability to understand and integrate new knowledge within the field of computer science into

their daily professional activities.

• The ability to recognize the need for, and engage in, life-long learning.

Description of Learning Outcomes Assessment Program

To ensure that the Computer Science M.S. program meets the needs of our graduate students and their

employers, an annual assessment of the program is planned to evaluate the program’s strengths and

weaknesses, specifically in regard to the number of annual graduations, time to graduation, satisfaction

of graduates with the program, and preparedness of the graduates in tackling technical challenges at

work. An indicator of the program’s health is the ratio of students to faculty in the program. To measure

the preparedness of the graduates in research and tackling difficult problems, the ratio of graduates

seeking a doctoral degree is used.

Summary of Assessment Findings for the Past Five Years

Due to the increased need for software development in various engineering, scientific, and commercial

applications, job opportunities in computer science have been robust. Consequently, to meet the needs

of an increased number of applicants in computer science, during recent years the department has hired

a number of new faculty in emerging fields. The CS program at Wright State is currently considered one

of the strongest in the State of Ohio.

During recent years, the department has made considerable investments renovating instructional labs,

developing multimedia tools for teaching, and enhancing delivery techniques. The program has

competent faculty with diverse expertise, who have developed a strong curriculum in the program as

evidenced by the exit surveys of the graduates.

Major Curricular Changes During the Past Five Years

• The quarter system program was converted to the current semester system program.

• New courses were introduced to the program as new faculty joined the program.

• Existing course contents were updated as needed to reflect recent advances in computer

science.

Graduate Placement Data and Employer Satisfaction

Among the students that graduated between 2010 and 2013, 45% have stated that they already have a

position either at AFRL or at a company in the Dayton area and intend to continue working there after

graduation. About 40% of the graduates seek positions and some find employment before or shortly

after graduation. Many of the students who are not already employed represent international students

who will be doing practical training after graduation and will be looking for a position at a later date. The

graduates in this category may take jobs outside of Dayton and leave the area. The remaining 15% of the

graduates enter the Ph.D. program at Wright State.

Employers of the graduates of the program who are members of the department’s advisory board have

expressed satisfaction with the graduates.

If Program has Professional Accreditation, Attach Most Recent Findings and Recommendations

N/A

13 | P a g e

Program 2: Master of Science in Computer Engineering

Enrollment and Graduate History

Fall 2009 Fall 2010 Fall 2011 Fall 2012 Fall 2013

Enrollment 25 27 13 14 24

Graduates 22 14 10 11 12

Program Description

The program offers diverse courses in computer engineering and the opportunity to develop research

skills in computer engineering areas. The program’s strengths include a wide range of faculty expertise,

many computer engineering laboratories, and a balance of theory and practice. Degree requirements

include hardware and software systems design and analysis. Courses for the program are offered mostly

in the late afternoon and evening hours and some with added online sections to serve the educational

needs of practicing computer professionals.

Alignment with the University Mission and Strategic Plan

The program provides students with the solid educational foundation in advanced topics in computer

engineering necessary to support the critical needs of employers locally and within the state. The

scholarly research of faculty provides opportunities for students to explore emerging topics at the

frontier of computer engineering to support future economic development and entrepreneurial

enterprises.

Program Distinctiveness

• Courses in emerging disciplines such as embedded systems, distributed computing, mobile

computing, cloud computing, and computer vision.

• Thesis options in wide computer engineering areas.

• Evening and online courses.

• The option to take courses in computer science and cyber security as a part of the graduation

requirement.

Recognitions of Quality of the Program

• The program has been steadily growing since its inception in Sept. 1984.

• Supported by government and private sources for research in computer engineering areas of

national and local need.

• Faculty publications appearing in top science and engineering journal and conferences.

• Program graduates being placed at various positions locally and nationally, some very

competitive.

Program Learning Outcomes

Graduates are able to demonstrate:

• The ability to integrate and apply graduate computer engineering knowledge to solve complex

computer engineering problems.

• The ability to understand and integrate new knowledge within the field of computer engineering

into their professional activities.

• The ability to recognize the need for, and engage in, life-long learning.

14 | P a g e

Description of Learning Outcomes Assessment Program

To ensure that the Computer Engineering M.S. program meets the needs of our graduate students and

their employers, an annual assessment of the program is planned to evaluate the program’s strengths

and weaknesses, specifically to determine the number of annual graduations, time to graduation,

satisfaction of graduates with the program, and preparedness of the graduates in tackling technical

challenges at work. An indicator of the program’s health is the ratio of students to faculty in the

program. To measure the preparedness of the graduates in research and tackling difficult problems, the

ratio of graduates seeking a doctoral degree is used.

Summary of Assessment Findings for the Past Five Years

During recent years, the department has made considerable investments renovating instructional labs,

developing multimedia tools for teaching, and enhancing delivery techniques. The program has

competent faculty with diverse expertise, offering a strong curriculum as evidenced by the exit surveys

of the graduates.

Major Curricular Changes During the Past Five Years

• The quarter system program was converted to the current semester system.

• New courses were introduced to the program as new faculty joined the program.

• Existing course contents were updated as needed to reflect recent advances in computer

engineering.

Graduate Placement Data and Employer Satisfaction

Among the students that graduated between 2010 and 2013, 50% stated that they already have a

position either at AFRL or at a company in the Dayton area and intend to continue working there after

graduation. 42% of graduates seek employment and the majority find employment before or shortly

after graduation. International students usually start practical training after graduation for about a year

and look for a job after that. The graduates in this category may leave the Dayton area if the job they

find is outside Dayton. The remaining 8% of the graduates enter the Ph.D. program or another degree

program at Wright State.

Employers of the graduates of the program who are members of the department’s advisory board have

expressed satisfaction with the graduates.

If Program has Professional Accreditation, Attach Most Recent Findings and Recommendations

N/A

15 | P a g e

https://graduation.42

Program 3: Master of Science in Cyber Security

Enrollment and Graduate History:

Fall 2010 Fall 2011 Fall 2012 Fall 2013 Fall 2014

Enrollment 4 8 4 8 17

Graduates 0 0 0 0 1

Program Description

The program offers a wide range of courses in cyber security and the opportunity to develop research

skills in the field. The program strengths include a unique blend of faculty expertise, well-equipped

laboratory facilities, and a balance of theory and practice. The degree is focused on developing the

knowledge and skills applicable to protecting complex systems operating in cyberspace. Courses are

offered online and in residence.

Alignment with the University Mission and Strategic Plan

The program provides students with the solid educational foundation in advanced topics in cyber

security necessary to support the critical needs of employers in our region and the state. The scholarly

research of the faculty provides opportunities for students to explore emerging topics at the frontier of

cyber security to support future economic development and entrepreneurial enterprises.

Program Distinctiveness

• Adds Cyber Security Analytics educational certificate to provide a detailed technical overview of

cyberspace for working professionals in other disciplines and fields. These students do not need

an M.S. in Cyber Security; however, they do need a technical understanding of the impacts cyber

security may have on their specific professional discipline.

• Significantly expands the traditional internet/web definition of cyberspace providing students

with a more accurate frame of reference to address cyber security issues. This expanded

definition encompasses complex systems for air, land, sea, space, critical infrastructure and The

Internet of Things (IoT).

• Establishes a Cooperative Research and Development Agreement (CRADA) with the Air Force

Research Laboratory (AFRL) at Wright Patterson Air Force Base (WPAFB) to support the

expanded definition of cyberspace involving aircraft and avionics systems.

• Establishes collaboration with the Air Force Institute of Technology (AFIT) to focus on analyzing

cyber attacks and defenses across a wide range of complex cyber physical systems.

• Provides extensive hands-on laboratory exercises conducted in our Virtual Cyber Security Lab

(VCSL) using current attack and defend tools and techniques.

Recognitions of Quality of the Program

• The program continues to grow since its inception in September 2012.

• It is of great interest to AFRL researchers and employees of local government contractors.

Program learning outcomes:

• The ability to integrate and apply graduate cybersecurity knowledge to solve complex

cybersecurity issues and challenges.

• The ability to understand and integrate new knowledge within the field of cybersecurity into

their professional activities.

16 | P a g e

https://anM.S.in

• The ability to recognize the need for, and engage in, life-long learning.

• Obtain a deeper understanding of the breadth and depth of cyberspace and the inefficiencies

and shortcomings of our existing evaluation systems to deal with cybersecurity threats.

• Understand the unique characteristics of cyberspace and how these unique characteristics

affect/influence cybersecurity threats.

• Identify social, political, and economic factors/impacts of cyber threats and be able to identify

and discuss ethical issues related to cybersecurity and privacy.

• Recognize the basic concepts of cyber security defense and be able to use software tools for

malware identification and elimination, data encryption and transmission, and key-based

authentication.

Description of Learning Outcomes Assessment Program

No assessment is yet available due to the short life of this program in the department.

Summary of Assessment Findings for the Past Five Years

N/A

Major Curricular Changes During the Past Five Years

Course CEG 6424 “Security Attacks and Defenses” was newly added as a required course – changing the

total required courses from 3 to 4.

Graduate Placement Data and Employer Satisfaction

N/A

If Program has Professional Accreditation, Attach Most Recent Findings and Recommendations

N/A

17 | P a g e

Departmental Summary: Computer Science & Engineering

Faculty demographics

2008 2009 2010 2011 2012

Full 7 8 8 8 9

Associate 6 6 6 6 9

Assistant 5 5 5 5 2

Inst/Lect 5 5 5 6 6

Total 23 24 24 25 26

Staffing Summary

2008 2009 2010 2011 2012

Unclassified 2 2 5 4 4

Classified 3 3 3 3 3

Total 5 5 8 7 7

Student/Faculty Ratio

2008 2009 2010 2011 2012

Student FTE/Fac FTE 14 14 15 13 13

Average Class Size

2010 2011 2012

Lecture 34 20 27

Lab only 25 14 20

Lecture/Lab 42 23 27

Student Data for All Programs and for Graduate Programs in Unit

Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013

Enrollment 653 649 701 719 855

Graduate 99 104 119 124 131

Total Courses Taught vs. Credit Hours Generated for Unit

Fall 09 Fall 2010 Fall 2011 Fall 2012 Fall 2013

Undergraduate 218 / 13,465 241 / 13,871 254 / 12,990 145 / 11,492 164 / 12,786

Graduate 195 / 2,293 235 / 2,339 240 / 2,198 226 / 2,169 251 / 3,630

Total 413 / 15,758 476 / 16,210 494 / 15,188 371 / 13,661 415 / 16,416

18 | P a g e

I I I I

I I I I

Course Completions

2008 2009 2010 2011 2012

Undergraduate 79% 79% 78% 79% 78%

Master’s 92% 91% 96% 95% 93%

Expense per Student and Revenue to Expense Ratio

2008 2009 2010 2011 2012

Expense per Student $6307 $7126 $7307 $8499 $9928

Rev/Expense 2.77 2.30 2.23 1.86 1.79

Research and External Funding

2008 2009 2010 2011 2012

External Funding $1,452,949 $1,337,741 $2,099,268 $1,858,682 $1,207,236

Future employment projections for discipline (to be provided to unit)

Employment prospects for graduates in computer science, computer engineering, and cyber security are

very good. Demand for graduates in computer science and computer engineering has been strong and is

expected to remain strong for years to come due to expected continued demand in data analysis and

digital communications. The need for the graduates in cyber security is especially acute as such

expertise is in great demand in government and private agencies and this demand is expected to remain

strong for many years to come. Graduates in computer science, computer engineering, and cyber

security are expected to find jobs within their field of specialty without any difficulty.

During the recent recession, national employment for computer scientists did not rise above 6% and

returned to pre-recession levels well before average unemployment indicators. Employment projects

for common career paths for computer scientists are included below. National data on common career

paths is collected from the Occupational Outlook Handbook, Bureau of Labor Statistics

(http://www.bls.gov, Oct 2014). Quick Facts are based on data collected by BLS in 2012.

• Computer and information system managers: $120,850. Entry level education: Bachelor’s

degree; Number of jobs: 332,700; Job Outlook 2012-2022: +15% (Faster than average)

• Computer programmers; Median Pay: $74,280. Entry level education: Bachelor’s degree;

Number of jobs: 343,700; Job Outlook 2012-2022: +8% (As fast as average)

• Computer systems analysts; Median Pay: $79,680. Entry level education: Bachelor’s degree;

Number of jobs: 520,600; Job Outlook 2012-2022: +25% (Much faster than average)

• Database Administrators; Median Pay: $77,080. Entry level education: Bachelor’s degree;

Number of jobs: 118,700; Job Outlook 2012-2022: +15% (Faster than average)

• Information security analysts; Median Pay: $86,170. Entry level education: Bachelor’s degree;

Number of jobs: 75,100; Job Outlook 2012-2022: +37% (Much faster than average)

• Software developer; Median Pay: $94,350. Entry level education: Bachelor’s degree; Number of

jobs: 1,018,000; Job Outlook 2012-2022: +22% (Much faster than average)

19 | P a g e

http://www.bls.gov,Oct2014).QuickFacts

• Web developers; Median Pay: $62,500. Entry level education: Associate’s degree; Number of

jobs: 141,400; Job Outlook 2012-2022: +20% (Faster than average)

Description of how unit programs and curricula are “mission critical” to the core Wright State

educational experience

It is the mission of Wright State University to transform the lives of students and the community it

serves by: 1) building a solid foundation for student success at all levels through high-quality, innovative

programs; 2) conducting scholarly research and creative endeavors that impact the quality of life; 3)

engaging in meaningful community service; 4) driving the economic revitalization of our region and our

state; and 5) empowering all of our students, faculty, staff, and alumni to develop professionally,

intellectually, and personally.

The computer science, computer engineering, and cyber security curriculums help the university meet

its mission by offering very competitive programs in disciplines that are in great demand and by

graduating competent individuals who can then help the organizations they join to sharpen their

technological edge. This will, in turn, revitalize the local and state economy through the delivery of

numerous capabilities that are in great demand today.

Technology has changed rapidly in the past few years—so has the need for technologically competent

citizens and skilled workers in computer and information science/engineering. Awareness of technology

is becoming a de-facto core educational competency. The faculty of Wright State University have

recognized the importance of technological awareness by recognizing two courses offered by the

department as fulfilling general education competencies in the Wright State core.

Computation has become a de facto necessity for nearly all quantitative scholarly research. The

department supports scholarly efforts throughout the institution (and region) by producing graduates

and providing access to contributing state-of-the art computational experts. The impact of computation

on the mission of universities is on the rise. Nation-wide, many academic institutions have embraced

the mission critical nature of computation by investing significant resources into the founding of entire

Colleges dedicated to Computing, Computing Sciences, and Computer/Information Science.

Faculty accomplishments and recognitions

The department currently consists of 34 full-time faculty members including 9 professors, 10 associate

professors, 5 assistant professors, 3 senior lecturers, 2 lecturers and 5 instructors. The faculty includes 7

female faculty members (women are considered an underrepresented group in computer science &

engineering). 26 of the faculty members in the department hold doctoral degrees from a variety of

universities.

