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Latent 
Variable
Interaction
and 
Quadratic
Research

                 Copyright (c) Robert Ping 2001-2019

 (Displays best with Microsoft 
IE/Edge or Mozilla Firefox)   

       
(HOME)

     

 Please note: The entire site is now under construction. 

 Please send me an email at rping@wright.edu if something 
isn't working, especially the
  endogenous interaction workaround--I can provide it 
via email.

 

FOREWARD--This web site contains research 
concerning:

              o Latent variables (LV's), and LV 
interactions (XZ) and quadratics  
                 (XX) in theoretical (hypothesis testing) 
models involving real world 
                 survey data,

   and

              o Testing these models.

It is intended for Ph.D. students and researchers 
who are somewhat familiar with LV's 
   and structural equation modeling (SEM) software 
such as LISREL, EQS, AMOS, 
   SIMPLIS, etc., and who may be just getting started 
with estimating substantive 
   (theory-testing) models with one or more LV 
interactions (XZ) or quadratics (XX); 
   or for example, having difficulties with model-to-
data fit, a measure with 
   unacceptable Average Variance Extracted (AVE), 
estimating truly categorical
   variables (e.g., gender) in a structural equation 
model with LV's, a 3-way LV
   interaction (e.g., XZW), etc.

http://www.wright.edu/%7Erobert.ping/index_files/Robert.gif
http://www.wright.edu/%7Erobert.ping


 

INTRODUCTION--This update emphasizes two 
perhaps surprising topics:
 
   1) The importance of XZ and XX reliability and 
validity in theory testing with 
       LV's, and 

   2) a procedure for deleting measure items to 
attain model-to-data fit 
       that typically produces at least 2 "about-6-
item" subsets that  
       fit the data, and have acceptable reliability 
and Average Variance 
         Extracted (AVE). 

These topics are important in LV theory testing 
because interaction and 
   quadratic reliability and AVE (a facet of validity) 
are typically ignored--perhaps 
   because they are sometimes unacceptably low. 
However, they frequently can 
   be improved by simply reitemizing X and Z. 

Interaction and quadratic reliability and validity are 
important in LV theory tests
   because if XZ is unreliable, it is per se invalid. 
Further, lack of XZ Convergent 
   Validity, for example, may threaten any conclusion 
based on XZ's significance. 
   Specifically, a significant XZ-Y association may be 
NS (falsely disconfirmed) in
   a subsequent study because the present study's 
significant XZ-Y association may 
   be an artifact (the result) of XZ's measurement 
error.
     Further, lack of XZ's Content (Face) Validity, may 
call into question whether or not 
  XZ's  moderation hypothesis was actually tested. To 
explain, if XZ is not Face Valid 
  (it is not itemized as
 
         XZ = (x1 + x2 +...+ xn)*(z1 + z2 +...+ zm)
 
              = x1z1 + x1z2 +... + x1zm
                 + x2z1 + x2z2 +,,, + x2zm
                 +...+ xnz1 + xnz2 +... + xnzm ) ,

   where xizj is the product of the indicators Xi and 
Zj, the hypothesized X moderation 



   of Z-Y in the model 

         Y=... + aX + bZ + cXZ + ...

           = ... + [a+cX]Z + bz + ...
 
   (i.e., the coefficient of Z depends on--is moderated 
by--values of X in the coefficient 
   [a+cX] ) (see Aiken and West 1991) has not been 
adequately tested by the model 
   because XZ cannot be factored into [a+cX]Z--the 
Z in bZ is not itemized the same 
   way as the Z in cXZ.

   To find out more see "Why are reviewers asking about 
reliability and 
   validity in my XZ interaction, and is there any way to improve 
XZ reliability and 
   validity?" in QUESTIONS OF THE MOMENT below.
 
FINDING CONSISTENT, VALID AND RELIABLE 
ITEMIZATIONS--As a
   colleague once quipped, "what has happened to 
more-than-three-item measures
   these days?" The answer may be simple: Any 
three-item measure is a priori 
   consistent (i.e., it always fits the data) and one 
only needs to find three items that 
   are valid and reliable. 
     Kidding aside, theory testers know that while 
there are procedures to find a 
   reliable subset of items, finding one that is 1) 
reliable, 2) face valid, 
   3) convergent and discriminant valid, plus 4) 
consistent can be a challenge. 
   
   Fortunately, there is a procedure that can find two 
or more subsets of items that 
   usually attains 1) through 4) jointly. Specifically, 
experience suggests 
   the resulting item subsets all "fit the data," they 
usually have near-maximum reliability 
   and AVE, plus they typically are larger than 3 
items.

   This procedure is discussed further in QUESTIONS OF THE 
MOMENT below under
   " Is there any way to speed up 'item weeding' and find a set of 
items that jointly 
   fits the data, contains more than 3 items, and is valid and 
reliable?"



NEWS:

   "The EXCEL spreadsheet for specifying XZ, XX 
and/or ZZ has been extensively revised
   to speed up XZ, etc. specification and estimation. 
In addition, as some have noticed
   the spreadsheet can be used to compute X and Z 
reliability and AVE, even when an 
   interaction or quadratic is not being specified. 
(Please see EXCEL TEMPLATES 
   below.)

   "Workarounds" for an unbiased estimate of an 
"endogenous" interaction or quadratic 
   with AMOS (and SIMPLIS) are available by e-mail. 
(AMOS and SIMPLIS do 
   not allow the free (non zero) correlation(s) 
between an interaction, XZ, and its 
   endogenous constituent latent variable X (and/or 
Z) (i.e., X and/or Z has an 
   antecedent) that are required to adequately 
estimate an interaction or quadratic 
   in real-world data).
  
   A paper about reusing one's data set to create a 
second theory-test paper is 
   available. It turns out that an editor may not object 
to a theory-testing paper that 
   reuses data which has been used in a previously 
published theory-testing paper, if 
   the new paper's theory/model is "interesting" and 
materially different from the 
   previously published paper. The paper discusses 
how submodels from a previous 
   paper might be found for a second paper that may 
not require collecting new data 
   (to help reduce the "time between papers"). Please 
see "Notes on Used Data--
   Reusing a Data Set to Create A Second Theory-Test Paper" in 
SELECTED 
   PAPERS... below.

   A working-paper about peer-revewing a theory-test 
paper is available by e-mail. Its 
   suggestions could be used as a check-list to help 
with peer-reviewing a (survey data) 
   theory-testing paper. It might also be useful as a 
framework for a dissertation that 
   tests a model using survey data, or for a theory-
test paper prior to its submission 
   for review. 
 



   A warning about relying on "standardized loadings" 
(latent variable (LV) loadings
   that are all free, so the resulting LV has a variance of unity) for 
significance estimates 
   is available. (Standardized loadings may produce an incorrect 
t-value for a structural 
   coefficient in real-world data, and any interpretation or 
implication of its significance 
   or nonsignificance may be risky.) Please see "Why are 
reviewers complaining about 
   my use of standardized loadings?" in QUESTIONS OF THE 
MOMENT below.
  
   Suggestions for estimating a "moderated 
quadratic" LV (i.e., XXZ) are available by 
   email. LV's such as XXZ may seem unlikely, but for 
an LV (X) that exhibits diminishing 
   returns (XX), its rate of return also may vary with 
the level of a moderator. (For 
   example, the Satisfaction-Exiting association can 
be quadratic--when Satisfaction is 
   high, further increases in Satisfaction are likely to 
produce fewer and fewer 
   reductions in the likelihood of Exiting. However, 
this quadratic (i.e., upside-down 
   horseshoe) Satisfaction-Exiting relationship also 
may depend on the availability of 
   Alternatives: with lots of Alternatives, increases in 
Satisfaction may produce 
   near-linear reductions to Exiting--i.e., the 
Satisfaction-Exiting association may no 
   longer be quadratic--it may be linear.
  
   The procedure for estimating (truly) categorical 
variables in a mixed model with 
   (multiple indicator) LV's has been expanded. Please see 
"How does one estimate 
   (truly) categorical variables in theoretical model tests using 
structural equation 
   analysis?" in QUESTIONS OF THE MOMENT below.)

   An annotated suggested format for substantive 
papers that may reduce the likelihood 
   of paper rejection is available by email. (For 
example, a paper's customary 
   Abstract-Intro-Lit Review, etc. can be insufficient 
to "hook" the reviewers, and pique
   their interest in the rest of the paper. The format 
suggests, in some cases, 
   subtle changes in wording and content for these 
and other paper sections.)
   
   A suggested approach for improving a problem 



measure--one with a low Average 
   Variance Extracted, or one that has been 
excessively weeded or with low 
   model-to-data fit, etc.--also has been expanded. 
Please see "How are "Formative" 
   (indicators-pointing-to) Latent Variables estimated 
with LISREL, EQS, AMOS, etc.?" 
   in QUESTIONS OF THE MOMENT below.)

   A suggested approach is available for estimating a 
3-way interaction (e.g., XZW) 
   that has some surprising results.
        A three-way interaction may seem unlikely, but 
a proper test of hypotheses 
   such as "H0: X-->Y is moderated by Z" and "H1: 
X-->Y also is moderated by W" 
   is to specify XZ, XW and XZW in the model. (Z 
and W may moderate X-Y jointly 
   via ZWX rather than separately (via ZX and WX). 
Stated differently, ZX and WX 
   could be NS while ZWX is significant (ZW 
moderates X). 
        However, there are at least 4 nonequivalent 
specifications of XZW. And, the 
   recommended specification used in regression is 
typically NS in real-world theory tests, 
   while one or more of the other three 3-way 
specifications can be significant, and 
   this difficulty appears to occur in latent variable 
specification as well. (Please see 
   "Why are the Hypothesized Associations not 
Significant? A Three-Way Interaction?" 
   in SELECTED PAPERS... below.)
   
   The suggestions for improving AVE have been 
expanded, also with some surprising 
   results (e.g., some of the popular "discriminant 
validity" tests are not trustworthy in 
   theory tests with real-world survey data). (Please 
see "Is there any way to improve
   Average Variance Extracted (AVE) in a Latent 
Variable X?" in QUESTIONS OF THE 
    MOMENT below.)

   A suggested approach is provided for remedying a 
"not Positive Definite" message 
   (an "Ill Conditioned" message in exploratory factor 
analysis) that typically occurs 
   when a full (unweeded) measure is factored, 
specified etc. for the first time. 
   (Please see "How does one remedy a "not Positive 



Definite" message?" in 
   QUESTIONS OF THE MOMENT.)

   Comments on the use of PLS in theory tests 
involving survey data are available.
   (Please see "Why are reviewers complaining about 
the use of PLS in my paper? 
   in QUESTIONS OF THE MOMENT.)

   Specifications for an interaction form other than 
XZ are available by e-mail. This may 
   not sound like much, but XZ is not the only form an 
interaction can take--
   X/Z and XZ2 are also interactions. So, a 
nonsignificant XZ may not mean an 
   hypothesized moderation (interaction) is 
disconfirmed. 
        Specifically, if the XZ-->Y association is NS 
there still may be a significant 
   interaction--it just doesn't have the form "X times 
Z". Experience suggests 
   that X/Z, XZ2 or other interaction forms may be 
significant when the XZ 
   is not. 

   Comments on the use of regression to test an 
hypothesized interaction are available.
   (Please see "Why are reviewers complaining about 
the use of moderated multiple
   regression in my paper? in QUESTIONS OF THE 
MOMENT.)

   The suggestions for estimating an endogenous 
interaction have changed. An EXCEL 
   template for estimating the indirect effect of an 
endogenous interaction is available 
   by e-mail. (Please see "Please Note: If you are 
estimating an interaction involving 
   an endogenous variable..." in the 
INTRODUCTION.)

   A paper on hypothesizing interactions is available 
(i.e., what evidence suggests 
   the presence of an interaction before data is 
collected, how an interaction might 
   be justified (argued for), etc.). (Please see 
"Interactions May Be the Rule Rather 
   than the Exception, But..." in SELECTED 
PAPERS...below.)

   A web site relocation has obsoleted many citations 



on this web site (and published 
    papers) that reference 
http://home.att.net/~rpingjr/... Since that internet 
address no 
    longer exists, these citations should be changed to 
http://www.wright.edu/~robert.ping/...

Coming Attractions:

   o Suggestions regarding reviewer comments about 
"Implications," and "(Management) 
      Recommendations" in a theory testing paper.  
(Please e-mail me for a progress 
      report.)
           (Comments on handling reviewer comments 
in general are available on the 
      Higher Education web page--please click on 
"Home" above, then click on "Higher 
      Education.")

   o An EXCEL template that provides a simple and 
straightforward tabular interpretation 
      of a significant Interaction (similar to crosstabs) 
that does not require 
      graphs (please e-mail me for a draft template).

Recent Additions and Changes:

   o Suggestions for estimating a mixed SEM model 
with the customary "Reflective" 
      (arrows-to-indicators) LV's, plus "Formative" 
(indicators-pointing-to) LV's are 
      provided. 
           This sounds like it would never be useful. 
Some may have been told this 
      can not, or should not, be done with SEM (e.g., 
with LISREL, AMOS, EQS, etc.). 
      However, a new measure (or an older, well 
established, measure developed 
      before the advent of SEM) frequently requires 
substantial weeding in order to 
      attain model-to-data fit. And, the weeded 
measure may be missing so many 
      items that a reviewer might judge it to be no 
longer adequately face valid. 
      Or, no itemization can be found with adequate 
Average Variance Extracted 
      (AVE), or adequate discriminant validity, etc. 
Perhaps surprisingly, such 
      measures usually can be re-specified as 
Formative--typically using the full 
      (unweeded) measure--and estimated using 



LISREL, AMOS, EQS, etc. in 
      order to remedy these difficulties. 
      
   o The "Why is my hypothesized interaction or 
quadratic nonsignificant?" paper 
      (below) is being revised to account for 
interaction forms besides XZ;

   o A paper on using regression to test an 
hypothesized interaction that links 
      to a paper titled "What is Structural Equation 
Analysis?" is provided. 

   o The cubics paper is revised, and an EXCEL 
template for specifying cubics is 
      provided; and 

   o Several EXCEL templates calculate reliability and 
Average Variance Extracted for 
      XZ, XX and ZZ. (The quadratic XX, for example, 
could be viewed as the 
      interaction of X with itself.).

All the material on this web site is copyrighted, 
but you may save it and print it 
   out. My only request is that you please cite any 
material that is helpful to you, 
   either as a "book" (the APA citation for this website as 
a "book" is Ping, R.A. 
   (2001). "Latent Variable Research." [on-line paper]. 
  http://www.wright.edu/~robert.ping/research1.htm.), or using 
the individual 
   citations for each of the papers, EXCEL templates, 
monographs, etc. shown below.

Don't forget to Refresh: If you have visited this 
web site before, and the latest 
   "Updated" date (at the top of the page) seems old, 
or, if you are actively 
   estimating an interaction, etc., you may want to 
be sure you are viewing the 
   current version of this web page. For Internet 
Explorer, click on "Tools" (above),
   then click on "Delete Browsing History," "check" 
"Temporary Internet Files,"  
   uncheck everything else, and click on delete. After 
that, close this browser 
   window, then re-launch it. (The procedures for 
Firefox and Chrome are discussed
   next in refreshing WORD documents.)
    



   In adddition, many of the links on this web site are 
in Microsoft WORD.
   If you have viewed one or more of them before, 
the procedure to view the latest
   (refreshed) version of them is tedious ("Refresh" 
does not work for WORD documents
   on the web). With my apologies for the 
tediousness, to refresh any (and all) Word
   documents in Internet Explorer, please follow the 
above procedure. 

   To refresh all WORD documents in Chrome, please 
click on the 3 "bars" in the upper
   right-hand corner of the screen, then click on 
"History." Next, click on "Clear 
   browsing data," check "Cashed images and files," 
and uncheck everything else. 
   Finally, click on "Clear browsing data." After that, 
close this browser window, 
   then re-launch it so the latest versions of all the 
WORD documents are forced to 
   download.

   To refresh WORD documents in Firefox, please 
click on "Tools" on the browser toolbar 
   (above), then click on "Options." Next, in the 
"Advanced" tab, find the "Network" tab, 
   and under "Cached Web Content" click on "Clear 
Now" Then, click "OK." After 
   that, close this browser window, then re-launch it.
        If several browsers are used, they all should be 
refreshed. 

Your questions are encouraged; just send an e-
mail to me at rping@wright.edu. Don't 
   worry about being an expert in latent variables, 
structural equation modeling or 
   structural equation analysis, or using "correct" 
terminology or perfect English.

A Table of Contents or Index to this website is not 
available. With my apologies, 
   please use your browser's search capability 
instead. For example, to find the EXCEL 
   templates try Ctrl+F. Or, click on "Edit" on the 
browser toolbar (above) and click on 
   "Find" (or click on the three horizontal "bars" in 
the upper right-hand corner of Chrome, 
   then click "Find..."), and type the word "excel" in 
the find box.

mailto:rping@wright.edu


REMARKS...
 Please Note: If you are estimating an interaction

involving one or more endogenous variables please click
here--things are different in this case.

ALSO, please remember that interactions and quadratics
should be hypothesized before data is ever collected.
Please be aware that the only situations where one should
search for significant interactions or quadratics after the data
is collected are: 

     1) when one wishes to explain a non-significant (NS)
model association
         (e.g., is there an unexpected interaction or quadratic
suppressing the hypothesized
         Z-->Y association?), or 

     2) where one wishes to "probe" an important significant
association(s) to see 
         if it is also conditional (i.e., moderated by some other
variable), and provide
         a "finer grained" interpretation. (ANOVA for example,
routinely provides "all 
         possible interactions to help interpretations of
significant effects. Although 
         this is rarely done in LV model tests, such "post hoc"
probing could suggest, 
         for example, that while Z-->Y was significant in the
model test, the 
         association was stronger (or weaker) at various levels
of X, which might 
         add "interest" to a paper's Discussion, Implications and
Conclusions sections.) 

     In the first case, any significant "suppressor"
interaction XZ or quadratic ZZ found after the data is
collected could be offered as a possible explanation for the
hypothesized but observed NS Z-->Y association in
the Discussion section of the paper. 
     In the second case, any significant association that is
"discovered" to actually conditional (moderated) after the
data is collected could be the basis for noting that the
significant Z-->Y association was "supported" only for some
levels of X in the study (see "Interpreting Latent Variable
Interactions" in the SELECTED PAPERS...section below). 

     Any of these moderated Z-->Y association(s) discovered
after the fact could be hypothesized in the Discussion
section, for testing in a follow-up study, or replication (to
investigate whether or not the "after-the-fact" moderation
simply was significant by chance in the present study) (see
"Hypothesized Associations and Unmodeled Latent Variable
Interactions/Quadratics: An F-Test..." in the SELECTED
PAPERS...section below for more).

     In the absence of situations 1 or 2 above, hunting for
significant interactions or quadratics that were not
hypothesized before the data was collected could lead to
"poor science." It can tempt one to add an interaction or
quadratic hypothesis to the model as though it were

http://www.wright.edu/%7Erobert.ping/endog_ints2a.doc


hypothesized before the data was collected. This changes a
confirmatory study into an exploratory study. Specifically,
adding to a model an interaction or quadratic that was
discovered after the data was collected, changes one's
"hypotheses-before-first-test" model-test (confirmatory)
study into an exploratory study where part of the model was
unknown before data collection. Again, the proper approach
is to put any interaction(s)/quadratic(s) discovered after the
data was collected in the Discussion section, noting that they
were discovered after the data was collected, and perhaps
arguing for their disconfirmation in the next study.

QUESTIONS OF THE MOMENT
"What about the alternative specifications for a Latent
Variable (LV) interaction?"

An informal review in 2005 of substantive Social
Science journal articles written since Kenny and Judd's
(1984) seminal proposal for specifying LV interactions
and quadratics found that the most frequently
encountered specifications for LV interactions in
substantive articles were: Jaccard and Wan (1995)
(which specifies a 4-product-indicator subset1 of the
Kenny and Judd interaction (product) indicators to
avoid the model-to-data fit problems that occur when
all of the Kenny and Judd indicators are specified--46
citations); Mathieu,  Tannenbaum and Salas (1992)
(which has not been formally evaluated for possible
bias and inefficiency (see Cortina, Chen and Dunlap
2001 for other difficulties)--51 citations); and Ping
(1995) (41 citations). (See FAQ's A, B and C in the
FREQUENTLY ASKED QUESTIONS section below for
more.)
______________
1 Unfortunately, in theoretical model tests, deleting ("weeding" out) all
but 4 of the Kenny and Judd product indicators to attain model-to-data
fit raises many questions, including, what is the reliability and validity
of the resulting 4-item interaction or quadratic? Reliability is necessary
for the validity of all the LV's in a model, but the reliability of an
interaction specified with nearly all of its indicators absent is unknown.
(The formula for the reliability of the interaction of X and Z assumes XZ
is operationally (unweeded) X times (unweeded) Z.) 
   The face- or content-validity of a 4-item interaction or quadratic also
is questionable--if nearly all the indicators of X and Z are not
represented in the itemization XZ, is XZ still the LV (unweeded) X times
(unweeded) Z?.
   Further, it is easy to show that in real-world data a weeded XZ's
structural coefficient varies with its indicators. Unfortunately, the "best"
set of four indicators is unknown. 
   Finally, an interaction with weeded Kenny and Judd product
indicators cannot be "factored" to produce detailed interpretation
because XZ is no longer (unweeded) X times (unweeded) Z.

