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Identification of novel ΔNp63α-
regulated miRNAs using an 
optimized small RNA-Seq analysis 
pipeline
Suraj Sakaram1, Michael P. Craig1, Natasha T. Hill1, Amjad Aljagthmi1, Christian Garrido1, 
Oleg Paliy1, Michael Bottomley2, Michael Raymer3 & Madhavi P. Kadakia1

Advances in high-throughput sequencing have enabled profiling of microRNAs (miRNAs), however, a 
consensus pipeline for sequencing of small RNAs has not been established. We built and optimized an 
analysis pipeline using Partek Flow, circumventing the need for analyzing data via scripting languages. 
Our analysis assessed the effect of alignment reference, normalization method, and statistical 
model choice on biological data. The pipeline was evaluated using sequencing data from HaCaT cells 
transfected with either a non-silencing control or siRNA against ΔNp63α, a p53 family member 
protein which is highly expressed in non-melanoma skin cancer and shown to regulate a number of 
miRNAs. We posit that 1) alignment and quantification to the miRBase reference provides the most 
robust quantitation of miRNAs, 2) normalizing sample reads via Trimmed Mean of M-values is the 
most robust method for accurate downstream analyses, and 3) use of the lognormal with shrinkage 
statistical model effectively identifies differentially expressed miRNAs. Using our pipeline, we identified 
previously unrecognized regulation of miRs-149-5p, 18a-5p, 19b-1-5p, 20a-5p, 590-5p, 744-5p and 
93-5p by ΔNp63α. Regulation of these miRNAs was validated by RT-qPCR, substantiating our small 
RNA-Seq pipeline. Further analysis of these miRNAs may provide insight into ΔNp63α’s role in cancer 
progression. By defining the optimal alignment reference, normalization method, and statistical model 
for analysis of miRNA sequencing data, we have established an analysis pipeline that may be carried 
out in Partek Flow or at the command line. In this manner, our pipeline circumvents some of the major 
hurdles encountered during small RNA-Seq analysis.

MiRNAs are small non-coding RNAs of approximately 18–22 nucleotides in length that bind to the 3′ UTR 
regions of target mRNA to translationally repress or degrade them1. A single miRNA is capable of targeting hun-
dreds of genes and it is estimated that they may regulate over a third of all mammalian genes. Thus, the dysregula-
tion of several miRNAs can have strong biological effects on entire gene networks1,2. MiRNAs regulate a number 
of cellular processes that are dysregulated in cancer, such as proliferation, differentiation, apoptosis, motility 
and invasion. Further, changes in miRNA expression profiles reflect the developmental lineage and differenti-
ation state of cancers, and are thus being used as cancer biomarkers3,4. In recent years, improvements in Next 
Generation Sequencing (NGS) have made it possible to sequence small RNA species like miRNA with unprece-
dented sensitivity and dynamic range. Despite the increasing use of small RNA-Sequencing (small RNA-Seq) to 
identify potential biomarkers and therapeutic targets for cancer, there is no consensus on a data analysis pipeline 
for miRNA-Seq data5–7.

Standard NGS data analysis assumptions and algorithms used in mRNA sequencing experiments are rou-
tinely used in small RNA-Seq experiments despite inherent differences in read length, read depth and coverage 
between mRNA and miRNA datasets8. For example, seed lengths greater than 25 nucleotides are commonly 
used in RNA-Seq analyses, however, these seed lengths are longer than the average miRNA length and are not 
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appropriate for aligning miRNA. Alignment of small RNA-Seq data requires the use of shorter seed lengths. 
Consequently, this increases the likelihood of individual reads mapping to multiple locations thereby increasing 
the uncertainty in mapping and quantitating reads. Further, given the uniform length of miRNAs, it is possible 
that normalization methods such as RPKM, which correct for differences in read length, may negatively impact 
analysis of miRNA datasets. Despite these limitations, the choice of alignment index, quantitation reference, and 
normalization method to identify differentially expressed miRNAs from small RNA-Seq data have not been fully 
evaluated. Validating a standard pipeline for small RNA-Seq data is critical since each step of processing impacts 
downstream analysis and identification of statistically significant differentially expressed (DE) miRNAs.

In this study, small RNA-Seq was used to identify novel ΔNp63α-regulated miRNAs in keratinocytes by 
comparing those in which ΔNp63α was silenced relative to non-silencing controls (NSC). ΔNp63α, a member 
of the p53 family, has been shown to modulate the expression of miRNAs involved in various cellular processes 
including the regulation of keratinocyte differentiation, cell migration, tumor growth, cell cycle arrest, apoptosis, 
and metabolism9–11. ΔNp63α regulates miRNAs by directly regulating their transcription, and indirectly through 
the regulation of other transcription factors, such as the Runt-related transcription factor 1 (RUNX1), which in 
turn regulates miRNAs12,13. Importantly, ΔNp63α has also been shown to regulate the global post-transcriptional 
processing of miRNAs by transcriptionally activating DGCR8 in the Drosha complex and potentially through 
direct interaction with the Drosha PY-WW domain14. Thus, the dysregulation of ΔNp63α in epithelial can-
cers alters miRNA expression through a variety of indirect and direct mechanisms, and it is our hope that 
ΔNp63α-regulated miRNAs may serve as novel cancer biomarkers or therapeutic targets.

