Audrey E. McGowin
Wright State University - Main Campus, audrey.mcgowin@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/chemistry

Part of the Chemistry Commons

Repository Citation

This Presentation is brought to you for free and open access by the Chemistry at CORE Scholar. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

Green(e)Fest
April 2016

Audrey McGowin, PhD
Department of Chemistry
Wright State University
Service Learning Intensive - a teaching and learning pedagogy that engages faculty, students, and community members in a partnership to:

- Achieve academic learning objectives
- Meet community needs
- Promote civic responsibility, the “citizen scientist”
- Reflect on the learning experience

- Good Laboratory Practices
- Standard Operating Procedures
- EPA methods
- Contributions by 60 students, so far . . .
Think of Glen Helen as a Living System

People and things go in

Glen Helen transforms them

People and things leave
Water Flow Through The Glen

Water In

- Yellow Springs Creek at Highway 68
- Overflow from Lift station
- Birch Creek from the north
- Stormwater drains from the Village of Yellow Springs
- Wastewater Treatment Plant (Permit OH0028212)
- Morris Bean wastewater pond effluent (Permit OH0040576)

Water Out

- Yellow Springs Creek at the Old Covered Bridge and into the Little Miami River
- Water seep in the well field and to the water treatment plant
Sample Sites

- **HWY68** Yellow Springs Creek north entry into Glen Helen
- **YSLS** Yellow Springs Creek at Yellow Springs Lift Station
- **YS** The Yellow Spring
- **YSTMB** Yellow Springs Creek at Glen Helen Trailside Museum
- **BCSC** Birch Creek Stone Crossing
- **YSCUP** Yellow Springs Creek after Birch Creek input before TS input
- **TS** Traveler’s Spring
- **WWTP** Yellow Springs Wastewater Treatment plant effluent
- **YSCVB** Yellow Springs Creek at Covered Bridge, includes inputs from BCSC, TS, and WWTP
- **LMRG** Little Miami River at Grinnell Road Bridge, prior to input from Yellow Springs Creek
- **MOR** Morris Bean effluent
- **JRS** Jacoby Rd Spring near Birch Manor House
- **LMR** Little Miami River at Jacoby Rd Canoe Access, includes inputs from YSCVB, LMRG, MOR, and JRS
Parameters Studied

- Anions
 - Nitrate, nitrite, phosphate (nutrients)
 - Fluoride, chloride, bromide, sulfate
 - EPA Method 300

- Turbidity

- E. coli
 - 3M Petri Plates

- Standard parameters
 - Dissolved oxygen
 - Temperature
 - Conductivity
 - Ammonia
 - YSI Multimeter

- Metals
 - As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sr, Zn
 - EPA Method 200
Nitrate-Nitrogen concentrations at all sampling sites (mg/L)

- JRS
- HWY68
- YS**
- LMR
- YSTMB
- YSLS
- YSCVB
- LMRG
- WWTP
- BCSC
- YSCUP
- TS
- MOR*

*No effluent to sample
**YS was below detection limit

EPA Drinking Water Limit (10 mg/L)

- Sept. 28
- Oct. 26
- Nov. 16

2015
Trends in Nitrate Concentration
Yellow Springs and Birch Creeks Entering Glen Helen

\[y = 0.0072x - 286.22 \]
\[R^2 = 0.5765 \]

\[y = -0.0019x + 88.231 \]
\[R^2 = 0.1116 \]
Trend in Nitrate Concentration Entering Glen Helen from Wastewater Treatment Plant

\[y = -0.0092x + 407.12 \]
\[R^2 = 0.1489 \]
Trend in Nitrate Concentration at the Covered Bridge Leaving Glen Helen

\[y = -0.0049x + 217.38 \]

\[R^2 = 0.1844 \]

2011-2015
Nitrate Concentration at Various Wells Surrounding Little Miami River (mg/L)

Nitrate-Nitrogen Concentrations at Various Wells Surrounding Little Miami River (mg/L)

Site
- JRS
- YSMW
- Well-A
- Well-B*
- Well-C
- Well-D
- Well-E
- Well-F
- Well-G

*Water treated by RO or filtration
Nitrate Analysis Summary

- Nitrates in drinking water usually originate from fertilizers or from animal and human wastes
- Nitrate-Nitrogen was found in some wells at levels that exceed the EPA Drinking Water Limit of 10 mg/L
- Citizens who have wells that are contaminated may not be aware
- Infants below the age of six months who drink water containing nitrate in excess of 10 mg/l could become seriously ill. Symptoms include shortness of breath and blue baby syndrome
- Treat water with Reverse Osmosis (up to 30 mg/L) or Ion Exchange (EPA and Health Dept)
- No nitrate was detected in the Yellow Spring or in the Village Municipal Well
E. coli

- Bacteria found in feces
- Not all species are dangerous
- Some species can cause serious illness
- Water samples are cultured and incubated for 2 days
- Count colonies
E. coli Per 100 mL