Faculty in computer science, computer engineering, and cyber security regularly receive funding to do

research in areas of national and local need. Active projects funded by government and state agencies

include:

• Instructional laboratories for cloud computing education (NSF)

• A federated semantic service platform for material sciences (DoD, AFRL)

• Fusion of multimodal video streams (AFRL)

• Developing large-scale language models (NSF)

• The Ohio consortium for bioinformatics (OBR)

20 | P a g e

Programs and areas of recognized excellence with supporting evidence

Bachelor of Science in Computer Science

The Bachelor of Science in Computer Science degree offers a curriculum in the study of the software

aspects of computer systems including the study of algorithms and data structures, programming

languages, software methodology and tools, data management and analysis.

Bachelor of Science in Computer Engineering

The Bachelor of Science in Computer Engineering degree offers a curriculum in the study of computer

systems including the design, construction, and overall operations with a major focus on hardware. It

includes the study of digital circuits, embedded systems programming languages and operating systems.

The program provides a solid mathematics, basic science, and engineering science base that is common

to all quality engineering programs

Bachelor of Arts in Computer Science

The Bachelor of Arts in Computer Science program prepares students for careers in computer systems

analysis and design, programming, network administration and web site development. The Bachelor of

Arts program allows for maximum flexibility of course study with fewer requirements in high level math

and science. Our Graduates can pursue a wide array of careers and develop a broad understanding of

multiple disciplines and the application of technology and computer in these fields.

Master of Science in Computer Science

The Department of Computer Science and Engineering offers a program of graduate study leading to a

Master of Science degree in Computer Science. The program strengths include the unique blend of

faculty expertise, well-equipped computer science laboratory facilities, and a balance of theory,

practice, hardware, and software. Degree requirements concentrate on the areas of software system

design and analysis. Courses for the program are offered in the late afternoon and evening hours to

serve the educational needs of practicing computer professionals.

Master of Science in Computer Engineering

The Department of Computer Science and Engineering offers a program of graduate study leading to the

Master of Science in Computer Engineering degree. The program strengths include the unique blend of

faculty expertise, well-equipped computer engineering laboratory facilities, and a balance of theory,

practice, hardware, and software. Degree requirements concentrate on the areas of computer system

design and analysis. Courses for the program are offered in the late afternoon and evening hours to

serve the educational needs of practicing computer professionals.

Master of Science in Cyber Security

The Master of Science in Cyber Security is designed for individuals who want to develop skills to identify

and resolve Cyber Security threats. The degree is focused developing knowledge and skill applicable to

protecting computer systems and computer networks. Program strengths include the unique blend of

faculty expertise, the well-equipped computer engineering laboratory facilities, and the balance of

theory, practice, hardware, and software.

Doctor of Philosophy in Computer Science and Engineering

The Department of Computer Science and Engineering offers a program of graduate study leading to the

21 | P a g e

Doctor of Philosophy degree in Computer Science and Engineering. The Ph.D. degree is awarded in

recognition of demonstrated, scholarly excellence in study and research that results in a significant

contribution to the fields of computer science and/or computer engineering.

Capacity for growth of programs

The capacity crisis in Computer Science was a topic at the Jan 2014 NSF Priorities workshop. Dr. Eric

Roberts (Stanford) reports IPEDS data, SIGCSE panels, and anecdotal evidence all indicate that CS

enrollments are drastically increasing nationwide but that these increases are NOT keeping pace with

the skyrocketing demand for computing professionals.

Universities nation-wide are failing to produce the number of computer scientists required to sustain

economic growth. The table above [Phil Levis, Stanford University] demonstrates the gap between

annual degrees granted (using IPEDS data 2008-2009) and employment data (Department of Labor,

Occupational Outlook Handbook, 2010-2011).

The problem of the 2000s was insufficient student demand. The NSF Priorities presentation indicates

that the problem of the 2010s will be insufficient university capacity. Computer science is poised to face

a “success disaster” due to be unprepared to handle its overwhelming growth/need.

22 | P a g e

Aoni:rat eiJJJ'IDtlment in. Introductory computer science oourses,
t Berkeley,. Staofoo-tt and W · htngton

..
J ;J.(1110
> .. f 1500

; 11100
~
'a
!I 500
Ill

o ----------------
2 oo.;.2oos 20002001:wos2009 20102ou. :w12 .zo13

Year

Phil Levis, http://csl.stanford.edu/-palledl

- Doctorate

- Master's
c:::::J Bachelor's

· - Job openings

94.889

31,357

10,075

Bedc.eley

-Stlinf!ord

-.il!'ac&bm~on

161,857

Physical Sciences Biological Sciences Engineering Computer Science

Historical evidence (from a similar situation in the 1980s) suggests that universities do not currently

have the capacity to satisfy the growing demand. Workloads for faculty will increase substantially, some

faculty members will leave for greener pastures, and replacement faculty will be increasingly difficult to

find as students turn away from academic careers (or indeed, graduate studies altogether) to enter into

immediately high-paying careers in the demand-rich job market.

Wright State University’s department of Computer Science & Engineering will require substantial and

continued investment in order to prepare for and meet the anticipated need BEFORE qualified faculty

members become very difficult to recruit and retain.

At the graduate level, significant opportunity for growth is expected in the department’s new online

M.S. program in cyber security.

New program opportunities

The discipline of computer science/engineering is constantly redefining itself as technological needs and

opportunities grow. The department is responsive to the changing needs of our students, the university,

the state, and the nation. The department has recently created new programs in Cyber Security (MS-

Cyber) and certificates in Cyber Security and in Big Data / Data Science.

The expected increase in computer science students nationwide will require new opportunities to meet

more general needs for graduate students with less technical backgrounds. New programs under

consideration should include not only new technical opportunities (such as a Master of Science in Data

Analytics), but also less technical programs to meet the expended nation-wide demand for computer

science professionals. These programs may include the developing of technical talent in individuals who

have already demonstrated non-technical excellence, such as a Masters of Arts in Information Systems,

“Fast track” BS programs for students possessing baccalaureate degrees in other disciplines, and similar

opportunities.

Proposals to enhance programs (if desired)

• Promote excellence by improving teaching techniques to broaden the accessibility of the

undergraduate program to a wider range of incoming student experience

• Promote excellence by increasing graduate and undergraduate participation in research by

promoting the thesis option

• Continually adjusting admission standards as data suggests appropriate pre-admission metrics

for predicting student success and ability to successfully complete the program

23 | P a g e

Assessment report, Fall 2014: Computer Science

Kathleen Timmerman, Travis Doom

Wright State University, Dayton, OH 45431-0001

Email: timmerman.16@wright.edu

Continuous assessment of student learning allows directed continuous improvement of the learn-

ing experience. Learning is multidimensional and requires multiple methods of collection in or-

der to produce meaningful data. Direct methods of assessment measure student performance

against some rubric of success. Indirect methods of assessment more often measure the student’s

(or observer’s) perception of attainment. While both methods of assessment have their place, di-

rect measures of assessment have been used for decades to provide a means for quality assur-

ance. Historically, direct examinations such as the ACT and SAT have been used to measure the

educational achievement of high-school students applying to college. Similarly, examinations

such as the GRE, subject GRE, and Fundamentals of Engineering (FE) examination have been

used to measure student educational achievement in University and to partially gauge profes-

sional competency.

Examinations of this sort provide validation against a set of external criteria that demonstrate that

the retained knowledge of each student is relevant to the current national standard. Unfortu-

nately, end-of-program examinations of this sort make poor tools for continuous program im-

provement. It is difficult, if not impossible, to provide a linkage between overall examination

performance and specific actions or pedagogies employed in the educational process that led to

greater or lesser success.

Continuous periodic direct measurements provide the best opportunity for measuring the perfor-

mance effects of specific changes to programs, courses, and pedagogies. However, such data

collection efforts are practically limited due to the sometimes massive effort required from ad-

ministration, faculty, and students.

We use here an infrastructure to assess program effectiveness with the following goals:

1. The assessment provides continuous periodic direct measurements of retained relevant

knowledge.

2. The assessment outcome is immediately valuable to the assessment participants (students

and faculty) as well as the continuous improvement of the program.

3. The assessment is not unduly burdensome.

Assessment knowledge topics

The goal of assessment is to provide data to measure (or illustrate a need for) improvement. The

definition of the assessment standards then set a target goal towards which a program continu-

ously strives to better meet. Although program objectives differ significantly among institutions,

certain knowledge and skills are expected of graduates of engineering programs. We believe that

the standard towards which programs should strive in Engineering is best communicated not

only by the accreditation agencies but also by the appropriate discipline-specific international

mailto:timmerman.16@wright.edu

professional society. These societies maintain and regularly update the themes, knowledge ar-

eas, and professional practices expected of those entering their discipline.

For example, in computer science, the Joint Task Force on Computing Curricula between the As-

sociation for Computing Machinery (ACM) and IEEE-Computer Society provides regularly up-

dated standards in curriculum, most recently in the volume Computer Science Curricula 2013

(CS2013) [1]. The CS2013 Body of Knowledge organizes the expectations of Computing gradu-

ates into 18 Knowledge Areas (KA) which are created, revised, and removed as the discipline

changes over time (Figure 1, below). Each of these KAs is further specified as a set of

Knowledge Units (Figure 2, below) each of which specifies a set of Knowledge Topics (Figure

3, below) expected at the time of graduation.

While acknowledging that every program has differing educational objectives, use of profes-

sional society standards provides metrics which can gauge the success of the program against a

national model. Such metrics suggest an infrastructure for direct assessment that allows compar-

ison against discipline-wide expectations and to allow reflection on the need, causes, and appro-

priateness of any major deviations from the widespread consensus proposed by the discipline’s

professional society.

AL Algorithms and Complexity

AR Architecture and Organization

CN Computational Science

DS Discrete Structures

GV Graphics and Visualization

HC Human Computer Interaction

IAS Information Assurance

IM Information Management

IS Intelligent Systems

NC Networking and Communication

OS Operating Systems

PD Parallel and Distributed Computing

PL Programming Languages

SDF Software Development Fundamentals

SE Software Engineering

SF System Fundamentals

SP Social and Professional Practice

Figure 1: CS2013 Knowledge Areas [CS2013]

Algorithms and Complexity (AL)

AL/Basic Analysis

AL/Algorithmic Strategies

AL/Fundamental Data Structures and Algorithms

AL/Basic Automata Computability and Complexity

Figure 2: Sample Knowledge Units in the Algorithms and Complexity Knowledge Area [CS2013]

AL/Fundamental Data Structures and Algorithms

• Simple numerical algorithms, such as computing the average of a list of numbers, finding the min, max, and

mode in a list, approximating the square root of a number, or finding the greatest common divisor

• Sequential and binary search algorithms
• Worst case quadratic sorting algorithms (selection, insertion)

• Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort)
• Hash tables, including strategies for avoiding and resolving collisions
• Binary search trees
• Common operations on binary search trees such as select min, max, insert, delete, iterate over tree

• Graphs and graph algorithms
• Representations of graphs (e.g., adjacency list, adjacency matrix)
• Depth- and breadth-first traversals

• Graphs and graph algorithms
• Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)
• Minimum spanning tree (Prim’s and Kruskal’s algorithms)
• Pattern matching and string/text algorithms (e.g., substring matching, regular expression matching, longest

common subsequence algorithms)

Figure 3: Sample Knowledge Topics in the Algorithms and Complexity: Fundamental Data Structures and

Algorithms Knowledge Unit [CS2013]

Continuous periodic direct measurements of retained relevant knowledge

We have worked with our program faculty to produce a mapping of which CS2013 Knowledge

Topics are prerequisite to or developed in each of the core/mandatory courses in our computer

science program. Our initial assessment framework is limited to mandatory “core” courses. Stu-

dents will gain additional experience in many core knowledge topics in their elective course-

work. However, the topics and amount of coverage will necessarily vary based upon the selected

electives. Thus, initial observations are limited only to core/mandatory courses.

For each course, the faculty has indicated what knowledge topics are developed or assumed (pre-

requisite) in the semester-based course offerings. We propose that the current method to assess

relevant retained knowledge is to perform a direct assessment of each knowledge topic not only

in the course that develops that knowledge, but when possible, at the beginning of a subsequent

course (or courses) that utilizes and builds on the topic.

Summative grading rubrics are, when possible, deployed at the start of the next course in the core

course sequence (Figure 4, below). These assessment points allow better evaluation retention of

expertise as measured prerequisite knowledge coming into each course. Assessment of prerequi-

site knowledge also allows assessment of differences among learning pathways, and are less sub-

ject to instructor- or course- related bias.

Figure 4: Assessment points in the first two years of the core curriculum. Additional assessment points exist

in advanced core courses including Software Engineering, Operating Systems, and the Capstone Design Se-

quence. These assessment points are not illustrated. The assessments point for Capstone Design takes places

at the end of that course sequence as there is no subsequent required course in the program.

Immediate value to participants

We encouraged that the assessments be required of all students entering a course but that the re-

sults not affect their upcoming grade in their current course. In our experience, students are very

open about their level of mastery of concepts assessed in surveys of prerequisite knowledge. The

feedback from these assessments is immediately useful to students as it calls up old ideas (help-

ing them to be ready for new related knowledge) and can reduce anxiety regarding the suffi-

ciency of their mastery of assumed prerequisite knowledge or identify specific areas where they

can be coached to better prepare for succeed in a new course. As students find the feedback val-

uable to them personally, they are more likely to give significant and frank effort in the assess-

ment process. As this effort is not associated with a course grade there is no need to proctor or

use valuable classroom time on the assessment. The assessments are simply delivered as on-line

standardized quizzes (Figure 5, below). Some instructors have chosen to use the first laboratory

period (or other underutilized first week block of scheduled class time) to deliver the assessment

surveys.

As a direct assessment of student preparedness, this data should be less biased than indirect as-

sessments that ask students their opinion of their ability. Differences in self-expectation that

may exist among students due to experience or demographic are removed. Thus, students/faculty

get a more accurate measure of how well each student is prepared.

OS foundations

General Education

Discrete
foundations

e Assessme nt po ints

Consider the following segment of code in a java-like programming

language. Assume that there are no syntax errors.

int[] m = {2,3,4,5,6};
int n = 0;
int x = 0;
for (int val = 0; val < m.length; val++)
{

if (val % 2 == 1)
{

n = n + m[val];
x = x + 1;

} // end-if
} // end-for

What is the most likely use for the code segment above?

A) Calculating the total sum of the values held in array m.

B) Calculating the average of the values held in array m.

C) Calculating the number of even values held in array m.

D) Calculating the average of odd values held in array m.

E) Calculating the number of values held in array m.

Figure 5: Sample Question to assess the Knowledge Topic AL/Fundamental Data Structures: Numerical Al-

gorithms. This topic is developed in Computer Science I and built upon in Computer Science II. Thus, this

question would appear in the assessment of prerequisite knowledge at the start of Computer Science II.