To identify miRNAs that are differentially expressed between keratinocytes lacking ΔNp63α versus expressing 
ΔNp63α, we optimized key parameters in the analysis to develop a standard pipeline for analyzing small RNA-Seq 
data. In this study, we identified several novel miRNAs regulated by ΔNp63α using our optimized pipeline. A 
sub group of these miRNAs were validated by RT-qPCR further supporting the pipeline we established. Analysis 
of the functional roles of these miRNAs and their targets will facilitate a deeper understanding of ΔNp63α’s 
role in both maintaining epidermal integrity and determining tumorigenic fate. Our results will provide 
non-bioinformaticians, who rely on sequencing analysis software for their research, an optimized small RNA-Seq 
pipeline to expedite data analysis, thereby enabling researchers to focus on the biological significance of their 
findings. Furthermore, the pipeline parameters chosen herein (e.g. alignment and quantitation to the miRBase 
reference, TMM normalization and use of an LNS model for identification of differentially expressed miRNAs)  
may be implemented at the command line with the use of open-source tools for small RNA-Seq analysis.

Results
Small RNA Sequencing for miRNAs in HaCaT cells with p63 knockdown. To examine miRNAs 
regulated by ΔNp63α, we transfected HaCaT cells with either non-silencing control siRNA (NSC) or p63 spe-
cific siRNA. These cells express ΔNp63α, the most physiologically relevant isoform of p63 expressed in the basal 
layer of the skin15–17. All three biological replicates of HaCaT cells transfected with siRNA against p63 (sip63) 
showed 80% or greater reduction in p63 transcript levels by RT-qPCR (Fig. 1A) and no detectable p63 protein 
by immunoblot (Fig. 1B) relative to non-silencing control (NSC) (representative data shown), thus confirming 
p63 knockdown. Bioanalyzer measurements showed that our samples had an average of 7–11% RNA of 10–40 
nucleotides in length, which we considered to be miRNAs per the manufacturer’s guideline. After size-selection 
and library preparation, barcoded cDNA libraries prepared from each of the 3 biological replicates of HaCaT cells 
transfected with NSC and sip63 were pooled and sequenced yielding over 6 million reads per sample (data not 
shown). Mean read lengths between 20 and 25 base pairs were obtained, consistent with expected miRNA length.

Analysis of small RNA-Seq data. The general workflow for small RNA-Seq analysis used in this study, 
including alignment, quantitation, normalization, and differential gene expression analysis is shown in Fig. 2. The 
choice of alignment index, quantitation reference, normalization method, and statistical probability distribution 
model are known to affect differential expression analyses of miRNA datasets, thus highlighting the need for 
careful consideration of pipeline parameters during small RNA-Seq analysis8,18,19. Figure 2 shows the key steps in 
the data analysis workflow evaluated during small RNA-Seq pipeline optimization.

To approximately determine the total miRNA content in each sample, trimmed reads were first aligned and 
quantitated to the miRBase reference to obtain the total miRNA read count for each sample. Reads that did not 
align using the miRBase reference were re-aligned to the whole genome reference and quantitated using the 
RefSeq reference. Re-aligning to a different reference in this manner served to identify as many potential miRNAs 
as possible and aided in the quantitation of other RNA species. In combination with the miRNA reads quantitated 
on the first pass, we estimate that roughly 71 ± 6% of reads were miRNAs and 9 ± 4% were snoRNAs, with the 
remainder likely comprised of degradation products and other low-quality reads.

To determine the optimal alignment index and quantitation reference, we assessed the differences in total 
aligned reads, quantitated reads, and the number of unique miRNAs in each of the 6 combinations tested as 
shown in Table 1. As expected, the total number of aligned reads was greatest when aligned to the whole genome 
(hg38) and lowest when aligned to the miRBase reference, reflecting the number of annotations present in each 
reference. For reads aligned to either whole genome or RefSeq, the number of quantitated reads was higher 
when using RefSeq as the quantitation reference. This is attributed to the fact that size selection for small RNA 
during our library preparation retained other types of small RNAs (e.g. piRNA, snoRNA, etc.) as well as partially 
degraded mRNA. As expected, the number of aligned reads and quantitated reads were identical when miRBase 
was used as the alignment reference, independent of quantitation reference. Despite differences in the total num-
ber of aligned reads between pipelines, all pipelines identified a large number of unique miRNA, a more direct 
indication of pipeline performance. Interestingly, in all 6 conditions tested, the number of unique miRNAs quan-
titated was the highest when miRBase was used as the alignment and quantitation reference.



www.nature.com/scientificreports/

3SCiEntifiC RepoRts |  (2018) 8:10069  | DOI:10.1038/s41598-018-28168-5

To further assess the difference between alignment indexes, we looked at the frequency of raw read count 
values for each index when quantitated using miRBase (Fig. 3). When aligned to Whole genome and RefSeq, a 
significant number of miRNAs received 0 counts, indicating that approximately 63% and 30% of miRNAs con-
tained in the miRBase reference, respectively, were not quantitated (Fig. 3A,B). By contrast, when aligned to 
miRBase, a majority of the miRNAs (~88%) received counts between 10 and 1,000 reads (Fig. 3C). Thus, more 
miRNAs were quantitated using miRBase as the alignment index. To further compare the distribution of raw read 
counts, box plots were generated from Relative Log Expression (RLE) values calculated for each of the miRBase 
quantitated datasets. Assuming that gross variation in raw read count distributions is primarily due to differences 
in library preparation and sequencing efficiency, one would expect sample replicates to have similar median val-
ues and roughly similar distributions of raw read counts such that the median RLE values are distributed around 
zero20. While reads aligned to whole genome or RefSeq show more variation in median RLE values, the miRBase 
aligned reads show a median RLE which was naturally centered at zero and a uniform distribution across samples 
(Fig. 4). Together, these results clearly demonstrate that miRBase is the optimal alignment index and quantitation 
reference.

