Journal of Bioresource Management

Volume 2 | Issue 2

Article 4

A Review: Antifungal Potentials of Medicinal Plants

Ghulam Murtaza PMAS-Arid Agriculture University, Rawalpindi, Pakistan

Muhammad Mukhtar Department of Biotechnology, American University of Ras Al Khaimah, UAE

Aysha Sarfraz Quaid-i-Azam University, Islamabad, Pakistan, aysharizvi87@gmail.com

Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm

Part of the Biodiversity Commons, and the Biology Commons

Recommended Citation

Murtaza, G., Mukhtar, M., & Sarfraz, A. (2015). A Review: Antifungal Potentials of Medicinal Plants, *Journal of Bioresource Management, 2* (2). DOI: 10.35691/JBM.5102.0018 ISSN: 2309-3854 online

This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

A Review: Antifungal Potentials of Medicinal Plants

© Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in the Journal. We operate under International Version 4 (CC BY 4.0) of Creative Commons Attribution License which allows the reproduction of articles free of charge with the appropriate citation of the information.

A REVIEW: ANTIFUNGAL POTENTIALS OF MEDICINAL PLANTS

Ghulam Murtaza¹, Muhammad Mukhtar², Aysha Sarfraz^{3*}

¹ PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.

². Department of Biotechnology, American University of Ras Al Khaimah PO Box 10021, Ras Al Khaimah, UAE.

³ Quaid-i-Azam University, Islamabad 44400, Pakistan.

*Email: <u>aysharizvi87@gmail.com</u>

ABSTRACT

Medicinal plants have been widely used to treat a variety of infectious and non-infectious diseases. According to an estimate, 25% of the commonly used medicines contain compounds isolated from plants. Several plants could offer a rich reserve for drug discovery of infectious diseases, particularly in an era when the latest separation techniques are available on one hand, and the human population is challenged by a number of emerging infectious diseases on the other hand. Among several other ailments, fungal infections are posing a great threat to the mankind, as a large number of people suffer from fungal infections worldwide due to emerging resistance of fungal strains. The available antifungal drugs are either too costly or are accompanied with several side effects. Of importance, a variety of medicinal plants have shown promise to treat a number of fungal infections, and some of them possess broad-spectrum antifungal activity. This article describes potential antifungal properties of medicinal plants against fungi, and suggests screening the potential of plants possessing broad-spectrum antifungal effects against emerging fungal infections.

Keywords: Medicinal Plants, Conventional medicine, fungal infection, antifungal.

INTRODUCTION

Fungal infections are the leading cause of death in both advanced and developing countries. This is due to the use of immunosuppressive treatments, long term use of antibiotics, and longer immunocompromised survival of individuals (Molero et al., 1998).

There are numerous antifungal agents used clinically to treat fungal infections. Triazole antifungal agents like fluconazole and itraconazole came into play in the early 1990's, followed by amphotericin-B in the mid 1990's. These antifungal drugs can be broadly classified into five major classes, i.e. azoles, allylamines, echinocandins, griseofulvin, and flucytosine (Chen and Sorrell, 2007).

The emerging resistance of microbes to antifungal agents has serious implications in the management of infections. These antifungal compounds also act on targets found in mammalian cells which may result in toxicity or adverse drug interactions (Lucca and Walsh, 1999). Ketoconazole is one of the antifungal drugs used against both superficial and deep seated infections. However, its unpleasant side effects include nausea. abdominal pain, itching. toxicity, slow therapeutic response. and poor efficacy in immunocompromised patients (Pyun and Shin, 2005).

Therefore, the discovery of novel antifungals is severely needed. Phytochemistry various of plant species has indicated that the phytochemicals could be a better source of medicine as compared to synthetically produced drugs. The use of plants as medicine goes back to early man. These traditional medicines based on medicinal plants have been used for centuries. Therefore one approach that has been used for discovery of antimicrobial agents is the evaluation of plant extracts (Ozcelic et al., 2005).

