Using $\delta^{18}O$ to track PO$_4$ entering the Western Basin of Lake Erie

Melanie M. Marshall
Wright State University - Lake Campus, melanie.marshall@wright.edu

Gabrielle K. Metzner
Bowling Green State University

Kevin E. McCluney
Bowling Green State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/lake_research_symposium_abstracts

Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons

Repository Citation

This Poster is brought to you for free and open access by the Lake Campus Research Symposium at CORE Scholar. It has been accepted for inclusion in Lake Campus Research Symposium Abstracts and Posters by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Using δ18O to track PO\textsubscript{4} entering the Western Basin of Lake Erie

Melanie M. Marshall1, Gabrielle K. Metzner2, Kevin E. McCluney2

Wright State University – Lake Campus1, Bowling Green State University2

Objective: Develop novel methods of tracking DRP throughout watersheds

- Collaborative study on methods to identify sources of and reduce PO\textsubscript{4} contributing to algal blooms in Lake Erie
- Lake Erie algal blooms are dependent upon river P but which watersheds, rivers, and tributaries are contributing most?

Stable Isotopes

- Only one stable isotope of phosphorus (32P), but three stable isotopes of oxygen (16O, 17O, 18O)
- Strong P-O bond in phosphate molecules make it possible to analyze oxygen isotope ratios to determine phosphate sources in a watershed
- Ratios only change via biological processing

Field Methods

- 3 major watersheds: Maumee, Portage, and Sandusky
- 14 sample sites:
 - 3 in the Portage (convergences of major tributaries), 3 at river mouths, 2 within the Western Basin
 - 10 to 20 liters of water per sample
- Lake samples were collected with the help of the George Bullerjaan Lab (BGSU) and the Tom Bridgeman Lab (UT).

Results and Conclusions

- 1. δ18O values from samples taken at low/summer flow conditions (July 2016) were more representative of the stream itself.
- 2. δ18O values from samples taken at high flow conditions (April 2017) were more representative of various sources of PO\textsubscript{4} in runoff, producing results more relevant for mixing models.

- This is an indication that phosphates entering the stream during low flow have higher residence time and opportunity for biological processing, as well as the opposite for high flow conditions.

- To make progress towards developing effective methods of decreasing P contributing to the growth of algal blooms, it is necessary to create a better understanding of the origins of this P as well as a method for following it throughout watersheds.

Lab Methods

- Samples are filtered and processed using method described in depth in McLaughlin et al. 2004
- Complex procedure consisting of a series of dissolutions and precipitations to produce solid silver phosphate
- 0.6-0.8mg Ag\textsubscript{2}PO\textsubscript{4} weighed into silver capsules to be sent to the DEVIL Lab at Duke university for δ18O analysis

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Diagram showing δ18O of fertilizer samples were significantly higher than those of wastewater effluent and livestock manure.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image2.png}
\caption{Map showing data points reported here are from a subset of sample locations approximately 2km apart in the Portage River, just upstream of Fostoria. We found evidence of similar spatial patterns among these close-proximity sample sites, δ18O variations are seen near the wastewater treatment facility as well as near a golf course. These variations show an initial spike in δ18O followed by a gradual decrease, probable evidence of biological processing.}
\end{figure}