2015

High Power Pulsed Terahertz Light Generation from Superconducting Antenna Arrays

Nicholas C. Padgett
Wright State University - Main Campus, padgett.8@wright.edu

Stephanie R. Lake
Wright State University - Main Campus, lake.24@wright.edu

Jason A. Deibel
Wright State University - Main Campus, jason.deibel@wright.edu

T. Bullard

D. Latypov

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/urop_celebration

Part of the Engineering Commons, Life Sciences Commons, Physics Commons, and the Social and Behavioral Sciences Commons

Repository Citation

This Presentation is brought to you for free and open access by the Office of the Vice Provost for Research at CORE Scholar. It has been accepted for inclusion in Symposium of Student Research, Scholarship, and Creative Activities Materials by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Authors
Nicholas C. Padgett, Stephanie R. Lake, Jason A. Deibel, T. Bullard, D. Latypov, J. Patel, J. Murphy, J. Bulmer, W. Tang, M. Sebastian, and Timothy J. Haugan
Motivation

2.5

3.5

4

A terahertz pulse is emitted as a result of the changing current in a superconducting ring due to an incident ultrafast laser pulse. As before, an ultrafast laser pulse is incident on a superconducting ring in a superconducting state with a current \(I_c \). The incident laser pulse breaks the Cooper pairs, restoring resistivity in the ring for approximately 20 picoseconds. The changing current decreases in magnitude in response to the resistance, decelerating the flowing electrons temporarily and causing the emission of the wavefronts. The Cooper pairs then recombine, and superconductivity resumes.

Cooper Pairs Break and Recombine

An ultrafast laser pulse is incident on a superconducting ring in a superconducting state with a current \(I_c \). The incident laser pulse breaks the Cooper pairs, restoring resistivity in the ring for approximately 20 picoseconds. The changing current decreases in magnitude in response to the resistance, decelerating the flowing electrons temporarily and causing the emission of the wavefronts. The Cooper pairs then recombine, and superconductivity resumes.

Cooper Pairs Break and Recombine

Key properties associated with terahertz radiation:

- Non-ionizing
- Transparent to plastics
- Reflective to metals
- Non-destructive
- Spectroscopic fingerprint

Terahertz imaging, operating either in transmission or reflection modes, can be used to see inside containers or to inspect materials for interior damage.

Experimental Setup

Primary experimental equipment:

- Ultrafast laser (15 femtoseconds)
- Superconducting yttrium barium copper oxide ring (BERST antenna)
- Electro-optic sampling detection (ZnTe or GaP)

Detection Scheme: Electro-optic Sampling

Theory

Electro-optic sampling exploits birefringence of the first order, Rockland's effect. The index of refraction is a function of an applied electric field. An incident THz pulse can change the indices of refraction, which can be detected as a change in the polarization of the pulse.

Acknowledgements

- Air Force Office of Scientific Research
- Wright State University Office of Research and Sponsored Programs
- The Ohio Third Frontier Program
- Ohio Academic Research Cluster in Layered Sensing
- AFRL – RDH
- AFRL – RQQ
- Wright State University
- UES Inc.
- Bernet Hill Research Corporation
- Univ. Of Dayton Research Institute

References