Medicinal plants are of great importance to health of individuals and communities. This importance lies in their chemical substances that produce a definite physiological action on the human body. The most important of these bioactive compounds include alkaloids, tannins, flavonoids, and phenolic compounds (Edeoga et al., 2005). The health effects of flavonoids include antioxidant, anti-inflammatory, hepatoprotective, antiallergic, antithrombotic, antiviral, and anticarcinogenic (Prior, 2003). Alkaloids show many useful effects like antihypertensive and anti-tumor. Alkaloid based drugs include caffeine, quinine, nicotine, artemisinin, cholchicine, and amblyopia (Taber et al., 2002). Tannins include corilagin and geraniin, which show anti-human immuno syndrome activity deficiency bv inhibiting reverse transcriptase (Notka et al., 2004).

Emerging Fungal Pathogens

Fungal pathogens are a leading cause of morbidity and mortality in immunocompromised patients. Several of these pathogens are well known, e.g. fumigatus. Aspergillus Aspergillus fumigatus is the major cause of nosocomial fungal pneumonia and is the cause of the second most common fungal infections. The antifungal drug Azole was effective against this pathogen but now it has started developing a resistance against it (Moye-rowley, 2015). Fungal keratitis, an infection of the cornea, is caused by a rare Trichophyton spp. (Sharma et al., 2014). Cryptococcus neoformans is the cause of CNS mycosis in HIVinfected patients (Price et al., 2011). Histoplasma capsulatum causes a rare infection, Histoplasmosis, which typically targets mammals. It has a latent stage can be reactivated when the patient is immunocompromised (Rappleye et al., 2004). There is also recognition of other emerging fungal infections, such as Fusarium spp, dematiaceous Zygomycetes and moulds, dimorphic fungi such as Penicillium marneffei, Coccidioides inmotis, and Histoplasma capsulatum (Walsh and Groll, 1999).

Candida spp. has been found to be fourth leading cause of nosocomial (Pfaller and infections Diekema, 2007). They caused about 88% of infections in the United States between 1980 and 1990. Candida albicans is the species most commonly isolated from clinical material and accounts for 40-70 % of cases of candidiasis. The epidemiology data indicates that 5 to 10 of every 1000 risk patients will Candida blood contract stream infection and about 35 % of these patients will die as a result of infection, while 30 % will die as a result of an underlying disease (Lockhart et al., 2009). In 2013, it was reported by the Centers for Disease Control (CDC) in the United States that a resistant strain of *Candida albicans* is responsible for approximately 3,400 cases of both superficial and blood stream infections, annually.

In addition to humans, plants are also greatly affected by different fungal infections. Puccinia spp. causes different types of rust diseases in wheat and is a reason for great losses in grain production (McIntosh et al., 1995). Fusarium graminearum causes a disease called Fusarium head blight in wheat and barley (Ding et al., 2009). Alternaria species is among the most common cause of necrotrophic diseases of plants. Some of the major plant pathogens reside in this genus, including A. brassicicola and A. solani. A. brassicicola is the cause of black spot disease on an important plant species of Brassica (Westman et al., 1999). Synchytrium endobioticum, a soil-borne obligate biotrophic fungus, is the cause of potato wart disease in the cultivated potato (Solanum tuberosum L.) (Obidiegwu et al., 2014)

Ustilago maydis is a member of the biotrophic smut fungi that infects grasses and many important crop plants such as maize, wheat, barley, and sugar cane (Brefort et al., 2009).

Medicinal Values of Plants

The recent research on medicinal plants has revealed their great pharmacological importance due presence to the of active phytoconstituents. Medicinal substances are products of metabolic pathways. Nevertheless, each species has its own genetic structure that governs the presence of bioactive molecules. Environmental effects are also responsible for variations in the amount of phytochemicals present in each species (Thomas, 2000).

About 80% of the world depends on alternative medicines from plants. Approximately 70, 000 plants are used in medicines. Indian Ayurveda utilizes about 2,000 plants to cure different ailments. These plants are our common heritage and their use for human use has developed the concept of herbal medicine or phytotherapy. Every medicinal herb contains a number of constituents that facilitate its curative activity. A few of these compounds include reserpine, taxol, and vincristine, which have been isolated and synthesized on a large scale. The total number of compounds present in the plant kingdom is about 200, 000. These compounds are used plants maintenance. for bv reproduction, healing, defense, and offense. The plants are used for their nutrients in general, and to some extent for the healing process. Many of these food plants possess polyphenols and antioxidants. Vegetable, fruits and nuts are also a good source of secondary metabolites (Daniel, 2006). A summary of medicinal plants having antifungal effects have been given in table 1.