"Is there an example that shows all the steps involved in
estimating a latent variable interaction/quadratic?"
   (Please click here for more.)

"Why are reviewers complaining about my use of
standardized loadings?"

http://www.wright.edu/%7Erobert.ping/yes.doc


It turns out that standardized loadings (latent variable
(LV) loadings specified as all free so the resulting LV
has a variance of unity) may produce incorrect t-values
for some parameter estimates, including structural
coefficients. This presents a problem for theory testing:
An incorrect (biased) t-value for a structural coefficient
means that any interpretation of the structural
coefficient's significance or nonsignificance versus its
hypothesis may be risky.
   (Please click here for more.)    

"How does one estimate (truly) categorical variables in a
model with LV's?"

In the popular structural equation analysis modeling
(SEM) software (e.g., LISREL, EQS, Amos, etc.), the
term "categorical variable" usually means an ordinal
variable (e.g., an attitude measured by Likert scales),
rather than a "truly" categorical (i.e., nominal) variable
(e.g., Marital Status, with the categories Single,
Married, Divorced, etc.), and typically there is no
provision for "truly" categorical variables. In
regression, a (truly) categorical variable is estimated
using "dummy" variables with regression through the
origin, but a similar approach currently is not available
using the popular SEM software. However, a "mixed
SEM" approach for estimating categorical variables and
LV's with their measurement errors is available here.
(There also is a working paper available via e-mail with
a "workaround" alternative to the paper on the "hot
spot" just provided (categorical3.doc) that might be
useful for a theory test.)

 "Why are reviewers complaining about the use of moderated
multiple regression in my paper?"
   (Please click here for comments on this matter.)

 "How should PRELIS or similar "preprocessor" software be
used with LISREL, EQS, AMOS, etc. to
create interactions/quadratics?"
   (Please click here for suggestions.)

 
 "Why should Applied Researchers be interested

in interactions/quadratics?"

Contrary to customary practice, interactions
and quadratics also may be important in applied
model-building/research--model building in
econometrics, epidemiology, market response models,
biostatistics, etc.--not to explain additional variance in
a target variable, but to better understand, explain and
predict important relationships in the model. 
   Anecdotally, it may not be widely appreciated in
applied research that important model predictors
may not be "unconditional" (e.g., Y is unconditionally
increased/decreased with X in the study). Instead,
these effect may have been "conditional" (e.g., Y

http://www.wright.edu/%7Erobert.ping/stdLoad.doc
http://www.wright.edu/%7Erobert.ping/categorical3.doc
http://www.wright.edu/%7Erobert.ping/MMR.doc
http://www.wright.edu/%7Erobert.ping/PRELIS.doc


increased with X when Z was at a high level (strong),
but Y was unrelated to X, or it decreased with X, when
Z was at a lower level (weaker)).  
   (Please click here for more.)

"Why are reviewers asking about reliability and validity in 
my interaction, XZ, and is there any way 
to improve XZ reliability and validity?"
         (Please click here for more.       

 
"When theory proposes that Z moderates the X-->Y
association, but theory is mute about a Z-->Y association,
why does one still include the Z-->Y association, in addition
to the X-->Y and XZ-->Y associations, in the model?" 

Excluding the Z-->Y (or the X-->Y) association when
XZ-->Y is hypothesized to be significant, biases all
structural coefficients and standard errors in the
proposed model EVEN WHEN THE Z-Y ASSOCIATION
SHOULD NOT EXIST IN THE POPULATION.
   (Please click here for more.)
 

 "How is a cubic latent variable (LV) estimated?" 

Please see the paper on estimating a LV cubic in the
SELECTED PAPERS... section (below). The "EXCEL
templates..." section (below) also includes a template
to assist in calculating LV cubic loadings, error
variances, etc.
 

"Why is my hypothesized interaction or
quadratic nonsignificant?"
   (Please click here for a paper on this topic that is being
revised to include other 
    interaction forms (e.g., X/Z)--please e-mail me for more.)

 
"Is there any way to improve Average Variance Extracted
(AVE) in a Latent Variable X?"
   (Please click here for a paper on this matter. Also, please
consider reading "How are
   Formative Latent Variables estimated with LISREL, EQS,
AMOS, etc.?", below, for 
   more suggestions for "troubled" LV's--unacceptable AVE's,
etc.)

 

"Is there any way to speed up "item weeding" and find a set
of items that jointly
   fits the data, contains more than 3 items and is valid and
reliable?"
   (Please click here for suggestions.)

 

"How might a 'mixed interaction' XZ, where X is a
manifest/observed/continuous/single-indicator, etc. variable
(not a latent variable), be estimated?"  
   (Please click here for suggestions.)

 
"Why is my hypothesized interaction significant using a
'median split' of the data, or a '2-group analysis,' but not

http://www.wright.edu/%7Erobert.ping/applied.doc
http://www.wright.edu/%7Erobert.ping/ImprovXZ_AVE.doc
http://www.wright.edu/%7Erobert.ping/MissingZ.doc
http://www.wright.edu/%7Erobert.ping/NS.doc
http://www.wright.edu/%7Erobert.ping/ImprovAVE2.doc
http://www.wright.edu/%7Erobert.ping/ItemWeed.doc
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significant when specified in my model?" 
   (Please click here for comments on this subject.)

 
"Why are most (or all) of my hypothesized interactions not
significant?" 
   (Please click here for more on this matter.)

 
"What is the Average Variance Extracted (AVE) for a Latent
Variable Interaction (or Quadratic)?" 
   (Please click here for comments on this topic, then please
e-mail me--I have more
    suggestions.)

 
"What is the 'validity' of a Latent Variable
Interaction (or Quadratic)?" 
   (Please click here for more on this subject.)
 
"How does one remedy a "not Positive Definite" message?"
   (Please click here for suggestions.)
 

"Why are reviewers complaining about the use of PLS in my
paper?"
   (Please click here for comments on this topic.)

"How are "Formative" (indicators-pointing-to) Latent
Variables estimated with LISREL, EQS, AMOS, etc.?"

This may seem uninteresting--formative variables are
rare in the Social Sciences. But, a formative re-
specification of a difficult measure (e.g., one with
inadequate AVE; or, excessive weeding was required to
attain model-to-data fit and it could now be judged to
be face invalid; or, it has unacceptable discriminant
validity; etc.) may be the only alternative
to abandoning the measure (and deleting the LV from
the model). 
     This approach also may be useful when using older,
well established, measures--developed before the
advent of SEM--as they were intended (i.e., without
weeding-out most of the items). 
   (Please click here for more.)

    

FREQUENTLY ASKED QUESTIONS
(CLICK
 ON A
 RED
 DOT)

 

  FREQUENTLY ASKED QUESTIONS (FAQ'S) 
     ABOUT LATENT VARIABLE INTERACTIONS 
     AND QUADRATICS IN SURVEY DATA

E.g., The answer to FAQ D, "How does one test 
hypothesized interactions or
   quadratics?" contains step-by-step instructions for 
Ph.D. students, and 
   theoretical or applied researchers, interested in 
estimating their first Latent 

http://www.wright.edu/%7Erobert.ping/splits.doc
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   Variable Interaction or Quadratic in a theoretical 
model test using survey data.

EXCEL TEMPLATES
Spreadsheets for expediting the specification of Latent 
Variable Interactions,
Quadratics and cubics; for "weeding" measures to attain 
model fit; for Latent Variable
Regression, etc.

(CLICK
 ON A
 RED 
 DOT)

  For specifying a single indicator LV Interaction 
or Quadratic using Direct
      (LISREL 8, CALIS, etc.) estimation, or "2-Step" 
estimation using LISREL, 
      EQS, AMOS, etc. (See Ping 1995, JMR, and Ping 
1996, Psych Bull.--revised 
      versions of which appear below in SELECTED 
PAPERS... .

      The template also calculates LV Interaction or 
Quadratic Reliability and
        Average Variance Extracted (AVE). More about 
the template.
 
  For specifying a single indicator LV Cubic using 

"2-Step" estimation and 
      LISREL, EQS, AMOS, etc.) (please also see "Notes 
on Estimating Cubics and other
      'Powered' Latent Variables" below). 

  For deleting items from a multi-item measure so it 
fits the data 
      (i.e., finding a set of items that fits the data, 
so the measure is internally 
      consistent).

      In real-world data, there frequently are many 
subsets of a multi-item
      measure that will fit the data, and this begs the 
question, which of these
      subsets is "best" from a validity standpoint? The 
template helps find at least
      one subset of items, usually with a maximal 
number of items (typically
      different from the one found by maximizing 
reliability, for example), that will 
      fit the data.
           The template then can be used to search for 
additional subsets of items
      that will also fit the data, and thus it may help to 
find the "best" face- or
      content-valid subset of items in a measure. 
      More about the template.
 
  For Kenny and Judd (1984) multiple indicator 

specification with LISREL, EQS,
      AMOS, etc. (see Ping 1996, Psych. Bull.; a revised 
version appears below). 

http://www.wright.edu/%7Erobert.ping/TMPLTJMR.XLS
http://www.wright.edu/%7Erobert.ping/jmr.doc
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      This approach is useful with a consistent subset of 
product indicators (see
      Chapter VIII.--SxA Unidimensionalization, in the 
monograph, LATENT 
      VARIABLE INTERACTIONS... below). 
      More about the template .
 
  For Latent Variable Regression, a measurement-

error-adjusted regression
      approach to Structural Equation Analysis, for 
situations where regression 
      is useful (e.g., to estimate nominal/categorical 
variables with LV's) (see 
      Ping 1996, Multiv. Behav. Res., a revised version 
appears below).
      More about the template.

BIBLIOGRAPHY
   A Bibliography on Latent Variable 

Interactions and Quadratics. 
     (Now somewhat out of date, it is being revised.)

ON-LINE MONOGRAPHS 

(CLICK
 ON A
 RED 
 DOT)

LATENT VARIABLE INTERACTIONS
AND QUADRATICS IN SURVEY  DATA: A
SOURCE BOOK FOR THEORETICAL MODEL
TESTING (2nd Edition)

The on-line monograph concernes Latent Variable
Interactions and Quadratics, and their estimation,
with examples. Potentially of interest to Ph.D.
students and researchers who  conduct or teach
theoretical model (hypothesis) testing using survey
data. It includes a "fast start" section on estimating
a latent variable interaction, a section on
estimating multiple interactions and quadratics,
how to interpret a significant interaction or
quadratic, and pedagogical examples (232 pp.).

The APA citation for this on-line monograph is
Ping, R.A. (2003). Latent variable interactions and
quadratics in survey data: a source book
for theoretical model testing, 2nd edition. [on-
line    monograph].
http://www.wright.edu/~robert.ping/intquad2/
toc2.htm. 

Ping (2001) LATENT VARIABLE INTERACTIONS AND
QUADRATICS IN SURVEY DATA: A SOURCE BOOK FOR
THEORETICAL MODEL TESTING (Edition 1)

TESTING LATENT VARIABLE MODELS
WITH SURVEY DATA (2nd Edition)

http://www.wright.edu/%7Erobert.ping/K_J.doc
http://www.wright.edu/%7Erobert.ping/Tmplmvbr.xls
http://www.wright.edu/%7Erobert.ping/LVR.doc
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http://www.wright.edu/%7Erobert.ping/intquad2/toc2.htm
http://www.wright.edu/%7Erobert.ping/intquad/toc1.htm
http://www.wright.edu/%7Erobert.ping/lv1/toc1.htm


The on-line monograph presents the results of a
large study of theoretical model (hypothesis)
testing practices using survey data, with critical
analyses, suggestions and examples. Potentially of
interest to Ph.D. students and researchers who
conduct or teach theoretical model testing using
survey data. Its contents include the six steps in
theoretical model (hypothesis) testing using survey
data; a useful, but little-used research design that
combines an experiment with a survey, scenario
analysis; alternatives to dropping items from a
measure to attain its model-to-data fit;
inadmissible structural model solutions with
remedies; interactions and quadratics; and
pedagogical examples (177 pp.).

Of particular interest recently is how to
efficiently and effectively delete items to attain a
consistent measure (see STEP V, PROCEDURES FOR
ATTAINING...).

The APA citation for this on-line monograph is
Ping, R.A. (2004). Testing latent variable models
with  survey data, 2nd edition. [on-line
monograph].   
http://www.wright.edu/~robert.ping/lv1/toc1.htm .

Ping (2002) TESTING LATENT VARIABLE MODELS WITH
SURVEY DATA (Edition 1)

SELECTED PAPERS ON LATENT VARIABLES, 
AND THEIR  
   INTERACTIONS AND QUADRATICS
 

(CLICK
 ON A
 RED 
 DOT)

"Notes on 'Used Data'--Reusing a Data Set to 
Create A Second 
   Theory-Test Paper"
   (An earlier version of "Notes on 'Used Data'" 
(Ping 2013), 
   Am. Mktng. Assoc. (Summer) Educators' Conf. 
Proc.).
 
The paper critically discusses an intriguing possibility: that one's 
data set 
   might be re-used in a second theory-test paper (which could 
reduce the time 
   and expense associated with gathering new data for an 
additional paper).
   It turns out that an editor might not object to reviewing a paper 
that is based on 
   data which has been used in a previously published paper. It also 
turns out that a 
   published model is likely contain at least one submodel that 
might be a candidate
   for an additional paper. The paper on reusing data discusses how 
"interesting" 
   sub-models from a previous paper might be found, and issues 
that might arise.
 
 
"Why are the Hypothesized Associations 

http://www.wright.edu/%7Erobert.ping/lv/toc1.htm
http://www.wright.edu/%7Erobert.ping/NOTES%20ON10.doc
http://www.wright.edu/%7Erobert.ping/XZW14.doc


not Significant? A Three-Way 
   Interaction?" (An earlier version of Ping 
2010, Am. Mktng. Assoc. 
   (Winter) Educators' Conf. Proc.).
 
The paper suggests en approach for estimating a 3-way interaction 
(e.g., XZW) with 
   some surprising results. While a three-way interaction may seem 
unlikely, a proper 
   test of hypotheses such as "H0: X-->Y is moderated by Z" and 
"H1: X-->Y also is 
   moderated by W" is to specify XZ, XW and XZW in the model. 
(ZX and WX could be 
   NS while ZWxX could be significant (ZW moderates X). The 
surprises include that there 
   are at least 4 nonequivalent specifications of XxZxW (the 
recommended regression 
   specification) is typically NS in real-world theory tests (while one 
or more of the other 
   three 3-way specifications, such as Xx(ZxW), can be significant), 
and this (overlooked)
   regression difficulty may occur in latent variables as well.

 "But what about Categorical (Nominal) 
Variables in Latent Variable Models?"
   (An earlier version of Ping 2009, Am. 
Mktng. Assoc. (Summer) Educators'
   Conf. Proc.).
 
In part because categorical variables almost always are measured 
in surveys in the 
   Social Sciences (e.g., "Demographics"), the paper suggests a 
procedure for estimating 
   nominal (categorical) variables in a structural equation model 
that also contains latent 
   variables.

 "Interactions May Be the Rule Rather than 
the Exception, But...: A Note on
   Issues in Estimating Interactions in 
Theoretical Model Tests" (An earlier
   version of Ping 2008, Am. Mktng. Assoc. 
(Summer) Educators' Conf. Proc.).

The paper critically addresses theory-testing matters concerning 
conceptualizing, estimating
   and interpreting interactions in survey data. For example, 
(before data is collected) what 
   evidence suggests that an interaction should be hypothesized in 
a proposed model? Is 
   an interaction a construct, or a mathematical form, or both? Is 
specifying the interaction 
   between X and Z, for example, as XZ a sufficient disconfirmation 
test (i.e., are there 
   other plausible interaction forms besides XZ?)
 
"On the Maximum of About Six Indicators per 
Latent Variable with Real-World
   Data." (An earlier version of Ping 2008, Am. 
Mktng. Assoc. (Winter) 
   Educators' Conf. Proc.).

The paper suggests an explanation and remedies for the puzzling 
result that Latent
   Variables in theoretical model testing articles frequently have a 

http://www.wright.edu/%7Erobert.ping/Categ2.doc
http://www.wright.edu/%7Erobert.ping/IntHyp6.doc
http://www.wright.edu/%7Erobert.ping/puzzle6.doc


maximum of about 
   6 indicators. 

"Second-Order Latent Variable Interactions, and 
Second-Order Latent
   Variables." (An earlier version of Ping 2007, Am. 
Mktng. Assoc. (Winter) 
   Educators' Conf. Proc.).

The paper proposes several specifications for a Second-Order 
Latent Variable interaction. 
 
"Notes on Estimating Cubics and other 'Powered' 
Latent Variables." (An
   earlier version of Ping 2007, Am. Mktng. Assoc. 
(Summer) Educators' 
   Conf. Proc.).

The paper discusses "satiation" and "diminishing returns," 
infrequently explored topics
   in theoretical model tests, along with a Latent Variable (LV) that 
is related to a 
   quadratic, a cubic. The paper suggests a specification for this 
difficult-to-specify LV.
 
"Estimating Latent Variable Interactions and 
Quadratics: Examples,
   Suggestions and Needed Research" (An earlier 
version of Ping 1998, in 
   Interaction..., revised December 2006).

The paper provides estimation examples, including LISREL and EQS 
code. The revision
    also corrects several errors. 

"Pseudo Latent Variable Regression: an 
Accessible Estimation Technique for
   Latent Variable Interactions," (An 
earlier version of Ping 2003, 2003 Acad.
   of Mktng. Sci. Conf. Proc., Miami: Acad. 
of Mktng Sci., revised October,
   2003).
The paper proposes a reliability-based regression estimator for 
Latent Variable
    Interactions and Quadratics.  
  

"Improving the Detection of Interactions 
in Selling and Sales Management
   Research" (An earlier version of Ping 
1996, J. of Personal Selling and 
   Sales Mgt., revised October 2003).

Using Monte Carlo simulations, the paper evaluates non-structural 
equation analysis
   approaches to detecting a Latent Variable Interaction such as 
median splits.
 
"Interpreting Latent Variable Interactions" (An 
earlier version of Ping 2002,
   Am. Mktng. Assoc. (Winter) Educators' Conf. 
Proc., revised June 2002).

http://www.wright.edu/%7Erobert.ping/2NCUTDWN_6.DOC
http://www.wright.edu/%7Erobert.ping/CUBIC3a.doc
http://www.wright.edu/%7Erobert.ping/Spclsem3.doc
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The paper suggests an approach to developing detailed 
interpretation of a significant
   Latent Variable Interaction or Quadratic that is suitable for model 
tests--reveals the 
   regions of the domain of a moderated variable where it is 
significant and non significant. 

"A Parsimonious Estimating Technique for 
Interaction and Quadratic Latent
   Variables" (An earlier version of Ping 1995, JMR, 
revised July 2001).

The paper proposes a single indicator specification for Latent 
Variable Interactions and
   Quadratics that addresses the model-to-data fit problem 
associated with specifying
   these variables in real-world data with all their Kenny and Judd 
interaction items and 
   thus impairing model-to-data fit; the proposed specification can 
be used with LISREL,
   EQS, AMOS, CALIS, etc.
 
"Latent Variable Interaction and Quadratic Effect 
Estimation: A Two-step
   Technique Using Structural Equation Analysis" 
(An earlier version 
   of Ping 1996, Psych. Bull., revised July 2001).

The paper proposes a "2-step" Kenny and Judd (1984) estimation 
approach for a Latent
   Variable Interaction (XZ) or a Quadratic (WW) with LISREL, EQS, 
AMOS, CALIS, etc. 
   This approach is useful when X, Z and W each fit their single 
construct measurement 
   model (i.e., they are internally consistent). (Otherwise, 
experience suggests that in 
   real-world data the approach produces a structural coefficient for 
XZ, for example, that
   has an inflated standard error.)

"Latent Variable Regression: A Technique for 
Estimating Interaction and
   Quadratic Coefficients" (An earlier version of Ping 
1996, Multiv. Behav. 
   Res., revised July 2001).

The paper proposes a measurement-error-adjusted regression 
technique for Latent
   Variables, including Interactions and Quadratics (the Standard 
Error is explained
   in the paper below, "A Suggested Standard Error..."). This 
approach is useful in
   situations where regression is useful. These situations may 
include model
   building (e.g., in market research, econometrics, epidemiology, 
biostatistics, etc.)
   where many candidate models are evaluated using "stepwise" 
and "backward 
   elimination" procedures to determine the model(s) that explains 
the most variance
   in the calibration data; and, theoretical model (hypothesis) 
testing of a model that
   combines nominal (categorical) variables with other latent 
variables (see for 
   example, "But what about Categorical (Nominal) Variables in 
Latent Variable 
   Models?" above).  
 
"A Suggested Standard Error for Interaction 

http://www.wright.edu/%7Erobert.ping/jmr2_.doc
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Coefficients in Latent
   Variable Regression" (An earlier version of Ping 
2001, Acad. Mktng. Sci.
   Proc., revised September 2001).

The paper suggests a Standard Error term for Latent Variable 
Regression (see "Latent 
Variable Regression: A Technique..." above).   

WORKING PAPERS MENTIONED ELSEWHERE
ON THE WEB SITE
(CLICK
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 THE
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 DOT)

 

"Hypothesized Associations and Unmodeled Latent 
Variable Interactions/
   Quadratics: An F-Test, Lubinski and Humphreys 
Sets, and Shortcuts 
   Using Reliability Loadings."

