Using Learning Progressions to Map High School Student Understandings of Molecular Genetics

Amber Todd
Wright State University - Main Campus, amber.todd@wright.edu

Lisa Kenyon
Wright State University - Main Campus, lisa.kenyon@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/med_education

Part of the Medical Education Commons

Repository Citation
https://corescholar.libraries.wright.edu/med_education/4

This Presentation is brought to you for free and open access by the Medical Education at CORE Scholar. It has been accepted for inclusion in Medical Education Faculty Publications by an authorized administrator of CORE Scholar.
For more information, please contact library-corescholar@wright.edu.
Using Learning Progressions to Map High School Student Understandings of Molecular Genetics

Amber Todd and Lisa Kenyon
Wright State University, Department of Biological Sciences, Dayton, OH USA

What Did We Do?

- Theoretical framework for study is based on:
 - Duncan et al. (2009) molecular genetics LP
 - Swaffield et al. (2005) - molecular genetics literacy is being to understand and integrate three main inter-related conceptual models
 - Duncan & Reiser (2007) - “hybrid hierarchical” structure of molecular genetics
 - Different 10th grade biology classes in 2011-2012 school year
 - Suburban public school (6-12) with a STEM focus (Context A)
 - Two classrooms in urban public school with arts focus (Contexts B & C)
 - Three molecular genetics intervention units created
 - Different from normal class instruction
 - Introduce concepts and their functions before addressing DNA and its structure
 - Specifically targeted instruction to components from Duncan et al. (2009) LP
 - Teacher A taught three units in their entirety
 - Teacher B taught the first unit and shortened version of second unit
 - Teacher C did not teach any of the units
 - Pre/post written assessments (n = 121) were administered to all the students
 - Interviews conducted (n = 54) with students in contexts A & B
- Student ideas mapped to the Duncan et al. (2009) LP
- Coding scheme based on the LP empirically developed for each of the eight big ideas
- Data shown in this poster is preliminary, reliability has not yet been established

RQ1: Where do students align with the Duncan et al. (2009) LP?
RQ2: How can the Duncan et al. (2009) LP be revised and refined?

What Do We Already Know?

- Concepts in molecular genetics are difficult to teach and learn (e.g., Stewart, Carter, & Paxson, 2005; Stewart & Van Kirk, 1996; Wende & Tintner, 1998)
- Two learning progressions (LPs) have been produced (Duncan, Rogat, & Yarden, 2006; Roseman, Caldwell, Gogos, & Kurth, 2006) in molecular genetics
- Both LPs are hypothetical as neither have been fully empirically tested
- Makes LPs more practical and useful for teachers and researchers to support students
- Mappers provide more practical and useful for teachers and researchers to support students

Number of Students in Each Context

<table>
<thead>
<tr>
<th>Interview</th>
<th>Written Assessments</th>
<th>Interviews</th>
<th>Written Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>Pre</td>
<td>Post</td>
</tr>
</tbody>
</table>

Reframes of Construct B

<table>
<thead>
<tr>
<th>Original LP</th>
<th>Revised LP</th>
<th>Description</th>
<th>Level</th>
<th>My Proposed LP</th>
<th>No knowledge of genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Genes are non-informational in nature.</td>
<td>0</td>
<td>No knowledge of genes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Genes are non-informational in nature, some are associated with traits.</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Genes are non-informational in nature, some are associated with traits.</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Genes are active instructions that “tell” proteins what to do.</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Genes are instructions about biochemical actions and functions</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Genes are instructions about biochemical actions and functions</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>Genes are a translated sequence of RNA that makes up proteins</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Reframes of Construct F

<table>
<thead>
<tr>
<th>Original LP</th>
<th>Description</th>
<th>Level</th>
<th>My Proposed LP</th>
<th>No understanding of genes or traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>There are different versions of traits, organisms can differ in character</td>
<td>0</td>
<td>No understanding of genes or traits</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each chromosome can be typed and can have non-informative areas</td>
<td>1</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Organisms are different organisms</td>
<td>2</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Alleles differ in nucleotide sequence affecting protein which gives rise to functional differences</td>
<td>3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Alleles differ in nucleotide sequence which affects the protein to give trait differences</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Alleles differ in nucleotide sequence which affects the protein to give trait differences</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Reframes of Construct G

<table>
<thead>
<tr>
<th>Original LP</th>
<th>Description</th>
<th>Level</th>
<th>My Proposed LP</th>
<th>No idea how genes affect phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Different organisms vary in look and function because they have different genetic information</td>
<td>0</td>
<td>No idea how genes affect phenotype</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Organisms have different traits/functions</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Different organisms have different genetic information</td>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Organisms have different genetic information, even within a species</td>
<td>3</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Organisms of other species often share some of their genetic information</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Organism DNA codes for things crucial to the proper functioning of the cells</td>
<td>5</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

What do students think genes do?

- Revised levels 1 & 2 can be combined
- Few students thought that genes were non-informational in nature (proposed levels 0-2)
- Passive vs. active distinction removed, very few distinctions between two

New level added to progression

- Students understand genes code only for proteins and that the proteins are made of amino acids
- Students do not know how the rules DNA is translated into a sequence of amino acids which make up the protein (proposed level 8)

How are alleles related to traits?

- Data supports the three original levels of the construct
- Also supports addition of three new levels

Molecular model introduced to genetic model at this level

- Students have firm grasp of the molecular model (Construct B) and genetic model (Construct F) after instruction
- Students do not have difficulty integrating the two models
- "Stuck" at level 3 because unable to add in molecular model

How different are humans and fruit flies?

- Ideas about genes changing and evolution moved to Construct H
- Modified to include genetic changes through recombination, mutations, environmental factors
- Creation of new construct for molecular evolution ideas

Ideas from original levels combined

- Ideas about the genetic similarities/differences between individuals found in all levels of original LP
- Ideas combined into one level (proposed level 3)

New lower and higher levels added to progression

- Lower levels added for more basic ideas
- Higher level added to the progression
- Ideas discussed in the original LP, not included in the progression
- Many students able to achieve proposed level 4; some students may be able to achieve this higher level