Equally important, the results of these perquisite surveys can be made immediately available to

the faculty teaching the course in which the examination is held. If the faculty member sees

weakness in prerequisite knowledge then they are able act to help address the problem immedi-

ately. The assessment can help identify individual students that might require additional help as

well as identify potential systemic deficiencies introduced by previous poor instruction, variation

in schedule due to weather/emergency, differing pathways for preparation (such as transfer

courses), or the like. Based upon assessed performance, the faculty can tailor any necessary re-

view of prerequisite topics appropriately to the needs of each term’s student preparation.

Assessment overhead and administrative burden

Ease of assessment delivery allows the potential direct assessment of every student every term in

every core course. As these assessments are delivered as on-line standardized examination, they

require very little class time or faculty effort to administer. Each knowledge topic is mapped to

relevant ABET engineering criteria 2000 CAC/EAC a-k criteria listed in ABET’s Criterion 3:

Student Outcomes [2,3]. This allows the data to be used by class or longitudinally by student to

assess continuous improvement of the program overall against ABET Engineering criteria in a

well-defined and straight-forward manner.

The most significant administrative burden is in the initial development, validation, and continu-

ous improvement of the assessment questions. The initial burden of assessment development re-

quires significant faculty involvement and may require multiple years of effort to construct as-

sessment questions for every core course. The measurements for a knowledge area may be

skewed by a set of poor assessment questions, thus continuous improvement of the questions in

parallel with the improvement of curriculum remains an ongoing administrative effort.

Figure 6: CSE Self-study results from previous assessment plan. The evaluation looks at Student Learning

Outcomes and evaluates their coverage using a 5 point rubric measure for student performance: 1-Not at all,

2-To a limited extent, 3-To a moderate extent, 4-To a great extent, 5-To a very great extent

Assessment results used for Computer Science/Engineering self-study

Prior CSE assessment plans collected a rotating set of assignments so that each of the program’s

Student Learning Outcomes (SLOs) was assessed at least once every three years. The student’s

mastery of SLOs was assessed with an evaluation rubric ranging from 1 to 5 and summarized

graphically using a device such as that show in Figure 6.

1. Not at all

2. To a limited extent

3. To a moderate extent

4. To a great extent

5. To a very great extent

This style of visualization allowed for the identification of learning outcomes which had the most

room for improvement. However, due to the timing consuming data collection (allowing for as-

sessment of each SLO once every third year) it was difficult to use changes in measured out-

comes in a meaningful way.

The new assessment system attempts to correct some of the issues that arose from the old sys-

tem. First it uses a direct assessment system rather than an indirect summarized rubric measure.

This reduces the subjective element that might cause inconsistency in determining how well ex-

pectations were met and also gives a numerical value that allows for meaningful measure of

change significance. When there is a significant change, it is now possible to determine the cause

of the change. Collecting data continuously (every SLO, every core course, every term) allows

potential issues to be identified and addressed more rapidly.

What follows was created with the new assessment system as a web page.

Program •

BSCS

140
sum o f EJCemplary sum of Good sum of Adequate sum of Marginal sum of Unacceptable

St udent Outcomes summary

[Totals)

----------------------i D SUmofAaequ1,o
• SUmotM o,1 in1I

■ SUmct Un1ccopt1blo

New Self Assessment Report 2014
The richer data set of the new assessment infrastructure is maintained in a database allowing for specific drill down comparisons to compare different course
preparation pathways, pedagogical styles, or any other variable of potential impact. For example, we can specifically address the question, is there a
different in SLO achievement for students that take the twosemester introductory computer science sequence for fully prepared incoming freshman
(CS1180, CS1181) versus students that take the three course sequence for less prepared incoming students (CS1160, CS1161, CS1181).

Student Learning Outcomes 2014

2000

1500

1000

500

0

Spring 2014 correct Spring 2014 incorrect Summer 2014 correct Summer 2014 incorrect Fall 2014 correct Fall 2014 incorrect
Highcharts.com

N
um

be
r

of
 a

ns
w

er
s

a b c h i j k

CAPTION: A comparison of how many assessment questions were answered correctly versus incorrectly during the Fall, Spring, and Summer terms of the
2014 school year. Each bar represents a student learning outcome for a given semester (number questions answered correctly to number answered
incorrectly).

This chart shows the results of the assessment questions mapped to SLOs including the number of questions answered. The next chart shows similar data but
presents it as percentage answered correctly based over term. By continuing to collect this data, we are able to watch for correlations such as impact of
class size on student performance. Both charts are an example of the data that was collected for the selfstudy under the new system.

In addition to being able to look at the Student Learning Outcomes as a collective, this new assessment system makes it easier to break down the manner in
which the data can be explored. It can be broken down based on courses, demographics, course preparedness, final grades, and student learning outcomes.
Once broken down it can provide data providing feedback on the success or failure of changes to curriculum such as pathway options and teaching styles.
The charts below are provided to show just some of the things that the new data collection system can examine. Note that some of the visualizations are
labeled “demonstration only” as data may take several semesters of assessment before delivering statistically significant results.

SLO combine table

Title Correct Incorrect
a 2801 2470

b 1770 1642

c 1613 1439

h 58 58

I 206 37

j 117 23

k 624 340

11 I - - ••
• • • • • •

https://Highcharts.com

SLO Assessment 2014

Source: WorldClimate.com

0.9

Q
ue

st
io

ns
 a

ns
w

er
ed

 c
or

re
ct

ly
 (%

)

a

b

c

h

i
j
k

0.5

0.6

0.7

0.8

Spring summer fall
0.4

Highcharts.com

A different view of the comparison made in the above chart on how many assessment questions were answered correctly versus incorrectly during the Fall,
Spring, and Summer terms of the 2014 school year. Here percentage answered correctly is used.

SLOs by Semesters 2014

Title Spring Correct Spring Incorrect Summer Correct Summer Incorrect Fall Correct Fall Incorrect
a 981 901 364 315 576 484

b 607 543 247 210 285 282

c 551 466 219 185 268 246

h 20 16 9 9 7 4

I 82 14 29 6 36 6

j 52 11 13 4 34 7

k 218 122 94 48 86 52

Different Pathways

Within our program, there are several different paths that a student could take (See Figure 4). It is assumed that the same knowledge is obtained from all
the courses, but with the new assessment system, it can be easily monitored by performance on preassessment exams. In the next data sets the student
results are broken down by pathways: those who took CS 1160/1, and those who did not (they either started in CS 1180 or transferred).

Grades Based on 1160 Pathway

1.25

1

N
um

be
r

of
 S

tu
de

nt
s

0.75

0.5

0.25

0

CEG 3310 CS 1180 CS 1181 CS 3100

1160 Students A 1160 Students B 1160 Students C 1160 Students D 1160 Students F Other Students A Other Students B

Other Students C Other Students D Other Students F
Highcharts.com

Students in 1160

■
■

■
■

l'

•

♦

■
■

■

l'

•

♦

l'

• ...
-+-

•
•

*
l'

•
♦

• •

■ ■ ■

https://Highcharts.com
https://WorldClimate.com

400

N
um

be
r

of
 S

tu
de

nt
s

300

200

100

0

CEG 3310 CS 1180 CS 1181 CS 3100

1160 Students Other Students
Highcharts.com

Course A B C D F

CEG 2350 20 23 18 12 16

CEG 3310 12 16 8 1 0

CEG 3320 6 5 3 0 3

CS 1150 10 18 2 5 0

CS 1160 83 91 42 24 62

CS 1161 50 36 22 1 6

CS 1180 10 10 15 4 7

CS 1181 14 25 22 3 10

CS 1200 44 66 73 29 32

CS 2200 8 32 47 13 10

CS 3100 9 6 6 0 1

MTH 2240 1 0 0 0 0

MTH 2280 3 2 1 3 4

MTH 2300 4 20 13 7 2

MTH 2310 1 8 3 3 3

MTH 2570 5 8 15 1 3

Students who started in CS 1180 or transfered

Course A B C D F

CEG 2350 82 71 51 17 21

CEG 3310 100 97 60 8 12

CEG 3320 51 61 40 17 16

CS 1150 12 14 9 12 3

CS 1180 102 118 76 15 40

CS 1181 71 90 76 11 17

CS 1200 2 4 5 0 4

CS 2200 20 18 14 4 6

CS 3100 51 60 41 6 20

MTH 2240 2 6 1 0 0

MTH 2280 5 5 8 5 5

MTH 2300 27 48 63 22 16

MTH 2310 28 36 49 23 15

MTH 2570 67 76 98 17 19

The next chart looks simply at how many students took the course. This allows us to observe if there is a significant drop off of students from one of the
pathways at some point through the core sequence.

Number Students who took course

- - -
• •

https://Highcharts.com

The next data set is similar to the previous but it looks compares students who took CS 1200 and(or) CS 2200 versus those students who took MTH 2570.
Both these pathways look at Discrete structures but the CS 1200/2200 sequence was designed for under prepared students.

Grades Based on Discrete Pathway

1.25

N
um

be
r

of
 S

tu
de

nt
s

1

0.75

0.5

0.25

0

CEG 3310 CS 1180 CS 1181 CS 3100

MTH 2570 Students A MTH 2570 Students B MTH 2570 Students C MTH 2570 Students D MTH 2570 Students F

CS 1200 and(or) CS 2200 Students A CS 1200 and(or) CS 2200 Students B CS 1200 and(or) CS 2200 Students C

CS 1200 and(or) CS 2200 Students D CS 1200 and(or) CS 2200 Students F
Highcharts.com

Students in MTH 2570

Course A B C D F

CEG 2350 55 47 35 7 16

CEG 3310 49 51 21 0 4

CEG 3320 28 23 14 5 6

CS 1150 5 2 0 1 0

CS 1160 13 12 4 3 2

CS 1161 11 6 1 1 0

CS 1180 80 84 53 9 19

CS 1181 52 62 45 7 10

CS 1200 5 1 6 2 3

CS 2200 1 2 0 0 1

CS 3100 26 23 11 3 1

MTH 2240 2 3 1 0 0

MTH 2280 2 2 2 1 1

MTH 2300 20 37 31 15 7

MTH 2310 23 26 17 11 6

MTH 2570 72 84 113 18 22

Students in CS 1200 and(or) CS 2200

Course A B C D F

CEG 2350 27 29 20 17 15

CEG 3310 17 16 13 2 2

CEG 3320 6 10 4 1 0

CS 1150 11 15 3 4 0

CS 1160 70 81 39 20 56

CS 1161 43 32 21 1 6

CS 1180 17 22 29 6 12

CS 1181 19 31 33 3 11

CS 1200 46 70 78 29 36

CS 2200 28 50 61 17 16

CS 3100 13 8 8 0 2

MTH 2280 3 4 2 4 3

MTH 2300 3 18 21 8 3

MTH 2310 0 7 5 6 5

MTH 2570 1 5 10 1 1

■
■
■

■

-
■
■

■ ■
■

■

The next chart looks simply at how many students took the course. This allows us to observe if there is a significant drop off of students from one of the
pathways at some point through the core sequence.

Number Students who took course

300

250

200

150

100

50

0

Mth 2570 Students CS 1200 and(or) CS 2200 Students
Highcharts.com

N
um

be
r

of
 S

tu
de

nt
s

CEG 3310 CS 1180 CS 1181 CS 3100

What follows is a breakdown of student answers by both knowledge topic and then question. While this is a little more cumbersome, it allows for specific
problems to be identified.

Knowledge Topic Totals

Title Correct Incorrect
538 436

Time and space tradeoffs in algorithms 4 1

Asymptotic analysis of upper and average complexity bounds 3 2

Big O notation 0 5

Binary search trees 3 2

Boolean Statements 378 48

Bruteforce algorithms 0 5

Complexity classes, such as constant, logarithmic, linear, quadratic, and exponential 3 2

Depth and breadthfirst traversals 1 4

Differences among best, average, and worst case behaviors of an algorithm 4 1

Divideandconquer 2 3

Dynamic Programming 3 2

Empirical measurements of performance 2 3

Encoding 200 84

Exponents 478 56

Functions 674 148

Graphs and graph algorithms 2 3

Worst case quadratic sorting algorithms (selection, insertion) 3 2

Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort) 3 2

fields, methods, and constructors; 7 3

use;only;1 9 4

All 130 125

Arithmetic and geometric progressions 101 26

Arrays 112 388

Asymptotic analysis of upper and average complexity bounds 6 7

Basic modular arithmetic 44 83

Basic organization of the von Neumann machine 87 40

Basic syntax and semantics of a higherlevel language 58 58

-
• •

https://Highcharts.com

Binary Search Trees 57 70

Bits, bytes, and words 34 8

Comparison of algorithm efficiency 50 193

Complexity Classes 46 82

Compound types build from other types (e.g., records, unions, arrays, lists, functions) 82 34

Concept and properties 181 74

Conditional and iterative control structures 71 45

Counting arguments 37 90

Debugging strategies 32 84

Divideandconquer strategies 87 29

Documentation and program style 78 38

Doom1 7 6

Doom2 2 11

Events and event handlers 123 132

Exponents 65 13

Expressions and assignment 105 11

Fixed and floatingpoint systems 54 61

Functions 44 83

Functions and parameter passing 75 41

Fundamental design concepts and principles 218 25

Heap vs. Stack vs. Code segments 93 34

Induction 6 121

Iterative and recursive mathematical functions 80 36

Iterative and recursive traversal of data structure 72 44

Logical connectives 296 132

Method call 136 120

Numeric data representation 6 6

Numeric data representation and number bases 74 41

Numerical Algorithms 166 91

ObjectOriented design 103 24

Permutations and Combinations 180 54

Primative Types 135 120

Primitive types (e.g., numbers, Booleans) 94 23

Program correctness 47 81

Records 6 13

Recursive backtracking 107 20

Reference types 123 121

References and aliasing 101 142

Relations 48 79

Representation of records and arrays 33 95

Search 78 49

Sets 37 90

Simple linked structures 74 170

Stacks, queues, priority queues, sets & maps 63 181

Strategies for choosing the appropriate data structure 206 37

Strings 106 137

Subroutine call and return mechanisms 81 47

Subtyping 285 98

Sum and Product Rule 79 48

The concept and properties of algorithms 10 3

The concept of recursion 75 41

The pigeonhole principle 104 23

UNCLASSIFIED 2013 (Exponents) 177 33

Uninformed Search 88 39

Question Totals

Title Correct Incorrect
<address>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.

boolean A = true;
boolean B = false;
boolean C = true;

boolean D = A || C;
boolean E = A &;&; B || C;
boolean F = 217 39
A || B &;&; C;

At the end of this segment of code, what is the value of the variable E?