Next, to determine the optimal normalization method for our miRNA datasets, miRNA read counts were 
normalized using each of four normalization methods: RPKM, TPM, TC, and TMM. To compare the effect of 
each normalization algorithm, box plots were generated from RLE values of normalized reads (Fig. 5). One would 
expect that effective normalization would produce similar median values within treatment groups and roughly 
similar distributions of raw read counts for all samples20. Normalization of miRBase aligned and quantitated data 
using RPKM or TPM showed increased variation in the median RLE compared to TC or TMM normalized data. 
Normalization by TC reduced variance but failed to stabilize the median RLE values across samples. TMM out-
performed the other normalization methods by reducing variance and stabilizing the median RLE values around 
zero (Fig. 5).

Finally, Principal Components Analysis (PCA) was performed to assess the similarity of miRNA expression 
profiles among samples. Figure 6 displays the PC1-vs-PC2 scatter plots of PCA output for each tested normaliza-
tion procedure. In all cases, sip63 and NSC groups separated along the PC1 axis, indicating that the differences 
between groups accounted for the largest observed variance in the dataset. Variance among samples within each 
group was distributed along the PC2 axis. While the dispersion of samples and corresponding Davies-Bouldin 
(DB) index measures were comparable for RPKM, TPM, and TC methods, TMM normalization led to an 
improved separation of sip63 and NSC samples in PCA space (as evidenced by the lower DB index and p value, 
see Fig. 6). Due to the median values being most closely centered around zero, from the data presented by the 
PCA analyses, TMM normalization method appears to be superior.

Figure 1. ΔNp63α was silenced in HaCaT samples used for small RNA-Seq. HaCaT cells were transfected 
with either non-silencing control siRNA or siRNA against p63. (A) RT-qPCR analysis of p63 transcript levels 
normalized to endogenous GAPDH. (B) p63 protein levels in NSC and sip63 cell lysates. β-actin was included 
as a loading control to show an equivalent amount of protein was added in each lane. MW in kDa is indicated 
to the right of each blot. Testing was performed in triplicate (n = 3) for each of the 3 biological replicates. Error 
bars indicate +1 SD. Asterisk indicates p ≤ 0.05 by Student’s T-test.



www.nature.com/scientificreports/

4SCiEntifiC RepoRts |  (2018) 8:10069  | DOI:10.1038/s41598-018-28168-5

Altogether, thus far, we have demonstrated that alignment and quantitation of trimmed reads using miRBase 
results in mapping the greatest number of unique miRNAs. We further showed that normalizing raw reads via 
TMM is optimal for downstream analyses. To identify differentially expressed miRNAs by ΔNp63α, we focused 
on the normalized reads obtained from this pipeline configuration.

Identification of Differentially Expressed miRNAs. Differential expression (DE) analysis of the miR-
NAs was performed between the NSC and sip63 samples using the LNS model. Selection criteria used to identify 
these miRNAs were reads ≥10 in each sample, FC ≥1.5, and p ≤ 0.05. The full list of 79 miRNA that are predicted 
to be positively and negatively regulated by ΔNp63α are provided in Supplementary Tables 1 and 2, respec-
tively. These tables show the average read counts for NSC and sip63 triplicates, p-values calculated using the LNS 
model and fold change. Of the 79 miRNAs identified, 58 miRNAs were positively regulated whereas 21 miRNAs 
were negatively regulated by ΔNp63α. Figure 7A shows a heat map of the differences in expression level for 
these 79 differentially expressed miRNAs in all 6 samples after both samples and features were clustered using a 
Euclidean distance metric and average-linkage algorithm. NSC and sip63 samples clustered together with up- or 
down-regulation of a majority of miRNA correlating with sample type. This list of miRNA was compared to a 
previously published dataset of p63-regulated miRNAs summarized in our previous study21. Eight of the currently 
identified miRNA were previously shown to be regulated by ΔNp63α and served as positive controls (miR-
185–5p, miR-205-5p, miR-130b-3p, miR-203a-5p, and miR-429)10,22–24. Additionally, seven ΔNp63α-regulated 
miRNA have been specifically identified in HaCaT cells: miR-17, miR-18a, miR-20b, miR-30a, miR-106a, 

Figure 2. Data processing workflow. Schematic of workflow for evaluating different combinations of alignment 
references and normalization procedures considered in our studies. Raw FASTQ files were processed using 
Partek Flow by (A) trimming reads to a fixed length based on PHRED quality score, (B) aligning reads and 
(C) quantitating these reads to one of the reference databases listed, (D) normalizing read counts, and (E) 
identifying differentially expressed miRNA. Asterisks indicate components of the optimized pipeline.
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miR-143, miR-455-3p25–28. Of these, only miR-455-3p and miR-18a-5p met the reads, fold change and p-value 
cutoff used in the chosen pipeline. miR-20b was detected at very low levels in our samples and did not meet our 
strict filtering criteria. Consistent with previous reports, miR-17, miR-30a, miR-106a and miR-143 were identified 
as being positively regulated by p63 but did not reach statistical significance in our dataset and therefore excluded 
from our final list (Supplementary Table 1).

