Comparing Network Centrality Measures of Non-Traditional Students in an Introductory Physics Class

Emily N. Sandt
Wright State University - Main Campus, sandt.2@wright.edu

Adrienne L. Traxler
Wright State University - Main Campus, adrienne.traxler@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/urop_celebration

Part of the Arts and Humanities Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Repository Citation

This Presentation is brought to you for free and open access by the Office of the Vice Provost for Research at CORE Scholar. It has been accepted for inclusion in Symposium of Student Research, Scholarship, and Creative Activities Materials by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Comparing network centrality measures of non-traditional students in an introductory physics class

Emily N. Sandt, Dr. Adrienne L. Traxler
Department of Physics
Email: sandt.2@wright.edu, adrienne.traxler@wright.edu

Goals
• Compare different models of network influence for students
• Research questions:
 1. How do common centrality measures compare when ranking students’ network influence?
 2. Do centrality values of non-traditional students show different trends than traditional students?

Motivation and background
• Social Network Analysis utilizes several different measures to describe a node’s centrality position [1].
• Non-traditional students (age 22+) tend to have fewer on-campus connects and lower retention rates than traditional students [2].
• Social connections toward other students have consequences for long-term retention [3].

Methods
• Data: pre- and post-course survey question:
 o “Who do you work with to learn physics in this class?”
• Course: Calculus-based physics I, lecture format with use of peer instruction, approximately 220 students
• Alluvial diagrams are useful for depicting flow of students between variables [4].

Network representation:
• Students are nodes (i,j,k).
• Undirected links (R_{ij}) between nodes indicate either student reported the pair as study partners.
• Geodesics (d_{ij}) are the shortest paths between nodes i and j.
• Links are connections used in centrality calculations:
 o Degree [5]: \(C_D(i) = \sum_{j \neq i} R_{ij} \)
 o Betweenness [5]: \(C_B(i) = \sum_{j<k} \frac{d_{jk}(i)}{d_{jk}} \)
 o Closeness [5]: \(C_C(i) = \left(\sum_{j \neq i} d_{ij} \right)^{-1} \)
 o PageRank [6]: \(C_{PR}(i) = c \sum_{j} C_{PR}(j), i \neq j \)

Preliminary results
Pre- and post-course alluvial diagrams of various centrality measures are below. Each diagram shows the shifts in student rankings between the different centrality models. Colors indicate non-traditional (age 22+) and traditional students. Percentiles are binned based on the data’s natural breaking points for low centrality values.

Work in progress
• Determine if non-traditional students’ centrality ranking behavior varies differently from traditional students’ centrality behavior.
 o If so: Is this due to non-traditional students lower overall centrality at pre-course?
 o What do the pre/post-course alluvial diagrams and associated centrality distributions look like for other instructors and course formats (smaller class size, SCALE-UP classrooms, etc.) and classes (calculus-based general physics II)?
 o What are the implications of large variances for correlating network position with course outcomes?