Using Learning Progressions to Map High School Student Understandings of Molecular Genetics

Amber Todd
Wright State University - Main Campus, amber.todd@wright.edu

Lisa Kenyon
Wright State University - Main Campus, lisa.kenyon@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/med_education

Part of the Medical Education Commons

Repository Citation

This Presentation is brought to you for free and open access by the Medical Education at CORE Scholar. It has been accepted for inclusion in Medical Education Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Using Learning Progressions to Map High School Student Understandings of Molecular Genetics

Amber Todd and Lisa Kenyon
Wright State University, Department of Biological Sciences, Dayton, OH USA

What Do We Already Know?
- Concepts in molecular genetics are difficult to teach and learn (e.g., Stewart, Carter, & Fixammon, 2000; Stewart & Van Kirk, 1990; Venville & Treagust, 1998).
- Two learning progressions (LPs) have been produced (Duncan, Rogal & Yerdan, 2008; Wigfield, Chinnix, & Yerdan, 2008) in molecular genetics.
- Both LPs are theoretical as neither have been fully empirically tested.
- Mobile school (portions of the Duncan et al. (2009) progression tested in one context (Fischeliskam, Duncan & Shek, 2011).
- Group refined constructs B & C with this data (Shek, & Duncan, 2013).
- Empirical studies of the progression led to revisions and refinement of progression based on classroom data obtained.
- Makes LPs more practical and useful for teachers and researchers to support students.

What Did We Do?
- Theoretical framework for study is based on:
 - Duncan et al., 2009 (molecular genetics LP).
 - Stewart et al., 2009 (molecular genetics literacy being ability to understand and integrate three inter-related conceptual models).

Three different 10th grade biology courses in 2011-2012 school year:
- Suburban public school (A, B, C) with a STCOS focus (Content A)
- Two classrooms in urban public school with arts focus (Contents B & C).

Three molecular genetics intervention units created:
- Different from normal classroom instruction.
 - Teacher A taught three units in their entirety.
 - Teacher B taught the first unit and shortened version of second unit.
 - Teacher C did not teach any of the units.

- Pre/post written assessments (n = 121) were administered to all the students.
- Interviews conducted (n = 54) with students in contexts A & B.

Student ideas mapped to the Duncan et al. (2009) LP.
- Coding scheme based on the LP empirically developed for each of the eight target ideas.
- Data shown in this poster is preliminary, reliability has not yet been established.

RQ1: Where do students align with the Duncan et al. (2009) LP?
RQ2: How can the Duncan et al. (2009) LP be revised and refined?

What do students think genes do?
- Revised levels 1 & 2 can be combined.
- Few students thought that genes were non-informational in nature (proposed level 1).
- Passive versus active distinction removed, very fine distinction between two.

New level added to progression:
- Students were told that proteins, made of amino acids.
- Several students understood genes code only for proteins and that the proteins are made of amino acids.
- Questions did not probe how descriptions in DNA are translated into a sequence of amino acids which make up the protein (proposed level 8).

Dramatic shift to higher levels after instruction:
- Seen especially in context A interviews (highlighted in red box).

How are alleles related to traits?
New levels added to progression:
- Data supports the three original levels of the construct.
- Also supports addition of these new levels.

Molecular model introduced to genetic model at this level:
- Students have firm grasp of the molecular model (Construct B) and genetic model (Construct F), proposed level 3 after instruction.
- Students did not differentiate integrating the two models.
- “Stuck” at level 3 because unable to add in molecular model.

Dramatic shift to higher levels after instruction:
- Seen especially in context A interviews (highlighted in red box).

How different are humans and fruit flies?

Ideas about genes changing and evolution moved to Construct H.
- Modified to include genetic changes through recombination, mutations, environmental factors.
- Or creation of new construct for molecular evolution ideas.

Ideas from original levels combined:
- Ideas about the genetic similarities/differences between individuals found in all levels of original LP.
- Ideas combined into one level (proposed level 3).

New lower and higher levels added to progression:
- Data supports addition of four levels.
- Lower levels added for more basic ideas.
- More students held these ideas (proposed levels 0-2).
- Higher level added to the progression.
- Ideas discussed in the original LP, not included in the progression.
- Many students able to achieve proposed level 4; some students may be able to achieve this higher level.