Pathway analysis of differentially expressed miRNAs. miRNAs shown to be regulated by ΔNp63α 
(Supplementary Tables 1 and 2) were subjected to pathway analysis. mRNA targets for these 79 miRNAs were 
identified in Ingenuity Pathway Analysis using a database of experimentally validated targets. A functional anal-
ysis of these targets indicated significant enrichment of genes involved in cell proliferation, movement, and apop-
tosis (p < 0.001) (Fig. 7B). These cellular functions have previously been identified as being affected by silencing 

Alignment reference Condition
Total aligned reads 
(x 1000)

Quantified reads 
(x1000)

# of Unique
miRNA quantitated

a. RefSeq quantitation

Whole Genome
NSC 3,482 ± 434 2,735 ± 320 1776

sip63 2,979 ± 487 2,328 ± 406 1816

RefSeq
NSC 2,681 ± 292 2,681 ± 292 1874

sip63 2,295 ± 398 2,295 ± 398 1873

miRBase
NSC 676 ± 113 676 ± 116 1802

sip63 526 ± 138 526 ± 138 1806

b. miRBase quantitation

Whole Genome
NSC 3,482 ± 434 1,039 ± 59 1327

sip63 2,979 ± 487 661 ± 124 1309

RefSeq
NSC 2,681 ± 292 1,080 ± 59 2241

sip63 2,295 ± 398 705 ± 130 2276

miRBase
NSC 676 ± 116 676 ± 116 2582

sip63 526 ± 138 526 ± 138 2586

Table 1. Effect of alignment reference on read quantification. Raw reads from NSC or sip63 samples trimmed 
to a fixed length based on quality score were aligned to the whole genome, RefSeq, or miRBase references and 
quantitated using either (a) RefSeq or (b) miRBase reference. The total number of aligned reads indicate the 
total number available for quantitation. The number of quantified and unique reads obtained using each of these 
methods is also indicated.

Figure 3. Alignment and quantitation to miRBase provides the most robust read quantitation. The frequency of 
raw read counts from each of the 3 biological replicates for the NSC and sip63 datasets is shown for (A) Whole 
Genome, (B) RefSeq and (C) miRBase alignments after quantitation using the miRBase reference. Open and 
gray bars indicate NSC and sip63 samples, respectively.
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of ΔNp63α and are consistent with the known functional role of ΔNp63α in maintaining epithelial stemness and 
promoting cancer progression.

Using IPA Upstream Regulator analysis tools, p63 (TP63) was identified as a significant upstream regulator of 
the experimentally validated targets of the 79 differentially expressed miRNA (p < 0.001). Thirty of these mRNA 
targets were previously known targets of p63 listed in the IPA Knowledge Base. These mRNA were linked to the 
16 corresponding p63-regulated miRNA known to target them in the p63 signaling network shown in Fig. 7C. 
Among the 30 mRNAs predicted to be downstream of p63, 4 are involved in apoptosis and 7 in cell cycle (Fig. 7C).

Validation of statistically significant DE miRNAs. From the list of 79 miRNAs with significant changes 
in expression (p ≤ 0.05, reads ≥10 for all samples), those with reads greater than 250 in each of the NSC samples 
were subjected to validation to assess the robustness of the established pipeline. Out of these, a sub-group of miR-
NAs not shown to be previously regulated by p63 were shortlisted for validation for novel discovery. miR-149-5p, 
18a-5p, 19b-1-5p, 20a-5p, 590-5p, 744-5p and 93-5p were validated by RT-qPCR. RT-qPCR results revealed that 

Figure 4. Alignment using miRBase is optimal for small RNA-Seq analysis of miRNAs. Raw read counts 
filtered to remove miRNA with <10 reads in any individual NSC or sip63 sample were used to calculate relative 
log expression (RLE) values as indicated in materials and method section. Box plots of relative log expression 
(RLE) values for each sample are shown on the y-axis with median, quartiles, +/−1.5 interquartile range, and 
outliers indicated by the middle line, box border, whiskers, and circles, respectively. Open and gray bars indicate 
NSC and sip63 samples, respectively.

Figure 5. TMM is the most effective normalization for data aligned and quantitated to miRBase. Normalized 
read counts obtained following normalization to RPKM, TPM, TC and TMM were used to calculate RLE values 
as indicated in materials and method section. Box plots of relative log expression (RLE) values for each sample 
are shown on the y-axis with median, quartiles, +/−1.5 IQR, and outliers indicated by the middle line, box 
border, whiskers, and circles, respectively. Open and gray bars indicate NSC and sip63 samples, respectively.
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all 7 miRNAs were downregulated when ΔNp63α was silenced, thus confirming the DE results predicted by 
small RNA-Seq that these miRNAs are positively regulated by ΔNp63α (Fig. 8).

Testing of small RNA-Seq pipeline using a publicly available dataset. A previous study by Zhao 
et al.29 performed on the Illumina platform identified 173 miRNA which were differentially expressed between 
early and mid-gestational fetal keratinocytes. Moreover, the authors validated a total of 10 by RT-PCR. While 
4/10 are known miRNAs, 6 represent novel miRNA not listed in miRBase v18. Reanalysis of the FASTQ files 
obtained from the same study (SRA GSE65342) was performed using our optimized pipeline parameters except 
for using hg19 and miRBase v18 references to be consistent with that study. Our analysis led to the identification 
of 161 differentially expressed miRNA, 79 of which were also identified by Zhao et al. and includes the 4 known 
microRNA validated by PCR in that study. Of the remaining 94/173 not detected in our analysis, 52 of them had 
low read counts (<10 in all samples) and would not have been selected for analysis based on our stringent filter-
ing criteria. Although there is a large concordance in the results obtained following analysis by both pipelines, it 
is not uncommon that we see unique microRNAs picked up by different analysis methods. This analysis provides 
additional empirical data in support of the current pipeline design and function with biological data collected 
using a different sequencing platform.