The paper proposes an approach to post-hoc probing for Latent 
Variable Interactions
   and Quadratics in order to explain an hypothesized association 
that is non significant.   

The APA citation for this on-line paper is Ping, R.A. (2006). 
"Hypothesized Associations
   and Unmodeled Latent Variable Interactions/Quadratics: An F-
Test, Lubinski and 
   Humphreys Sets, and Shortcuts Using Reliability Loadings." [on-
line paper]. 
   http://www.wright.edu/~robert.ping/Ftest10.doc .
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Copyright (c) Robert Ping 2001-2019
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ESTIMATING ENDOGENOUS INTERACTIONS 

 

(The APA citation for this paper is Ping, R.A. (2009). "Estimating endogenous interactions." 

[on-line paper]. http://www.wright.edu/~robert.ping/ Endog_ints2.doc) 

  

(Earlier versions of this paper, Ping, R.A. (2008). "Estimating endogenous interactions." [on-line 

paper]. http://www.wright.edu/~robert.ping/ Endog_ints1.doc, and Ping, R.A. (2005). "A status 

report on estimating endogenous interactions." [on-line paper]. 

http://www.wright.edu/~robert.ping/Endog_ints.doc, are available here.) 

  

In the structural model with endogenous effects,  

 

 

                            ,  

 

 

(Figure 1) 

 

UZ could be called an "endogenous interaction" because one of its constituent LV's, Z, is 

endogenous. Endogenous interaction models also include,  

 

 

    (Figure 2),  

and 

 

 

                           . 

 

 

(Figure 3) 

 

These (sub)models could also be part of a larger model. 

 

There may be four (additional) interaction considerations for an endogenous interaction in theory 

testing using structural equation software (e.g., LISREL, EQS, Amos, etc.): theoretical, 

specification, and estimation software considerations; and methodological and interpretational 

considerations.  

 

The theoretical considerations will be discussed first. Anecdotally, some researchers believe 

that a moderator LV, Z, can not also be a mediator LV. Specifically, in Figure 2 Z should not 

moderate the X --> Y association with the XZ interaction, and also mediate the X --> Y 

association.  

 

However, Z in Figure 2, as both a mediator and a moderator of the X-Y association, for example, 

is theoretically plausible. For example, Relationship satisfaction (SAT) and the attractiveness of 
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alternative relationships (ALT) are well known in several social science literatures to be 

antecedents of relationship exiting (EXIT) (SAT --> EXIT and ALT --> EXIT, see Figure 4) 

(e.g., Ping 1993).  

 

SAT 

 

ALT               EXIT 

 

SATxALT 

 

(Figure 4) 

 

However, Johnson and Rusbult (1989) proposed that satisfaction "devalues" or reduces the 

attractiveness of alternatives (i.e., SAT --> ALT). In addition, Ping (1994) argued that 

satisfaction and alternative attractiveness interact in their effect on relationship exiting (i.e., that 

alternative attractiveness suppresses the satisfaction association with relationship exiting) 

(SATxALT --> EXIT). Thus, with mediation, satisfaction is likely to reduce alternative 

attractiveness, which then is likely to reduce exiting. With moderation, the interaction, increased 

alternative attractiveness decreases the strength of the (indirect) satisfaction-exiting association.  

 

Thus, alternative attractiveness (ALT) may be both a mediator and a moderator of satisfaction's 

(SAT) effect on relationship exiting (EXIT), and in at least one model, joint mediation and 

moderation (and an endogenous interaction) are theoretically plausible. Moreover, I have tested 

this model in an unpublished paper using survey data, and all four paths were significant. Thus, 

mediation and moderation are both theoretically and empirically plausible.  

 

Regarding specification considerations, in Figure 1 the interaction UZ should be specified as 

correlated with its constituent LV's, U and Z to reflect the fact that in real-world (non-normal) 

survey data, UZ is usually significantly correlated with U and Z, even when U and Z are mean- 

or zero-centered.1 Failure to do so reduces model-to-data fit, and biases structural model 

parameter estimates (e.g., variances, covariances and structural coefficients). The same is true for 

XZ and UZ in Figures 2 and 3. However, it is not possible to correlate UZ in Figure 1, for 

example, directly with endogenous Z in SEM. In this case, a correlation specified between UZ 

and Z actually specifies a correlation between UZ and the structural disturbance for Z, ζZ.  

 

However, experience suggests that not specifying the correlation between ζZ and Z also reduces 

model-to-data fit, and it biases the structural model's parameter estimates in real world data. 

Stated differently, experience suggests the UZ-ζZ correlation is typically significant in real world 

data, and not specifying it usually misspecifies the structural model (the misspecification can be 

verified using the "Modification Indices for PSI" (LISREL) for the UZ-ζZ correlation). In 

addition, experience suggests that any misspecification bias increases as the R2 ("Squared 

Multiple Correlations for Structural Equations" in LISREL) of the interaction's predicted LV 

(e.g., Y in Figures 1, 2 and 3) declines. 

 

                                                           
1 If X and Z are normally distributed, their correlations with XxZ are zero. 



Parenthetically, specifying the UZ-ζZ correlation, for example, could be argued to be equivalent 

to correlating UZ with itself (some of the variance of UZ is included in ζZ). However, experience 

suggests that this does not appear to matter in an interaction, UZ for example, with centered 

constituent LV's U and Z. Specifically, experience suggests that the UZ-ζZ correlation, for 

example, typically are comparatively moderate (e.g., in the 0.10 to 0.20 range in absolute value). 

 

In addition, specifying an exogenous correlation with endogenous structural disturbance is 

plausible in theoretical model tests with survey data. The LV's in these models typically are all 

correlated, and it is reasonable to assume that unmodeled LV's (i.e., those in ζZ) also should be 

correlated with the other model LV's.  

 

However, correlations with structural disturbances in general must be specified with caution to 

avoid violating the assumption that a predictor is not (directly or indirectly) correlated with its 

predicted variable's prediction error (its structural disturbance). Specifically, in Figure 1, X 

should not be specified as both a predictor, and correlated, with Z (ζZ actually), and Y (ζY 

actually) should not be specified as correlated with Z, U or UZ. 

 

Similarly, in Figure 2, XZ cannot be directly correlated with Z in SEM, and in Figure 3, UZ 

cannot be directly correlated U or Z in SEM. However, because they are typically significant, 

and not specifying them reduces model-to-data fit and introduces structural coefficient bias, in 

Figure 2 the XZ-Z (XZ-ζZ actually) correlation should be specified. For similar reasons, in Figure 

3 the UZ-U (UZ-ζU actually) and UZ-Z (UZ-ζZ actually) correlations also should be specified.  

 

In summary, an interaction should be correlated with its constituent LV's. If one or both 

constituent LV's are endogenous, the interaction should be correlated with its constituent LV 

structural disturbances (ζ's, or PSI's in LISREL). 

 

Regarding estimation software considerations, from e-mails I have received, AMOS may not 

allow the specification of the correlation an exogenous interaction and its endogenous LV that is 

required in real-world survey data. For example, in Figure 1 the UZ-Z (UZ-ζZ actually) 

correlation is not allowed. At present, this restriction cannot accurately be "worked around," 2 

and LISREL, EQS, etc. must should be used to avoid the difficulties mentioned above when an 

interaction is can not be correlated with its endogenous constituent LV's structural 

disturbance(s). Alternatively, a “workaround” is available by email. 

 

Parenthetically, correlations between exogenous and endogenous LV's in LISREL require the 

use of Submodel 3B.  

 

Regarding methodological considerations, the reader should consider reading the remarks in 

"FAQ D" under "FREQUENTLY ASKED QUESTIONS" on the previous web page, and "Is 

there an example that shows all the steps involved in estimating a latent variable 

interaction/quadratic?" under "QUESTIONS OF THE MOMENT," also on the previous web 

                                                           
2 Obvious strategies such as "2 group analysis" are well known to be untrustworthy for testing an 

interaction in survey-data theory tests because of, for example, reduced of statistical power in 

each of the structural coefficients, and difficulty gauging and interpreting non-interaction effects 

because they are frequently not identical between the two groups. 



page. In particular, successfully estimating an interaction requires attention to centering, model 

specification, admissible values, etc. In addition, with endogenous interactions, experience 

suggests that not manually providing starting values for the structural model may produce 

unreasonable parameter estimates. Stated differently, experience suggests that an important step 

in successfully estimating one or more endogenous interactions, is to verify the resulting 

structural model parameter estimates. In particular, structural model parameter estimates 

(loadings, measurement error variances, LV variances and covariances) should approximate their 

measurement model values. In addition, a regression model of the interaction (e.g., XZ, X, Z, for 

example, and their predicted variable, Y) should produce unstandardized regression coefficients 

that are interpretationally equivalent to their corresponding structural coefficients in the SEM 

interaction model (corresponding t-values should have the same sign and roughly the same 

magnitude) (see FAQ D for more).  

 

Regarding interpretational considerations, in Figure 1 for example, the association between Z 

and Y can be written as (1) Y = dU + aZ + bUZ + error = dU + (a + bU)Z + error, where d, a and 

b are unstandardized structural coefficients.3 Thus, the (unstandardized or standardized) 

structural coefficient of Z's moderated association with Y is the coefficient (a + bU).  

 

Using path analysis (see Wright 1934), the (unstandardized or standardized) structural coefficient 

of X's association with Y via or mediated by Z is the product of the (unstandardized or 

standardized) structural coefficient on the X-Z path, c, with the (unstandardized or standardized) 

moderated structural coefficient on the Z-Y path, (a + bU), which equals c(a + bU) (= ca + cbU). 

Unfortunately, structural equation estimation packages will report only the unmoderated 

(indirect) X-Y association that has the coefficient ca. As a result, the coefficient of the (indirect) 

X-Y associations and their significances (e.g., X's indirect association with Y depending on the 

level of U in the coefficient ca + cbU) must be computed  manually. (Click here for an EXCEL 

spreadsheet to expedite that process.) 
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http://www.wright.edu/~robert.ping/IndirectIntD.xls


QUESTIONS of the MOMENT... 

 

"Is there an example that shows all the steps in estimating a latent variable 

interaction/quadratic?" 

 

(The APA citation for this paper is Ping, R.A. (2007). "Is there an example that shows 

all the steps in estimating a latent variable interaction/quadratic?" [on-line paper]. 

http://www.wright.edu/~robert.ping/yes.doc) 

 

Yes, beginning with Chapter VIII of the monograph Interactions and Quadratics in 

Survey Data:... on this web site. The steps are few and simple; but they are tedious, and 

burdened with unfamiliar terminology and notation. In summary, after mastering the 

terminology, some of the survey data must be adjusted (mean centered) to facilitate 

interaction/quadratic estimation, the interaction/quadratic indicator must be created in the 

data set, and the interaction/quadratic must be specified in the model.  

 

Beginning with the terminology, in structural equation modeling (SEM) an unobserved 

(Latent) variable (LV) (e.g., capital X in Figure 1--diagrams are used extensively in 

SEM) is assumed to be "connected" to (the "cause" of) one or more observed variables or 

"indicators" (items in a scale or measure) (e.g., small x's) by paths from (the correlations 

between) the LV to the indicator. The actual correlation or "path coefficient" on this path 

between the LV and an indicator is called a "loading" (the loading of the indicator on its 

LV) and it is represented by the Greek letter lambda (λ).  

 

Figure 1--A Measurement Model 

 

Every indicator (e.g., x1) is assumed to be measured with error. This measurement error 

variable is denoted by a Greek epsilon (ε) (and its variance is denoted by , and termed 

“theta”) and the correlation or "path coefficient" on the path between an observed 

indicator and its measurement error is assumed to be 1.  

 

Because LV's, indicators, and measurement errors are variables they each have variance. 

The variance of an LV is represented by Phi (ΦLV), the variance of an indicator has no 

special name or representation, and the variance of a measurement error is represented by 

θε (and termed “theta,” or theta epsilon). LV's are assumed to be correlated, this 

correlation is diagrammed with a two-headed arrow, and this correlation is also 

represented by Phi (e.g., ΦX,Z) (the particular meaning of a "Φ" is usually clear in 

context). Measurement errors are assumed to be uncorrelated, and the correlations (direct 

paths) among the indicators are not shown (they are accounted for by the paths to and 

between LV's). 
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Regression terminology is not used in SEM, and regression equations are infrequently 

written out in SEM. When they are, the familiar regression symbols are changed. For 

example, the regression equation 

 

Y = b0 + b1X + b2Z + b3XZ + e               (1 

 

is written 

 

Y = β1X + β 2Z + β 3XZ + ξ                 (2 

 

or 

 

Y = γ1X + γ 2Z + γ 3XZ + ξ  

 

(b0 is assumed to be zero), and is called a structural equation. The regression coefficients 

(b's in Equation 1) are called structural coefficients in SEM, and the regression forecast 

or estimation error (e) is called a structural disturbance (ζ). The dependent variable Y is 

called an endogenous variable and the independent variables X, Z and XZ are called 

exogenous variables. 

 

Instead of being written out, regression relationships are usually diagrammed in SEM, 

using paths among the LV's, and regression relationships among the LV's are represented 

by single-headed arrows sometimes called structural paths (see Figure 2). The diagram of 

regression relationships is called a structural model (a diagram with no regression 

relationships, just correlations among the LV's, is called a measurement model). 

 



Figure 2--A Structural Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note the arrow from XZ to Y in Figure 2. SEM has no ability to model an arrow from X, 

for example, pointing to, for example, an arrow from Z to Y (as sometimes done in texts). 

Stated differently, an interaction is "just another LV."  

 

Because SEM is related to factor analysis, everything (λ's, θε's, etc.) is called a 

"parameter" and everything has its own matrix. For example, LV variances and the 

correlations among them belong to their PHI matrix, the structural disturbances (ζ 's) and 

the correlations among them belong to their PSI matrix, and the structural coefficients 

belong to their beta or gamma matrix. 

 

The terms "estimation" and "specification" are common in SEM. "Estimation" means 

producing estimates of the model parameters--in regression the b's in Equation 1 are 

"estimated" by SPSS, SAS, etc. "Specification" means “to show.” For example, 

“specification” can mean diagramming the relationships in the model (e.g., Figures 1 and 

2 are specifications). The relationships among X, Z and Y are specified by Equation 1. 

They are also "specified" in their SPSS, SAS, etc. regression code. The relationships 

between x1, x2, ... , x5 and X are specified by the arrows from X to x1, x2, ... , x5 in Figure 

1. 
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In a measurement model all the LV's are assumed to be correlated. In a structural model, 

however, only exogenous (independent) LV's are assumed to be correlated. Dependent 

(endogenous) LV's are assumed not to be correlated (the correlations between the 

exogenous and endogenous variables are accounted for by structural paths). If there are 

multiple endogenous variables, the structural disturbances are usually assumed to be 

correlated. 

 

To estimate the simple regression model specified as  

 

Y = β1X + β 2Z + β 3XZ + ξ                 (1 

 

where Y has indicators y1, y2, ... , y8, x has indicators x1, x2, ... , x5, z has indicators z1, z2, 

... , z4 (XZ and its indicator will be discussed shortly), the indicators (x1, x2, etc., z1, z2, 

etc.) of the constituents of XZ, X and Z, must be replaced by "mean centered" indicators 

(also called centered or zero-centered indicators). This is accomplished by subtracting the 

mean of x1 from x1, subtracting he mean of x2 from x2, etc., and the mean of z1 from z1, 

the mean of z2 from z2, etc. (see "Questions of the Moment," "How should PRELIS..." on 

this web site for more on mean centering). The resulting centered x's (xc1, xc2, ... , xc5) 

and centered z's (zc1, zc2, ... , zc4) are used in place of x1, x2, ... , x7 and z1, z2, ... , z6 from 

this point on. 

 

Then, the single averaged indicator of XZ, zx = [(xc1+xc2+xc3+xc4+xc5)/5]*[ 

(zc1+zc2+zc3+zc4)/4] is created (see "Questions of the Moment," "How should 

PRELIS..." on this web site for details) 

 

Skipping over the XZ reliability and validity steps, which are covered elsewhere on this 

web site (e.g., FAQ D, beginning at "In Summary"), and assuming X, Z and Y are 

internally consistent (strongly unidimensional--a  single construct measurement model 

with just X, for example, fits the data, ditto Z, and ditto Y) a "full" measurement model 

with X, Z and Y (but not XZ) (MM1) is run to estimate the parameters that are used to 

specify the loading and measurement error variance of xz (Barbara Byrne has written 

several books with measurement model examples using LISREL 8, EQS and AMOS). 

(Exhibit A shows the LISREL 8 commands for the Figure 1 measurement model—in 

SEM software with simplified commands such as LISREL’s SIMPLIS, or a graphical 

interface such as AMOS, “drawing,” or coding the paths, in Figure 1 specifies its 

measurement model). An EXCEL spreadsheet is provided on this web site to combine 

this full measurement model’s parameter estimates into the loading (λxz—“lambda”) and 

measurement error variance (θεxz—“theta”) of XZ.  

 

Exhibit A--LISREL 8 Figure 1 Measurement Model Commands 

 
Example Measurement Model 

DA NI=18 NO=200 

LA 

 x1 x2 x3 x4 x5 

 z1 z2 z3 z4 

 xz 



 y1 y2 y3 y4 y5 y6 y7 y8 

RA FI=raw.dat 

SE 

 x1 x2 x3 x4 x5 

 z1 z2 z3 z4 

!xz 

 y1 y2 y3 y4 y5 y6 y7 y8 

/ 

MO NY=17 ne=3 ly=fu,fi te=di,fr be=fu,fi ps=sy,fr 

LE 

 X 

 Z 

!XZ 

 Y 

pa ly 

 * 

 1 0 0 !x1 

 0 0 0 !x2 

 1 0 0 !x3 

 1 0 0 !x4 

 1 0 0 !x5 

 0 0 0 !z1 

 0 1 0 !z2 

 0 1 0 !z3 

 0 1 0 !z4 

 0 0 1 !y1 

 0 0 1 !y2 

 0 0 1 !y3 

 0 0 0 !y4 

 0 0 1 !y5 

 0 0 1 !y6 

 0 0 1 !y7 

 0 0 1 !y8 

ma ly 

 * 

 1 0 0 !x1 

 1 0 0 !x2 

 1 0 0 !x3 

 1 0 0 !x4 

 1 0 0 !x5 

 0 1 0 !z1 

 0 1 0 !z2 

 0 1 0 !z3 

 0 1 0 !z4 

 0 0 1 !y1 

 0 0 1 !y2 

 0 0 1 !y3 

 0 0 1 !y4 

 0 0 1 !y5 

 0 0 1 !y6 

 0 0 1 !y7 

 0 0 1 !y8 

pa te 

 * 

 17*1 

ma te 

 * 



 17*.2 

pa ps 

 * 

 1     !X 

 1 1   !Z 

 1 1 1 !Y 

!X Z Y 

ma ps 

 * 

 1     !X 

 1 1   !Z 

 1 1 1 !Y 

!X Z Y 

OU all nd=5 it=300 ad=300 

 

Then, I specify another "full" measurement model containing the interaction/quadratic 

XZ and all the other latent variables (MM2--see Figure 1). This is done by adding the XZ 

to MM1, and using its fixed EXCEL spreadsheet loading and fixed EXCEL spreadsheet 

measurement error variance. The LISREL 8 commands for MM2 is shown in Exhibit B.  

 

Exhibit B--LISREL 8 XZ Measurement Model Commands 
 

Example Measurement Model 

DA NI=18 NO=200 

LA 

 x1 x2 x3 x4 x5 

 z1 z2 z3 z4 

 xz 

 y1 y2 y3 y4 y5 y6 y7 y8 

RA FI=raw.dat 

SE 

 x1 x2 x3 x4 x5 

 z1 z2 z3 z4 

 xz 

 y1 y2 y3 y4 y5 y6 y7 y8 

/ 

MO NY=18 ne=3 ly=fu,fi te=di,fr be=fu,fi ps=sy,fr 

LE 

 X 

 Z 

 XZ 

 Y 

pa ly 

 * 

 1 0 0 0  !x1 

 0 0 0 0  !x2 

 1 0 0 0  !x3 

 1 0 0 0  !x4 

 1 0 0 0  !x5 

 0 0 0 0  !z1 

 0 1 0 0  !z2 

 0 1 0 0  !z3 

 0 1 0 0  !z4 

 0 0 0 0  !xz 

 0 0 0 1  !y1 



 0 0 0 1  !y2 

 0 0 0 1  !y3 

 0 0 0 0  !y4 

 0 0 0 1  !y5 

 0 0 0 1  !y6 

 0 0 0 1  !y7 

 0 0 0 1  !y8 

ma ly 

 * 

 1 0 0 0  !x1 

 1 0 0 0  !x2 

 1 0 0 0  !x3 

 1 0 0 0  !x4 

 1 0 0 0  !x5 

 0 1 0 0  !z1 

 0 1 0 0  !z2 

 0 1 0 0  !z3 

 0 1 0 0  !z4 

!The xz loading was calculated using the  

!EXCEL spreadsheet on this web site 

 0 0 0.80640 0  !xz 

 0 0 0 1  !y1 

 0 0 0 1  !y2 

 0 0 0 1  !y3 

 0 0 0 1  !y4 

 0 0 0 1  !y5 

 0 0 0 1  !y6 

 0 0 0 1  !y7 

 0 0 0 1  !y8 

pa te 

 * 

 9*1 0 8*1 

ma te 

 * 

!The xz measurement error variance was calculated using the  

!EXCEL spreadsheet on this web site 

 9*.2 0.03903 8*.2 

pa ps 

 * 

 1        !X 

 1 1      !Z 

 1 1 1    !XZ  

 1 1 1  1 !Y 

!X Z XZ Y 

ma ps 

 * 

 1       !X 

 1 1     !Z 

!The xz variance is a starting value that LISREL cannot estimate 

!and it was calculated using the EXCEL spreadsheet on this web site 

 1 1 0.57040 !XZ  

 1 1 1  1 !Y 

!X Z XZ Y 

OU all nd=5 it=300 ad=300 

 



In Exhibit B, note that raw data was used as input and a covariance matrix was analyzed. 

