New Primers Reveal the Presence of a Duplicate Histone H3 in the Marine Turtle Leech Ozobranchus branchiatus

Follow this and additional works at: https://corescholar.libraries.wright.edu/chem_student

Part of the Chemistry Commons

Repository Citation

This Presentation is brought to you for free and open access by the Chemistry at CORE Scholar. It has been accepted for inclusion in Chemistry Student Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
New primers reveal the presence of a duplicate histone H3 in the marine turtle leech *Ozobranchus branchiatus*

Triet M. Truong and Audrey E. McGowin, Ph.D.
Department of Chemistry

Philip Lavretsky and Jeffrey L Peters, PhD
Department of Biological Sciences

Introduction

Marine leeches, specifically *Ozobranchus branchiatus*, have been studied for their role in the spread of fibropapillomatosis (FP), a pandemic marine turtle disease. Historically, FP has been a significant threat to marine turtle conservation efforts due to its rapid spread and high mortality rates. The disease is caused by a viral agent that infects marine turtles, leading to severe skin lesions and often resulting in death. Understanding the genetic diversity of the leech population is crucial for effective disease management and conservation strategies.

Methods

New primers were designed using Primer3 (Rozen & Skaletsky, 2000) and hybridized to existing sequences obtained from GenBank. The primers were used in polymerase chain reaction (PCR) reactions to amplify genetic markers from marine leeches. The PCR products were sequenced using BigDye Terminator v3.1 cycle sequencing and analyzed using Sequencher software.

Results and Conclusions

The new primers revealed the presence of a duplicate histone H3 (H3R1 and H3R2) in *O. branchiatus*. These markers were specifically associated with the Indian River Lagoon and Big Cypress National Preserve in Florida, indicating potential differences in genetic diversity between these regions. The duplication event occurred within the Ozobranchidae lineage, suggesting a recent evolutionary event.

Acknowledgements

This research was supported by the Wisconsin Institute for Discovery (WID) and the National Institutes of Health (NIH). Special thanks to the following individuals for their contributions:

- Dean Bagley, Ryan Butts, and Stephen T. Weege for samples from Grassy Key, Marathon, and the St. Lucie River.
- Dave Clark and Stephen T. Weege for samples from Grassy Key, Dean Bagley (Inwater Circle) for samples from Big Cypress National Preserve, Inc.) for leeches from the St. Lucie Lagoon, and Dave Clark and Stephen T. Weege for samples from Grassy Key, Dean Bagley (Inwater Circle) for samples from Big Cypress National Preserve, Inc.) for leeches from the St. Lucie Lagoon.

References

Table 1

<table>
<thead>
<tr>
<th>Region</th>
<th>H3R1</th>
<th>H3R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida Lagoon</td>
<td>0.044</td>
<td>0.044</td>
</tr>
<tr>
<td>Big Cypress</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>St. Lucie</td>
<td>0.038</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Conducted in MEGA6 (Tamura et al. 2011) using the Fitch parsimony model (Fitch 1971) with a gamma distribution shape parameter. *H* is a test of 176 included sequences (292 base pair sequence) and the association was assessed by visual inspection of the phylogram.