Discussion
In this study, we sought to optimize a user-friendly pipeline for small RNA-Seq analysis which could be utilized 
with little to no command line experience. We used HaCaT cells where ΔNp63α was either silenced (sip63) or 
not silenced (NSC) to optimize the pipeline’s parameters. The small RNA-Seq pipeline optimized and imple-
mented in this study utilizes miRBase v21 as the alignment index and quantitation reference, TMM normaliza-
tion, and an LNS model for DE analysis. This validated pipeline was used to identify novel ΔNp63α-regulated 
miRNAs which have predicted roles in cancer signaling. Further characterization of these miRNAs and their 
mRNA targets may provide mechanistic insight into the progression of non-melanoma skin cancer.

Figure 6. TMM normalization yields the best clustering of NSC and sip63 samples. Panels a through d show 
the assessment of sample similarity by principal components analysis (PCA) of the normalized miRNA datasets. 
Different groups are denoted by colors as shown in the legend. Group clouds represent areas of three standard 
errors around the group centroid (diamond). Percent of total variance captured by each principal component 
is shown in parentheses. Statistical significance of group separation in PCA space was assessed as described in 
materials and methods.
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In our analyses, alignments were performed using Bowtie as it is regarded to be “an ultrafast, memory-efficient 
alignment program for aligning short DNA sequences”30. The Johns Hopkins site, which hosts the Bowtie and 
Bowtie 2 software describes Bowtie as being optimal for sets of short reads where (a) many of the reads have at 
least one good, valid alignment, (b) many of the reads are relatively high-quality, and (c) the number of align-
ments per read is small (close to 1)31. Accordingly, Bowtie is generally thought to outperform other alignment 
algorithms for sequences less than 50 bp. While studies such as Ziemann et al. have shown that Bowtie 2 out-
performed Bowtie in both precision and accuracy, Tam et al. has shown that Bowtie and Bowtie2 are similar in 
accuracy, specificity, and sensitivity as measured by congruence to RT-PCR data (supplemental materials, Tam 

Figure 7. Heat map and functional analysis of miRNA differentially expressed in response to ΔNp63α 
knockdown. (A) Heat map of the 79 total miRNAs identified as differentially expressed (reads ≥10, p ≤ 0.05, 
fold change ≥1.5) generated in Partek Flow using miRBase aligned and quantitated, TMM normalized data 
modeled using LNS. (B) Functional profiling of the 245 predicted mRNA targets of these ΔNp63α -regulated 
miRNA performed in Ingenuity Pathway Analysis using their database of experimentally validated target 
mRNA. (C) Signaling network showing ΔNp63α -regulated miRNA and their respective mRNA targets 
identified using the IPA knowledge base of experimentally validated targets. The network is filtered to include 
only mRNA targets known to be downstream of ΔNp63α. Bold lines indicate novel miRNA positively regulated 
by p63 which were identified by NGS; regular (not bold) lines indicate known miRNA positively regulated 
by p63. Dotted lines with arrowheads and flat endcaps indicate mRNA targeted by miRNA (either direct or 
indirect). The 4 mRNA targets involved in apoptosis are underlined, and the 7 involved in cell cycle are in bold.
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et al.)20,32. Bowtie 2 was developed to handle gapped alignments, however, that is not needed for aligning short 
sequences that span the entire length of the miRNA it resembles.

Using the whole genome and RefSeq indexes for alignment yielded a large number of reads which did not map 
to known miRNA sequences, suggesting that many reads aligned to non-miRNA loci when these indexes were 
used (Table 1, Fig. 3). This is likely the result of the presence of other small RNA species that remained after the 
size exclusion steps of library preparation but may also include a subset of miRNA reads which were misaligned. 
In either case, these errors would result in artificially low read counts. Quantitation made using the miRBase 
reference effectively resolved these issues. It is therefore recommended that alignment and quantitation of small 
RNA-Seq datasets should be performed using the miRBase reference and Bowtie aligner to effectively quantitate 
unique miRNAs while avoiding the computational time required for aligning to the whole genome or RefSeq 
indexes. This approach facilitates the rapid quantitation of known miRNAs, allowing researchers to investigate 
expression level changes and pursue validation experiments. However, it’s worth noting that alignment to the 
whole genome would be required if the researcher is interested in identifying undiscovered miRNAs.

Previous RNA-Seq pipeline studies have shown that the choice of normalization method can affect the esti-
mation of miRNA abundance and subsequent identification of differentially expressed miRNAs20,33. Total count 
normalization assumes that most RNA are unchanged across samples and scales datasets toward a common distri-
bution, thus TC may be ineffective in situations in which highly expressed miRNAs are differentially expressed34. 
Similarly, the intended utility of TPM and RPKM normalizations in correcting for sequencing biases attributed 
to read length has been questioned in mRNA-Seq analyses and may actually increase variance in miRNA datasets 
due to similar biases35. All three methods assume similarities between read count distributions and function in 
a similar manner if corrections for read length bias are not necessary. TMM normalization, by contrast, relies on 
the assumption that most genes are not differentially expressed, and frequently outperforms other methods when 
datasets differ in composition20,35. Further, TMM is robust for lower coverage data where a high number of genes 
with zero counts is expected36. Since miRNAs are of uniform length, with the majority appearing to be expressed 
at very low basal levels, TMM normalization would seem appropriate. Our analysis supports the robustness of 
the TMM method in that it effectively stabilized the median distribution irrespective of the alignment used and 
identified a panel of miRNAs which were ultimately validated by RT-qPCR (Fig. 5).