Also note that the variance of the interaction XZ was free (the starting value shown is 

optional in small models, but frequently essential in larger models). The interaction XZ 

was also allowed to correlate with X and Z by freeing the correlational (PHI) paths 

between them. If there had been other exogenous variables, XZ would be allowed to 

correlate with them as well.  

 

If MM1 fits the data, this measurement model also should fit the data, and the parameter 

estimates for X and Z (loadings, variances, and measurement error variances) should be 

the same as they were in MM1, in at least the first two decimal places. If not, use these 

measurement model values in the EXCEL spreadsheet to recompute the xz loading and 

measurement error variance. 

 

Next, the structural model containing the interaction/quadratic XZ and all the other latent 

variables is estimated (see Figure 2). This is done in by altering MM2 by fixing the 

correlations between Y and the LV's X, Z and XZ in MM2 to zero, and by specifying the 

beta paths between Y and the LV's X, Z and XZ. The LISREL 8 commands for the 

structural model is shown in Exhibit C. (Again, in SEM software with simplified 

commands such as LISREL’s SIMPLIS, or a graphical interface such as AMOS, 

“drawing,” or coding the paths, in Figure 2 specifies its structural model). 

 

Exhibit C--LISREL 8 Figure 2 Structural Model Commands 

 
Example Structural Model 

DA NI=18 NO=200 

LA 

 x1 x2 x3 x4 x5 

 z1 z2 z3 z4 

 xz 

 y1 y2 y3 y4 y5 y6 y7 y8 

RA FI=raw.dat 

SE 

 x1 x2 x3 x4 x5 

 z1 z2 z3 z4 

 xz 

 y1 y2 y3 y4 y5 y6 y7 y8 

/ 

MO NY=18 ne=3 ly=fu,fi te=di,fr be=fu,fi ps=sy,fr 

LE 

 X 

 Z 

 XZ 

 Y 

pa ly 

 * 

 1 0 0 0  !x1 

 0 0 0 0  !x2 

 1 0 0 0  !x3 

 1 0 0 0  !x4 

 1 0 0 0  !x5 

 0 0 0 0  !z1 

 0 1 0 0  !z2 



 0 1 0 0  !z3 

 0 1 0 0  !z4 

 0 0 0 0  !xz 

 0 0 0 1  !y1 

 0 0 0 1  !y2 

 0 0 0 1  !y3 

 0 0 0 0  !y4 

 0 0 0 1  !y5 

 0 0 0 1  !y6 

 0 0 0 1  !y7 

 0 0 0 1  !y8 

ma ly 

 * 

 1 0 0 0  !x1 

 1 0 0 0  !x2 

 1 0 0 0  !x3 

 1 0 0 0  !x4 

 1 0 0 0  !x5 

 0 1 0 0  !z1 

 0 1 0 0  !z2 

 0 1 0 0  !z3 

 0 1 0 0  !z4 

!The xz loading was calculated using the  

!EXCEL spreadsheet on this web site 

 0 0 0.80640 0  !xz 

 0 0 0 1  !y1 

 0 0 0 1  !y2 

 0 0 0 1  !y3 

 0 0 0 1  !y4 

 0 0 0 1  !y5 

 0 0 0 1  !y6 

 0 0 0 1  !y7 

 0 0 0 1  !y8 

pa te 

 * 

 9*1 0 8*1 

ma te 

 * 

!The xz measurement error variance was calculated using the  

!EXCEL spreadsheet on this web site 

 9*.2 0.03903 8*.2 

pa be 

 * 

 0 0 0  0 !X 

 0 0 0  0 !Z 

 0 0 0  0 !XZ 

 1 1 1  0 !Y 

!X Z XZ Y 

pa ps 

 * 

 1       !X 

 1 1     !Z 

!The xz variance is a starting value that LISREL cannot estimate 

!and it was calculated using the EXCEL spreadsheet on this web site 

 1 1 0.57040 !XZ  

 0 0 0  1 !Y 

!X Z XZ Y 



ma ps 

 * 

 1       !X 

 1 1     !Z 

 1 1 1   !XZ  

 0 0 0  1 !Y 

!X Z XZ Y 

OU all nd=5 it=300 ad=300 

 

Now, go on to FAQ D, skip down to "In Summary," and verify that the structural model 

results are "trustworthy" using the remarks beginning with "Once the model is estimated, 

check..." on p. 10. 

 

 



QUESTIONS of the MOMENT... 

 

"Why are reviewers complaining about my use of standardized loadings?" 

 

(The APA citation for this paper is Ping, R.A. (2013). "Why are reviewers complaining 

about my use of standardized loadings?" [on-line paper]. 

http://www.wright.edu/~robert.ping/stdLoad.doc) 

 

 

Jöreskog (1996, “LISREL 8 … Reference Guide, p.35) warned that standard 

errors (in LISREL), among other statistics, may be incorrect when correlations are 

analyzed (without standard deviations, etc.) in structural equation models. This presents a 

problem in theory testing—an incorrect (biased) standard error for a structural coefficient 

means that its t-value is incorrect, and any interpretation of the observed structural 

coefficient’s significance or nonsignificance versus its hypothesis may be risky.  

 

While I have yet to find equivalent warnings about correlations and standard errors in 

documentation for EQS or AMOS, other authors have warned against analyzing 

correlations (see the citations in Bentler 2006, “EQS 6 … Program Manual,” p. 11). As a 

result, it may be prudent to avoid analyzing correlations in theory tests involving 

structural equation analysis.  

 

However, it is easy to show using real-world data that covariances and “standardized 

loadings” (latent variable (LV) loadings specified as all free—so the resulting LV has a 

variance of 1) may produce incorrect t-values for parameter estimates, including 

structural coefficients. Specifically, the t-values of the resulting structural coefficients 

(which are now standardized estimates) may be different from those produced by the 

preferred “unstandardized loadings” LV specification, where one loading of each LV is 

fixed at 1, and each LV’s estimated (error-disattenuated) variance is different from 1 

(e.g., Jöreskog 1996). 

 

Thus, it also may be prudent to avoid using standardized loadings in theoretical model 

tests involving structural equation analysis. (If standardized coefficient estimates are 

required, standardized and unstandardized estimates could be requested, and standardized 

values could be reported with unstandardized t-values.) 

 

Parenthetically, one procedure for specifying unstandardized LV loadings is to specify 

each LV with its first indicator fixed at 1. To simplify any subsequent interpretation of 

loadings, I then respecify each LV by fixing the largest loading of each LV to 1, and 

freeing each LV’s first indicator if it is not the largest (to avoid having two indicators 

fixed at 1), and reestimate the model.  

 

 



QUESTIONS of the MOMENT... 

 

"How does one estimate categorical variables in theoretical model tests using structural 

equation analysis?" 

 

(The APA citation for this paper is Ping, R.A. (2010). "How does one estimate 

categorical variables in theoretical model tests using structural equation analysis?" [on-

line paper]. http://www.wright.edu/~robert.ping/categorical3.doc) 

 
(An earlier version of this paper, Ping, R.A. (2008). "How does one estimate categorical variables 

in theoretical model tests using structural equation analysis?" [on-line paper]. 

http://www.wright.edu/~robert.ping/categorical1.doc, is available here.) 

 

In structural equation analysis software (e.g., LISREL, EQS, Amos, etc.), the term 

"categorical variable" usually means an ordinal variable (e.g., an attitude measured by 

Likert scales), rather than a nominal or "truly categorical" variable (e.g., Marital Status, 

with categories such as Single, Married, Divorced, etc.), and there is no provision for 

truly categorical variables.  

In regression, a (truly) categorical variable is estimated using "dummy" variables. 

(For  example, while the cases in Marital Status, for example, might have the values 1 for 

Single, 2 for Divorced, 3 for Married, etc., a new variable, Dummy_Single, is created, 

with cases that have the value 1 if Marital Status = Single, and 0 otherwise. 

Dummy_Married is similar with cases equal to 1 or 0, etc.) The same approach might be 

used in structural equation modeling (SEM).  

However, nominal variables present difficulties in SEM that are not encountered 

in dummy variable regression. For example, dummy variables violate several important 

assumptions in SEM: dummy variables are not continuous, and they do not have normal 

distributions. While ordinal variables from (multi-point) rating scales (e.g., Likert scales), 

that are not continuous and not normally distributed, are routinely analyzed in theoretical 

model (hypothesis) tests using SEM, dummy variables with only two values are very 

non-normal, and the covariances that are customarily analyzed in SEM, are formally 

incorrect. Point-biserial, tetrachoric, polychoric, etc. correlations are more appropriate.  

In addition, Maximum Likelihood (ML) structural coefficient estimates are 

preferred in theoretical model tests, and this estimator also assumes multivariate 

normality. While ML structural coefficients are believed to be robust to departures from 

normality (see the citations in Chapter VI. RECENT APPROACHES TO ESTIMATING 

INTERACTIONS AND QUADRATICS), it is believed that standard errors are not 

robust to departures from normality (Bollen 1995). (There is some evidence to the 

contrary (e.g., Ping 1995, 1996), and EQS, for example, provides Maximum Likelihood 

Robust estimates of structural coefficients and standard errors that appear to be robust to 

departures from normality (see Cho, Bentler and Satorra 1991).)  

In "interesting" models (ones with more than a few latent variables) there could be 

several (truly) categorical variables, each with several categories. Because most SEM 

software requires at least 1 case per estimated parameter (10 are preferred) (some authors 

prefer a stricter criterion from regression: multiple cases per covariance matrix entry), the 

number of dummy variables can empirically overwhelm the model unless the sample is 

large and the number of dummy variables is comparatively small. For example, in a 

http://www.wright.edu/~robert.ping/categorical1.doc


model that adds 2 categorical variables each with 2 categories to 2 latent variables, 11 

additional parameters are required for the additional correlations and/or structural 

coefficients due to the dummy variables--the loadings and measurement error variances 

of dummies are assumed to be 1 and 0 respectively. This would require up to 110 

addition cases to safely estimate these parameters (5 times more additional cases would 

be required for the stricter regression criterion involving the asymptotic "correctness" of 

the covariance matrix). 

Thus, in addition to samples larger than the customary number of cases used in 

survey data model tests (e.g., 200-300 cases), "managing" the total number of categories 

is required (more on this later). 

With dummy variables, the term "estimates" (e.g., of association and significance) 

truly may apply. While there is no hard and fast rule, significance thresholds in 

theoretical model testing with dummy variables and SEM probably should be 

conservative (above |t| > 2). 

The results of a categorical model estimation is typically a subset of significant 

dummy variables (e.g., Single and Divorced). However, an estimate of the significance of 

the categorical variable from which the dummy variables were formed (e.g., Marital 

Status) of is not available in the SEM output. Thus, the aggregate effect (e.g., the overall 

significance) of the dummy variables comprising Marital Status, for example, should be 

determined to gage hypothesis disconfirmation (an EXCEL spreadsheet to expedite this 

task is available below). 

 Finally, estimating all the dummy variables jointly does not work in popular SEM 

software such as LISREL, EQS, AMOS, etc., and a SEM "workaround" is taking longer 

than anticipated.  

 

However, there is a “mixed SEM” estimation procedure for latent variables (LV’s) and 

truly categorical variables that could be used until an “all-SEM” approach is found.  It 

produces “proper” error-dissatenuated structural coefficients just like (all) SEM does. 

They are Least Squares estimates rather than Maximum Likelihood estimates, however, 

but the approach might be preferable to omitting an important categorical variable(s), or 

analyzing subsets. (For more on the alternatives, see below at the “**” in the left margin.) 

 

Using this mixed SEM approach, the steps for estimating the (total) effect of Marital 

Status, for example, on Y (i.e., “H1: Marital Status affects/changes/etc. Y”) in a survey-

data model1 would be to create a survey with an exhaustive list of categories for Marital 

Status (the number of categories might be reduced later). A large number of cases then 

should be obtained if possible. When the responses are available, the exhaustive list of 

categories for Marital Status, for example, should be reduced, if possible (i.e., categories 

with few cases should be dropped or combined with other categories).  

 Next, dummy variables for Marital Status, for example, should be created with a 

dummy variable for each category in Marital Status such as Single, Married, Divorced, 

etc. Specifically, a dummy variable such as Dummy_Single, should be created, with 

cases that have the value 1 if Marital Status = Single, and 0 otherwise. Dummy_Married 

would be similar with cases equal to 1 if Marital Status = Married, and 0 otherwise. 

                                                           
1 It turns out that the suggested approach also might be appropriate for an experiment, but that is another 

story. 



Dummy_Divorced, etc. also would be similar. There should be 1 dummy variable for 

each category in the (truly) categorical variable Marital Status, and the sum of the cases 

that are coded 1 in each categorical variable should equal the number of cases. (For 

example, the sum of the cases that are coded 1 across the dummy variables for Marital 

Status should equal the number of cases, the sum of the cases that are coded 1 across the 

dummy variables for any next categorical variable should equal the number of cases, etc.) 

In total, there would be 1 different dummy variable for each category in each of the (truly 

categorical) variables. 

 Then, a least squares regression version of the structural equation containing (all) 

the dummy variables should be estimated to roughly gage the strength of any ordinal 

effects. For example, in  

1) Y = b1X + b2Z + b3Dummy_Single + b4Dummy_Married + b5Dummy_Divorced 

+ b6Dummy_Separated + b7Dummy_Widowed,  

the latent variables Y, X and Z would be “specified” using summed, preferably averaged, 

indicators, and the regression should use the “no origin” option (i.e., regression through 

the origin). If the regression coefficient for each of the dummy variables is non 

significant, it is unlikely that Marital Status is significant.  

 However, assuming at least 1 dummy variable was significant, the reliability, 

validity and internal consistency of the LV’s in the hypothesized model should be gaged. 

(The dummy variables will have to be assumed to be reliable and valid, and they are 

trivially internally consistent). In particular, the single-construct measurement model 

(MM) for each LV should fit the data. (This step is required later for unbiased 

estimation.) 

Next, a full MM that omits the dummy variables should be estimated to gage 

external consistency. Assuming this “no dummies” MM fits the data, full measurement 

models that omit the dummy variables one at a time should be estimated to further gage 

external consistency. For example, Dummy_Single should be omitted from the (full) MM 

for Equation 1. Then, a second full MM containing Dummy_Single but omitting 

Dummy_Married should be estimated. This should be repeated with each dummy 

variable. (Experience suggests that in real-world data the parameter estimates in these 

MM will vary trivially, which suggests that the dummy variables do not materially effect 

external consistency.) 

Then, assuming the LV’s are reliable, valid and consistent, the LV’s should be 

averaged and their error-attenuated covariance matrix (CM) should be obtained using 

SPSS, SAS, etc. Next, this matrix is adjusted for measurement errors using a procedure 

suggested by Ping (1996b) (and the “Latent Variable Regression” EXCEL spreadsheet 

that is available on this web site). For consistent LV’s, the resulting Error-Adjusted (Err-

Adj) CM then is used to estimate Equation 1 without omitting dummy variables. 

Specifically, the error-attenuated/error unadjusted (err-unadj) CM for all the variables in 

Equation 1 is adjusted for measurement error using the measurement model loadings and 

measurement error variances from the “no dummies” MM for Equation 1. The resulting 

Err-Adj CM then is used as input to least squares regression. This procedure was judged 

to be unbiased and consistent in the Ping (1996b) article, and while it is not as elegant as 

SEM, it does produce “proper” unbiased and consistent structural coefficients in a model 

containing LV’s and (truly) categorical variables just like SEM should (but so far 

doesn’t). 



Specifically, the parameter estimates from the “no dummies” MM are input to the 

“Latent Variable Regression” EXCEL spreadsheet that produces the Err-Adj CM matrix 

using calculations such as  

Var(ξX) = (Var(X) - θX)/ΛX
2  

and 

Cov(ξX,ξZ) = Cov(X,Z)/ΛXΛZ , 

where Var(ξX) is the desired error-adjusted variance of X (that is input to regression), 

Var(X) is the error attenuated variance of X (from SAS, SPSS, etc.), ΛX = avg(λX1 + λX2 

+ ... + λXn), avg = average, and avg(θX = Var(εX1) + Var(εX2) + ... + Var(εXn)), (λ's and 

εX's are the measurement model loadings and measurement error variances from the “no 

dummies” MM--1 and 0 respectively for the dummy variables--and n = the number of 

indicators of the latent variable X), Cov(ξX,ξZ) is the desired error-adjusted covariance of  

X and Z, and Cov(X,Z) is the error attenuated covariance of X and Z from SPSS, SAS, 

etc.2 

The resulting Err-Adj CM (on the EXCEL spreadsheet) is then input to regression, 

with the “regression-through-the-origin” option (the no-origin option) (see the 

spreadsheet for details). 

Because the coefficient standard errors (SE’s) (i.e., the SE’s of b1, b2, ..., and b7 in 

Equation 1) produced by the Err-Adj CM are incorrect (they assume variables that are 

measured without error--e.g., Warren, White and Fuller 1974; see Myers 1986 for 

additional citations), they must also be corrected for measurement error. A common 

correction is to adjust the SE from regression using the err-unadj CM by changes in the 

standard error, RMSE (= [Σ[yi - yi]
2]2, where yi and yi. are observed and estimated y’s 

respectively) from using the Err-Adj CM (see Hanushek and Jackson 1977). Thus the 

correct SE’s for the Err-Adj CM structural coefficients would involve the SE from 

regression using the err-unadj CM, and a ratio of the standard error from err-unadj CM 

regression and the standard error from Err-Adj CM regression, or  

SEA = SEU*RMSEU/RMSEA , 

where SEA is the Err-Adj CM regression standard error, SEU is the SE produced by err-

unadj CM regression, RMSEU is the standard error produced by err-unadj CM regression, 

and RMSEA is the standard error produced by err-unadj CM regression.3 

 

Then, the structural coefficients of the dummies for each of the categorical variables 

could be aggregated to adequately test any hypotheses (e.g., “H1: Marital Status 

affects/changes/etc. Y”) (click here for an EXCEL spread sheet to expedite this process). 

Specifically, if there are multiple categorical variables, the effects of each dummy 

variable would be aggregated (e.g., the effects of Marital Status, for example, would be 

aggregated, then all of the effects of categorical variable 2 would be aggregated ignoring 

the dummy variable effects of Marital Status, etc.).  

 

DISCUSSION 

                                                           
2 These equations make the classical factor analysis assumptions that the measurement errors are 

independent of each other, and the xi's are independent of the measurement errors. The indicators for X and 

Z must be consistent in the Anderson and Gerbing (1988) sense.  

 
3 The correction was judged to be unbiased and consistent in Ping (2001). 

http://www.wright.edu/~robert.ping/WtdAvgSE.xls


 

* Several comments may be of interest. There is a categorical variable that could be 

estimated directly in SEM: a single dichotomous variable (e.g., gender). In this case the 

model could be estimated using SEM in the usual way (i.e., ignoring the suggested 

procedure) with the categorical variable specified using a loading of 1 and a measurement 

error variance of zero. For emphasis ML estimates, ML Robust estimates if possible, 

should be obtained. In addition because the difficulties introduced by a dichotomous, 

non-normal variable, the significance threshold for the dichotomous variable probably 

should be conservative (e.g., t-values probably should be at least 10% higher than usual). 

 

** Because the above procedure is a departure from the usual LV model estimation, it may 

be useful to discuss the justification for the departure in detail. First, in theoretical model 

testing, theory is always more important than methodology. Stated differently, theory 

ought not be altered to suit methodology. Thus, plausible categorical variables should not 

be ignored simply because they cannot be tested with LISREL, AMOS, etc. Method is 

important, however—it must adequately test the proposed theory, and thus the proposed 

methodological approach should be shown to be adequate. 

The options besides the suggested procedure are to analyze subsets of data for 

each dummy variable,4 or to omit the categorical variable(s). Not only does omitting a 

plausible categorical variable to enable analysis with LISREl, AMOS, etc. in the “usual” 

manner force theory to accommodate method, omitting a focal categorical can reduce the 

“interestingness” of the model. And, omitting a plausible antecedent of Y in for example 

in Equation 1, courts biased model estimation results because of the “missing variable 

problem” (see James 1980).5 6 

Analyzing subsets of data for each dummy variable, however, is almost always an 

inadequate test. First, sequentially testing the dummy variables invites one or more 

spurious significances—significances that occur by chance because so many tests are 

performed.  

In addition, splitting the data into subsets reduces statistical power, increasing the 

likelihood of falsely disconfirming one or more dummy variables, and thus the 

hypothesized categorical variable. Further, analyzing subsets provides no means to 

aggregate the dummy variable estimates, and thus it cannot adequately test a categorical 

hypothesis such as “Marital Status affects Y.”  