</address>

<address>private List values;
 /** @return true ; if for every k in the range 0 <; k <; values.size(),
 * ;
 ; ; ; ; ; ; ; ; ; ; ; values.get(k) is less than values.get(k1).
 *

 ; ; ; ; ; ; ; false ; otherwise
 */
 public boolean isDecreasing() {

 ; boolean isDecr;
 ; /* statement 1 */
 ; for (int k = 1; k <; values.size(); k++) {
 ; ;
int prev = values.get(k1).intValue();
 ; ; int curr = values.get(k).intValue();
 ; ; /* statement 2 */

 ; } // end for
 ; return isDecr;
 } // end method isDecreasing</address> <pre> ;</pre> <p> 1 6
Consider the following replacements for statements 1 and 2</p> <p> ; ; /* statement 1 */ ; ;
 ; ; ; ; /* statement 2 */</p> <p>I. ; isDecr = true; ; ; ; ; ; ; ;
 ;if (curr >;= prev) isDecr = false;</p> <p>II. ;isDecr = false; ; ; ; ; ; ; ; if (curr
<; prev) isDecr = true;</p> <p>III. isDecr = true; ; ; ; ; ; ; ; ;isDecr = isDecr
&;&; (curr <; prev);</p> <p> ;</p> <p>Which of the proposed replacements can be used so that isDecreasing()
 will work as intented?</p>

<address>private List<;Integer>; values;
 /** @return true ; if for every k in the range 0 <; k <; values.size(),
 * ; ; ; ; ; ; ; ; ; ; ; ; values.get(k) is less than values.get(k1).

 * ; ; ; ; ; ; ; false ; otherwise
 */
 public boolean isDecreasing() {

 ; boolean isDecr;
 ; /* statement 1 */
 ; for (int k = 1; k <; values.size(); k++) {
 ;
 ; int prev = values.get(k1).intValue();
 ; ; int curr = values.get(k).intValue();
 ; ; /*
statement 2 */
 ; } // end for
 ; return isDecr;
 } // end method isDecreasing</address> <pre></pre>

59 190
<p>Consider the following replacements for statements 1 and 2</p> <p> ; ; /* statement 1 */ ;
 ; ; ; ; ; /* statement 2 */</p> <p>I. ; isDecr = true; ; ; ; ; ; ;
 ; ;if (curr >;= prev) isDecr = false;</p> <p>II. ;isDecr = false; ; ; ; ; ; ; ;
if (curr <; prev) isDecr = true;</p> <p>III. isDecr = true; ; ; ; ; ; ; ; ;isDecr = isDecr
&;&; (curr <; prev);</p> <p></p> <p>Which of the proposed replacements can be used so that isDecreasing()
will work as intented?</p>

<p> ;Availnode is a pointer variable that points to the next available node in a singly linked list of available nodes. If p points to a
node currently being accessed in a program, then the program fragment
 ;
if p = nil then
 ; ; error<br 2 8
/>else
 ; ; p^.next:=availnode;
 ; ; availnode:=p
end</p>

<p></p> <address>Q.init();</address>
<address>Q.enqueue(rootNodeOfTreeShownAbove);</address><address>while (! Q.isEmpty()) {</address><address> ;
 ;Q.dequeue(a);</address><address> ; ;if (!a.isNil()) {</address><address> ; ; ;a.print();

22 41
</address><address> ; ; ;Q.enqueue(a.left());</address><address> ; ; ;Q.enqueue(a.right());
</address><address> ; ;} // endif</address><address>} // endwhile</address><address></address> <p>If the
algorithm above is applied to the tree in the figure above, which of the following is the output?</p> <address></address>

<p></p> <p>Text Version of Tree:</p> <p>A (Root)
>; ;B (Left Child of A) ; >; ;D (Left Child of B)</p> <p> ; ; ; ; ; ; ;
 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; >;
 ;E (Right Child of B)</p> <p> ; ; ; ; ; ; ;>; ;C (Right Child of A) >; ;F
(Left Child of C)</p> <p> ; ; ; ; ; ; ; ; ; ; ; ; ; ;
 ; ; ; ; ; ; ; ; ; ; >; ;G (Right Child of C)</p> <p>Code:</p> <pre>
Q.init();</pre> <pre><span style="fontfamily:
'courier new', courier;">Q.enqueue(rootNodeOfTreeShownAbove);</pre> <pre><span style="fontfamily:
'courier new', courier;">while (! Q.isEmpty()) {</pre> <pre><span style="fontfamily: 'courier new', 35 120
courier;"> ; ;Q.dequeue(a);</pre> <pre><span style="fontfamily: 'courier new',
courier;"> ; ;if (!a.isNil()) {</pre> <pre><span style="fontfamily: 'courier new',
courier;"> ; ; ;a.print();</pre> <pre><span style="fontfamily: 'courier new',
courier;"> ; ; ;Q.enqueue(a.left());</pre> <pre><span style="fontfamily: 'courier new',
courier;"> ; ; ;Q.enqueue(a.right());</pre> <pre><span style="fontfamily: 'courier new',
courier;"> ; ;} // endif</pre> <pre>} // end
while</pre> <address></address> <p>If the algorithm above is applied to the tree in the figure (or text) above,
which of the following is the output?</p> <address></address>

<p></p> <pre><span style="fontfamily:
'courier new', courier;">Q.init();</pre> <pre><span style="fontfamily: 'courier new',
courier;">Q.enqueue(rootNodeOfTreeShownAbove);</pre> <pre><span style="fontfamily: 'courier new',
courier;">while (! Q.isEmpty()) {</pre> <pre> ;
 ;Q.dequeue(a);</pre> <pre> ; ;if
(!a.isNil()) {</pre> <pre> ; ; ;a.print();

6 20
</pre> <pre> ; ; ;Q.enqueue(a.left());
</pre> <pre> ; ; ;Q.enqueue(a.right());
</pre> <pre> ; ;} // endif
</pre> <pre>} // endwhile</pre> <address>
</address> <p>If the algorithm above is applied to the tree in the figure above, which of the following is the output?</p> <address>

</address>

<p></p> <p></p> <p>Which of the following lists of nodes
78 49

correspond to a postorder traversal of the binary tree in the figure shown?</p>

<p></p> <p>The edges of the digraph above are labelled by flow capacities
(in, for example, gallons per hour). ; What is the maximum ;flow for this system from source A to sink K. ; ;In other 40 87
words, what is the maximum flow (in, for examples, gallons per hour) possible from node A to node K.</p>

<p>public static void main(String[] args)
 <span style="font
family: 'Courier'; fontsize: 9.7pt;">{ ; ; ; ; ; ; ;
 <span style="fontfamily: 'Courier';
fontsize: 9.7pt;"> ; ; ; A a = new B();
 ;
 ; ; a.method();
 }
 <span style="font
family: 'Courier'; fontsize: 9.7pt;"> ;
 public class A
{
 ; ; ; public void method(){

 ; ; ; ; ; ; ; System.out.println("In Parent");

 ; ; ; }
 <span style="fontfamily: 8 2
'Courier'; fontsize: 9.7pt;">}
 ;
 <span
style="fontfamily: 'Courier'; fontsize: 9.7pt;">public class B extends A {
 <span style="fontfamily: 'Courier'; fontsize:
9.7pt;"> ; ; ; @Override
 ; ; ;
public void method(){
 <span style="fontfamily: 'Courier'; fontsize:

9.7pt;"> ; ; ; ; ; ; ; System.out.println("In child");
 <span style="fontfamily:
'Courier'; fontsize: 9.7pt;"> ; ; ; }
 }
 If the code above is run what will be printed?</p>

<p>Consider a 16bit data type such as java's integer data type. How many unique/distinct possible values could a variable of
106 51

that type potentially be assigned? Choose the closest ;approximate answer.</p>

<p>Consider a 32bit data type such as java's integer data type. How many unique/distinct possible values could a variable of
255 157

that type potentially be assigned? Choose the closest ;approximate answer.</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.
</p> <address>int[] m = {2,3,4,5,6};</address><address>int n = 0;</address><address>int x = 0;</address>
<address>for (int val = 0; val <; m.length; val++) {</address><address> ;if (m[val] % 2 == 1) {</address><address> ;

22 2
 ; ; n = n + m[val];</address><address> ; ; ; x = x + 1;</address><address> ; } // end
if</address><address>} // endfor</address> <p>Which of the following is the most likely intent for the code segment above?

</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.
</p> <address>int[] m = {2,3,4,5,6};</address><address>int n = 0;</address><address>int x = 0;</address>
<address>for (int val = 0; val <; m.length; val++) {</address><address> ;if (val % 2 == 1) {</address><address> ;

40 17
 ; ; n = n + m[val];</address><address> ; ; ; x = x + 1;</address><address> ; } // end
if</address><address>} // endfor</address> <p>Which of the following is the most likely intent for the code segment above?

</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.
</p> <address>int[] m = {2,3,4,5,6};</address><address>int n = 0;</address><address>int x = 0;</address>
<address>for (int val = 0; val <; m.length; val++) {</address><address> ;if (val % 2 == 1) {</address><address> ; 91 57
 ; ; n = n + val;</address><address> ; ; ; x = x + 1;</address><address> ; } // endif</address>
<address>} // endfor</address> <p>What is the most likely use for the code segment above?

</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.
</p> <address>int[] m = {2,3,4,5,6};</address><address>int n = 0;</address><address>int x = 0;</address>
<address>for (int val = 0; val <; m.length; val++) {</address><address> ;if (val % 2 == 1) {</address><address> ; 13 15
 ; ; n = n + val;</address><address> ; ; ; x = x + 1;</address><address>} ;</address> <p>What
is the most likely use for the code segment above?

</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.
</p> <address>public class Example {</address><address> ; private int x;</address><address> ; public void
method (int y) {</address><address> ; ; y = y * 2;</address><address> ; ; x = y;</address><address> ;
} // end method method</address><address> ; public int getValue() {</address><address> ; ; return x;</address>

136 120
<address> ; } // end method getValue</address><address>} // end class Example</address><address></address> <p>The
following code segment appears in a method in another class.</p> <address>Example obj = new Example ();</address><address>int y
= 10;</address><address>obj.method(y);</address><address>obj.method(y);</address><address>System.out.println(y + " " +
obj.getValue());</address><address></address> <p>What is printed as a result of executing the code segement?</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.

boolean A = true;
boolean B = false;
boolean C = true;

149 8
boolean D = A || C;
boolean E = A &;&; B || C;
boolean F =
A || B &;&; C;

At the end of this segment of code, what is the value of the variable D?

</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.

boolean A = true;
boolean B = false;
boolean C = true;

137 20

boolean D = A || C;
boolean E = A &;&; B || C;
boolean F =
A || B &;&; C;

At the end of this segment of code, what is the value of the variable E?</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.

boolean A = true;
boolean B = false;
boolean C = true;

135 22

boolean D = A || C;
boolean E = A &;&; B || C;
boolean F =
A || B &;&; C;

At the end of this segment of code, what is the value of the variable F?</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.

int[] arr;
<span
style="fontfamily: 'courier new', courier;">arr = new int[5];</p> <p><span style="fontfamily: 'courier
new', courier;">arr[0] = 0;</p> <p>for (int i=1; i <; 5; 82 34
i++) {
 ;arr[i] = arr[i1] + (2 * i);

}</p> <p>
At the end of
this segment of code, what is the value of arr[4]?</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.

int a = 7;
int b = 2;
int c;</p> <p>c = a/b; ;</p> <p>
At the end of this segment 94 23
of code, what is the value of the variable c?</p>

<p>Consider the following segments of java code. ;Assume that there are no intentional syntax errors.</p>
<address>import javax.swing.*;</address><address>import java.awt.event.*;</address><address>public class Observer
implements ActionListener ;{</address><address> ; public void buildGUI () {
</address><address> ; ; ;JFrame frame = new
JFrame(); ; ; ; ; ; ; ; ; ; ; ; ; ; ;
</address><address> ; ; ;JButton button = new JButton("Click me");</address><address> ;
 ; ;frame.add
(button);

123 132
</address><address> ; ; /* MISSING STATEMENT */ ; ; ; ; ; ; ; ;
</address><address> ; ; ;frame.setVisible
(true);
</address><address> ; } // end method buildGUI</address><address>

</address><address> ; public void actionPerformed (ActionEvent event) {</address><address> ;
 ; System.out.println("Click");</address><address> ; } // end method actionPerformed</address>
<address>} // end class Observer</address><address>
</address> <p>Which of the

following statements best replaces /* MISSING STATEMENT */ in the code segment above?</p>

<p>The programming style in which design begins by specifying complex pieces and then dividing them into successively smaller
218 25

pieces is know as:</p>

<p>You need to store a set of twenty objects in a computer program. ;The size of the collection is not going to change.
 ;Of the following options, which data structure would likely be the most efficient (in terms of execution time and memory usage) 206 37
if ;used to store this collection?</p>

<p>A 02 binary tree is a rooted tree such that every node has either no children or two children. ;The height of a binary tree is
the maximum number of edges on a path from the root to the leaf. ;Let n(h) be the minimum number of nodes in a 02 binary tree 2 3
of height h, and let N(h) be the maximum number. ;For all h >; 0, (n(h), N(h)) =</p>

<p>A 02 binary tree is defined to be a rooted tree such that evyer node has either no child or two children. ;What is the maximum
77 50

height of a 02 binary tree that has 5 nodes?</p>

<p>A Graduate student says "I can write a supermerge sort which splits an array into 4 components (unlike a regular merge sort which
splits an array into 2 components) and then recursively sorts the 4 subarrays and then merges them. ;Through similar to merge 2 3
sort, it is faster and I call it SuperMerge4!." ;What is true?</p>

<p>A certain algorithm A has been shown to have running time O(N^{2.5}), where N is the size of the input. Which of the
9 4

following is NOT true about algorithm A?</p>

<p>A complete binary tree of level 5 has how many nodes?</p> 3 2

<p>A die is tossed 7 times. ;What is the probability that all six faces appear at least once?</p> 38 89

<p>A double linked list contains references to both the predecessor and the successors elements and thus allows travel along the list in
both directions. ;Consider a double linked list whose elements are declared as:</p> <address>class Element {</address>
<address> ; ;int value;</address><address> ; ;Element forward, backward;</address><address>} // end class
Element ;</address> <p>In this definition, forward and backwardd represent forward and backward links to adjacent elements in 10 3
the list.</p> <p>Which of the following segments of code deletes the element pointed to by X from the doubly linked list, if it is assumed

that X points to neither the first nor the last element of the list?</p>

<p>A heap H is used to implement a priority queue. ;The following values are inserted into the heap in this order: 44, 22, 55, 11,
2 11

44, 11, 33, 55.</p> <p>What value is stored at the rightmost ;leaf of the bottom level of the heap?</p>

<p>A heap H is used to implement a priority queue. ;The following values are inserted into the heap in this order: 44, 22, 55, 11,
7 6

44, 11, 33, 55.</p> <p>What value is stored at the root of the heap?</p>

<p>A singly linked list is implemented in two arrays, value[] and link[], in which link[i] points to the successor of value[i]. ;If an
element is not initially in the list assigned to value[j], then the program fragment</p> <address> ; ; ;link[j] = link[i]; 19 70
</address><address> ; ; ;link[i] = j;</address> <p>is one that:</p>

<p>A singly linked list is implemented in two arrays, value[] and next[], in which next[i] points to the successor of value[i]. ;If
value[j] is an element not currently in the list, then what does the following the program fragment accomplish?</p> <address> ; 55 100
 ; ;next[j] = next[i];</address><address> ; ; ;next[i] = j;</address>