Isolation and Characterization of Antifungal Compounds

The very basic and essential step for the evaluation of therapeutic potential of medicinal plants is preparation of crude a extract. followed by isolation of various medicinal constituents. There are a large number of books and literature available regarding phytomedicines. Some examples are *Plant* Drug Layer Analysis: Α Thin Chromatography Atlas (Wagner et al., 1996), Modern Phytomedicine: Turning Medicinal Plants into Drugs (Ahmad et al., 2007) and Laboratory Handbook for the Fractionation of Natural Extracts (Houghton and

Murtaza *et al.*,: Antifungal Potentials of Medicinal Plants J. Bioresource Manage. (2015) 2(2): 23-31.

Table 1: Medicinal Plants used against different pathogenic fungi.			
	Medicinal Plants	Antifungal activity	References
1.	Eucalyptus globolus,	The methanolic plant extracts possess strong in vitro	Navarro et al. 1996
	Punica granatum,	anticandidal activity	
	Artemisia mexcana and		
	Bocconia arborea		
2.	Micromeria nervosa and	Ethanolic and aq. extracts were tested and show antifungal	Ali-Shtayeh et al.
	Inula viscose	activity	1998
3.	Hypericum scabum,	Trichloromethanolic, n-hexane, aqueous aerial parts, bulb	Atalay et al. 1999
	Thymus fallax	and seed of plants show anticandidal activity.	
4.	Rhoicissus digitata and	Methanolic extract of root exhibited highest anticandidal	Lin et al. 1999
_	Rhoicissus rhomboidea	activity.	~
5.	Albiizia lebbeck, Allium	Aqueous extracts of plants used to cure Candidiasis.	Srinivasan et al.
	sativum, Allium cepa,		2001
	Cassia angustifolia,		
	Coriandrum sativum,		
	Moringa		
	pterygosperma,		
	Tamarindus indica, Tantan ang dia and		
	Tectona grandis and		
6	Zingiber officinale	Mathematic attract of leaves branches and flowering tons	Panizzi et al. 2002
6.	Rubus ulmifolius	Methanolic extract of leaves, branches and flowering tops showed a larger inhibition zone against <i>Candida albicans</i> .	Familizzi et al. 2002
7.	Terminalia chebula	Methanolic and aqueous extract of seed of plant show	Vonshak <i>et al.</i> 2003
/•		anticandidal activity	v olisliak <i>et ut.</i> 2003
8.	Syzygium jambolanum	Leaf, fruit, stem, bark showed anticandidal activity.	Chandraekaran et
0.	Syzy grund game o tartaint		al. 2004
9.	Zanthoxylum	Aqueous extracts show antifungal activity	Bafi-Yeboa <i>et al</i> .
	americanum		2005
10.	Justicia secunda and	Methanolic extract of plant show anticandidal activity	Rojas <i>et al</i> . 2006
	Piper pulchrum		5
11.	Schinus terebintifolis,	Methanolic extracts of different parts show anticandidal	Braga <i>et al</i> . 2007
	Ocimum gratissimum,	activity.	-
	Cajanus cajan and		
	Piper aduncum		
12.	Piper ovatum Vahl	C. tropicalis	Silva et al., 2009
13.	Mentha piperita	Antifungal activities against Candida and Aspergillus spp.	Saharkhiz <i>et al</i> .,
			2012
14.	Achillea millefolium	Anticandidal activity	Ribeiro et al., 2010
15.	Cymbopogon citratus	Antifungal activity against Malassezia spp.	Carmo et al., 2013
16.	Boesenbergia pandurata	Antifungal activity against Candida albicans	Taweechaisupapon
			g et al., 2010
17.	Xanthium strumarium L.	Essential oil inhibits growth of <i>Candida albicans</i> and	Rad et al., 2015
		Aspergillus niger	
18.	Oxalis corniculata	crude, <i>n</i> -hexane, and chloroform extracts show activity	Rehman <i>et al.</i> , 2015
		against Fusarium solani, Aspergillus flexneri, and	
4.0		Aspergillus flavus	
19.	Polyscias fulva	ethyl acetate, n-butanol and residue showed activity	Njateng <i>et al.</i> , 2015
		against different Candida species and	

Table 1: Medicinal Plants used against different pathogenic fungi.