                                                           
4 For example, the data set would be split into a subset of respondents who were single, and another subset 

of those who were not. Then, the model would be estimated using these subsets, and structural coefficients 

would be compared between the subsets for significant differences. This would be repeated for respondents 

who are married, etc. 

 
5 Omitting an important antecedent, in this case a categorical variable, that may be correlated with other model 

antecedents creates the “missing variables problem.” This can bias structural coefficients because model antecedents 

are now correlated with the structural error term(s), a violation of assumptions (structural errors contain the variance of 

omitted variables). 
 
6 A reviewer also might question the “importance” of the categorical variable(s) with logic such as: 

“Because it usually does not explain much variance in Y, any ‘missing (categorical) variable problem’ is 

likely comparatively small, so why not just omit the categorical variable and use SEM?” This logic misses 

the point of theory testing: What are the theoretically justified antecedents of Y, no matter how “important” 

they are? Besides, the categorical variable could be more “important” in the next study.   



However, while disqualifying all the alternatives may make the proposed 

procedure attractive, it does not make it adequate. A formal investigation of any bias and 

inefficiency (e.g., using artificial data sets) would suggest adequacy. Absent that, 

comparisons with comparatively “trustworthy” estimates should provide at least hints of 

adequacy. Thus, to suggest the structural coefficient estimates for the LV’s are adequate, 

the proposed procedure results could be compared to several SEM models with 1 dummy 

missing. These model should be ML and LS, and the results should be argued to be 

“interpretationally equivalent.”7 Because the dummy results will not be equivalent, the 

step c) (err-unadj CM) regression results should be compared to Err-Adj CM and argued 

to be “interpretationally equivalent.” 

In addition to expecting SEM, reviewers expect ML. However, comparing “1 

dummy missing” estimates using (ML) SEM and (LS) Err-Adj CM should hint that the 

(LS) Err-Adj CM estimates for all the dummies might be interpretationally equivalent to 

SEM estimates were they available.8  

 

Parenthetically, it may not be necessary to burden a first draft of a mixed categorical 

model with these arguments—reviewers may already be aware of the estimation 

difficulties. I would simply mention that SEM doesn’t work for the usual approach for 

categoricals (dummy variables), and the procedure used in the paper was judged to have 

fewer drawbacks than the alternatives: omitting the categorical variable, or estimating 

multiple subsets of cases. 

 

Because the above procedure has not been formally investigated for any bias or 

inefficiency, the estimation results of the aggregated effects of each categorical variable 

probably should be interpreted using a stricter criterion for significance (e.g., t-values 

probably should be at least 10% higher than usual). (Err-Adj CM regression is known to 

be unbiased and efficient.) 

 

"Managing" the number of categories is typically required in order to minimize the 

reduction of the asymptotic correctness of the Err-Adj CM caused by the addition of the 

dummy variables to the model. Specifically, categories with a few cases should be 

dropped or combined with other categories if possible. For example, if there were few 

Divorced, Separated and Widowed respondents, those dummies could be replaced by 

Dummy_Not_Married (i.e., Dummy_Not_Married = 1 if the respondent was Divorced, 

Separated or Widowed, zero otherwise). The drawback to this combining categories is 

that the Divorced, Separated and Widowed categories probably should be combined in 

subsequent studies.  

 

Similarly, categories might be combined or ignored to suit an hypothesis. For example, if 

the study were interested only in married respondents, the Divorced, Separated and 

Widowed dummies could be replaced by Dummy_Not_Married (i.e., 

                                                           

 
7 Interpretationally equivalent estimates have the same algebraic sign, and are both are either significant or 

both are not significant. 

 
8 This appears to beg the question, why insist on ML? ML estimates are preferred in survey-data theory 

tests because they are more likely to be observed in future studies. 



Dummy_Not_Married = 1 if the respondent was Divorced, Separated or Widowed, zero 

otherwise). Afterward, Dummy_Married could be estimated directly using SEM (see “*” 

in the left margin above). 

 

Aggregation is recommended even if it does not seem to be required (e.g., the study may 

be interest only in single respondents). In fact, it functions as an overall “F-like’ test of 

the dummies. Specifically, if the aggregation is not significant, any significant dummies 

probably should be ignored. 

 

For emphasis, nearly every SEM study in the Social Sciences has categorical variables in 

the “Demographics” section of the study questionnaire. Anecdotally, applied researchers 

routinely analyze this data “post-hoc” (after the study is completed) for  “finer grained” 

views of study results by gender, title, marital status, VALS psychographic category, etc. 

The suggested procedure above would enable such analyses in theory tests using SEM. 

Such post-hoc “probing” is within the logic of science as long as the results are clearly 

presented as having been found after the study was completed (and thus provisional, and 

in need of disconfirmation in a future study). For example, Marital Status was actually 

found to be a predictor of exiting propensity in a reanalysis of a study’s data. After an 

argument supporting a Marital Status hypothesis was created, an (as yet unpublished) 

new study was conducted to disconfirm this. and several other, new hypotheses. Stated 

differently, the demographic analysis triggered a new line of thought that resulted in new 

theory (several new hypotheses). 

 

Interested readers are encouraged to read the papers, “But what about Categorical 

(Nominal) Variables in Latent Variable Models?" “Latent Variable Regression: A 

Technique for Estimating Interaction and Quadratic Coefficients" and "A Suggested 

Standard Error for Interaction Coefficients in Latent Variable Regression" on this web 

site for more details about estimating categoricals in SEM, and Err-Adj CM regression 

and its adjusted standard error respectively. 

 

The additional steps for estimating categoricals with several endogenous variables are 

available by e-mail. 

 

 

SUMMARY 

 

In summary, the steps for estimating an hypothesized effect of Marital Status, for 

example, on Y (i.e., “H1: Marital Status affects/changes/etc. Y”) in a survey-data model 

would be to:  

a) create a survey in the usual way. However, a large number of cases should be 

obtained, if possible, to permit the addition of the dummy variables. When the responses 

are available, the number of categories should be reduced, if possible to improve the 

asymptotic correctness of the model parameter estimates.  

b) Create dummy variables with 1 dummy variable for each category in the (truly) 

categorical variable. (The sum of the cases that are coded 1 in each categorical variable 

should equal the number of cases.)  



c) Average the LV’s and estimate a least squares regression version of the 

structural equation containing (all) the dummy variables, using regression through the 

origin, to roughly gage the strength of any ordinal effects. (If no dummy variables are 

significant, it is unlikely that the hypothesized categorical variable is significant.)  

d) If at least 1 dummy variable was significant, the reliability, validity and 

internal consistency of the LV’s in the hypothesized model should be gaged as usual.  

e) Estimate a full MM that omits the dummy variables should be estimated to 

gage the external consistency of the LV’s. If this “no dummies” MM fits the data, full 

measurement models that omit the dummy variables one at a time should be estimated to 

further gage external consistency, and to determine if the dummy variables materially 

effect external consistency. 

f) Average the LV’s and their error-unadjusted covariance matrix (err-unadj CM) 

should be obtained using SPSS, SAS, etc.  

g) Input the parameter estimates from the “no dummies” MM to the “Latent 

Variable Regression” EXCEL spreadsheet (on this web site) to produce an Error-

Adjusted covariance matrix (Err-Adj CM). 

h) Input this Err-Adj CM to regression, with the “regression-through-the-origin” 

option (the no-origin option). 

 i) Correct the coefficient standard errors (SE’s) from the Err-Adj CM regression 

using the EXCEL spreadsheet. 

j) Aggregate the structural coefficients of the dummies for each of the categorical 

variables to adequately test any hypotheses (e.g., “H1: Marital Status affects/changes/etc. 

Y”). 

k) Interpret dummy and aggregation results using a stricter criterion for 

significance (e.g., |t| > 2.2).  
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QUESTIONS of the MOMENT... 
 
"Why are reviewers complaining about the use of moderated multiple regression in my 
paper?" 
 
(The APA citation for this paper is Ping, R.A. (2009). " Why are reviewers complaining 
about the use of moderated multiple regression in my paper?" [on-line paper]. 
http://www.wright.edu/~robert.ping/MR.doc) 
 
 
Multiple regression, and moderated multiple regression, assumes each independent 
variable is measured without error (i.e., the observed score is exactly the true score). 
Unfortunately, it is well known that the extent and direction of all regression coefficient 
is biased by even a single variable that contains (known or unknown) measurement error 
(e.g., Aiken and West 1991, Bohrnsted and Carter 1971, Cohen and Cohen 1983, Kenny 
1979).  
 
Even though this assumption was well known, it was routinely ignored in theoretical 
model (hypothesis) testing until Jöreskog's proposal that, among other things, allowed 
modeling of measurement error (Jöreskog 1970, 1971) (i.e., structural equation analysis). 
As a result, reviewers may reject substantive papers that rely on regression because 1) its 
regression's assumption of variables with no measurement error is now believed to be 
violated even in demographic variables such as age and income (both are typically 
misreported by some respondent groups, and each is typically measured in "round 
numbers"). 2) reviewers are (re)aware of how regression estimates can be biased (i.e., 
untrustworthy) in theoretical model tests when one or more variable contains 
measurement error (unless they are uncorrelated with any of the other independent 
variables, which is unlikely in real-world data). And, 3) regression usually produces 
Least Squares estimates--Maximum Likelihood estimates are now preferred for 
theoretical model testing.  
 
As a result, some reviewers now believe that regression is an insufficient test of a 
theoretical model if there is measurement error in even one model variable (i.e., all the 
resulting coefficients used to test the hypotheses are untrustworthy).  
 
Many suggested procedures for moderated multiple regression (e.g., Barron and Kenny 
1986) are now considered inappropriate for theory testing because for example, the 
analysis procedures (e.g., stepping variables in, etc.) also are insufficient tests of the 
hypotheses. 
 
Alternatives to ordinary least squares regression that account for measurement error 
include Fuller (1991) and Ping (1996), but each has drawbacks. Fuller's proposals are 
inaccessible to many substantive researchers. Ping's proposal relies on measurement 
parameter estimates from structural equation analysis, and begs the question, why not just 
use structural equation analysis? 
 



The "problems" with utilizing the now preferred structural equation analysis, appear to be 
several: it is not taught in all terminal degree programs. And, despite texts apparently 
aimed at "self teaching" it (e.g., Byrne 1990), and (powerful) graphical user interfaces 
now available in most structural equation analysis software packages, anecdotally, 
structural equation analysis still seems to be inaccessible to many substantive researchers 
when compared to regression. For untenured researchers who may be "on a clock," this 
can slow productivity. For others, this can require "finding" someone who does structural 
equation analysis, then "managing" their involvement in the resulting paper. Structural 
equation analysis also can appear to "take over" a theoretical piece, producing a perhaps 
unwelcome intrusion on its theoretical matters.  
 
"Solutions" to the structural equation analysis "problems" all have drawbacks. First, if 
structural equation analysis is not required (e.g., for a dissertation), to conserve time don't 
use it. However, for the reasons stated above, this may be a temporary solution.  
 
Next, consider allowing about a month to do three things: first, finding someone to help 
with learning structural equation analysis, then learning only enough structural equation 
analysis to "get by" reviewers. Then, consider quickly creating/revising a paper with a 
simple model (or a simple submodel of your current model) that uses (replaces regression 
with) structural equation analysis, and submitting it to a good conference. Rather than 
acceptance, the objective would be to learn structural equation analysis in a realistic 
setting. Any reviewer feedback would also suggest what/where more structural equation 
analysis work is needed. 
 
Click here for more about structural equation analysis as "regression using factor scores 
instead of averaged items," and how to learn the basics in a reasonable amount of time. 
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QUESTIONS of the MOMENT... 

 

"How should PRELIS or similar "preprocessor" software be used with LISREL, EQS, 

AMOS, etc. to create interactions/quadratics?" 

 

(The APA citation for this paper is Ping, R.A. (2007). "How should PRELIS or similar 

"preprocessor" software be used with LISREL, EQS, AMOS, etc. to create 

interactions/quadratics?" [on-line paper]. http://home.att.net/~rpingjr/PRELIS.doc) 

 

For Interactions/Quadratics, I usually do not use PRELIS or the other excellent data entry 

or "preprocessor" software available with LISREL, EQS, AMOS, etc. Instead, I use 

EXCEL1. 

 

Nevertheless, for Interactions/Quadratics the procedures are the same for most of them, 

and similar to EXCEL, and I will illustrate zero- or mean-centering, creating 

Interaction/Quadratic indicator(s), etc. using the hopefully familiar Microsoft EXCEL. 

First, key each questionnaire (case) into its row with the response to each item in its 

respective column on the "spreadsheet." Most research houses also number each 

questionnaire and key that number as the row number in column 1 (so they can match any 

questionable data with its questionnaire later). 

 

Most research houses also verify each questionnaire's data entry by typing it a second 

time, and then either comparing the two rows of entries, or summing each row and 

comparing these two sums (don't forget to delete one row). This is a bother because it 

doubles the data entry time, but it is sometimes a comfort to know that any problems later 

are not due to mis-keyed data.  

 

An optional step is to cluster the cases using Ward's method, with squared Euclidean 

distance, into 3 groups. The questionnaires should cluster into 2 large clusters (e.g., the 

happy and the unhappy respondents), and a small cluster of any oddball cases, that may 

be candidates for omission from the data set. (In my opinion, if it is done before any 

measurement or structural models are estimated it is still "good science"--e.g., similar to 

dropping incomplete, echeloned, etc. questionnaires--and structural equation analysis can 

be difficult enough without forcing a model fit data that include odd-ball cases). 

 

Next, for a latent variable X with indicators x1, x2, etc., Z with indicators z1, z2, etc.,  and 

the interaction XZ, the indicators x1, x2, etc., and z1, z2, etc. should be mean- or zero-

centered. This step is almost always required to avoid model estimation problems later. 

At a minimum, each indicator in each latent variable that comprises an 

interaction/quadratic should be centered (e.g., X and Z in XZ). This is accomplished by 

creating a new column of values for each centered indicator. For the centered x1 (xc1) 

column of values, for example, the column entries are computed by first obtaining the 

                                                 
1 GA's, etc. can be unfamiliar with PRELIS, etc., but usually they know EXCEL. The 

EXCEL data can be saved a second time as a .prn file for (raw data) input to LISREL, 

etc. after some clean up in WORD (e.g., to remove row titles, etc.). 



mean of the column of x1 entries (M(x1)). Then, this mean is subtracted from the x1 value 

in row 1, for example, and placed in row 1 of the xc1 column (e.g.,  

 

 x1  xc1  

 (a)  = (a) - M(x1)  

 (b)  = (b) - M(x1)  

 ...  ...  

 =Average((a), (b), ...) 

(=M(x1)) 

   

 

where (a), (b), etc. are values in the x1 column, "= Average((a), (b), ...)" is the EXCEL 

command for the average of the x1 column (abbreviated by "=M(x1)"), and "= (a) - 

M(x1)," for example, is the EXCEL calculation (a) minus the average of all the x1 column 

entries). After computing each row of xc1, the process is repeated for the xc2, etc., zc1, 

zc2, etc. columns. These centered indicator values, xc1, xc2, etc. will be used to itemize X 

in the interaction/quadratic model instead of x1, x2, etc., zc1, zc2, etc.; and zc1, zc2, etc. 

will be used to itemize Z in the interaction/quadratic model instead of z1, z2, etc. 

 

Next, I will illustrate creating the values for the single indicator for the Ping (1995) 

interaction/quadratic specification. They are created in 3 steps. First, a new column of 

averaged centered X indicators (xcAvg) is created with a row 1 entry that is the average 

of the values of the centered indicators of X in that row. Then, for the row 2 entry of the 

xcAvg column, the column xc1, xc2, etc. values in row 2 are averaged, etc. (e.g.,  

 

 xc1 xc2 etc. xcAvg  

 (c) (e)  = Average((c), (e), ...)  

 (d) (f)  = Average((d), (f), ...)  

 ... ...  ...  

      

 

where (c) = (a) - M(x1), (d) = (b) - M(x1), etc. (as above), "= Average((c), (e), ...)" is the 

EXCEL row average of the xc1, xc2, etc. values in the first row, "= Average((d), (f), ...)" is 

the EXCEL row average of the xc1, xc2, etc. values in the second row, etc.). 

 

Next, the same thing is done for Z creating a column of averaged centered Z indicator 

values (zcAvg) (e.g.,  

 

 zc1 zc2 etc. zcAvg  

 (g) (i)  = Average((g), (i), ...)  

 (h) (j)  = Average((h), (j), ...)  

 ... ...  ...  

      

 

where (g), for example, is the first row value of z1 minus the average of the column of z1 

values, "= Average((g), (i), ...)" is the EXCEL row average of the zc1, zc2, etc. values in 



the first row, "= Average((h), (j), ...)" is the EXCEL row average of the zc1, zc2, etc. 

values in the second row, etc.). 

 

The third column contains entries in each row that are the product of the xcAvg value and 

the zcAvg value in that row (xcAvg*zcAvg). Specifically, in row 1 of the xcAvg*zcAvg 

column is the product of the row 1 value from column xcAvg times the row 1 value from 

column zcAvg. Next, row 2 of the xcAvg*zcAvg column contain the row 2 value of 

xcAvg times the row 2 value of zcAvg, etc. (see Exhibit A). 

 

Then, a new (replacement) (raw) data set is created that contains the original columns for 

the indicators of the latent variables other than X and Z. However, for the indicators of X 

and Z the xc1, xc2, etc. columns, and the zc1, zc2, etc. columns, are substituted for the x1, 

x2, etc. and z1, z2, etc. columns. The xcAvg and zcAvg columns are omitted, but the 

xcAvg*zcAvg column of values for the interaction indicator are included. Specifically, if 

y1, y2 and y3 are the indicator columns for the latent variable Y, the table  

 

Exhibit A--Rearranged Spreadsheet for Input to LISREL, SPSS, etc. (After Cleanup in 

WORD) 

 

xc1 xc2 xc3 zc1 zc2 zc3 y1 y2 y3 xcAvg*zcAvg 

(c) (e) (k) (g) (i) (m) (o) (q) (s) [(c+e+k)/3]*[(g+i+m)/3] 

(d) (f) (l) (h) (j) (n) (p) (r) (t) [(d+f+l)/3]*[(h+j+n)/3] 

... ... ... ... ... ...    ... 

 

is output to a file for the measurement and structural model estimations, where (c), (e), 

etc. are as before., and (o) - (t) are the values for the y's.  

 

Then, see "Questions of the Moment," "Is there an example that shows all the steps..." for 

the next steps. 



QUESTIONS of the MOMENT... 

 

"Why would applied researchers be interested in interactions/quadratics?" 

 

(The APA citation for this paper is Ping, R.A. (2008). " Why would applied researchers 

be interested in interactions/quadratics?" [on-line paper]. 

http://www.wright.edu/~robert.ping/applied.doc) 

 

Anecdotally, applied researchers sometimes face the same "difficulties" as theoretical 

model testers: predictors that should be important in "the model" when it is applied to the 

present data are suddenly not important. Equivalently, after "the model" is extensively 

calibrated, it does not predict very well in the present situation.  

Failing to consider interactions or quadratics in a predictive can produce these 

results. For example, with a significant interaction in  

Y = b0 + b1X + b2Z + b3XZ + b4XX + ζ , (1 

(where ζ is estimation error) the coefficient of Z in Equation 1 factors to  

Y = b0 + b1X + (b2 + b3X)Z + b4XX + ζ , (1a 

rather than b2 (see Aiken and West, 1991). Because the "factored" coefficient of Z in 

Equation 1a is now a variable that depends on the various levels of X in the data set, the 

magnitude, sign, and statistical significance of b2 + b3X are variable, and thus very 

different from the coefficient of Z in an Equation 1 without XZ (i.e., b2' in 

Y = b0' + b1'X + b2'Z + ζ' ). (1b 

Specifically, b2' could be nonsignificant, while b2 + b3X could be significant over 

part(s) of the range of X in the data set. In this event, it is not the case that Z does not 

predict Y in the data set. The Z-Y association is simply conditional, and its significance 

depends on the various levels of X observed in the data.  



This has important implications. Because b2' is approximately the same as b2 + 

b3Xavg , where Xavg is the average of X in the data set (see Aiken and West, 1991), if Xavg 

is low (small), b2 + b3Xavg may be numerically small, and thus b2' may be nonsignificant. 

In different words, Z may appear to be unrelated to Y in an Equation 1b model, when in 

the Equation 1 model, for larger values of X in the study b2 + b3X may be significant as 

anticipated. This also implies that with a significant interaction XZ in Equation 1, the Z-

Y association in Equation 1b may be significant in the next data set if Xavg is larger 

(higher) in that data. 

Alternatively, with a significant interaction in Equation 1, b2' could be significant, 

but b2 + b3X could be nonsignificant over part of the range of X in a data set. In this case, 

the customary interpretation based on the significance of b2', that Z was associated with 

Y, is incorrect: there is a set of cases where changes in Z had no association with Y. 

Further, any "recommendations" based on the apparently significant Z-Y association in 

Equation 1b due to b2' may be misleading. Again, there is a set of cases where 

"managing" (changes in) Z had no effect on Y. 

Similarly, with a significant quadratic such as XX in Equation 1, Equation 1 can 

be refactored into Y = b0 + (b1 + b4X)X + b2Z + b3XZ + ζ , and the coefficient of X is 

given by b1 + b4X, rather than by b1' in Equation 1b. In this case, the relationship between 

X and Y depends on the particular level of X at which this association is evaluated. 