Differential expression analysis performed using an LNS response distribution model identified a core set of 
miRNAs in our sip63 samples which were differentially expressed relative to NSC samples (Fig. 7A). Since sample 
sizes in NGS experiments are generally low and the read count data is non-normally distributed and continuous 
in nature, we recommend that LNS should be selected over other response distribution models.

Of the novel p63-regulated miRNAs identified in HaCaT cells and validated in this study (Fig. 8), several 
have known roles in cancer. It is important to note that differential expression of these miRNAs was validated in 
HaCaT cells, and p63-regulation may be cell type specific. miR-18a-5p plays an oncogenic role in nasopharyngeal 
cancer by regulating E-cadherin and K-ras37. miR-19b-1-5p is downregulated in CD44 + cervical cancer cells 
which express increased p63 levels, although no link to p63 was implied38. miR-20a-5p targets p63 to regulate p53 
and PTEN expression, although the feedback regulation of mir-20a-5p by p63 has not been shown39. miR-590-5p 
attenuates the TGFβ signaling pathway through down-regulation of SMAD3, and may regulate cell proliferation, 
apoptosis and migration40. Lastly, miR-93-5p is elevated in colorectal cancer and is known to target WNK lysine 

Figure 8. Validation of candidate miRNAs identified by sequencing using RT-qPCR. RT-qPCR was performed 
in triplicate for each specific miRNA for each of the 3 biological replicates of NSC and sip63 transfected HaCaT 
cells. Expression levels were normalized to RNU48 and shown relative to NSC. Error bars indicate +1 SD. 
Asterisks indicate p < 0.05 calculated by Student’s T-test.
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deficient protein kinase 1 (WNK1) to inhibit the invasive potential of triple-negative breast cancer cells41. Nothing 
has been published regarding the functional roles or regulation for the remaining miRNAs identified in this study. 
It is our hope that these miRNAs and additional targets identified by our small RNA-Seq pipeline will be a source 
of biomarkers and therapeutic targets for p63-related pathologies and provide critical insight into the role played 
by p63 in cancer.

The analysis presented herein utilized small RNA libraries which were sequenced on the Ion Torrent platform. 
Lahens et al. demonstrated that Illumina and Ion Torrent platforms in RNA-Seq datasets yielded >80% agree-
ment in differential expression with low read depth likely contributing to differences between the platforms42. 
Since our proposed pipeline filters out low read depth miRNAs (<10 reads per sample), we expect that it would 
perform similarly using Illumina datasets. However, the Lahens study also reported that the choice of align-
ment reference yielded some differences that were platform-specific. Thus, the pipeline parameters utilized herein 
should be empirically tested for other sequencing platforms.

Our investigation of the various alignment and quantitation references (whole genome, RefSeq and miRBase) 
and normalization methods (TC, RPKM, TPM, and TMM) highlights the potential impact of each on the analysis 
of small RNA-Seq data. While it is important to experiment with pipeline parameters to accommodate differences 
in sample library composition and confirm data output by RT-qPCR, we propose that miRBase alignment using 
Bowtie, quantitation with miRBase, and normalization with TMM as performed in Partek Flow provides a robust 
pipeline for small RNA-Seq analysis, circumventing the need for command line experience.

Materials and Methods
Cell culture, reagents, and plasmids. HaCaT, a non-tumorigenic immortalized human keratinocyte 
cell line, was obtained from Dr. Nancy Bigley (Wright State University, Dayton, OH). Cells were maintained in 
DMEM Hyclone media (GE Healthcare Life Sciences, Pittsburg, PA) supplemented with 8% fetal bovine serum, 
100 U/mL penicillin, and streptomycin at 37 °C in 5% CO2.

siRNA Knockdown. HaCaT cells were transfected with siRNA against p63 (sip63) or non-silencing control 
(NSC) (Qiagen, Valencia, CA) using Lipofectamine RNAi-Max (Thermo Fisher Scientific, Carlsbad, CA) as pre-
viously described43.

Immunoblot analysis. Whole cell extracts were prepared by washing cells in cold 1% Phosphate-Buffered 
Saline (PBS) and lysing in phosphatase inhibitor buffer (50 mM Tris-HCl [pH 8.0], 120 mM NaCl, 5 mM EGTA, 
1 mM EDTA, 5 mM NaPP, 10 mM NAF, 30 mM PMSF, 0.2 mM PMSF, 1 mM Benzamidine, 0.1% NP-40, 100 nM 
NaVO4) supplemented with protease inhibitor cocktail (catalog #P8340, Sigma-Aldrich, St. Louis, MO). Protein 
was quantitated by Bicinchoninic Assay (BCA) according to the manufacturer’s instructions (Thermo Fisher 
Scientific, Fremont, CA). Equivalent amounts of protein were separated on 10% SDS-PAGE and transferred to 
Polyvinylidene difluoride (PVDF) membrane at 350 mA for 1 hour. ΔNp63α and β-actin were detected using 
rabbit polyclonal anti-p63 (N2C1, GeneTex, Irvine, CA) or mouse monoclonal anti-β-actin (AC15, Santa Cruz 
Biotechnology, Dallas, TX) antibodies, respectively. HRP-tagged secondary antibodies (Promega, Madison, 
WI) were used to enable chemiluminescent detection with the Western Lightning Plus-ECL Chemiluminescent 
Substrate kit (Perkin Elmer, Waltham, MA).