Murtaza *et al.*,: Antifungal Potentials of Medicinal Plants J. Bioresource Manage. (2015) 2(2): 23-31.

Raman, 1998). Most of the books describe classical procedures which pose limitations of reproducibility and quality. To ensure high quality herbal preparations, efforts are ongoing to replace traditional methodologies with modern sample preparation and procedures. extraction Classical methods are being complemented with modern techniques like microwaveassisted extraction, pressurized liquid matrix-assisted extraction, laser desorption/ionization mass spectrometry, and several others (Mukhtar et al. 2008).

Future Prospects

The importance of plants is becoming clear from the fact that more than 80% of the world population fulfills its medical needs from plants. There is a need of collaborative steps to make usage of medicinal plants common. The habitats which are rich in treasure of medicinal plants should be focused on. This would not only uplift the economy of the poor inhabitants, but also lead to preparation indigenously. of medicines The discovery of active principles from plants with the help of the developed world could also eliminate the emerging resistance of fungi to the synthetic drugs.

ACKNOWLEDGEMENT

We are extremely grateful to Prof. Dr. Muhammad Mukhtar for his support, scientific input and guidance.

REFERENCES

Ahmad, I., Aqil, F., Owais, M., 2007. Modern Phytomedicine: Turning Medicinal Plants into Drugs, 1st ed. Wiley-VCH, Verlag GmbH & Co, KGaA, Weinheim.

- Ali-Shtayeh, M.S., Reem, M.R.Y., Faidi, Y.R., Khalid, S. and Al-Nuri, M.A., 1998. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol. 60, 265-271.
- Bafi-Yeboa, N.F., Arnason, J.T., Baker, J. and Smith, M.L., 2005. Antifungal constituents of Northern prickly ash, *Zanthoxylum americanum* Mill. Phytomed.12, 370-377.
- Braga, F.G., Maria, L.M.B., Rodrigo,
 L.F., Magnum, D.M., Francis,
 O.M., Elita, S. and Elaine, S.C.,
 2007. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J. Ethnopharmacol. 111, 396-402.
- Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, et al. 2009. *Ustilago maydis* as a pathogen. Annu Rev Phytopathol 47: 423–445.
- Carmo, E.S.; Pereira, F.d.O.; N.M.; Cavalcante, Gayoso, C.W.; Lima, E.O. Treatment of pityriasis versicolor with topical application of essential oil of Cymbopogon citratus (DC) stapf-therapeutic pilot study. An. Bras. Dermatol. 2013, 88, 381–385.
- Centres for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. Disease Control and Prevention; Atlanta, GA, United States: 2013. Fluconazole-Resistant Candida; p. 63.

- Chandraekaran, M. and Venkatesalu, V., 2004. Antibacterial and antifungal activity of *Syzygium jambolina* seeds. J. Ethnopharmacol. 91,105-108.
- Chen, S.C.A. and Sorrell, T.C., 2007. Antifungal agents. MJA.187, 404-409.
- Daniel, M., 2006. Medicinal plants: Chemistry and Properties. Sci. Pub., Hampshire, USA: 1-2.
- Edeoga, H.O., Okwu, D.E. and Mbaebie, B.O., 2005. Phytochemical constituents of some Nigerian medicinal plants. Afric. J. Biotech. 4, 685-688.
- Houghton, P.J., Raman, A., 1998. Laboratory Handbook for the Fractionation of Natural Extracts. Chapman and Hall, New York.
- Lin, J., Opoku, A.R., Geheeb-Keller, M., Hutchings, A.D., Terblanche, S.E., Jager, A.K. and Van Staden, J., 1999. Preliminary screening of some traditional Zulu medicinal Plants for anti-inflammatory and antimicrobial activities. J. Ethnopharmacol. 97, 305-311.
- Lockhart, S.R., Shawn, A.M., Michael, A.P. and Daniel, J.D., 2009. Identification and Susceptibility Profile of Candida fermentati from a Worldwide Collection of Candida guilliermondii Clinical Isolates. J. Clin. Microbiol. 47, 242-244.
- Lucca, A.J.D. and Walsh, T.J., 1999. Antifungal peptides: novel therapeutic compounds against

emerging pathogens. Antimicrobial agents and Chemoth.43, 1-11.