(Interpreting quadratics and "the association between X and Y depending on the 

particular level of X at which this association is evaluated" is discussed later.) As a result, 

b1' could be significant while b1 + b4X could be nonsignificant, or vice versa, which 

creates the same interpretation and implications issues as a significant interaction. 



Thus, for improved understanding, explanation and prediction of model results, 

interactions and quadratics should be investigated. Specifically, they may provide 

explanations for important but nonsignificant associations, which avoids casting a 

shadow on the utility of the model because it appears not to apply in all cases, and it 

improves the interpretation of significant associations that may be conditional. 

However, given the tediousness of identifying significant interactions or 

quadratics among latent variables, researchers who want to probe for these variables may 

decide to use approaches such as ordinary least squares (OLS) regression or analyzing 

subsets of data (e.g., median splits). Unfortunately regression estimates of interaction or 

quadratic structural coefficients for latent variables are well known to be biased (see the 

demonstrations in Aiken and West, 1991). Similarly, subset analysis is criticized in the 

psychometric literature for a variety of reasons, including its reduced ability to detect 

interactions or quadratics (see Maxwell and Delaney, 1993 and the citations therein). 

There are other estimation concerns as well, such as correlations among 

interactions and quadratics that can produce no significant interactions or quadratics 

when several interactions or quadratics are estimated jointly, and extant search 

techniques, such as forward selection and backward elimination, can be indeterminate in 

that they can produce different subsets of significant interactions and/or quadratics. 

These matters are discussed in the working paper "Hypothesized Associations and 

Unmodeled Latent Variable Interactions/Quadratics: An F-Test, Lubinski and 

Humphreys Sets, and Shortcuts Using Reliability Loadings" on the previous web page. 

 



QUESTIONS of the MOMENT... 
 

"Why are reviewers asking about reliability and validity in my interaction, XZ, and is there any way  

to improve XZ reliability and validity?" 

 

(The APA citation for this paper is Ping, R. A. (2017). "Why are reviewers asking about reliability and 

validity in my XZ interaction, and is there any way to improve these matters?" [on-line paper]. 

http://www.wright.edu/~rping/ImprovXZ_AVEa.doc) . 

 

Reliability and validity in XZ are discuss in detail in, for example, "What is the Average Variance 

Extracted for a Latent Variable Interaction (or Quadratic)?" and "What is the "validity" of a Latent Variable 

Interaction (or Quadratic)?" in QUESTIONS OF THE MOMENT on this web site. Briefly, XZ reliability is 

necessary for XZ validity, and because there is little agreement on what constitutes an adequate 

demonstration of validity. a minimal demonstration of XZ’s validity should probably include the content or 

face validity of its indicators (how well they tap into its conceptual definition—in this case its itemization), 

XZ’s, and its convergent and discriminant validity (its correlations with other model LV’s and acceptable 

AVE). 

 

The reliability and validity of XZ are as important in my opinion as that of X or Z. At the risk of overdoing 

it, if XZ is not reliable it is per se not valid, and if this is the case, one is not performing an adequate 

disconfirmation test of any X or Z moderation hypothesis. Specifically, and as discussed elsewhere on this 

web site, lack of XZ content or face validity disables the hypothesized model’s test of a moderation 

hypothesis (because of the “factoring” difficulty—see below). Lack of convergent validity handicaps a 

moderation hypothesis test because any observed moderation association is likely to be false positive or 

false negative due to measurement error. In different words, lack of XZ reliability and validity casts a 

shadow on a disconfirmation moderation test. 

 

In a convenient sample of substantive articles that estimated an LV interaction, none specifically addressed 

XZ reliability or validity. (Parenthetically, in my own substantive articles--see 

www.wright.edu/~robert.ping/rt.htm--this matter also was not specifically addressed.) (As I recall, most of 

my substantive LV interactions were valid and reliable—these numbers were on the EXCEL spreadsheet 

on my web site that I used to calculate LV interaction/quadratic loadings and measurement errors after 

2003, and I formally raised the matter on this web site beginning about 2005. However, because I could/can 

find no citation in the literature for calculating an interaction (or quadratic) AVE other than Ping, R.A. 

(2005), and an exploratory factor analysis “AVE” is approximate (see "Is there any way to improve 

Average Variance Extracted (AVE) in a Latent Variable (LV) X?"), my substantive articles never 

specifically mentioned XZ reliability and validity.) 

 

However, reliability and validity may not apply to XZ. I recall a colleague objecting that an LV interaction 

was not a “construct. Further, specifying X’s moderation of Z-Y as XZ also implies testing the assumption 

that the moderation is of the form  

 

     Y = ...+ aX + bZ + cXZ +... 

  

        = ...+ (a+cX)Z + bz +...  

 

(The moderation also could be of the form   

 

     Y=...+ aX + bZ + cZ/X +... 

 

       = ...+ (a+c/X)Z + bZ +... ) 

 

While I have yet to resolve these objections satisfactorily (e.g., can products of observed indicators actually 

be themselves “observed” as, for example xi? And, the specification of c/X as a moderator is unexplored), 

specifying a XZ as a construct (i.e., with indicators), evaluating the reliability and validity of XZ out of 

concern for false negative or false positive results due to its measurement error, and specifying a 



moderation hypothesis with XZ may be the best we presently can do to test a moderated hypothesis 

involving two LV’s. 

 

Also as pointed out elsewhere on this web site, in real world data, reliable and valid X and Z are likely to 

produce low reliability and validity in XZ. (The disinterested reader may want to skip the following support 

of this statement and skip to A) below.) 

 
The reliability of XZ is given by  

            rXZ
2 + ρXρZ 

ρXZ =   --------------   , (1 

              rXZ
2 + 1 

 

where ρ denotes reliability and rXZ
2 is the correlation of X and Z. Similarly, the reliability of XX is  

            rXX
2 + ρXρX 

ρXX =  --------------- 

              rXX
2 + 1 

 

            1 + ρX
2 

       =  ---------- (2 

                2 

 

(Busemeyer and Jones, 1983). Thus, the reliability of an interaction or quadratic is a function of the product of 

reliabilites, and XZ is unlikely to be reliable unless X znd Z have reliability in the 0.84 range. This also suggests that 

XZ reliability could be improved by improving X’s and/or Z’s reliability.  

 

The AVE of XZ is derived on this website (see "What is the Average Variance Extracted for a Latent Variable 

Interaction (or Quadratic)?"), and is  

               (Σ[λxiλzj]2)Var(XZ) 

AVEXZ =  ──────────────   (3  

(Σ[λxiλzj]2)Var(XZ)+ΘXZ 

 

          Σ[λxiλzj]2 

             =  ───────────────  , (4  

Σ[λxiλzj]2 + Θ XZ / Var(XZ) 

 

where xi and zj are indicators of X and Z, λ is loading, Var is variance, and Θ is measurement error. Thus, XZ AVE is 

improved by reducing measurement error in XZ. 

 

And, because  

 

          ΘXZ = [Σλxi
2]Var(X)ΣVar(zj) + [Σλzj

2]Var(Z)ΣVar(xi) + [ΣVar(xi)]ΣVar(zj)                                                       (5 

 

                  = [Σλxi
2]Var(Z)ΣVar(xi) + [Σλxi

2Var(X) + ΣVar(xi)]ΣVar(zj) 

 

where xi  and zj are measurement error (see "What is the Average Variance Extracted for a Latent Variable Interaction 

(or Quadratic)?"), suggests that XZ AVE is improved by reducing measurement error in Z. Similarly, factoring by 

Σ[Var(xi)] suggests XZ AVE is improved by reducing measurement error in X. Because AVEX and AVEZ also have 

the Eqation 3 form, increasing AVE in X or Z reduces measurement error in X and Z, and increases XZ AVE. 

(Parenthetically, this suggests AVE is increased by increasing VAR(XZ), and since 

  

           Var(XZ)=Var(X)Var(Z) + Cov2(X,Z)                                                                                                               (6 

 

increasing Var(X), Var(Z) and/or Cov(X,Z) increases AVE in XZ—see Equation 4.) 

 

A) Nevertheless, reliability and AVE of XZ can typically be improved by improving the reliability and AVE 

of X and/or Z. As suggested in "Is there any way to improve Average Variance Extracted (AVE) in a 

Latent Variable (LV) X?" in QUESTIONS OF THE MOMENT, dropping cases may improve AVE in X 

and Z. However the process is tedious, and experience suggests that in real world data the improvement 

may be limited (about 0.02-0.05 in AVE). 

 



An alternative is to delete XZ indicators. However as mentioned elsewhere the resulting XZ would not be 

Face or Content Valid because it is not itemized as 

 

     XZ = (x1+x2+...+xn) (z1+z2+...+zm)  

 

           = x1z1+x1z2+...+x1zm+x2z1+x2z2+,,,+x2zm+...+xnz1+xnz2+...xnzm).  

 

This is important because with a weeded XZ an hypothesized X moderation of Z-Y in the model  

Y=...+aX+bZ+cXZ+...= ...+(a+cX)Z+bZ+... (Aiken and West 1991) (i.e., the coefficient of Z depends on 

the level X in (a+cX) ) is not tested because XZ can no longer be factored—the Z in bZ is not the same as Z 

in cXZ. 

 

As mentioned above (see Equations 4 and 6) , it also may be possible to increase XZ AVE by increasing X 

and Z’s correlation. This might be affected by using the scaling procedure described in "Is there any way to 

improve Average Variance Extracted (AVE) in a Latent Variable (LV) X?" (by adding, instead of 

subtracting, a the scaling factor to increase, instead of decrease, correlation between X and Z, in order to 

increase the AVE of XZ—see Equations 4 and 6). (I have not tested this procedure with real world data for 

several reasons including it may be difficult to justify this to reviewers when reitemizing X and Z using the 

EXCEL procedure mentioned above might be more appropriate. (However, see below.) In addition 

rescaling may just “mask” the real problem with XZ: insufficient error free variance in X and Z.) 

 

If XZ resists the above attempts at increasing reliability and AVE sufficiently, a Median split of the data 

might be used to avoid the XZ reliability and AVE matter altogether. However, this approach is 

discouraged in the regression literature (e.g., Aiken and West 1991, Cohen 1983) because splitting data 

substantially reduces statistical power, and thus increases the likelihood of a False Disconfirmation (False 

Negative) finding. (Nevertheless, see "Why is my hypothesized interaction or quadratic non significant?" 

for more on median splits, and see below.) 

 

Experience suggests that in real world data reitemizing X or Z to increase AVE can increase AVE of XZ 

(see “Is there any way to speed up 'item weeding' and find a set of items that jointly fits the data, contains 

more than 3 items, and is valid and reliable?” in QUESTIONS OF THE MOMENT). However, the 

procedure is tedious, even using the EXCEL spreadsheet, and if several adequate itemizations are found, it 

may be difficult to judge face valid of X and/or Z without an item-judging panel. 

 

In summary, XZ reliability and validity are (or should be) as important as reliability and validity of X and 

Z. Unfortunately, XZ reliability and validity are usually (much) less that that of X or Z, and the remedies 

discussed above each have their drawbacks. For example nearly all are tedious, some trade one validity for 

another, some ignore reliability and validity but sacrifice power of the test, others are untested.  

 

Nevertheless, experience suggests reitemizing X and Z using the (tedious) EXCEL worksheet procedure 

works sufficiently well to qualify as a first-choice remedy for XZ reliability and validity difficulties. 

However, if this fails to produce adequate XZ reliability and AVE, one might consider estimating XZ to see 

if it is significant. If so, one could try a median split.  

 

If that is not significant, one could use the scaling procedure mentioned above to “probe” the effect of XZ’s 

significance in the presence of low reliability/AVE. Specifically, at what point does increasing XZ 

measurement error (or the effects of measurement error decreased by X-Z covariance) make the XZ-Y 

association NS? In different words, how much measurement error is required (in the present case) to render 

the XZ-Y association NS. If it’s a lot, one might argue that unacceptable XZ reliability/AVE may not 

matter that much in the next model test: in the present model the significant XZ-Y association appeared to 

be “robust to departures from inadequate reliability/AVE.”  

   (I have not investigated this approach, and it is plausible that there may be a comparatively low “tipping 

point” for lack XZ-Y association when X-Z covariance is increased. In other words, XZ may not be very 

“robust.” (Or, there may be no change) Further, even though “adequate” reliability is 0.70 and “acceptable” 

AVE is 0.50, these values could be viewed as “arbitrary.” Nevertheless, they are the “rules used to judge 

these matters,” and reviewers may or may not be willing to “bend” these rules.)  



 

(Parenthetically, this suggests an additional criterion for judging the itemization of X and Z—consider the 

covarance of X and Z when initially itemizing X and Z.) (Maximizing X and Z’s covariance could 

obviously be a criterion in reitemization, but it would seem formally more appropriate to do this when first 

choosing items.)  

 

If “bending” the rules is not acceptable, one could argue for in effect “suspending” XZ reliability and 

validity concerns. The logic would be that the model may be sufficiently interesting to not suppress its first 

test. In different words, the primary focus of the (any) paper is on the new theory developed, and that 

contributions include a "first test;" and that in this case more measurement work is simply needed on the 

low AVE X and Z measures. (A less desirable alternative with low AVE would be to drop the XZ 

hypothesis, or create a propositional paper, with the caveat that both might be received as considerably less 

"interesting.") 
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QUESTIONS of the MOMENT... 

 

"When theory proposes an X-Y association and it also proposes that Z moderates this 

association, but theory is mute about or doesn't propose a Z-Y association, why does one 

still include Z in addition to X and XZ in the model to be tested?" 

 

(The APA citation for this paper is Ping, R.A. (2009). "Why must one always include Z 

in addition to X and XZ in the model to be tested?" [on-line paper]. 

http://www.wright.edu/~robert.ping/MissingZ.doc) 

 

 

By hypothesizing Z's moderation of the X-Y association but excluding the Z-Y 

association in the model to be tested, one is assuming that Z has no relationship with Y. 

However, reviewers will likely request support (argumentation) for this assumption, and 

validation of these arguments by testing (including) the Z-Y association it in the model. 

There are several reasons for this, including that the logic of science requires an argument 

(hypothesis) to support an assumption such as the Z-Y association does not exist in the 

population. This in turn requires an hypothesis test (i.e., including the Z-Y association in 

the model to be tested). 

 

Omitting the Z association also creates the "missing variable" problem (see James, 1980), 

which can bias all structural coefficients, and standard errors in the model. This in turn 

casts a shadow on the trustworthiness of the test of the proposed model. (The Z-Y 

association will never be exactly zero in real-world data, and the fitted covariance 

matrices for the structural models with and without Z will be slightly, to very different, 

depending on the covariances of Z with the other model variables.) (In addition, missing 

variables are accounted for in the error term(s) (structural disturbances) of the dependent 

variable(s). Because these missing variables are almost always correlated with other 

antecedent variables in real-world data, when Z is missing, error tem(s) are correlated 

with antecedent variables in the model, which is a violation of an important structural 

equation analysis assumption.) 

 

In addition, if XZ is significant, excluding Z from the model biases the factored ("true" 

contingent) association of Z with Y, EVEN IF A Z-Y ASSOCIATION IS 

HYPOTHESIZED TO NOT EXIST IN THE POPULATION. In Y = b1X + b2XZ + b3Z, 

the factored (true contingent) coefficient of Z is (b2X + b3)Z. Since b3 will never be zero 

in real-world data, this factored coefficient of Z and its significance will be biased by 

omitting Z. Further, excluding Z misses an opportunity to "explore" (discuss) the novel 

fact that Z, even if it is supposed to be nonsignificant, is significantly (conditionally) 

associated with Y. 

 

Thus, if theory suggests that the Z-Y association is zero in the population, or the theory is 

mute on this matter, one should consider adding a formal argument, including an 

hypothesis, that Z has no association with Y to the paper. Then, one should consider 

including the Z-Y association in the model to be tested (to test this hypothesis). 

 



Optionally, to gauge the effect (significances) of excluding Z from the model, one could 

rerun the model with Z omitted. (This practice, called "trimming," was once popular in 

Sociology, but it is now rarely seen in Social Science.) In addition, if XZ is significant, 

one could also compute the factored coefficient of Z and its significances at various 

levels of Z in the sample, then discuss this "discovery" in the Discussion section of the 

paper.  
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QUESTIONS of the MOMENT... 

 

"Why is my hypothesized interaction or quadratic non significant?" 

 

(The APA citation for this paper is Ping, R.A. (2007). "Why is my hypothesized interaction or 

quadratic?" [on-line paper]. http://www.wright.edu/~robert.ping/NS.doc) 

 

It is usually a good idea to verify that model specification and estimation are not the "problem." 

Specifically, consider verifying that the model is properly specified (e.g., the correlations among 

the exogenous variables, including the interactions, are free; the correlations between exogenous 

variables and endogenous variables are not free; structural disturbances are not correlated, etc.). 

Then, check that the interactions are properly specified (e.g., the "essential" correlations between 

X-XZ and Z-XZ, for example, are free, the variance of XZ is also free, and the values for the 

loading and measurement error variance have been properly calculated and keyed into the 

estimation program), and the model indicators are all mean- or zero-centered. Next, verify that 

the structural model fits the data, all the coefficient estimates are admissible (see Step VI, 

"Admissible Solutions Revisited" in the Testing Latent Variable Models Using Survey Data 

monograph on this web site), and the measurement parameters of X and Z in the structural model 

(i.e., the loadings, measurement error variances and the variances of X and Z) are within a few 

points of their measurement model values. If the measurement parameters of X and Z in the 

structural model are different from their measurement model values, recalculate the interaction's 

loading and measurement error variance using the structural model measurement parameter 

values. 

 

If the structural model and its estimates check out, the possible next steps are several. However, 

it turns out that there are infinitely more (mathematical) forms of an interaction besides XZ. I 

once proposed to find several dozen interaction forms besides XZ, and eventually suggested 

XZw, where W can be any (positive or negative) number. These interaction forms include not 

only XZ (w = 1), they also include X/Z (see Jaccard, Turrisi and Wan 1995) (as Z increases in 

the study X is attenuated--w = -1). They also include XZ2, the interaction between X and the 

square of Z (see Aiken and West 1991), and they include XXw, where Z = X and X is moderated 

by itself (which is called a quadratic when w = 1). Thus, an hypothesized interaction may not 

have the form XZ, and specifying it in that form may produce NS results for the hypothesized 

interaction.  

 

Unfortunately, in this case the options become limited. It may be prudent to test the hypothesized 

interaction in the form XX (X interacts with itself). However, if XX is NS, interaction 

specifications besides XZ and XX are unknown at present. Nevertheless, it may be efficacious to 

test a median split of the data. If this is significant, it suggests the hypothesized interaction was 

significant, but its form was not easily determined (XZ and XX were NS).  

 

One other possibility remains if the median split was significant and XZ and XX were NS. The 

interaction may "approach significance"--its t-value is in some neighborhood of 2 using 

maximum likelihood estimation. This is usually the result of low XZ (or XX) reliability or 

insufficient sample size. Interaction reliability can be verified using the EXCEL spreadsheets on 

the previous web page. Insufficient sample size can be checked by calculating the sample size 

(N) that would have been required to produce a t-value of 2 using the equation N = 4*n/t2, where 

n is the current sample size, "*" indicates multiplication, and t2 is the square of the current t-

value. If the reliability of XZ is 0.7 or above, and a few more cases would push the t-value above 

2, it might suffice to simply state that the interaction "approaches significance," and proceed as 
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though the interaction were significant. No statistical assumptions are violated by declaring that, 

for example, t greater than 1.95 in absolute value suggests significance. It is simply conventional 

in structural equation analysis to declare a structural coefficient twice or more the size of its 

standard error to be significant. In regression studies and correlational analysis there are two 

conventions for significance, p-value = 0.05 and p-value = 0.10. A p = 0.05 corresponds to t-

value = 1.97 with 200 degrees of freedom (df), and p = 0.10 corresponds to t = 1.65 with 200 df.  

 

Thus, depending on reviewers, it might suffice to state that the interaction "approaches 

significance" and no more. If challenged it might be useful to respond by computing the p-value 

for the t-value-less-than-two and the model degrees of freedom, and comparing it to the p-value 

of t = 2 with the model degrees of freedom. For example, if the target structural coefficient has a 

t-value of 1.97 with 267 degrees of freedom, the corresponding p-value is roughly 0.0499, which 

is close to the p-value for t = 2 with 267 df, 0.0465. A fallback position is to preface any 

discussion, implication, etc. involving the target coefficient with "if significant in future 

studies..." This preface is actually the preferred opening remark for any discussion of the model 

test results because it is well known that a single study "proves" nothing. It merely suggests what 

future studies may observe. 

 



QUESTIONS of the MOMENT... 

 

"Is there any way to improve Average Variance Extracted (AVE) in a Latent Variable 

(LV) X?" 

 

(The APA citation for this paper is Ping, R. A. (2009). "Is there any way to improve 

Average Variance Extracted (AVE) in a Latent Variable (LV) X (Revised)?" [on-line 

paper]. http://www.wright.edu/~robert.ping/ImprovAVE2.doc) 

 
(Click here for an earlier version of this paper, Ping, R. A. (2007). "Is there any way to improve Average 

Variance Extracted (AVE) in a Latent Variable (LV) X?" [on-line paper]. 

http://www.wright.edu/~robert.ping/LowAVE.doc.) 