Small RNA-Seq library preparation and sequencing. Total RNA was isolated from HaCaT cells using 
the mirVanaTM Paris Kit (Thermo Fisher Scientific, Carlsbad, CA) and enriched for small RNA through size selec-
tion ethanol washes. For each library, 4 ng of miRNA was hybridized and ligated to Ion Adapters v2 (Ion Total 
RNA-Seq Kit v2, Life Technologies, Carlsbad, CA). Small RNA samples were reverse transcribed to cDNA using 
adapter specific Ion RT primers v2 (Life Technologies, Carlsbad, CA). Purified cDNA samples were size-selected 
and amplified by PCR followed by further purification and size selection. cDNA samples were barcoded using 
Platinum PCR SuperMix High Fidelity polymerase with IonXpress RNA 3′ Barcode primer and unique 5′ Ion 
Xpress RNA-Seq Barcode Primers using the Ion Xpress RNA-Seq Barcode 1–16 Kit (catalog #4471250, Life 
Technologies, Carlsbad, CA). Yield and size distribution of the cDNA libraries were assessed using the Agilent 
2100 Bioanalyzer DNA1000 chip (catalog #5067–1504, Agilent Technologies, Santa Clara, CA). Total barcoded 
cDNA within the 50–300 base pair range was considered to be derived from small RNA. 7.5 picomoles of each 
barcoded library were pooled and clonally amplified onto Ion SphereTM Particles (ISPs) according to the man-
ufacturer’s protocol (Ion PI Template OneTouchTM 200 Template Kit v3) and enriched using the Ion OneTouch 
2 ES system (Life Technologies, Carlsbad, CA). Clonal amplification of the cDNA libraries onto ISPs yielded 
18.4% templated Ion Sphere Particles (ISPs), well within the manufacturer stated optimal range of 10% to 25% 
(Ion SphereTM Quality Control assay, Life Technologies, Carlsbad, CA). Enriched ISPs were sequenced on the Ion 
Proton Next Generation Sequencing system using the Ion P1 chip v2 Kit and Ion PI TM Sequencing 200 kit v3 
(catalog #4482321 and #4488315, Life Technologies, Carlsbad, CA) with 500 Sequencing flows.

Small RNA-Seq data analysis. The general workflow for small RNA-Seq analysis used in this study, 
including alignment, quantitation, normalization, and differential gene expression analysis is shown in Fig. 2. 
All analyses were performed in Partek® Flow® software, version 5.0 (Copyright 2016, Partek Inc., St. Louis, MO).

Alignment and Quantification. Sequenced reads were assigned to their respective samples based on cor-
responding IonXpress barcodes and output in FASTQ format with their associated base quality scores using the 
Ion Torrent Suite version 4.0.2. FASTQ files were uploaded into Partek Flow software (Partek Inc., St. Louis, MO) 
for processing. Unaligned reads were trimmed from the 3′ end to a fixed length dependent on the positional base 
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at which the PHRED quality score fell below 20 (Fig. 2A). A minimum read length filter retaining reads greater 
than 15 bases in length was used in this study and is within the range of 10–26 bases as previously reported44–47.

Trimmed reads were aligned to either Whole Genome, RefSeq Transcripts 80 (2-6-2017), or miRBase mature 
miRNAs version 21 of the latest human genome assembly, hg38 (GRCh38) (Fig. 2B) using the Bowtie aligner30. 
A seed mismatch limit of 1 and minimum seed length of 10 were used. A seed mismatch of 1 was chosen to avoid 
discarding reads potentially containing inaccurate base calls made by the sequencer. These settings are consistent 
with the standard recommendation provided by Partek Flow software (verbal communication from Partek Inc., 
St. Louis, MO). The alignment reporting option was set to 200 alignments per read in order to maximize the pre-
dictive power of the Expectation Maximization (EM) algorithm without being overly computationally intensive48.

Raw read counts were obtained by quantitating aligned reads to either RefSeq Transcripts 80 (2-6-2017) or 
miRBase version 21, using a modified version of the EM algorithm implemented by Xing et al. in which isoform 
expression levels are quantified across the whole genome at the same time (Fig. 2C)49. Details of the Partek EM 
algorithm can be found in the White Paper on RNA-Seq Methods50. The EM algorithm is used to resolve ambig-
uous mappings (i.e. reads aligning well to multiple loci) for improved estimation of true expression read counts. 
It assigns an initial estimate of transcript abundance derived from uniquely mapped reads and then employs a 
Bayesian approach to calculate the most likely alignment for reads that map to multiple locations on the reference 
genome. These alignments are used to re-compute global transcript abundances, which are utilized to probabilis-
tically re-align and resolve ambiguous mappings. This process is iterated until the algorithm converges, at which 
point the reads assigned to a particular locus are counted, resulting in final raw read counts.

Normalization. Raw read counts were normalized using Total Count (TC), Reads Per Kilobase per Million 
(RPKM), Transcripts Per Million (TPM), or Trimmed Mean of M values (TMM) normalization methods34–36,51,52 
(Fig. 2D). Since miRNAs with 0 read counts would impede statistical calculations when performing differential 
expression analysis, an offset of 1.0 was added to all normalized read counts. This facilitated reporting for all 
annotated miRNAs at this stage. The offset did not result in inclusion of miRNAs with near zero read counts in 
the final DE lists since these lists were filtered to include only miRNAs with minimum read count values of greater 
than or equal to 10 reads in each of the profiled samples.