- McIntosh R. A., Wellings C. R., Park R. F. (1995). Wheat Rusts: An Atlas of Resistance Genes. Melbourne: CSIRO Publishing.
- Molero, G., Orejas, R.D., Garcia, F.N., Monteoliva, L., Pla, J., Gil, C., Parez, M.S., Nombela, C., 1998. Internation. Microbiol.1, 95-106.
- Moye-Rowley, W. S. 2015. Multiple mechanisms contribute to the development of clinically significant azole resistance in Aspergillus fumigatus. Frontiers in Microbiology, 6, 70.
- Navarro, V., M. Luisa, V., Gabriela, R. and Xavier, L., 1996. Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. J. Ethnopharmacol.53, 143-147.
- Njateng GS, Du Z, Gatsing D, Nanfack Donfack AR, Feussi Talla M, Kamdem Wabo H, Tane P, Mouokeu RS, Luo X, Kuiate JR. 2015. Antifungal properties of a new terpernoid saponin and other compounds from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement Altern Med. Feb 15; 15:25.
- Notka, Meier, F.G. and Wagner, R., 2004. Concerted inhibitory activities of *Phyllanthus amarus* on HIV replication *in vitro* and *exvivo*. Antiviral Res. 64, 93-102.

- Obidiegwu, J. E., Flath, K., & Gebhardt, C. (2014). Managing potato wart: a review of present research status and future perspective. Theor Appl Genet. 127(4): 763–780.
- Ozcelik, B., Aslan, M., Orhan, I. and Karaglu, T., 2005. Antibacterial, antifungal and antiviral activities of lipophylic extracts of *Pistacia vera*. Microbiol. Res.160, 159-164.
- Panizzi, L., Caponi, C., Catalano, S., Cioni, P.L. and Morelli, I., 2002. *In vitro* antimicrobial activity of extracts and isolated constituents of *Rubus ulmifolius*. J. Ethnopharmacol.79, 165-168.
- Pfaller M.A., Diekema D.J. 2007. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 20:133–163.
- Price M.S., Betancourt-Quiroz M., Price J.L., Toffaletti D.L., Vora H., Hu G., Kronstad J.W., Perfect J.R. 2011. *Cryptococcus neoformans* requires a functional glycolytic pathway for disease but not persistence in the host. MBio. 2:e00103-11.
- Prior, R.L., 2003. Fruits and vegetables in the prevention of cellular oxidative damage. Am. J. Clin. Nutr.78, 570–578.
- Pyun, M.S. and Shin, S., 2005. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomed.13, 394-400.

- Rappleye C.A., Engle J.T., Goldman W.E. RNA interference in *Histoplasma capsulatum* demonstrates a role for α -(1,3)-glucan in virulence. 2004. Mol. Microbiol. 53:153–165.
- Rehman A, Rehman A, Ahmad I. 2015. Antibacterial, Antifungal, and Insecticidal Potentials of *Oxalis corniculata* and Its Isolated Compounds. Int J Anal Chem. 2015:842468.
- Ribeiro, D.I.; Alves, M.D.S.; Faria, M.G.I.; Svidzinski, T.I.E.; Ferreira, Nascimento, I.A.; F.B.P.; Ferreira, G.A.; Gazim, Z.C. Determination of antifungal activity of essential oils of Curcuma longa L. (Zingiberaceae) and Achillea. millefolium (Asteraceae) grown in the northwest Paraná. Arg. Ciênc. Saúde UNIPAR 2010, 14, 103-109.
- Rojas, J.J., Veronica, J.O., Saul, A.O. John. F.M., 2006. and Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: А possible alternative in the treatment of non-nosocomial infections. BMC Complement Alter. Med.6, 2.
- Rukayadi, Y., Shim, J.S., Hwang, J.K., 2008. Screening of Thai medicinal plants for anticandidal activity. Mycoses. 51, 308-12.
- Saharkhiz, M.J.; Motamedi, M.; Zomorodian, K.; Pakshir, K.; Miri, R.; Hemyari, K. Chemical composition, antifungal and antibiofilm activities of the essential oil of Mentha. piperita