 

 

Average variance extracted (AVE) almost always can be improved by dropping cases, or 

by dropping the item with the largest measurement error variance. The result may be 

desirable to improve AVE, or to raise it above the square of a correlation with another 

latent variable (LV) (i.e., to improve discriminant validity in the Fornell and Larker 

(1981) sense).  

 

One approach to dropping cases is to use a "Jacknife-like" procedure (Efron 1981). 

Specifically, a case is removed from the data set, and AVE is computed for the remaining 

cases.1 Then, the removed case is replaced, a different case is removed, and AVE is 

computed for the remaining cases. This process is repeated for each of the rest of the 

cases to find the case that produces the largest AVE improvement.2 

 

Additional AVE improvement may be obtained by repeating this process using the 

improved AVE data set (i.e., with the case that produces the largest AVE improvement 

removed), instead of the full data set. Specifically, a case is removed from the first 

improved AVE data set, and AVE is computed for the remaining cases. Then, the case 

just removed (not both cases) is replaced, a different case is removed, and AVE is 

computed for the remaining cases. This process is repeated for each of the rest of the 

cases to find the largest AVE improvement with two cases removed (but, see Footnote 2). 

 

This process could be repeated using combinations of the above and Footnote 2) 

procedures, but experience suggests that dropping about three cases or approximately a 

.05 AVE improvement is the most AVE improvement that dropping cases will produce in 

real-world data. 

                                                 
1 In a (maximum likelihood) exploratory factor analysis, the "Percent of Variance 

Explained" by Factor 1 can be used to gauge changes in AVE in a unidimensional set of 

items--it is roughly the same as AVE. 

 
2 Dropping the case that detracts most from AVE is arguably "not random," and this casts 

a shadow over sample "representativeness." An improvement would be to randomly 

select a case from the set of cases that detract most from AVE. Alternatively, cases could 

be deleted randomly and the first case that improves AVE could be dropped. 

http://www.wright.edu/~robert.ping/LowAVE.doc


Dropping an item also will improve AVE, frequently by more that deleting cases will. 

However, the procedure for this is "messy," and the resulting set of higher AVE items 

can be less content or face valid than before items were dropped (i.e., the resulting set of 

items may match its conceptual and/or operational definitions less well). The results also 

may be less internally consistent (i.e., the single construct measurement model of the 

resulting items may fit the data less well).  

 

Experience suggests that in real-world data, several consistent subsets of items from a 

measure usually can be found. An alternative to dropping items is to create one or more 

additional subsets of items and gauge the AVE of each these subsets. Replacing any 

deleted cases, (maximum likelihood) exploratory factor (with varimax rotation) the full 

measure. Then for the Factor 1 items, find highest reliability subset of these items (there 

are procedures in SPSS, SAS, etc. to accomplish this, usually in the "reliability" 

procedures). If the AVE of the resulting highest reliability subset of items is 

unacceptable, try dropping cases from this subset of items. (Dropping the item with the 

largest error term from the highest reliability subset of items usually reduces AVE.)  

 

If model-to-data fit or content validity problems arise when items are dropped, 

combinations of one or more of the following procedures could be used.  

 

Replacing any deleted cases, consider finding another consistent subset of items using 

Modification Indices (see Appendix A--Item Weeding in "On the Maximum of About Six 

Indicators..." on this web site). If this subset has unacceptable AVE, try dropping the item 

with the largest error, and/or drop case(s). Experience suggests that Modification Indices 

sometimes works better than maximizing reliability. However, AVE improvement seems 

to be limited to about 10 points (i.e., 0.10). 

 

If AVE is still unacceptable, replace any deleted cases, then, using the Factor 1 items, 

drop the item with the largest error term first. Then, reitemize the resulting set of items 

using Modification Indices or by maximizing reliability. Next, drop cases, and/or drop 

the item with the largest error from the results.  

 

However, if AVE of the resulting measure is within a few points of "acceptable" (0.50), 

this may not always be "fatal" to publishing a model test. Experience suggests that not all 

reviewers accept AVE as "the" measure of convergent validity, some prefer reliability. 

Thus, if an LV is reliable, that may be a sufficient demonstration of convergent validity 

for some reviewers. 

 

In addition, the logic for possibly ignoring low AVE might be that many "interesting" 

theoretical model-testing studies involve a "first-time" model, and an initial model test, 

that together should be viewed as largely "exploratory." This "first test" usually uses new 

measures in a new model tested for the first time, etc., and insisting that the new 

measures be "perfect" may be inappropriate because new knowledge would go 

unpublished until a "perfect" study is attained. AVE adherents of course might reply that 

concluding anything from measures that are more than 50% error is ill advised, because 

there are so few replication studies. 



 

In my opinion, an AVE slightly below 0.50 might be acceptable in a really "interesting" 

"first-time" study, 1) if it does not produce major discriminant validity problems 

(discussed below), 2) the diminished AVE is noted and discussed in the Limitations 

section of the paper, 3) any significant effects involving the low AVE LV's are held to a 

higher significance requirement (e.g., |t| >= 2.2 rather than |t| >= 2.0), and 4) any 

discussion of interpretation, and especially implications, involving the low AVE LV's are 

clearly labeled as "very provisional" and in need of replication.  

 

Again, the logic would be that the model may be too interesting to suppress its first test. 

In different words, the focus of the paper should be on the new theory developed, and the 

contributions include a "first test," and that more measurement work is needed on the low 

AVE measures. (A less desirable alternative with low AVE would be a propositional 

paper, which might be considerably less "interesting.") 

 

This "first-time study" argument also may apply when there are discriminant validity 

problems, and more measurement work is needed on the low discriminant validity 

measures. Nevertheless, it always possible to reduce the correlation between two LV's 

using a procedure similar to Residual Centering (see Lance 1988). The procedure 

involves reducing the covariation between the target LV's X and Z until the squared 

correlation between them is less than the AVE of both X and Z. Specifically, average the 

indicators for X and Z, then regress the lower AVE LV, X for example, on the higher 

AVE LV, Z, to produce Z = b0 + b1X. Next, subtract a percentage of b0 + b1X (i.e.,  

 

1) K*( b0 + b1X),  

 

where K is between 0 and 1) from Z in each case to scale (reduce) the covariance (and 

thus the (squared) correlation) between X and Z.  

 

However experience suggests that in real-world data, scaling simply masks a discriminant 

validity problem rather than remedying it. Specifically, in real-world data, experience 

suggests that with lower AVE and correlated X and Z, the unique error variance (i.e., 

error variance that is unshared in the correlation between X and Z) of one or both X and 

Z can be greater than 50%. This in turn increases the instability (variability) of structural 

coefficients involving X or Z across studies beyond that which could be expected with 

sampling variation. Stated differently, with declined AVE and (even moderately) 

correlated X and Z, their association with Y, for example, can be largely the result of 

measurement error, which should produce different results (i.e., instability--reduced 

"reproducibility" in Campbell and Fiske's (1959) terms) in subsequent studies. Increased 

correlation between X and Z, especially when it is greater than X or Z's AVE, increases 

this potential for instability. 

 

1) As a perhaps surprising example from a real-world survey, the AVE's of two LV's were 

both 0.59, and their correlation was -0.59 (their covariance, the square of their 

correlation, was 0.33). Scaling one LV to zero correlation with the other, reduced its 

AVE to 0.47, and scaling the other LV to zero (after removing the previous scaling) 



reduced its AVE to 0.48. Thus, the amount of unique error variance in the LV's was 53% 

(= 1 - 0.47) in one, and 52% (1 - 0.48) in the other. This suggests that any associations 

involving X or Z and a dependent variable is (slightly) more the result of error variance 

than it is the result of error-free variance, which should (slightly) amplify any difference 

in results from sampling variation in subsequent studies. Note that both LV's were 

discriminant valid using Fornell and Larker's (1981) AVE's-versus-squared-correlation 

discriminant validity criterion, and they likely would not have had their discriminant 

validity questioned--both LV's had "acceptable" AVE's, and their correlation was less 

than |0.70|. Also note that in this case the unacceptable unique err-free variances might be 

remedied by increasing AVE in the LV's.  

 

As another example again using real-world data, the AVE's of two LV's were 0.58 and 

0.72, while their correlation was .82 (their covariance, the square of their correlation, was 

0.67). Scaling the larger AVE LV to zero correlation, reduced its AVE to 0.44. and 

scaling other LV (after undoing the previous scaling) reduced its AVE to 0.34. In 

different words, the amount of unique error variance in the larger AVE LV was 56% (= 1 

- 0.44), and the amount of unique error variance in the smaller AVE LV was 66% (= 1 - 

0.34). This suggests that their associations with another LV,Y for example, are more the 

result of error variance than error-free variance, which should produce more instability 

(different results) in subsequent studies than if it were lower.  

 

Finally, the AVE's of two other LV's were 0.72 and 0.87, while their correlation was -.71 

(their covariance, the square of their correlation, was 0.50). Scaling the larger AVE LV to 

zero correlation, reduced its AVE to 0.77, and scaling other LV (after undoing the 

previous scaling) reduced its AVE to 0.55. In different words, the amount of unique error 

variance in the larger AVE LV was 23% (= 1 - 0.77), and the amount of unique error 

variance in the smaller AVE LV was 45% (= 1 - 0.55). This suggests that their 

associations with another LV,Y for example, are more result of error-free variance than 

error variance, which should produce (comparatively) less instability (differing results) in 

subsequent studies than if error variance were higher. Note that both LV's had 

"acceptable" AVE's, but their correlation was slightly greater than |0.70|. 

 

These examples suggest that Fornell and Larker's AVE's-versus-squared-correlation 

(discriminant validity) test may or may not signal a problem with unique error variance, 

and thus Fornell and Larker's discriminant validity test may or may not signal declined 

"reproducibility," Campbell and Fiske's stated objective of validity. 

 

 

Several comments may be of interest. As the first example suggests, low AVE's should 

be investigated for low unique error-free variance. There probably can be no firm rule, 

but Fornell and Larker's "AVE at least 0.50" may be insufficient. Experience suggests 

that all correlations above 0.7 should be investigated (see Example 1 above), especially 

when the AVE's of the LV's involved are less than 0.6. 

 

Any low unique error-free variance problems should be discussed in the Limitations 

section of the study's paper, and any discussion of the implications of the associations 



involved should be prefaced with a caveat that these associations are mostly error and 

may be an artifact of the study. 

 

Z and its t-value is unchanged by scaling (i.e., subtracting K*( b0 + b1X) from Z in each 

case). However, scaling reduces the variance of Z, and thus it reduces any standardized 

structural coefficient (beta) involving Z. The range of Z is also reduced by scaling.  

 

For an LV, X, that fails Fornell and Larker's AVE's-versus-squared-correlation 

(discriminant validity) test with Z, it is easy to show that all of X's error free variance is 

not contained in the covariance of X and Z. (X's AVE less than its correlation with Z 

might mean that all of X's error-free variance, its AVE, is contained in the covariance.)  

 

For example when two LV's, with AVE's of 0.49 and 0.72, and a squared correlation of 

0.65 (i.e., their covariance (squared correlation) was larger than one LV's error-free 

variance (AVE), a failure of Fornell and Larker's discriminant validity test), had the 

smaller AVE LV's variance scaled to zero correlation between them (i.e., K = 1 in 

Equation 1), in a measurement model of the resulting smaller AVE LV, it had 21% error 

free variance (i.e., a 0.21 AVE). In different words, all the covariation between the LV's 

was removed by scaling, yet there still was error-free variance (AVE) in both LV's (i.e., 

21% error-free variance in the smaller AVE LV and 72% in the larger).  

 

This could be interpreted as suggesting that the LV's were operationally distinct (the 

customary meaning of discriminant validity3). (In real-world data, only if the variance of 

an LV is equal to its covariance with another LV is there complete operational 

indistinctness--this matter is further discussed below). 

 

In real-world data, experience suggests that improving an LV's AVE does not materially 

change correlations with that LV.  

 

Substantive authors have used other single-sample discriminant validity tests besides 

Fornell and Larker's AVE's-versus-squared-correlation (discriminant validity) test, and 

these tests may be attractive when there are problems with discriminant validity. These 

tests include testing the correlation confidence interval (see Anderson and Gerbing 1988) 

or a single degree of freedom test (see Bagozzi and Phillips 1982). However, it is easy to 

show that these tests are likely to produce untrustworthy results in theory tests with 

survey data. Specifically, in theory tests with real-world survey data, testing the 

correlation confidence interval for two LV's to see if it contains 1, which would suggest 

that the two LV's are empirically (operationally) indistinct (i.e., they are "discriminant 

invalid" in the popular sense--see Footnote 3), almost always suggests empirical 

distinctness. Typical sample sizes (hundreds of cases) and the internal consistency 

requirement in survey data theory tests typically combine to produce small correlation 

                                                 
3 A careful reading of Campbell's writings suggests that their notion of discriminant 

validity is evidenced by low correlations with other variables, rather than the popular 

requirement of a lack of population correlations of 1 (i.e., empirical or operational 

distinctness). 



standard errors that in turn produce confidence intervals are usually too small to include a 

correlation value of 1.  

 

For example, two LV's that were known to be theoretically indistinct (their items 

contained only slight variations in item wording) and that had a correlation of 0.9988, 

produced a 95% correlation confidence interval of [.9984, .9993] in a sample of 200 

surveys. In different words, the 95% confidence interval for these LV's suggested they 

were operationally distinct (i.e., "discriminant valid") even though they were theoretically 

indistinct and had a correlation of .9988.  

 

A single degree of freedom test can be applied to a measurement model containing the 

two target LV's, or it can be applied to the full measurement model containing the target 

LV's, to compare the model to one where the two LV's correlation is constrained to 1. In 

a two-LV measurement model, a single degree of freedom test frequently produces 

untrustworthy test results (i.e., two highly correlated LV's that have their correlation 

constrained to 1 will usually fit the data significantly worse that when their correlation is 

free). For example, in a two-LV measurement model, two LV's that may or may not have 

been theoretically distinct (they were two factors of the same LV) had a correlation of 

.9295. In a single degree of freedom test, their correlation could not be constrained to 1 in 

LISREL (the fitted covariance matrix was not positive definite). However, constraining 

the correlation to 0.9795 instead of 1 produced a chi square difference (chi square = 388 

for the constrained correlation model, chi square = 207 for the unconstrained correlation 

model) with 1 degree of freedom (degrees of freedom = 54 for the constrained correlation 

model, degrees of freedom = 53 for the unconstrained correlation model) that was 

significant (chi square difference = 388 - 207 = 181, which has 1 - α of 1.0000 with 1 

degree of freedom), suggesting they were (very) operationally/empirically distinct (and 

thus "discriminant valid"). 

 

Then, two sets of items, that could be argued to be conceptually the same (both were 

from Factor 1 of the same LV), with a correlation of 0.9969, were tested in a two-LV 

measurement model. Again in a single degree of freedom test, their correlation could not 

be constrained to 1 in LISREL. However, constraining the correlation to 0.9998 instead 

of 1 produced a chi square difference (218 = 249 for the constrained correlation model, 

minus 31 for the unconstrained model) with 1 degree of freedom (9 for the constrained 

correlation model, degrees of freedom = 8 for the unconstrained model) that was 

significant (1 - α = 1.0000 with 1 degree of freedom), which suggested they were (very) 

operationally distinct, and thus "discriminant valid." 

 

However, the chi square statistic is sensitive to sample size. So, the sample size was 

reduced in steps until the parameter estimates became unstable, comparing chi square 

differences at each step. Nevertheless, the chi square difference tests continued to be 

significant, suggesting that sample size did not affect these results. 

 

A full measurement model produced similar results. Two LV's that may or may not have 

been conceptually the same (they were two factors of the same LV) had a correlation of 

.9274. While their correlation could not be constrained to 1 in a larger measurement 



model containing them, constraining them to a correlation of .9476 produced a chi square 

difference test with a significance of .9990. This suggested they were operationally 

distinct (i.e., they were "discriminant valid").  

 

Then, two sets of items, that could be argued to be conceptually indistinct (both were 

from Factor 1 of the same LV), with a correlation of 0.9998, were tested in a two LV 

measurement model. In this case their correlation could be constrained to 1, and the chi 

square difference (= 12 = (5626 for the constrained correlation model, minus 5626 for the 

unconstrained model)) with 1 degree of freedom (1836 for the constrained correlation 

model, 1835 for the unconstrained model) was significant (1 - α = .9999 with 1 degree of 

freedom), which suggested they were (very) operationally distinct, and thus "discriminant 

valid." 

 

Again, because the chi square statistic is sensitive to sample size, the sample size was 

reduced in steps until the parameter estimates became unstable, comparing chi square 

differences at each step. Again, the chi square difference tests continued to be significant, 

suggesting that sample size did not affect these results. 

 

 

In summary, experience suggests that in real-world data, alternative "discriminant 

validity" tests, such as correlation confidence intervals or single degree of freedom tests, 

are untrustworthy, usually suggesting "discriminant validity" even for nearly collinear 

LV's.  

 

Discriminant validity in the (original) Campbell and Fiske (1959) sense (low correlations 

with conceptually distinct LV's) could be viewed in terms of the amount of unique err-

free variance in correlated LV's after scaling, and the potential for instability of structural 

coefficient estimates. Stated differently, do AVE's and the covariance between two LV's 

combine to reduce the unique error-free variance of either (or both) (after scaling) to less 

than 50%, and thus increase the instability potential of these LV's structural coefficients? 

In two of the three examples above, AVE's and correlations combined to reduce unique 

error-free variance after scaling to questionable levels for "reproducibility" in Campbell 

and Fiske's (1959) terms.  

 

 

For emphasis,  

 

o with or without obvious discriminant validity problems in the Fornell and Larker sense 

(i.e., failure(s) of Fornell and Larker's AVE's-versus-squared-correlation (discriminant 

validity) test), lower AVE's can produce discriminant validity/reproducibility problems 

(i.e., AVE is insufficient to avoid an increased potential for structural coefficient 

instability) (see Example 1 above).  

 

o Lower AVE LV's should be investigated for the possibility that their unique error-free 

variances are less than 50%. There probably can be no firm rule, but Fornell and 

Larker's suggestion that AVE should be above 0.50 may be insufficient with 



independent variable correlations above 0.30. Experience suggests that unique error-

free variances should be investigated in all correlations larger than 0.7 (again see 

Example 1 above), especially if an AVE of the LV's involved is less than 0.60.  

 

o Discriminant validity problems should be addressed by raising AVE, not by scaling.  

 

o And finally, any unremedied low unique error-free variance problem should be 

discussed in the Limitations section of the study's paper, and any discussion of the 

implications of a significant unremedied low unique error-free variance LV should be 

prefaced with a caveat that these results are based on more than 50% unique error 

variance, and thus may be an artifact of the study. 
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QUESTIONS of the MOMENT... 
 

"Is there any way to speed up "item weeding" and find a set of items that jointly fits the data, contains more than 3 

items and is valid and reliable?" 

 

(The APA citation for this paper is Ping, R. A. (2017). "Is there any way to speed up 'item weeding' and find a set of 

items that jointly fits the data, contains more than 3 items and is valid and reliable?" [on-line paper]. 

http://www.wright.edu/~rping/ItemWeed.doc) . 

 

(Note: This material supercedes the prior discussion of the “weeding” EXCEL spreadsheet that appeared on earlier 

versions of this web site—click here for that discussion.) 

 

New measures will almost never "fit the data" using a single construct measurement model without 

dropping items to attain model-to-data fit. In addition, most well established measures developed before covariant 

structure analysis (LISREL, AMOS, etc.) became popular also will not fit the data without item weeding.  

It turns out that with real world data, measures used with covariant structure analysis are usually limited to 

about six items (see discussions in Anderson and Gerbing 1984, Gerbing and Anderson 1993, Bagozzi and 

Heatherton 1994, and Ping 2008). One explanation is that correlated measurement errors, ubiquitous in survey data 

but customarily not specified in covariant structure analysis, eventually overwhelm model-to-data fit in single-

construct and full measurement models as indicators are added to the specification of a construct. And, that usually 

happens with about six items per construct. 

There are ways around item weeding, such as various item aggregation techniques (see Bagozzi and 

Heatherton 1994), but many reviewers in the Social Sciences do not like these approaches. Unfortunately, reviewers 

also may not like dropping items from measures because of concerns over face- or content validity (how well the 

items "tap" the conceptual and operational definitions of their target construct).  

Anecdotally, several “ad hoc” consistency approaches are in use. A subset of consistent items usually can 

be found using a SPSS, SAS, etc. reliability “search.” The reliability of all the Factor 1 items is computed using 

SAS, SPSS, etc., the item that contributes least to reliability is deleted, and the reliability of the remaining items is 

computed. This process is continued until deleting any item reduces reliability. However, with real world data the 

remaining items may or may not fit the data in a single construct measurement model, and these items may not be 

Convergent and Discriminant valid. 

 

(Note: The following is adapted from Ping, R.A. (2004), Testing latent variable models with survey data, 

2nd edition, [on-line monograph], http://www.wright.edu/~robert.ping/lv1/v.doc .) 