<p>A time complexity function G was formulated for a program. What term asymptotically dominates G:</p> <p>G(x) = 9999999x
0 5

0.0001x² + x * log (log(x)) + x²/(x99) + 0.9^x</p>

<p>A two dimentional array A[1..row,1..col] is stored in memory begining at location S. ;Which of the following expressions points
3 10

to the correct memory location for any arbitrary element A[i,j]?</p>

<p>A two dimentional array A[1..row,1..col] is stored in rowmajor order in memory begining at location S. ;Which of the following
30 85

expressions points to the correct memory location for any arbitrary element A[i,j]?</p>

<p>An Internal hash table has 5 buckets, numbered 0, 1, 2, 3, 4. Keys are integers, and the hash function h(i) = I modulo 5 is used (i.e.
h(i) = I % 5), with linear resolution of collisions ;(i.e. if bucket j(i) iis filled the buckets h(i) + 1, h(i) + 2, &hellip; are tried

9 4
successively with all bucket numbers computed modulo 5).</p> <p>If elements with keys 13, 8, 24, 10, and 3 are inserted, in that
order, into an initially blank hash table, then the content of the bucket numbered 2 is:</p>

<p>An algorithm that relies on recursion to break the problem into smaller more manageable pieces is a</p> 10 0

<p>Array ary is shown below</p> <table class="MsoTableGrid" border="1" cellspacing="0" cellpadding="0" style="bordercollapse:
collapse; border: none;"> <tbody> <tr> <td width="31" valign="top" style="width: 23.4pt; border: solid windowtext 1.0pt; padding: 0in
5.4pt 0in 5.4pt;"> <p class="MsoNormal" style="lineheight: normal;">&lsquo;h&rsquo;</p> </td> <td width="30" valign="top"
style="width: 22.5pt; border: solid windowtext 1.0pt; borderleft: none; padding: 0in 5.4pt 0in 5.4pt;"> <p class="MsoNormal"
style="lineheight: normal;">&lsquo;i&rsquo;</p> </td> <td width="24" valign="top" style="width: .25in; border: solid windowtext
1.0pt; borderleft: none; padding: 0in 5.4pt 0in 5.4pt;"> <p class="MsoNormal" style="lineheight: normal;">&lsquo;j&rsquo;</p> </td>
<td width="24" valign="top" style="width: .25in; border: solid windowtext 1.0pt; borderleft: none; padding: 0in 5.4pt 0in 5.4pt;"> <p

1 9
class="MsoNormal" style="lineheight: normal;">&lsquo;k&rsquo;</p> </td> </tr> </tbody> </table> <p>
If 2 is passed to the
method printArray below, what will the output be?
 ;
public static void printArray(int index){
 ; ; ; ; ; ; ; ; ; ; ; if (index == 0){</p> <p> ; ; ; ;
 ; ; ; ; ; ; System.out.print(ary[index]);</p> <p> ; ; ; ; ; ; }
 ; ; ; ; ; ; ; ; ; ; ; else {
 ; ; ; ; ; ;
 ; ; ; ; printArray(index 1);
 ; ; ; ; ; ; ; ; ; ;
System.out.print(ary[index]);
 ; ; ; ; ; ; ; ; ; ; }
}</p>

<p>Assume array A is initialized with no syntax errors as:</p> <p>int[] A = new int[12]; ;</p> <p>Inside the variable A is a
10 0

reference to a memory location.</p>

<p>Bob writes down a number between 1 and 1000. ; Mary must identify that number by asking &ldquo;yes/no&rdquo; questions of
Bob. Mary knows Bob always tells the truth. If Mary uses an optimal binary search strategy, then she will determine the answer at the 11 2
end of exactly how many questions in the worst case?</p>

<p>Bob writes down a number between 1 and 1000. ; Mary must identify that number by asking &ldquo;yes/no&rdquo; questions of
Bob. Mary knows Bob always tells the truth. If Mary uses an sequential search strategy, then she will determine the answer at the end of 12 1
exactly how many questions in the average case?</p>

<p>Consider N employee records to be stored in memory for online retrieval. Each employee record is uniquely identified by a social
security number. Consider the following ways to store N records.
(I) ; An array sorted by social security number
(II)
 ;A linked list sorted by social security number
(III) A linked list not sorted
(IV) ;A balanced binary search tree 11 2
with social security number as key</p> <p>For the structures IIV, respectively, the average time for an efficient program to find an
employee record, given the social security number as key, is which of the following?</p>

<p>Consider a floatingpoint number system used by a modern computer for solving large numerical problems. ;Let +

_{fp} denote the floatingpoint addition in this system. ;Which of the following statements is true about this system? 60 67
</p>

<p>Consider a routine in a Clike or javalike language that takes four integer arguments and returns an integer value. ;Which of
the following approaches could be _reasonably_ used to _prove_ that the routine is correct?</p> <p>I. ;A complete test of all 43 65
possible inputs.</p> <p>II. A mathematical proof of correctness.</p> <p>III. ;Testing a few well chosen test cases.</p>

<p>Consider a routine in a Clike or javalike language that takes four integer arguments and returns an integer value. ;Which of
the following approaches could be reasonably used to prove that the routine is correct?</p> <p>I ;A complete test of all possible 4 16

inputs.</p> <p>II A mathematical proof of correctness.</p> <p>III ;Testing a few well chosen test cases.</p>

<p>Consider a routine that merges together two unsorted linked lists into a single unsorted linked list. ;The unsorted linked lists
6 7

are of size m and size n. ;What is the optimal average complexity for this routine?</p>

<p>Consider the Abstract Data Type (ADT) &ldquo;set of integers&rdquo; which is maintains an unsorted set of integers in which
duplicates are allowed.</p> <p>Consider the following javalike code segments that are part of a proposed implementation of this ADT.
</p> <address>public static IntSet S = new IntSet();</address><address></address><address>final int MAX = 100;</address>
<address></address><address>public class IntSet {</address><address> ; ;int ;Last = 1;</address>
<address> ; ;int V[] = new int[MAX+1];
 ;} // end class IntSet</address><address></address><address>
</address> <p>The &ldquo;add element&rdquo; operation on an object S is implemented by storing the value of the element in
S.V[S.Last + 1] and incrementing S.Last, unless Last = Max, in which case an error flag is raised. ;</p> <p>
The following 9 4
code fragment mutates concrete IntSet objects.
 ;</p> <address>public void ;P(IntSet ;S, int x) ;
{
 ; ;int k = 1;
 ; ;while (k <;= S.Last) {
 ; ; ;if (S.V[k] = x) {
 ;
 ; ; ; S.V[k] := S.V[S.Last];
 ; ; ; ; S.Last := S.Last &ndash; 1
 ; ;
 ; } else {
 ; ; ; ; k = k + 1;</address><address> ; ; ; } // endifelse
 ;
 ;} // endwhile
 ;} // end method P
 ;
Which of the following abstract operations of &ldquo;set of
integers&rdquo; does P implement?</address>

<p>Consider the Abstract Data Type (ADT) &ldquo;set of integers&rdquo; which is maintains an unsorted set of integers in which
duplicates are allowed.</p> <p>Consider the following javalike code segments that are part of a proposed implementation of this ADT.
</p> <address>public static IntSet S = new IntSet();</address><address></address><address>final int MAX = 100;</address>
<address></address><address>public class IntSet {</address><address> ; ;int ;Last = 1;</address>
<address> ; ;int V[] = new int[MAX+1];
 ;} // end class IntSet</address><address></address><address> 4 9
</address> <p>The &ldquo;add element&rdquo; operation on an object S is implemented by storing the value of the element in
S.V[S.Last + 1] and incrementing S.Last, unless Last = Max, in which case an error flag is raised. ;</p> <p>Let A be a
mathematical function that represents a &ldquo;set of integers&rdquo; such that, for each concrete object S of type IntSet, A(S) is the set
of integers represented by S. A(S) can be written as:</p>

<p>Consider the Abstract Data Type (ADT) &ldquo;set of integers&rdquo; which is maintains an unsorted set of integers in which
duplicates are allowed.</p> <p>Consider the following javalike code segments that are part of a proposed implementation of this ADT.
</p> <address>public static IntSet S = new IntSet();</address><address></address><address>final int MAX = 100;</address>
<address></address><address>public class IntSet {</address><address> ; ;int ;Last = 1;</address>

10 3
<address> ; ;int V[] = new int[MAX+1];
 ;} // end class IntSet</address><address></address><address>
</address> <p>The &ldquo;add element&rdquo; operation on an object S is implemented by storing the value of the element in
S.V[S.Last + 1] and incrementing S.Last, unless Last = Max, in which case an error flag is raised. ;</p> <p>What is the worse cast
run time complexity of the "add element" operation for this proposed implementation?</p>

<p>Consider the code for a C function bump:</p> <address>int bump (int x) {</address><address>
 ; int a;</address><address> ; a = x + 1;</address><address> ; return a;
</address><address>} // end function bump</address> <p>Some of the entries in the activation record for bump are

12 1
placed on the stack by the function that calls bump; ;some are written by bump itself. ;Which are written by
bump?</p> <p>I. ;Local variable a</p> <p>II. Arguement x</p> <p>III. Dynamic/Return link address</p> <p>

</p>

<p>Consider the code for a C function bump:</p> <address>int bump (int x) {</address><address>
 ; int a;</address><address> ; a = x + 1;</address><address> ; return a;
</address><address>} // end function bump</address> <p>Some of the entries in the activation record for bump are

69 46
placed on the stack by the function that calls bump; ;some are written by bump itself. ;Which are written by
bump?</p> <p>I. ;Local variable a</p> <p>II. Argument x</p> <p>III. Dynamic/Return link address</p> <p>

</p>

<p>Consider the code for a C function ;bump:</p> <address>int bump (int x) {</address><address>
 ; int y;</address><address> ; y = x + 1;</address><address> ; return y;

93 34
</address><address>} // end function bump</address><address>
</address> <p>Where does the
storage space for variable y exist in memory??</p> <p>I. a Code Segment</p> <p>II. ;the Heap</p> <p>III. the Stack</p>

<p>Consider the following code segment, assume all variables are defined and initialized elsewhere.</p> <address>for (int item = n;
item >;= 2; item)</address><address> ; ;{</address><address> ; ;large = list[1];</address>
<address> ; ;index = 1;</address><address> ; ;for (int i = 2; i <;= item; i++)</address><address> ;
 ;{</address><address> ; ; ; if (list[i] >; large)</address><address> ; ; ; {</address>

3 2
<address> ; ; ; large = list[i];</address><address> ; ; ; index = i;</address><address> ;
 ; ; } // end if</address><address> ; ;list[index] = list[item];</address><address> ; ;list[item] =
large;</address><address> ; ;} // end for i</address><address>} // end for item</address> <p>The number of
comparisions made by this algorithm is given by:</p>

<p>Consider the following code segment:</p> <address>if (x % 2 == 0)</address><address> ; ;x = x 1;</address>
<address>if (x % 2 != 0)</address><address> ; x = x + 1;</address> <p></p> <p>If x is greater than 0 before the code
segment is executed, which of the following states is (are) true regarding the final value of x after the code segment has executed?</p> 130 125
<p></p> <p>I. ;The final value of x is always even.</p> <p>II. ;The final value of x is equal to its initial value when x is

initially even.</p> <p>III. The final value of x is equal to its initial value when x is initially odd.</p>

<p>Consider the following instance variables and incomplete method that will be used for computing a final quiz score. A final quiz score
is computed by adding all the quiz scores and dropping the lowest score from the total. ;The method
calculateFinalQuizScore ;performs the computation and updates the variable finalQuizScore.
 ;Assume that the instance variables are properly initialized.</p> <address>private int[] quizScores;</address><address>private
int finalQuizScore;</address><address></address><address>public void calculateFinalQuizScore() {</address><address> ; int

total = 0;</address><address> ; int least = quizScores[0];</address><address> ; for (int k = 0; k <; quizScores.length; 181 74
k++) {</address><address> ; ; total = total + quizScores[k];</address><address> ; ; if (quizScores[k] <;
least) {</address><address> ; ; ; least = quizScores[k];</address><address> ; ; } // endif</address>
<address> ; } // endfor</address><address></address><address> ; /* MISSING STATEMENT */</address><address>} //
end method calculateFinalQuizScore</address><address></address> <p>Which of the following can be used to replace /*
MISSING STATEMENT */ so that calculateFinalQuizScore ;will work as intended?</p>

<p>Consider the following mathematical function:</p> <p>f(n) = ;f(n1) + 2; f(0) =
17</p> <p>How can a computer program be written to determine the value of ;f(n) for any value 33 14
of ;n?</p>

<p>Consider the following mathematical function:</p> <p>f(n) = ;f(n1) + 2</p>
<p>How can a computer program be written to determine the value of ;f(n) for any value of ; 47 22
n?</p>

<p>Consider the following method:</p> <address>Number max (Number x, Number y) {</address><address> ; if x.lessthan(y)
{</address><address> ; ; return y;</address><address> ; }</address><address> ; return x;</address>
<address>} // end method max</address><address></address> <p>In an object oriented programming language, which of the 67 60
following is true?</p> <p>I. ;x and y can be of type Number</p> <p>II. x and y can of any type that is a subtype of
Number</p> <p>III. x and y can be of any type that implements lessthan()</p>

<p>Consider the following program segment for finding the minimum value of an array:</p> <address><span style="fontfamily:
'courier new', courier;">public static double minValueInArray(double[] a) ;</address><address><span style="fontfamily:
'courier new', courier;">{
 ; ;int i, j;
<span
style="fontfamily: 'courier new', courier;"> ; ;j = 1;
 ;
 ;for (i = 2; i <; a.length; i = i + 1) ;</address><address><span style="fontfamily: 'courier new',
courier;"> ; ;{
 ; ; ; if (a[i] <; a[j]) ;
</address><address> ; ; ; {
<span 9 38
style="fontfamily: 'courier new', courier;"> ; ; ; ; ;j = i;
<span style="fontfamily: 'courier
new', courier;"> ; ; ; } // endif
 ; ;} //
endfor
 ; ;return a[j];
<span style="font
family: 'courier new', courier;">} // end method minValueInArray</address> <p>Which of the following conditions is (are) true
EACH time the condition of the IF statement is tested?</p> <p>I. ;2 <;= i <;= a.length</p> <p>II. a[j] <;= a[k] for all k such
that 1<;= k <; i</p> <p>III. a[j] <;= a[k] for all k such that 2 <;= k <;= i</p>

<p>Consider the following program segment for finding the minimum value of an array:</p> <address>public static double
minValueInArray(double[] a) {
 int i, j;
 j = 1;
 for (i = 2; i <; a.length; i = i + 1) {
 if (a[i] <; a[j]) {
 j
= i;
 } // endif
 } // endfor
 return a[j];
 } // end method minValueInArray</address> <p>Which of the 3 17
following conditions is (are) true EACH time the condition of the IF statement is tested?</p> <p>I. ;2 <;= i <;= N</p> <p>II.
a[j] <;= a[k] for all k such that 1<;= k <; i</p> <p>III. a[j] <;= a[k] for all k such that 2 <;= k <;= i</p>