Differential Expression (DE) Analysis. Normalized read counts for each miRNA were statistically mod-
eled using Partek Flow’s Gene Specific Analysis (GSA) approach. The GSA approach uses the data to select the 
best model (Normal (N), Negative Binomial (NB), Lognormal (LN), and Lognormal with Shrinkage (LNS)) for 
each miRNA based on the lowest corrected Akaike Information Criterion corrected (AICc)53. Because the LNS 
model yielded the lowest AICc for a majority (72%) of miRNAs identified, it was selected as the default model for 
DE analysis. A low expression filter based on Lowest Average Coverage (LAC) was set with a cutoff of 4, thereby 
excluding miRNAs with a geometric mean across all samples below this value (Fig. 2E). LNS utilizes an empirical 
Bayes method that estimates gene-specific dispersion by combining information about variance from other genes 
to improve the estimation process, resulting in improved DE detection and lower false-positive rates54. The LNS 
model is similar to the “limma trend” method from the limma package previously reported to be a robust model 
for differential expression analysis and is generally beneficial when the number of experimental replicates is 
low46,55. P-values were generated using the F statistic. P-values less than or equal to 0.05 were deemed significant.

Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR). Total RNA was extracted  
from HaCaT cells transfected with siRNA against p63 (sip63) and non-silencing control (NSC) using the mir-
VanaTM ParisTM Isolation kit according to the manufacturer’s protocol (Thermo Fisher Scientific, Carlsbad, CA). 
1 µg of total RNA input was used for cDNA synthesis using the q-Script cDNA supermix (Quanta Biosciences, 
Beverly, MA). TaqMan based RT-qPCR was performed as previously described43. Assays on Demand (AODs) for 
p63 (Hs00978340_ml) and GAPDH (4325792) (Thermo Fisher Scientific, Carlsbad, CA, USA) were used. p63 
expression was normalized to GAPDH according to the manufacturer’s instructions (Thermo Fisher Scientific, 
Carlsbad, CA). For miRNA quantitation, 10 ng of RNA was used for cDNA synthesis using the TaqMan miRNA 
reverse transcription kit according to manufacturer’s instructions (Applied Biosystems, Japan Ltd). qPCR was 
performed using the Universal TaqMan master mix (2X) and miRNA-specific TaqMan AODs for hsa-miR-149-5p 
(002255), hsa-miR-18a-5p (002422), hsa-miR-19b-1-5p (002425), hsa-miR-20a-5p (000580), hsa-miR590-5p 
(001984), hsa-miR-744-5p (002324), hsa-miR-93-5p (001090) and RNU48 (001006) (Thermo Fisher Scientific, 
Carlsbad, CA). MiRNA expression was normalized to RNU48 according to the manufacturer’s instructions 
(Thermo Fisher Scientific, Carlsbad, CA). Student’s t-tests were used to determine significant differences in sip63 
samples relative to NSC controls.

Ingenuity Pathway Analysis (IPA) of DE miRNA. The functional roles and signaling networks of 
p63-regulated miRNA were identified using IPA (Qiagen Inc., Valencia, CA, https://www.qiagenbioinformat-
ics.com/products/ingenuitypathway-analysis). The algorithms developed for use in IPA have been previously 
described56. The input dataset for this analysis was the list of 79 significant DE miRNAs obtained from alignment 
and quantitation to the miRBase index and normalization by TMM after filtering on p ≤ 0.05, fold-change ≥1.5 
and read counts ≥10 in all samples. MiRNAs were associated with their respective experimentally validated 
mRNA targets by querying the Ingenuity Pathways Knowledge Base (Qiagen Inc., Valencia, CA). Functional 
profiling was performed to identify cellular processes which showed enrichment for these mRNA. The upstream 
analysis function in IPA was used to filter the list of experimentally validated mRNA targets to only those with 
known links to p63 (TP63) in the IPA Knowledge Base. The IPA network connection tools were then used to dis-
play known functional connections between differentially expressed miRNA and these mRNA targets. Signaling 
network generation was performed using the Path Designer tools in IPA (Qiagen, Inc., Valencia, CA).

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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Statistical analysis. Relative log expression (RLE) plots were generated according to established methods57. 
Briefly, 1) read counts were log10 transformed, 2) the median of log expression values for each miRNA across all 
samples was calculated, 3) RLE values were calculated by subtracting this median value from each of the miRNA 
log read count value for each sample to obtain an RLE matrix, and 4) a box plot of RLE values was generated for 
each NSC and sip63 sample.

Principal components analysis (PCA) was performed to assess the overall variability in the miRNA datasets. 
The statistical significance of the separation of sip63 and NSC samples in PCA space was determined by a per-
mutation test of the Davies-Bouldin (DB) index measure run with 1,000 iterations58. DB index compares the 
intra-cluster distances among samples to the distance between cluster centroids; smaller values indicates a better 
separation of samples belonging to different groups. Statistical significance of group separation in PCA space was 
assessed by permutation analysis of Davies-Bouldin index as described59.

Hierarchical cluster analysis (HCA) was performed on the subset of miRNA genes that satisfied differential 
expression criteria. The dataset was normalized by the root-mean-square algorithm applied across genes, and 
experiments were median-centered. HCA was run with Euclidean distance measure and average linkage cluster-
ing option.

Data Availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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