L. ISRN Pharm. 2012, 2012, 1– 6.

- Sharifi-Rad J, Hoseini-Alfatemi SM, Sharifi-Rad M, Sharifi-Rad M, Iriti M, Sharifi-Rad M, Sharifi-Rad R, Raeisi S. 2015. Phytochemical Compositions and Biological Activities of Essential Oil from *Xanthium strumarium L*. Molecules. Apr 17; 20(4): 7034-47.
- Silva, D.R.; Endo, E.H.; Nakamura, C.V.; Svidzinski, T.I.E.; de Souza, A.; Young, M.C.M.; Ueda-Nakamura, T.; Cortez, D.A.G. Chemical composition and antimicrobial properties of Piper ovatum Vahl. Molecules 2009, 14, 1171–1182.
- Sokamen, A., Brain, M.J. and Murat, E., 1999. The *in vitro* antibacterial activity of Turkish medicinal plants. J. Ethnopharmacol. 67, 79-86.
- Sharma, Y., Jain, S., & Jayachandran. 2014. Keratomycosis: Etiology, Risk Factors and Differential Diagnosis- A Mini Review on Trichophyton spp. Journal of Clinical and Diagnostic Research: JCDR, 8(10), DD01–DD02.
- Srinivasan, D., Nathan, S., Suresh, T. and Perumalsamy, P., 2001. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J. Ethnopharmacol.74, 217-220.
- Taber, D.F., Neubert, T.D. and Rheingold, A.L., 2002. Synthesis of (-)-morphine. J. Am. Chem. Soc.124, 12416– 12417.

- Taweechaisupapong, S.; Singhara, S.; Lertsatitthanakorn, P.; Khunkitti, W. Antimicrobial effects of Boesenbergia. pandurata and Piper sarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens. Pak. J. Pharm. Sci. 2010, 23, 224–231.
- Thomas, S.C. L., 2000.Medicinal plants: Culture, utilization and phytopharmacology, Ist ed. CRC. Press, Florida, US: 1-2.
- Vonshak, A., Barazani, O., Sathiyamoorthy, P., Shalev, R., Vardy, D. and Golan-Goldhirsh, A., 2003. Screening of South Indian medicinal plants for antifungal activity against Cutaneous pathogens. Phytother. Res.17, 1123-5.
- Wagner, H., Bladt, S., Ricki, V., 1996. Plant Drug Analysis: A Thin Layer Chromatography, 2nd ed. Springer, New York.
- Walsh, T.J. and Groll, A.H., 1999. Emerging fungal pathogens: Evolving challenges to immunocompromised patients for the twenty-first century. Transpl. Inf. Dis.1, 247-261.
- Westman AL, Kresovich S, Dickson MH: Regional variation in *Brassica nigra* and other weedy crucifers for disease reaction to *Alternaria brassicicola* and *Xanthomonas campestris pv. campestris.*

Euphytica 1999, 106:253-9.

Willger S.D., Puttikamonkul S., Kim K.-H., Burritt J.B., Grahl N., Metzler L.J., Barbuch R., Bard M., Lawrence C.B., Cramer R.A., Jr. 2008. A sterolregulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in *Aspergillus fumigatus*. PLoS Pathog. doi: 10.1371/journal.ppat.1000200.

Zhang, Z., Elsohly, H.N., Jacob, M.R., Pasco, D.S., Walker, L.A. and Clark, A.M., 2002. Natural products inhibiting *Candida albicans* secreted aspartic proteases from *Tovomita krukovii*. Planta Medica, 68, 49-54.