<p>Consider the following program segment for finding the minimum value of an array:</p> <address>public static double
minValueInArray(double[] a) {
 ; ;int i, j;
 ; ;j = 1;
 ; ;for (i = 2; i <; a.length; i = i
+ 1) {
 ; ; ; if (a[i] <; a[j]) {
 ; ; ; ; ;j = i;
 ; ; ; } //

25 83
endif
 ; ;} // endfor
 ; ;return a[j];
 } // end method minValueInArray</address> <p>Which of
the following conditions is (are) true EACH time the condition of the IF statement is tested?</p> <p>I. ;2 <;= i <;=
a.length</p> <p>II. a[j] <;= a[k] for all k such that 1<;= k <; i</p> <p>III. a[j] <;= a[k] for all k such that 2 <;= k <;= i</p>

<p>Consider the following program segment for finding the minimum value of an array:</p> <pre><span style="fontfamily: 'courier
new', courier;">public static double minValueInArray(double[] a) {
 int
i, j;
 j = 1;
<span style="fontfamily: 'courier new',
courier;"> for (i = 2; i <; a.length; i = i + 1) {
 if (a[i] <; a[j])
{
 j = i;
<span style="fontfamily: 'courier new',
courier;"> } // endif
 } // endfor
<span style="font 15 54

family: 'courier new', courier;"> return a[j];
} // end method
minValueInArray</pre> <p>Which of the following conditions is (are) true EACH time the condition of the IF statement is tested?
</p> <p>I. ;2 <;= i <;= N</p> <p>II. a[j] <;= a[k] for all k such that 1<;= k <; i</p> <p>III. a[j] <;= a[k] for all k

such that 2 <;= k <;= i</p>

<p>Consider the following recursive definition of 4Permutation (meaning permutations of 4 distinct objects):</p> <p> ; ;
1234 is a 4Permutation</p> <p> ; ;If wxyz is a 4Permutation then so are zyxw and 6 121
xyzw</p> <p>According to this rule, the total number of permutations are:</p>

<p>Consider the following recursive function, written in a javalike language:</p> <pre class="prettyprint"><span style="fontfamily:
'courier new', courier;">public static<span
class="pln"> int fact(<span
class="kwd">int n)
{</pre> <pre class="prettyprint"> int
 result;

</pre> <pre
class="prettyprint"> result = n * fact(n 1); 75 41
</pre> <pre class="prettyprint"> return result;
</pre> <pre class="prettyprint">}</pre> <pre
class="prettyprint">
</pre> <p
class="prettyprint">When this function is called as follows: ;fact(5)
, what value will be returned?</p> <p class="prettyprint"><span
class="pun">
</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors. ;The
operation (i % 2) returns 1 for odd values of i and 0 for even values of i.</p> <p><span
style="fontfamily: 'courier new', courier;">int sum = 0;
for (int i = 0; i <; 10; i++) {</p> <p><span style="font
family: 'courier new', courier;"> ; if (i % 2 == 0) {
 ; ; sum = sum + i;
 ; } else {
 71 45
 ; ; sum = sum i;
 ; } ;</p> <p><span
style="fontfamily: 'courier new', courier;">} ;</p> <p>At the end of this segment of code, what is the value of the
variable sum?</p>

<p>Consider the following segment of code in a javalike programming language. Assume that there are no syntax errors.

int a = 7;
int b = 4;
int c;</p> <p>c = 2 + 3 * a + b;</p> <p>
At the end of this segment of code, what is the 105 11
value of the variable c?</p>

<p>Consider the following segment of java code:

int[] arr;
arr = new int[5];</p> <p>arr[0] = 0;</p> <p>
// The following line has an error:
for (int i=1; i <;= 5; i++) { ;
 ;arr[i] = arr[i1] + (2 * i); 58 58

}</p> <p>
Considering the error indicated by the comment, which of the following statements is correct:</p>

<p>Consider the following segment of javalike code. ;Assume that there are no intentional syntax errors.</p> <address>public
abstract class Dog {</address><address> ; public abstract void speak();</address><address>} // end class Dog</address>
<address></address><address></address><address></address><address>public class LoudDog extends Dog {</address>
<address> ; public void speak() {</address><address> ; ; System.out.print("WOOF ");</address><address> ; }
// end method speak</address><address>} // end class LoudDog</address><address></address><address></address><address>

218 38
</address><address>public class BabyLoudDog extends LoudDog {</address><address> ; public void speak () {</address>
<address> ; ; System.out.print("yip ");</address><address> ; } // end method speak</address><address>} // end
class BabyLoudDog</address><address></address> <p>Consider the following code segment.</p> <address> ; LoudDog fido =
new LoudDog();</address><address> ; BabyLoudDog rover = new BabyLoudDog();</address><address> ; fido.speak();
</address><address> ; rover.speak();</address> <p>What is printed as a result of executing the code segment?</p>

<p>Consider the following sequence of operations on an initially empty Queue Q.</p> <address>Q.enqueue(1);</address><address>Q.
enqueue(2);</address><address>x = Q.dequeue();</address><address>Q.enqueue
(3);</address><address>Q.enqueue(4);</address><address>Q.enqueue(5);</address><address>y=

10 3
Q.dequeue();</address><address>Q.enqueue(6);</address><address>z = Q.
dequeue();</address><address></address><address></address><address>After these operations,
what value is z?</address>

<p>Consider the following sequence of operations on an initially empty stack S.</p> <address>S.push(1);</address>
<address>S.push(2);</address><address>x = S.pop();</address><address>S.push(3);</address><address>S.push(4);</address>

12 1
<address>S.push(5);</address><address>y= S.pop();</address><address>S.push(6);</address><address>z = S.pop();</address>
<address></address><address>After these operations, what value is at the TOP of the stack?</address>

<p>Consider the geometric progression:</p> <p>sum(n) = 1 + 1/2 + 1/4 + 1/8 + ... + 1/(2(n1)) + 1/(2n)</p> <p></p> <p>As n
101 26

approaches infinity, what integer does sum(n) closely approach?</p>

<p>Consider the part of the twodimentional integer grid bounded by the point A = (0,0) at the "southwest" corner and by point B = (n,n)
at the "northeast" corner. ;How many different ways are there of walking from A to B on grid lines, always moving between any 37 90
two grid points either east or north?</p>

<p>Consider the recursive routine, below:</p> <address></address><address>int X (int n) {</address><address> ; if (n <; 3)
{</address><address> ; ; ; return 1;</address><address> ; } else {</address><address> ; ;

5 8 ; return X(n1) + X(n3) + 1;</address><address> ; }</address><address>} // end method X</address> <p>How many

times is the function X called when X(X(5)) is evaluated?</p>

<p>Following is a recursive function for computing the sum of integers from 0 to N:</p> <address>public static int sum (int n) {
 ; ;if (n == 0) {
 ; ; ; return 0;
 ; ;}
 ; ;// MISSING SEGMENT OF

107 20
CODE
} // end method sum</address><address></address> <p>In order to perform correctly, the missing segment of code
would be best replaced by:</p>

<p>For x >;= 0, y >;= 0, define A(x,y) by:</p> <p> ; ;A(0,y) = y + 1,</p> <p> ; ;A(x+1,0) = A(x,1),
44 83

and</p> <p> ; ;A(x+1,y+1) = A(x, A(x+1, y)).</p> <p>Then, for all nonnegative integers y, A(1,y) is:</p>

<p>Given the following sets :</p> <p>A ={0,1,2,3,4,5,6,7}</p> <p>B ={0,1,2,3,4,5,8,9}</p> <p>What is the Result of A B :</p> 7 3

<p>Given the hash function:</p> <p>h = Data Item mod 60</p> <p>If the chaining method is used, and if seven integer data items
are stored in the hash table in the following order:</p> <p>65 121 123 242 63 122 183</p> <p>How many comparisions would it take 2 3
to find integer data item 183?</p>

<p>How long, on average, does it take to find a item in an unsorted list of size 10?</p> <p>Select the closest value below.</p> 88 39

<p>How many Bytes (groupings of eight binary digits) end in the sequence 000?</p> 79 48

<p>How many comparisons are required to sort an array of length 5 if a straight selection sort is used and the array is already sorted in
0 5

the opposite order?</p>

<p>How many different values can be represented using 8 bits?</p> 91 26

<p>How many distinct values can be encoded for storage using one byte (8 binary digits) of memory per encoding?</p> 104 23

<p>If you are ;not careful in your choice of hash functions, it is possible to have collisions in which the search time goes to the
4 1

order of O(?) in a search table of size n:</p>

<p>In Java, variables that store reference types can be:</p> <p>I. ;used to implement call by reference</p> <p>II.
81 74

 ;potentially subject to aliasing</p> <p>III. used to implement call by value</p>

<p>In Java/Clike languages, variables that store reference types are:</p> <p>I. ;Call by reference</p> <p>II. ;Potentially
31 32

subject to aliasing</p> <p>II. Call by value</p>

<p>In Java/Clike languages, variables that store reference types are:</p> <p>I. ;Call by reference</p> <p>II. ;Potentially
11 15

subject to aliasing</p> <p>III. Call by value</p>

<p>In a survey of what types of courses students were enrolled in one term, it was found that:</p> <p>520 students took a CS
course</p> <p>416 students took a Math course</p> <p>320 students took a CEG course</p> <p>152 students took CS and Math</p>
<p>96 students too CS and CEG</p> <p>124 took Math and CEG</p> <p>60 took CS, Math, and CEG</p> <p>Using ;Venn 37 90
Diagrams and the Counting Principle (inclusion/exclusion), compute how many students are taking exactly ONE of the three types of
courses (no more, no less).</p>

<p>In how many unique ways can the letters in the word "ABOUT" be arranged?</p> 89 28

<p>In most contemporary Clike programming languages, a String is stored as:</p> <p>I. ;A primative data type</p> <p>II.
106 137

 ;A reference data type</p> <p>III. ;An array of characters</p>

<p>In order to traverse a binary tree using the ;inorder traversal method, the statements in the code segment
shown below should be:</p> <address>public class Node</address><address>{</address><address> ; ; ;Datatype
data;</address><address> ; ; ;Node left, right;</address><address>} // end class Node</address><address>

1 4
</address><address>public void method traverse (Node current)</address><address>{</address><address> ; ;if
(Node.data != nil) ; {</address><address> ; ; ; // WHAT CODE GOES HERE?</address><address> ;
 ;} // endif</address><address>} // end method traverse</address>

<p>In the following form of binary search one can determine whether some particular integer x is present in a sorted (in ascending
order) array a[L..R] using the following steps in the order shown.</p> <p>Let M= (L + R) / ;2
If x = a[M], then
terminate (success).
If x <; a[M] and M >; L, use the same algorithm on a[L .. (M1)]
If x >; a[M] and M <; R, use the
same algorithm on a[(M+1) .. R].
Otherwise terminate (failure).</p> <p>Which of the following statements is (are) true about
binary search in a[1..N], where N is a large positive integer?
 7 3
(I) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; If x is present in a[1..N],
then x is always found within O(log N) comparisons.</p> <p>
(II) ; ; ; ; ; ; ; ; ; ; ; ; ; ; If x is not present in a[1..N], then
failure is always reached within O(log N) comparisons</p> <p>
(III) ; ; ; ; ; ; ; ; ; ; ; ; Searching for two different values of x, neither
which is present in a[1..N], always takes the same number of steps to determine failure.</p>

<p>In the following program segment, assume that when the execution of the segment begins, that m <;= n ;AND that a[m1]
<;= v <;= a[n+1].</p> <address>int i = m 1;
 int j = n + 1;
 while (i <; j) {
 ; ;do {
 ;
 ; ; i++;
 ; ;} while (a[i] <; v);
 ; ;do {
 ; ; ; j;
 ;
 ;} while (a[j] >; v);
 ; ;if (i<;j) {
 ; ; ; temp = a[i];
 ; ; ; a[i] = 50 193
a[j];
 ; ; ; a[j] = temp;
 ; ;} // endif
 } // endwhile</address> <pre></pre> <pre>For
large values of nm, which of the following best approximates the sum of the number of times the assignments i++ and j are executed?

</pre>

<p>Inheritance makes it easier to:</p> 3 7

<p>Inherited attributes are</p> 0 10

<p>Let A be a sorted array of n = 10 elements. ;Which of the following denotes the average successful time for finding an arbitrary
element x in A using a BINARY SEARCH?</p> <p>Assume that only one comparision is required to determine whether the target is equal 57 70
to, less than, or greater than A[i].</p>

<p>Some programming languages pass parameters to methods/functions ;by value, while others pass
parameters ;by reference. ;If a function is passed two parameters ;by value, which of the 75 41
following statements is most correct:</p>

<p>Suppose you are asked to write a function that finds the largest value in an array of integers. ;Which of the following
72 44

statements is true.</p>

<p>TBD</p> 6 13

<p>The Boolean expression:</p> <p>NOT(A OR A AND B)</p> <p>is equivalent to:</p> 36 91

<p>The average time required to perform a successful sequential search for an element in an array of size n is given by:</p> 78 49

<p>The basic organizational units of a modern computer are:</p> 87 40

<p>The binary relation on the integers defined by</p> <p></p> <p>R = { (x,y) : | y x | <;= 1 }</p> <p>has which of the
48 79

following properties?</p> <p>I. Reflexivity</p> <p>II. Symmetry</p> <p>III. Transitivity</p>

<p>The key attribute(s) that a problem just have in order for dynamic programming to be applicable are:</p> <p>i) linear
3 2

consumption</p> <p>ii) optimal substructure</p> <p>iii) overlapping subproblems</p>

<p>The number of 1's in the binary representation of</p> <p>13 * 16³ ; ;+ 11*
82 45

16² ; ;+ 9 * 16 ;+ 3</p> <p>is which of the following?</p>

<p>What is 2⁰?</p> 379 32

<p>What is 2^{10 ;}x<span style="font
size: 9px;"> ;2¹⁰?</p> <p>

</p> <p></p> <p>Please choose the closest 341 70
answer.</p> <p></p> <p></p> <p><span
style="fontsize: 8pt;"></p> <p></p> <p>
</p> <p></p>

<p>What is the powerset of {a,b,c}?</p> 7 3

<p>What will the following program segment accomplish:

</p> <p>Scanner inData = new Scanner(new File("infile.txt"));
</p> <p>PrintWriter outData = new PrintWriter("outfile.txt");</p> <p>while(inData.hasNext()){</p> <p> ; 10 0
 ;outData.printLine(inData.nextLine());</p> <p>}</p> <p>inData.close();</p> <p>outData.close();</p>

<p>Which of the following best seems a reasonable use for modular arithmetic?</p> 44 83

<p>Which of the following is ;not in important element of good programming style:</p> 78 38

<p>Which of the following lines of code will delete two successive nodes of a singly linked linear list (WITH MORE THAN 2 NODES)?
7 3