EPA Recreational Limit 523

E. coli Colonies (per 100 ml)

*No data collected due to no effluent in drainage site

*Sept. 28 Oct. 26 Nov. 16

2015
Stormwater Samplers

HDPE Bottle
Stormwater Runoff – *E.coli*

Before Rain Event
07/22/2015 BCOSR

After Rain Event
07/27/2015 BCOSR
E. Coli Summary

- The water in Glen Helen is of high quality for the parameters tested, except for E. coli
- Although not required by OEPA, the Village of Yellow Springs should consider adding year-round treatment of WWTP effluent for bacteria because of the high potential of human and animal contact with Yellow Springs Creek, perhaps UV
- E. coli enters Glen Helen in extremely high amounts in runoff from precipitation
- E. coli was found in the Traveler’s Spring in 2014, 2015
 - People should not drink this water
 - Pets drinking from the Traveler’s spring or other places in Glen Helen could become sick
- It is important for people to pick up after their pets!
Morris Bean Outflow
NPDES Permit 1IN00095001

- Water from the wastewater pond should flow into Glen Helen from underneath the bike path
- For 5+ years the water has been flowing down sinkholes on the site
- Previous attempts to remedy the situation have failed
- Cannot monitor effluent
- Photo taken April 20, 2016
Since the Yellow Spring Municipal Wells are downstream, the village should consider setting timelines with OEPA and Morris Bean to permanently correct the situation by requiring a different method of wastewater management.
All parameters are within the EPA drinking-water limits, with an exception of iron.

Concentration of iron was detected to be 0.336 ppm, while the EPA drinking water limit for iron is 0.3 ppm.

Iron is described as a secondary contaminant. It is not hazardous in drinking water.

The iron deposits will normally affect the color and taste of the water, but it is not toxic to humans in small amounts.

Potential issues with manganese and strontium.
The **YELLOW SPRING (YS)**

No *E. coli*

All metals and anions below EPA National Primary Drinking Water Standards

Iron (Fe) is unusually high but not dangerous - 1.2 mg/L

\[4 \text{ Fe (dissolved)} + 3 \text{ O}_2 \text{ (air)} \rightarrow 2 \text{ Fe}_2\text{O}_3 \text{ (orange solid)} \]
Metal Concentrations in The Yellow Spring Sediment

<table>
<thead>
<tr>
<th>Metal (mg/kg dry weight)</th>
<th>TEC, Threshold Effect Concentration</th>
<th>The Yellow Spring Sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (As)</td>
<td>9.79</td>
<td>170</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>0.99</td>
<td>4.04</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>No limit</td>
<td>24,892</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>35.8</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Remarkable Findings for Metals in The Yellow Springs Sediments

- Sediments contained very high levels of arsenic
 - Arsenic in the water deposits in sediments over time as it emerges from the spring
 - The source of arsenic is likely natural minerals associated with iron deposits
 - This can occur in SE Ohio
- Sediments contained high levels of cadmium
- Sediments contained high levels of lead
- It is not advisable for people to handle sediments from the spring
- Iron concentrations in The Yellow spring sediments are 2 to 3 times greater than sediments at other sites at about 25,000 mg/kg dry weight, giving the sediment its characteristic orange color
In SUMMARY . . .

The GOOD NEWS!

- Water flowing from Glen Helen is cleaner than water flowing into it
- Glen Helen is a positive transforming force in the environment
- The protection of Glen Helen helps improve water quality in the region . . .

AND BEYOND!

The Challenges!

- *E. coli* in stormwater runoff
- *E. coli* from WWTP in winter
- Morris Bean wastewater pond discharge going down sinkholes
- Nitrate in agricultural runoff
Student Contributors

Steven Ujvary
Sarah Izor
Lin Phu
Lauren Bruce
Justin Myers
Jessica Clemmons
Amy McNeely
Ashlynn Boedecker
Ritu Ghose
Jessica McKinley
Seth Brittle
Jacob Doolin
Dustin Estridge
Anna Foote
Shannon Hennley
Megan Huddleson
Robert Johnson
Abraham Kemboi
Carlie McGrath
John “Jack” McGrath
Renata Mitton

David Roland
Nicholas Rose
Nathaniel Brackett
Brannon Dunn
Robert Magley
Saagar Patel
Jennifer Purvis
Sarah Steele
Jonathan Tumey
Katie Watson
James Waweru
Benjamin Wick
Scott Atkinson
Felicia Gooden
Jessica Dagher
Triet Truong
Kayla Lilly
Fadwa Constandinidis
Kyle Danielson
Jessica Davis
Mark Duffy

Ashley Hoang
Markeata Lee
Richard Grimes
Jeremy Lear
Richard Cooke
Morgan Russell
Adam Lampert
Kyle Liddy
Tara Fujimoto
Kelsie Eberst
Laura Bailey
Ted Alfred
Sarah, Sharrock
Perri Freeman*
Ryann Patrus*
Zeb Reichert*
Sam Senzek*
Nargess Jumathan*

*Antioch students
Thank You!

Mr. Nick Boutis, Executive Director, Glen Helen Ecology Institute
Glen Helen Staff: Mr. Shahkar Strolger, Mr. George Bieri,
Mr. Ben Silliman, Ann Simonson, Tina Spencer
Dr. David Kammler, Antioch College
Mr. Joe Bates and Mr. Brad Ault and staff at WWTP
Ms. Jessica Clemmons and YSI/Xylem
Dino’s Cappuccinos
(helped keep students warm and gave us ice to keep samples cold)
Mr. Garrett VanNess, laboratory assistance
Wright State University Department of Chemistry funding
Sture Fredrik Anliot Fund for stormwater analysis funding

Class posters available in WSU Libraries CORE Scholar
http://works.bepress.com/audrey_mcgowin/