Assume this code is in the main program, not a subprocedure.</p>

<p>Which of the following shows the correct relationship among some of the more common computing times for algorithms?</p> 3 2

<p>Which of the following shows the correct relationship amoung some of the more common computing times for algorithms?</p> 46 82

<p>Which of the following sorting algorithms can be characterized as using a divideandconquer strategy.</p> 87 29

<p>Which of the following sorting algorithms has averagecase and worstcase running times of O(n * log(n))?</p> 3 2

<p>Which of the following sorting algorithms yield approximately the same worstcase and averagecase running time behavior in O(n *
4 1

log n)?</p>

<p>Which sort will operating in quadradic time relative to the number of elements in the array (on the average)?</p> 3 2

<p>Which statement about objects is true?</p> 103 24

<p>Your Java program seems to compile correctly. ;When run, however, it runs forever with no output. ;Which of the
32 84

following debugging strategies is the most likely to help you find the error?</p>

<p>f(x) = kx^{2 ;} 4</p> <p>If f(4) = 4, then what is f(7)?</p> 308 103

<p>f(x) = x^{2 ;} 4</p> <p>What is f(3)?</p> 366 45

<p>if class a is derived from class b and class b is derived from class c, polymorphism allows</p> 8 2

<pre>public class Point {</pre> <pre> int x;
 int y;</pre> <pre></pre> <pre> public Point (int x, int y) {</pre> <pre> this.x
= x;</pre> <pre> this.y = y;</pre> <pre> } // end constructor</pre> <pre></pre> <pre> ;public static void main(String[]
args) {</pre> <pre> Point p1 = new Point(1,2);
 Point p2 = new Point(3,4);
 p2 = p1;
 p1.x = 5;
 101 142
System.out.println(p2.x);</pre> <pre> } // end method main</pre> <pre></pre> <pre>} // end class Point</pre> <pre></pre>
<pre>Consider the code segment above? What value is output for p2.x?</pre>

A algorithm that tests every possible solution until the solution is found is a 8 2

A component that speeds up computer processes and stores frequently used data is the 10 0

A data structure where elements can be added or removed at either end but not in the middle is called a …; 3 7

A simple (undirected or directed) graph is one in which there are no self loops and no multiple edges. ; An undirected graph is
18 5

acyclic if it has no cycles. ; What is the maximum possible number of edges in an nnode, simple, acyclic, undirected graph?

An Exception is thrown due to: 5 6

Consider a data type whose elements are integers and whose operations are INSERT, DELETE, and FINDCLOSEST, with FINDCLOSEST(y)
defined to be some element x in the current set such that lx yl <;= lx_i yl for all x_i in the current set.
Let
T = max (T_{INSERT},T_{DELETE},T_{FINDCLOSEST})
where T_{OP} denotes the 6 7
worstcase time complexity for the given operation OP. Which of the following data structures would be best to use in order to minimize
T?

How many explicit constructors can a class have? 7 3

In a heightbalanced binary search tree, the heights of the left and right descendents of any node differ by at most 1. ; Which of the
following are true of such a tree?

(I) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Worstcase search time is
logarithmic in the number of nodes.

(II) ; ; ; ; ; ; ; ; ; ; ; ; ; ; Averagecase search time is 8 5
logarithmic in the number of nodes.
(III) ; ; ; ; ; ; ; ; ; ; ; ; Bestcase
search time is proportional to the height of the tree.

(IV) ; ; ; ; ; ; ; ; ; ; ; ; The height of the tree is logarithmic in the number
of nodes.
Of the following sorting algorithms, which has a running time that is LEAST dependent on the initial ordering of the input? 11 12

The intersection of the two regular languages below:
L₁= (a+b)*a and L₂= b(a+b)*
is given by: 2 8

The proper operator precedence groupings, from most binding to least binding, are: 4 6

What purpose does class construct serve? 8 2

Which of the follow is true? 10 0

Which of the following sorting algorithms has averagecase and worstcase running times of O(n log n)? 7 6

Which sorting algorithm considers the elements one at a time, inserting each element in its suitable place among those already
9 1

considered (keeping them sorted)?

Which statement is true? (members = fields and methods) 7 3

With inheritance, the derived class 10 0

_______ is when a computers system is in a constant state of paging. 6 4

Flexibility with the New Assessment System

It is important to note that anything that is based on preassessment grade can easily be linked to student learning outcomes and program educational
objectives since all the questions are mapped to what they test. Similarly, anything that shows student learning outcomes or program educational objectives
can be broken down into specific knowledge topics, questions, and students who answered those questions. Since all the results are linked back to a specific
student, all the questions can be broken down by demographics, year began, pathways, or even previous performance in a course or on a preassessment
quiz. This makes the items displayed in this paper easy to mix and match. Also note that while charts were largely used in this paper for ease of viewing, all
the values in the charts have hard numbers backing them up. Statistical tests can be run on areas of interest to determine if a change really occurred before
any action is taken. Additionally, the results can be presented as exact sample size or as percentages.

Conclusion

This assessment infrastructure allows for an assessment of retained knowledge, topic by topic, for each individual student, course, and term. When collected
with appropriate demographic information, these assessments allow the differential measurements of knowledge retention under any number of pedagogical
variables. The success of new instructional styles, laboratory techniques, or technologies for developing knowledge can be assessed against different
approaches.

Every contemporary engineering discipline has a professional society that helps identify the core concepts of the discipline. Indeed, most engineering
disciplines have standardized examinations of some sort that are used to demonstrate student proficiency for licensure or graduate studies. Questions of this
sort can be used at the start of core courses or time points to assess student knowledge of prerequisite topics developed earlier in any program of study.
These assessments can be delivered as online questions to minimize cost and maximize participation. When collected with appropriate demographic
information, this rich set of data can guide program improvement more effectively than many existing program assessment plans. Although we present this
infrastructure in the context of Computer Science, we believe that the approach can be applied to implement an infrastructure for effective assessment
program for any engineering discipline.

Biblography

[1] ACM/IEEECS Joint Task Force. Computer Science Curricula 2013 (CS2013). http://ai.stan¬ford.edu¬/users/sahami¬/CS¬2013/. Strawman draft, Feb
2012.

[2] ABET. Computing Accreditation Commission (CAC) Criteria. http://www.abet.org/accreditationcriteriapoliciesdocuments/

http://www.abet.org/accreditation�criteria�policies�documents
http://ai.stan�ford.edu�/users�/sahami�/CS�2013

[3] ABET. Engineering Accreditation Commission (EAC) Criteria. http://www.abet.org/accreditationcriteriapoliciesdocuments/

http://www.abet.org/accreditation�criteria�policies�documents

Computing Accreditation Commission

Final Statement of Accreditation

to

WRIGHT STATE UNIVERSITY
Fairborn, OH

2011 – 2012 Accreditation Cycle

Final Statement WRIGHT STATE UNIVERSITY Final Statement

FINAL STATEMENT

This is a confidential statement from the Computing Accreditation Commission to the

institution. It is intended for internal use only and is not for release except as allowed by

policies of ABET.

I. INTRODUCTION

Founded in 1964 and granted full university status in 1967, Wright State University is a

comprehensive, state-supported university located in Fairborn, Ohio, with a satellite campus in

Grand Lake St. Marys, Ohio. Wright State has nearly 20,000 students of which over 15,000 are

full-time students and approximately 4000 are graduate and professional students. The

university has 760 full-time faculty members supporting 19 associate, 91 undergraduate, and 76

graduate and professional degree programs.

The following programs at the institution were evaluated during the 2011-12 cycle for possible

accreditation under the CAC/ABET “Criteria for Accrediting Computing Programs” (Criteria)

dated October 30, 2010:

BS Degree in Computer Science, evaluated under the General Criteria and the Computer

Science Program Criteria. The BS program in Computer Science was previously evaluated

in 2005. As a result of that accreditation action, the institution was required to submit an

interim report in July 2007. As a result of the evaluation of the interim report, the institution

was required to submit an additional interim report in July 2009. As a result of this second

evaluation of the interim report, the institution would have been required to submit an

additional Interim Report in July 2011; however, since the cycle for the evaluation of that

interim report coincided with its NGR cycle, no report was required.

BS in Business Degree in Management Information Systems, evaluated under the General

Criteria and the Information Systems Program Criteria. The BS program in Management

Information Science was previously evaluated in 2005. As a result of that accreditation

action, the institution was required to submit an interim report in 2007. As a result of the

evaluation of the interim report, accreditation was extended to 2012.

The programs listed above were evaluated under the CAC/ABET “Criteria for Accrediting
Computing Programs” (Criteria) dated October 30, 2010 by the peer review team shown below.

Team Chair: David Gibson, United States Air Force Academy

Program Evaluator: David Bover, Western Washington University

Program Evaluator: Subhasish Dasgupta, George Washington University

Editor One: Judith Solano, University of North Florida

Editor Two: Harold Grossman, Clemson University

1

•

•

•
•
•
•
•

Final Statement WRIGHT STATE UNIVERSITY Final Statement

Please note that program accreditation decisions are made solely by the respective Commissions

of ABET. Reference to the professional affiliations of the volunteer peer evaluators in no way

constitutes or implies endorsement or recommendation of the programs by the listed professional

affiliations.

II. REPORT OF FINDINGS

The Criteria is composed of the General Criteria and Program Criteria. Each criterion provides

the underlying principles that each program must meet. A program must meet both the General

Criteria and all applicable Program Criteria to be accredited.

This section contains the findings from the time of the visit. It also includes an evaluation of any

information provided by the program during the due process response. CAC considers the

following comments to relate directly to its accreditation actions.

A program’s accreditation action will be based upon the findings summarized in this statement.

Actions will depend on the program’s range of compliance or non-compliance with the criteria.

This can be determined from the following terminology:

Deficiency: A deficiency indicates that a criterion, policy, or procedure is not satisfied.

Therefore, the program is not in compliance with the criteria.

Weakness: A weakness indicates that a program lacks the strength of compliance with a

criterion, policy, or procedure to ensure that the quality of the program will not be

compromised. Therefore, remedial action is required to strengthen compliance with the

criterion, policy, or procedure prior to the next evaluation.

Concern: A concern indicates that a program currently satisfies a criterion, policy, or

procedure; however, the potential exists for the situation to change such that the criterion,

policy, or procedure may not be satisfied.

Observation: An observation is a comment or suggestion that does not relate directly to

the accreditation action but is offered to assist the institution in its continuing efforts to

improve its programs.

2

•

•

•

•

Final Statement WRIGHT STATE UNIVERSITY Final Statement

Computer Science Program

The B.S. in Computer Science is offered by the Department of Computer Science and

Engineering in the College of Engineering and Computer Science. Students majoring in

computer science may choose from five options: Bioinformatics, Business, Computational

Science, General, and Visualization. The department also offers MS and PhD degrees in

computer science as well as BS, MS, and PhD degrees in Computer Engineering. The BS in

Computer Engineering program is accredited by the Engineering Accreditation Commission of

ABET. The department has 26 full-time faculty members supporting both the Computer Science

and Computer Engineering programs. There are 306 students enrolled in the CS major. All

programs are properly differentiated in university publications.

Program Strength

The Department of Computer Science and Engineering has a faculty member with exceptional

experience and skill in technical writing. As a result, students in the computer science program

receive instruction in technical writing at a level of quality and rigor significantly above that

normally found in such programs. Interviews with students confirmed the extraordinary value

placed on this course. As a result, students from the program are exceptionally well prepared in

technical writing.

Status of Shortcomings from the Previous Review

Weakness

1. Criterion I. Objectives and Assessments. The following factors contribute to this weakness:

a. (Standard I-3) There is a lack of documentation to show how the data collected are used

to identify opportunities for program improvement.

b. (Standard I-6) There is a lack of documentation to show how program improvements are

related to program assessment findings.

Status: This weakness has been resolved.

Findings from the Current Review

Weaknesses

1. Criterion 3, Student Outcomes. The program has adopted the characteristics listed in the

criterion as its outcomes. Outcome (b) requires that the program must enable students to

attain, by the time of graduation, an ability to analyze a problem, and identify and define the

computing requirements appropriate to its solution. The team observed that only one course

includes work in problem analysis, providing minimal opportunity to develop problem

analysis and requirements specification skills. As a result, graduates of the program may

lack developed skills in problem analysis and requirements specification.

3

Final Statement WRIGHT STATE UNIVERSITY Final Statement

Due-process response: Since the visit, the program has increased problem analysis

requirements on two assignments in the required Computer Science III course (CS 242). The

program has also increased emphasis on problem analysis in the required senior-level

Introduction to Software Engineering course (CEG 460) with two additional lessons on

analysis, incorporating use of a visual modeling tool, and addition of more analysis work in

homework assignments and on the course project. These changes were put into place during

the Winter 2012 quarter. The program has also initiated a curriculum change that will

require a two-semester capstone sequence, Team Projects I and II (CS 4980 and CS 4981)

required for all Computer Science majors in the graduating class of 2016 and perhaps as

early as the graduating class of 2013. This proposed change is expected to receive formal

approval by the university’s Faculty Senate in May or June 2012.

Due-process evaluation: The weakness remains unresolved. The program has taken

appropriate steps to increase problem analysis and requirements specification in the current

academic year. The program will change to a semester-based curriculum next fall. If the

proposal for requiring the 2-semester capstone sequence is formally approved and changes

made to Computer Science III this past Winter quarter are carried into the new semester-

based curriculum as planned, future graduates of the program will have appropriate

experiences in problem analysis and requirements specification. However, until the new

capstone sequence is approved, this weakness remains unresolved.

Post due-process response: The program has reported formal WSU University Curriculum

Committee approval of the requirement for all computer science majors, starting with the

graduating class of 2014, to take the two-semester capstone sequence, Team Projects I and II

(CEG 4980 and CEG 4981). The program also provided updated syllabi for these courses

showing course outcomes and content addressing problem analysis and requirements

specification.

Post due-process evaluation: The weakness is now cited as a concern. The program has

taken appropriate steps to increase the coverage of problem analysis and requirements

specification content in courses required for the computer science major. Coverage of these

topics has been expanded and taught in the required Computer Science III (CS 242) and

Software Engineering (CEG 460) courses. The recently approved new courses, Team

Projects I and II (CEG 4980 and CEG 4981), should provide for even more thorough

coverage of the topics when the courses are regularly taught. This level of coverage of

problem analysis and requirements specification needs to be maintained throughout the

period of accreditation.

2. Criterion 4, Continuous Improvement. The Continuous Improvement criterion requires that

the program must regularly use appropriate, documented processes for assessing and

evaluating the extent to which both the program educational objectives and the student

outcomes are being attained. The results of these evaluations must be systematically utilized

as input for the continuous improvement of the program. The team observed that although

the department has implemented a process for collection of assessment data in a database,

they are not yet able to demonstrate systematic utilization of that data for continuous

4

Final Statement WRIGHT STATE UNIVERSITY Final Statement

improvement. As a result, the program may miss opportunities for improvement based on

program assessment.

Due-process response: The program asserted that it has been systematically utilizing the

results of assessment data for program improvement. However, the program noted that

materials from the program’s annual assessment retreats were not clearly identified during

the visit. The program provided copies of the slides and minutes from their Spring 2011

Annual Program Assessment Retreat and copy of their 2009-2010 Program Assessment

Report.

Due-process evaluation: The weakness has been resolved. The additional materials provided

in the due-process response demonstrate that the program does annually review assessment

data and, when appropriate, use that data for program improvement.

Program Observation

Wright State University’s Management Information Systems program has developed and uses

the web-based assessment management program called Assess My Program. This tool supports

maintenance and tracking of assessment questions, assessment data, and program improvement

decisions linked to assessment data. The tool has been presented at the annual ABET

Symposium. The Department of Computer Science and Engineering may want to consider using

this system for its own programs.

5

Engineering Accreditation Commission

Final Statement of Accreditation
to

Wright State University
Dayton, Ohio

2011 -12 Accreditation Cycle

Leadership and Quality Assurance in Applied Science, Computing, Engineering, and Technology Education

FINAL STATEMENT WRIGHT STATE UNIVERSITY

ABET

ENGINEERING ACCREDITATION COMMISSION

WRIGHT STATE UNIVERSITY

Dayton, OH

FINAL STATEMENT

Visit Dates: November 6-8, 2011

Accreditation Cycle Criteria: 2011-12

Introduction & Discussion of Statement Construct

The Engineering Accreditation Commission (EAC) of ABET has evaluated the biomedical

engineering, computer engineering, electrical engineering, engineering physics, industrial and

systems engineering, materials science and engineering, and mechanical engineering programs of

Wright State University.

This statement is the final summary of the EAC evaluation, at the institutional and engineering

program levels. It includes information received during due process, including information

submitted with the seven-day response. This statement consists of two parts: the first deals with

the overall institution and its engineering operation, and the second deals with the individual

engineering programs. It is constructed in a format that allows the reader to discern both the

original visit findings and subsequent progress made during due process.

A program’s accreditation action is based upon the findings summarized in this statement.

Actions depend on the program’s range of compliance or non-compliance with the criteria. This

range can be construed from the following terminology:

 Deficiency: A deficiency indicates that a criterion, policy, or procedure is not satisfied.

Therefore, the program is not in compliance with the criterion, policy, or procedure.

 Weakness: A weakness indicates that a program lacks the strength of compliance with a

criterion, policy, or procedure to ensure that the quality of the program will not be

1

FINAL STATEMENT WRIGHT STATE UNIVERSITY

compromised. Therefore, remedial action is required to strengthen compliance with the

criterion, policy, or procedure prior to the next evaluation.

 Concern: A concern indicates that a program currently satisfies a criterion, policy, or

procedure; however, the potential exists for the situation to change such that the criterion,

policy, or procedure may not be satisfied.

 Observation: An observation is a comment or suggestion that does not relate directly to

the accreditation action but is offered to assist the institution in its continuing efforts to

improve its programs.

Wright State University, founded in 1964 and granted full university status in 1967, is a regional

university in the state of Ohio higher education system. Enrollment in the university is

approximately 19,600 undergraduate students and over 3,000 graduate students. Undergraduate

programs are offered in six colleges: Business, Education and Human Services, Engineering and

Computer Science, Liberal Arts, Science and Mathematics, and Nursing and Health.

The College of Engineering and Computer Science (CECS) consists of four departments that

offer the seven engineering programs under review: the Department of Biomedical, Industrial &

Human Factors Engineering, the Department of Computer Science and Engineering, the

Department of Electrical Engineering, and the Department of Mechanical and Materials

Engineering. The college also offers eight master’s programs and has 11 PhD focus areas in

engineering and computer science. Enrollment in the college at the time of the visit was

approximately 1,650 undergraduate and 400 graduate students. There are approximately 76 full-

time faculty members in the college. The dean is new to the college and university, as of July

2010.

The following supporting units of the CECS were reviewed: Office of the Registrar, biology,

chemistry, humanities/social sciences, library, mathematics, and physics. All supporting areas

appear to adequately support the undergraduate engineering programs.

2

FINAL STATEMENT WRIGHT STATE UNIVERSITY

Institutional Strengths

1. There appears to be continued strong institutional support for the CECS. The dean, new to

his office, appears to have the full support and confidence of the administration to carry out

the mission of the college. The university has been approved as a center of excellence by the

state in four areas including the engineering programs in the CECS.

2. The institution’s physical plant, including the Russ Engineering Center and the attached Joshi

Research Center is excellent. Buildings, classrooms, laboratories, faculty offices and public

areas are well maintained and present a pleasing atmosphere conducive to the learning

process.

3. The CECS enjoys a high level of industrial and government support for the engineering

programs. The participation of the nearby industries in senior design projects and internships

strengthens the engineering programs.

3

FINAL STATEMENT WRIGHT STATE UNIVERSITY

Computer Engineering

Program

Introduction

The computer engineering program is administered by the Department of Computer Science and

Engineering that also offers a master’s degree in computer engineering and bachelor’s and

master’s degrees in computer science, and a doctoral degree in computer science and

engineering. At the time of the visit the computer engineering program had 180 undergraduate

students, 26 tenured or tenure-track faculty members and five part-time faculty members. The

program graduated six students in the most recent academic year.

Program Strengths

1. The program has an outstanding faculty that shows commendable attention to students and to

research. Faculty members benefit from close ties to the local industries and the nearby Air

Force Research Lab.

2. The program has an excellent cooperative education program and incorporates input from the

program as part of the assessment of student outcomes.

Program Weaknesses

1. Criterion 2. Program Educational Objectives This criterion requires that there be a

documented and effective process involving program constituencies, for the periodic review

and revision of the program educational objectives. The documented process to periodically

review and revise the program educational objectives has not involved all of the program’s

constituencies. Without the involvement of all program constituencies, the program is unable

to ensure its program educational objectives remain consistent with the needs of the

program’s constituents. Thus, the program lacks strength of compliance with this criterion.

8

 Due–process response: The EAC acknowledges receipt of documentation related to the

review and revision process for the program educational objects. The current review and

revision process now provides for participation on the part of all the program’s

FINAL STATEMENT WRIGHT STATE UNIVERSITY

constituencies. Students now participate via a student advisory board composed entirely

of undergraduate computer science and computer engineering students. Since no input

has been provided by the student advisory board for the program educational objectives,

it is not clear how such information will be separated to provide reviews for both the

computer science program and the computer engineering program. Therefore, it may not

be possible to use the student advisory board input in a meaningful way for review of the

computer engineering program educational objectives. Although a previous review

process has been in place since 2006, the team was unable to view documents generated

by the previous process during the on-site visit. In the due-process response the program

indicated that the results of review of the program educational objectives in 2006, 2007,

and 2011 resulted in changes to them. The due-process documentation did not contain

reports or summary reports related to these prior reviews. Further, reports concerning

prior reviews were not mentioned in the program’s self-study report. Although there

appears to be documentation of review of the program educational objectives that goes

back to 2006, the program has not provided this data. Further, no data have been

furnished from the student advisory board. Thus, the program lacks strength of

compliance with this criterion.

 The weakness remains and will be a focus of the next review. In preparation for this

review, the EAC anticipates evidence of a documented and effective process for the

periodic review and revision of the program educational objectives

2. Criterion 4. Continuous Improvement This criterion requires that the program regularly use

appropriate, documented processes for assessing and evaluating the extent to which both the

program educational objectives and the student outcomes are being attained. The results of

these evaluations must be systematically utilized as input for the continuous improvement of

the program. Other available information may also be used to assist in the continuous

improvement of the program. The program is gathering data for assessing and evaluating the

extent to which the program educational objectives and the student outcomes are being

attained. However, the results of the evaluations have not been systematically utilized as

input for the continuous improvement of the program. Thus, the program lacks strength of

compliance with this criterion.

9

FINAL STATEMENT WRIGHT STATE UNIVERSITY

 Due–process response: The EAC acknowledges receipt of documentation that

demonstrates continuous improvements in the program resulting from the periodic

assessment process of student outcomes.

 This weakness is resolved.

Program Concerns

1. Criterion 3. Student Outcomes This criterion requires the program to have documented

student outcomes that prepare graduates to attain the program educational objectives.

Student outcomes are outcomes (a) through (k) plus any additional outcomes that may be

articulated by the program. Outcome (c) for the program did not list the realistic constraints

such as economic, environmental, social, political, ethical, health and safety,

manufacturability, and sustainability. Although student work indicated that some of these

constraints were considered, the program did not include all of them in their outcome (c) list.

Hence there is the potential that future compliance with this criterion could be jeopardized.

 Due–process response: The EAC acknowledges receipt of documentation demonstrating

that student outcomes (a) through (k) have been included in the program’s student

outcomes. The self-study report had inadvertently left out a phrase in the outcomes

listing, but the assessment process considered all outcomes for this criterion.

 The concern is resolved.

2. Criterion 5. Curriculum: This criterion requires that the students be prepared for engineering

practice through a curriculum culminating in a major design experience based on the

knowledge and skills acquired in earlier course work and incorporating appropriate

engineering standards and multiple realistic constraints. Although the major design projects

incorporate multiple realistic constraints, there is little evidence that engineering standards

have been incorporated into the senior project. In particular, the course syllabus does not

refer to the use of engineering standards. In an overall sense this criterion is satisfied.

However, future compliance may be jeopardized if there is not adequate attention to

appropriate engineering standards incorporated in the major design experience.

10

FINAL STATEMENT WRIGHT STATE UNIVERSITY

 Due–process response: The EAC acknowledges receipt of documentation demonstrating

that changes have been made to ensure that students consider multiple realistic

constraints including engineering standards. Standards are now listed in the course’s

syllabi and standards will be considered for each senior design project.

 The concern is resolved.

3. Program Criteria Program criteria for electrical, computer and similarly named engineering

programs require that that the curriculum include applications of probability and statistics

appropriate to the program name. A review of the course materials and discussion with the

faculty provided limited evidence of such applications. Thus, there is the potential that future

compliance with this criterion could be jeopardized.

 Due–process response: The EAC acknowledges receipt of documentation demonstrating

that the curriculum has three courses that include applications of probability and statistics

appropriate to the program.

 The concern is resolved.

11

Engineering Accreditation Commission

Final Statement of Accreditation

to

Wright State University
Dayton, OH

2013-2014 Accreditation Cycle

Assuring Quality • Stimulating Innovation

FINAL STATEMENT WRIGHT STATE UNIVERSITY

ABET

ENGINEERING ACCREDITATION COMMISSION

WRIGHT STATE UNIVERSITY

Dayton, OH

FINAL STATEMENT

Report submitted: July 01, 2013

Accreditation Cycle Criteria: 2013-2014

Introduction and Discussion of Statement Construct

The Engineering Accreditation Commission (EAC) of ABET has conducted an evaluation of the

computer engineering program of Wright State University relative to shortcomings remaining after

the 2011-12 general EAC review. The institution elected for this review to be conducted under

the 2013-2014 Criteria for Accrediting Engineering Programs.

This statement is the final summary of the EAC evaluation. The first part of the statement

addresses the institution and its overall engineering educational unit; the second addresses the

computer engineering program. Its format allows the reader to discern both the original report

findings and subsequent progress made during due process.

A program’s accreditation action is based upon the findings summarized in this statement. Actions

will depend on the program’s range of compliance or non-compliance with the criteria. This range

can be construed from the following terminology:

 Deficiency: A deficiency indicates that a criterion, policy, or procedure is not satisfied.

Therefore, the program is not in compliance with the criterion, policy, or procedure.

 Weakness: A weakness indicates that a program lacks the strength of compliance with a

criterion, policy, or procedure to ensure that the quality of the program will not be

compromised. Therefore, remedial action is required to strengthen compliance with the

criterion, policy, or procedure prior to the next review.

 Concern: A concern indicates that a program currently satisfies a criterion, policy, or

procedure; however, the potential exists for the situation to change such that the criterion,

policy, or procedure may not be satisfied.

1

FINAL STATEMENT WRIGHT STATE UNIVERSITY

 Observation: An observation is a comment or suggestion that does not relate directly to

the current accreditation action but is offered to assist the institution in its continuing efforts

to improve its programs.

Wright State University was founded in 1964 and granted full university status in 1967. It serves

primarily as a regional university in the state of Ohio higher education system. Enrollment in the

university is approximately 13,600 undergraduate students and over 3,400 graduate students. In

addition to the College of Engineering and Computer Science (CECS), undergraduate programs

are offered in Business, Education and Human Services, Liberal Arts, Science and Mathematics,

and Nursing and Health. CECS consists of four departments that offer eight engineering programs:

the Department of Biomedical, Industrial & Human Factors Engineering, the Department of

Computer Science and Computer Engineering, the Department of Electrical Engineering, and the

Department of Mechanical and Materials Engineering. The college offers 11 master’s programs

and has 8 Ph.D. focus areas in engineering and computer science. Enrollment in the college is

currently 2,135 undergraduate and 834 graduate students. There are 78 full-time faculty members

and 30 part-time faculty members in the college.

2

FINAL STATEMENT WRIGHT STATE UNIVERSITY

Computer Engineering

Program

Program Criteria for Electrical, Computer, and Similarly Named Engineering Programs

Introduction

The computer engineering program is administered by the Department of Computer Science and

Engineering. The department also offers Bachelor of Science and Bachelor of Arts degrees in

computer science, Master’s degrees in computer engineering and computer science, and a Doctoral

degree in computer science and engineering. Currently the computer engineering program has 248

undergraduate students. The department has 20 tenured or tenure-track faculty members and 12

part-time faculty members. In the most recent academic year, the department graduated 91

students in all three undergraduate degree programs, 26 of whom were in computer engineering.

The institution elected for this review to be conducted under the 2013-2014 Criteria for

Accrediting Engineering Programs.

Program Weakness

1. Criterion 2. Program Educational Objectives The previous review cited that the program had

published educational objectives that were not based on the input of all of the program

constituencies. Specifically, the program’s process of periodic review of these objectives did

not offer substantive documentation that demonstrated the explicit inclusion of one of the

identified constituencies, namely students currently enrolled in the bachelor of science

computer engineering program. Criterion 2 requires that a program must have a documented,

systematically utilized, and effective process, involving program constituencies, for the

periodic review of these program educational objectives that ensures they remain consistent

with the institutional mission, the program’s constituents’ needs, and the Engineering Criteria.

The report included a revised process flow chart for review of program educational objectives

that explicitly identifies the role of input from computer engineering majors, as well as all other

constituencies. Excerpts from the minutes of recent meetings of the student advisory board,

which includes both computer engineering and computer science students, in March 2013, and

the external advisory board, in November 2012 and June 2013, provided evidence that the

program educational objectives have now been reviewed by all program constituencies.

3

FINAL STATEMENT WRIGHT STATE UNIVERSITY

Revision of the program educational objectives by the program based on documented input

from all constituencies using the new process will be considered in fall 2013.

 The weakness is resolved.

4

	Computer Science & Engineering Academic Program Review, 2014
	Repository Citation