  

Documented procedures for obtaining consistent measures include using ordered similarity coefficients (see 

Anderson and Gerbing (1982:454) and Gerbing and Anderson 1988). Ordered similarity coefficients may help 

identify inconsistent items. Alternatively, consistency can be attained using a procedure that involves internal and 

external consistency (e.g., Jöreskog 1993). The procedure involves estimating a single construct measurement model 

(i.e., one that specifies a single construct and its items) for each construct, then measurement models with pairs of 

constructs, etc., through estimating a full measurement model containing all the constructs. Items are omitted as 

required at each step to obtain adequate measurement model fit (and thus consistency because the process begins 

with single construct measurement models) while maintaining content or face validity. Standardized residuals, or 

“specification searches” (e.g., involving modification indices in LISREL/SIMPLIS or LMTEST in EQS) can also be 

used to suggest items to be omitted at each step to improve model-to-data fit. 

Partial derivatives of the likelihood function (of the Structural Equation Model being estimated) with 

respect to the measurement errors of the model indicators (termed "FIRST ORDER DERIVATIVES" in LISREL) 

also can be used to suggest inconsistent items for deletion (see Ping, 1998, 2004). This approach involves the 

examination of the matrix of these derivatives from a single construct measurement model (i.e., one that specifies a 

measure with all its items). Then, the item with the largest summed first derivatives without regard to sign that 

preserves the content or face validity of the measure is omitted. The matrix of first derivatives is estimated without 

the omitted item, and the process is repeated until the single construct measurement model fits the data (see the 

Appendix below for an example). 

Items with similarly sized summed first derivatives suggest that there are at least two consistent subsets of 

items, and my experience with this procedure and real-world data has been that it produces several comparatively 

large (i.e., about six) internally consistent subsets of item. The approach was inspired by Saris, de Pijper and 

Zegwaart's (1987) and Sörbom's (1975) proposals to improve model-to-data fit using partial derivatives of the 

http://www.wright.edu/~robert.ping/weeding.doc


likelihood function with respect to fixed parameters (i.e., to suggest paths that could be freed--e.g., modification 

indices in LISREL), and modification indices can be used in addition to partial derivatives. 

 

(End of adapted material) 

 

There is a “weeding” EXCEL template on this web site that helps find at least two subsets of measure items 

that fit the data in real world data. The spreadsheet can be used as follows: First, exploratory (common) factor 

analyze the target measure using Maximum Likelihood estimation and varimax rotation.  

Next, estimate a single construct (confirmatory) measurement model using the Factor 1 items. If the first 

measurement model fits the data item omission is not required. If this measurement model does not fit the data, find 

the "First Order Derivatives" in the output. (I will assume LISREL 8, which requires "all" on the OU line to produce 

First Order Derivatives. As far as I know, other estimation packages produce statistics equivalent to First Order 

Derivatives. For example in SIMPLIS “First Order Derivatives” are available by adding the line “LISREL Output: 

FD.”). Paste the lower triangle of First Order Derivatives for "THETA-EPS" into the template making sure to retain 

the item names in order to figure out which item to drop (see the example on the template). Then find the largest 

value in the "Column Sum" column--it will be the same as the "Max =" value in the lower right corner of the 

EXCEL spreadsheet. 

Now, reestimate the measurement model with the item having the largest "Overall Sum" omitted (call this 

Reestimation 1). Record the Chi Square and RMSEA values on the spreadsheet for reference.  

There is no agreement on acceptable single construct measurement model fit. I use either a Chi Square that 

is slightly nonzero (e.g., 1E-07, not 0), or an RMSEA that is .08 or slightly below, but many authors would suggest 

much stronger fit criteria for single construct measurement models.i 

If the unomitted items in Reestimation 1 do not fit the data, find the "First Order Derivatives" for "Theta-

Eps" in the Reestimation 1 output. Paste these into the second matrix in the template, and record the Chi Square and 

RMSEA values.  

Repeating this process, Chi Square eventually will approach zero, and RMSEA will decline to 0.08 or less 

(the recommended minimum for fit in full measurement and structural models--see Brown and Cudeck 1993, 

Jöreskog 1993). This should happen with about 7 or 8, down to about 5, remaining items. If acceptable fit does not 

happen by about 4 items, an error has probably been made, usually by omitting the wrong item.  

Each subset obtained after Chi Square nears zero or RMSEA is below .08 is a candidate subset for "best," 

but because items are being dropped in each step, these smaller subsets are usually less face valid, and thus the first 

acceptable subset is usually the preferred one.  

To search for another subset of consistent items, repeat the above process using "Modification Indices" for 

"Theta Epsilon" instead of First Derivatives. (The SIMPLIS command line is “LISREL Output: MI.”) The theory 

behind Modification Indices is different from First Derivatives, and a different subset usually results. 

Returning to the full measure, if it is multidimensional, there may be several more consistent subsets that 

can be found by repeating the above procedures using the full measure's items instead of the Factor 1 items. 

Experience suggests these subsets are smaller, but they frequently include items from Factor 2, etc. and thus they 

may be judged more face valid. This process also can be used on any combinations of Factor 2 and Factor 3, etc. 

items. 

Further, there may be more consistent subsets that can be found by omitting the next largest "Overall Sum" 

item instead of the "Max =" item. Specifically, the second largest item in Reestimation 1 could be omitted in place 

of the largest. Then, continuing as before omitting the largest "Overall Sum" items, The result is frequently a 

different subset of items that fits the data. Another subset can usually be found using this "Second Largest" approach 

using modification indices instead of first derivatives. Others can be found omitting the second largest overall sum 

item in Reestimation 2, instead of Reestimation 1, etc., with or without deleting the second largest in Reestimation 1. 

This "Second Largest" strategy can also be used on the full set of items.  

Perhaps surprisingly, experience suggests that there are about N-things-taken-6-at-a-time combinations of 

items with real world data that will fit the data, where N is the number of items in the full measure. (There may be 

more, if 5, 4 and 3 item subsets are counted). For example in the Appendix, the original measure had 8 items, and 

there may have been about 8!/(5!(8-5)!) = 56 5-tem subsets of items that might fit the data.  

(Parenthetically, in the Appendix example I stopped looking after finding 17 more adequately consistent 

subsets. I began by excluding item 1 from the full set of items with which to start the above procedure; then I used 

the above procedure to delete more items. Next I started over by replacing item 1 and excluding item 2, etc., etc. for 

7 examinations (skipping the exclusion of item 4 which had in effect already been done for the Appendix example). 

Then, I repeated what I had just done using Modification Indices (for 8 more examinations). Finally, I examined 2 

more 8 item sets retaining, and never deleting, the “gold item”—the item judged to be the “most” Content Valid—at 

every step using Partial Derivatives, then Modification Indices. None of the 17 additional consistent subsets was 



larger than 5 items, and a “panel” of judges was used to help select the “most” content valid subsets. The itemization 

finally selected was the one with the “gold item” and the highest AVE.)  

Experience suggests the above First Derivative/Modification Indices approach usually identifies at least 

two “attractive” subsets of items that are comparatively large, and appear to adequately tap the target construct. 

However, as the Appendix example suggests, the above First Derivative/Modification Indices procedure (beginning 

with all items) may not always produce the highest reliability/AVE subsets of items. For this reason, key concepts 

should probably be subjected to the “17 more” examinations mentioned parenthetically above.  
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Appendix- Consistency Improvement using First Derivatives 

 

A measure of the latent variable X had eight items in a Marketing survey that produced more than 200 usable 

responses. The first derivatives with respect to the items’ measurement error terms, and their sum without regard to 

sign for each item, xi, from a single construct measurement model of X are shown in Table 1 (which is not in the 

EXCEL template format—Table 1 also shows the diagonal and the (symmetric) upper triangle). The item with the 

largest Table E column Sum (x4) was deleted, and the measurement model was re-estimated to produce Table 2. 

This process was repeated until RMSEA was .08 or less (see Table 4). An investigation of all other measurement 

models with of five items (not shown) produced combinations of items that were less consistent (i.e., they had worse 

model fit statistics), suggesting the Table 4 items were maximally consistent. 

However, maximizing consistency does not necessarily maximize reliability or Average Variance Extracted 

(AVE). The items with maximum reliability and AVE were x4, x5, x6, x7, and x8 (Reliability = .884 and AVE = .606, 

but χ2 = 25, df = 5, p-value = .0001, RMSEA = .135).  

There is no guidance for trading off reliability and consistency in cases where they diverge. In the present case 

the reliabilities of both itemizations would likely be judged acceptable. However AVE for the Table 4 itemization is 

only slightly above the suggested cutoff (i.e., .5), and x4 through x8 are “just” consistent. In cases where reliability 

and consistency diverge, I suggest using the itemization with the higher Face or Content Validity. 

 

 Table 1- First Derivatives for the Eight Item Measure 

x1  x2  x3  x4     x5  x6     x7     x8 

x1   0.000 -0.439 -0.025 -0.086  0.047  0.006  0.010  0.371 

x2  -0.439  0.000 -0.272  0.287  0.217  0.042 -0.200  0.143 

x3  -0.025 -0.272  0.000 -0.527  0.184  0.364  0.422 -0.207 

x4  -0.086  0.287 -0.527  0.000 -0.943  0.505  0.534  0.144 

x5   0.047  0.217  0.184 -0.943  0.000  0.222  0.359  0.019 

x6   0.006  0.042  0.364  0.505  0.222  0.000 -0.929 -0.187 

x7   0.010 -0.200  0.422  0.534  0.359 -0.929  0.000 -0.113 

x8   0.371  0.143 -0.207  0.144  0.019 -0.187 -0.113  0.000 

Suma  0.983  1.600  2.000  3.027  1.991  2.254  2.565  1.184 

χ2 = 86  df = 20  p-value = 0  RMSEA = .123  Reliability = .860  AVE = .442 

 

 Table 2- First Derivatives with x4 Deleted 

x1  x2  x3  x5     x6  x7     x8 

x1   0.000 -0.442 -0.064 -0.057 0.037  0.044  0.354 

x2  -0.442  0.000 -0.287  0.129 0.214 -0.067  0.195 

x3  -0.064 -0.287  0.000 -0.172 0.319  0.382 -0.313 

x5  -0.057  0.129 -0.172  0.000 0.090  0.231 -0.252 

x6   0.037  0.214  0.319  0.090  0.000 -0.544  0.012 

x7   0.044 -0.067  0.382  0.231 -0.544  0.000  0.112 

x8   0.354  0.195 -0.313 -0.252  0.012  0.112  0.000 

Suma  0.998  1.334  1.537  0.933  1.217  1.381  1.239 

χ2 = 56  df = 14  p-value = .44D-6  RMSEA = .117  Reliability = .828  AVE = .416 

 

          Table 3- First Derivatives with x3 and x4 Deleted 

x1  x2  x5  x6  x7  x8 

x1   0.000 -0.445 -0.086  0.045  0.054  0.304 

x2  -0.445  0.000  0.036  0.190 -0.103  0.107 

x5  -0.086  0.036  0.000  0.114  0.270 -0.383 

x6   0.045  0.190  0.114  0.000 -0.252 -0.013 

x7   0.054 -0.103  0.270 -0.252  0.000  0.096 

x8   0.304  0.107 -0.383 -0.013  0.096  0.000 

Suma  0.937  0.883  0.891  0.616  0.776  0.904 

χ2 = 36  df = 9  p-value = .38D-4  RMSEA = .116  Reliability = .814  AVE = .433 

 

(Continued) 



Table 4- First Derivatives with x1, x3 and x4 Deleted 

x2  x5  x6  x7  x8 

x2   0.000 -0.026  0.110 -0.180  0.079 

x5  -0.026  0.000  0.104  0.252 -0.352 

x6   0.110  0.104  0.000 -0.233  0.064 

x7  -0.180  0.252 -0.233  0.000  0.173 

x8   0.079 -0.352  0.064  0.173  0.000 

Suma  0.395  0.734  0.511  0.838  0.668 

χ2 = 5.89  df = 5  p-value = .136  RMSEA = .028  Reliability = .835  AVE = .509 
─────────────────────── 
a Without regard to sign 

 

 
 

 

 
 

 

 
 

 

ENDNOTES 

                                                           
i In my opinion, some authors go too far in real world data with single construct measurement model fit, 

resulting in unnecessarily small submeasures. There are several issues here, including model fit versus face 

or content validity, and experience suggests that with real-world data, "barely fits" in single construct 

measurement models is almost always sufficient to attain full measurement model fit. Thus, in real world 

data, subsets of items that each produce a comparatively small but nonzero Chi Square or an RMSEA that 

is just below .08 are usually "consistent enough" to later produce a full measurement model that fits the 

data. I prefer the RMSEA criterion because it seems to produce fewer problems later. Again, however, 

many authors would not agree with this strategy. Later, if it turns out that the full measurement model does 

not adequately fit the data, I simply estimate the next item weeding single construct measurement model 

and drop the next largest "Overall Sum" items to improve full measurement model fit. 
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QUESTIONS of the MOMENT... 

 

"How should mixed interactions involving manifest, observed, continuous, single-indicator, etc. 

variables be estimated?" 

 

(The APA citation for this paper is Ping, R.A. (2005). "How are mixed interactions involving 

manifest, observed, continuous, single-indicator, etc. variables estimated?" [on-line paper]. 

http://www.wright.edu/~robert.ping/mixed.doc) 

 

One view of a "mixed interaction" XZ, where X is a manifest, observed, continuous, single-

indicator, etc. variable and Z is a latent variable, is that XZ still involves 2 latent variables, but X 

has only 1 indicator. The loading of x, the indicator of X, is 1 and the measurement error of x is 

0, and specification and estimation is the same as for 2 latent variables. Don't forget to zero- or 

mean center X and Z, and free the X-XZ and Z-XZ correlations, and you might want to use the 

EXCEL spreadsheets to calculate the loading, measurement error and starting values for XZ. 

 

The only difficulty is that it is well known that X seldom has zero measurement error (see 

Nunnally 1993). As a result, the reliabilities of X and XZ are overstated because the reliability of 

x is rarely 1, and the structural coefficients in their associations with Y, for example, are 

typically biased in real-world data. To account for this, one approach would be to relax the 

assumption of zero measurement error in x. However, X with a single indicator is 

underdetermined, and thus an input value for the loading and the measurement error in x must be 

provided. There has been some confusion over the next steps because the loading and 

measurement error variance are not independent of each other. The relationship between them 

involves px, the assumed reliability of x, and the familiar ex = Varx*(1 - px), where ex is the 

measurement error variance of x, and Varx is the error attenuated variance of x (e.g., from SAS, 

SPSS, etc.). In addition, a well-known estimate of px is the square of the loading of x on X (see 

for example Bollen 1989). This estimate is exact for standardized Varx (Varx = 1). Thus, the 

loading of x and the corresponding measurement error variance of x vary together, and they 

depend on the choice of the assumed reliability, which usually ranges from 0.7 to 1 (e.g., for an 

assumed reliability of 0.7 for x, the corresponding loading of x on X is the square root of 0.7, 

0.837, and the measurement error variance is computed using Varx(1 - 0.7) or 0.3 if Varx is 

standardized). 

 

To make things simple, consider testing just the "theory-testing extremes" of reliability, px = 0.7 

and px = 1, to see if the structural coefficients of the X-Y and XZ-Y associations become non 

significant (NS) with either of these choices. In particular, mean-center X and Z, and standardize 

X. Then if you haven't already done so, to estimate the X-Y and XZ-Y structural coefficients at 

px = 1, specify X's loading (λx) with the square root of px = 1 (λx = SQRT(1) = 1), and specify X's 

measurement error variance (ex) with Varx*(1 - px) = 1*(1 - 1) = 0 ("*" denotes multiplication) in 

the structural model. Next, use these λx = 1 and ex = 0 values with the EXCEL spreadsheet values 

to re-compute the loading and measurement error variance of XZ, specify XZ with the resulting 

loading and measurement error variance of XZ, and estimate the structural model. Then, repeat 

this process using px = 0.7 (λx = SQRT(0.7) and ex = Varx*0.3). If neither structural coefficient of 

X-Y or XZ-Y is NS at these "extreme" px's, the safest approach is probably to be conservative 

and interpret the smaller of the two associations (with the caveat and limitations suggested 

below).  

 

However, if either of the structural coefficients of X-Y or XZ-Y become NS with these 

"extreme" px's, there are several possibilities. If a structural coefficient is NS at reliabilities of 0.7 
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and 1 it probably should be judged to be zero in the population. If it is NS at px = 0.7 and 

significant at px = 1, the conservative approach would be to judge the NS association(s) to be 

very likely to be zero in the population. This is because the reliability of X might actually be less 

than 0.7. If it is NS at 1 and significant at 0.7, the conservative approach again would be to judge 

the NS association(s) to be somewhat likely to be zero in the population. This is because there is 

some chance the reliability of X might actually be high.  

 

Thus, if either of the structural coefficients of X-Y or XZ-Y is significant for one of the 

reliability "extremes" and NS for the other, that association should probably be judged to be zero 

in the population. However, depending on the model, this may not be a fatal blow. The lack of 

significance is likely due to a small standardized structural coefficient for the NS association, 

and thus this association would not be comparatively "important" to helping explain variance in 

Y. To practitioners this result could actually be as or more important than a "confirmed" 

association. 

 

Unfortunately, however, there is more. There is a risk that the reliability of X is less than 0.7 (see 

below). This may be why theory testers prefer to avoid manifest variables if they can. The 

possibility that the reliability of X could be less than 0.7 should obviously be stated as a study 

limitation, and it should be a caveat to any interpretations or implications involving the X-Y or 

XZ-Y associations, even if they were significant at both "extremes" of reliability. In addition, 

because the reliability of X is actually unknown in the study, in the strictest sense this suggests 

that the X-Y and XZ-Y associations observed in the study should not be trusted. Thus, the study 

limitation and caveats that attend manifest variables are (or should be) very serious. 

 

What are the options if the study is complete and X is a focal variable? In general there are 

several alternatives. These include ignoring X's reliability problem and hoping that reviewers 

will too (this is not recommended, however, because readers might notice it after publication and 

dismiss the study), performing a reliability study, and "argumentation." Unfortunately, the term 

"reliability study" has several meanings. Reliability studies for manifest variables in theoretical 

model tests should involve estimates of intra- and inter-subject rating or measurement of the 

manifest variables. However, I have not found anything that might be useful in theoretical model 

tests yet. In the meantime, consider reading the material on "Scenario Analysis" in the Testing 

Latent Variable Models Using Survey Data monograph on this web site. It may be possible to 

use Scenarios with students to provide multiple inter-subject or inter-subject estimates of X, or a 

surrogate for X, from which its reliability could be roughly estimated.  

 

A plausible argument might be used to limit the possibilities for the amount of error in X, and 

provide a rough estimate of its reliability. For example, in several social science literatures the 

length of the relationship (LENG) is negatively associated with relationship exiting. However, 

LENG is usually measured in years, which obviously contains measurement error. Nevertheless, 

the "true" value of LENG for each respondent, informant, or subject (case) is unlikely to be more 

than about 10 years different from the "observed" or reported LENG in each case. Thus, one 

more "observation" of LENG could be computed in the data set by adding a (uniform) random 

number from -10 to 10 to LENG in each case to create LENG_T, an artificial  "true" value for 

LENG. The coefficient alpha of the resulting (artificial) "measure" with the items LENG and 

LENG_T might be successfully argued to be a plausible estimate of the reliability of LENG. 

"Might" of course would depend on the reviewers. 

 

As you might suspect the "reliability" depends on several attributes of the distribution of LENG, 

for example. The coefficient alpha of LENG and LENG_T in a real-world data set of committed 



3 12/10/05 © Copyright 2005 Robert Ping 

relationships (mean = 13.46 years, maximum = 76) was 0.9560. In the same data set the 

"reliability" of the reported number of employees, EMPL (mean = 7.78, maximum=167), that 

could be argued to be "off" by 10, 20 or 50 employees, was 0.9612, 0.8693, and 0.5299 

respectively. A "better" "reliability" estimate might involve averaging the reliabilities produced 

by a 100 replications of this procedure.  

 

A slightly different approach might involve estimating a range of values such as those for EMPL, 

and picking the most conservative, likely, etc. However, this could be labeled "not good 

science," because "the argument/hypothesis" should always come first in theory testing. Because 

there are additional difficulties with this range approach, consider resisting it and develop a 

plausible argument for one "different from" number instead. I would chose 10 for EMPL because 

experience suggests that in the real world most people know these things and the mean for 

EMPL was 7.78.  

 

REFERENCES 
Bollen, Kenneth A. (1989), Structural Equations with Latent Variables, New York: Wiley. 

Nunnally, Jum C. (1993), Psychometric Theory, 3rd Edition, New York, NY: McGraw-Hill. 

 



1    12/10/05 © Copyright 2005 Robert Ping 

QUESTIONS of the MOMENT... 

 

"Why is my hypothesized interaction significant using a "median split" but non significant when 

specified in my model?" 

 

(The APA citation for this paper is Ping, R. A. (2005). "Why is my hypothesized interaction 

significant using a "median split" but non significant when specified in my model?" [on-line 

paper]. http://www.wright.edu/~robert.ping/splits.doc) 

 

One of the problems in theory testing with estimating the model using median splits of the data, 

or subgroup analysis, is it does not actually test the hypothesized latent variable model. The 

interaction is missing from the final test of the hypothesized model and the effects of its 

correlations with other predictors on the model's structural coefficients are not accounted for--the 

"missing variable" problem--see James 1980. 

 

Nevertheless, while subgroup analysis can produce a false positive interaction result, this is 

unlikely (Ping 1996 observed 8% false positives with subgroup analysis, see Chapter V, 

"Subgroup Analysis," of the Latent Variable Interactions and Quadratics... monograph on this 

web site). It is more likely there is something amiss in the structural model or its estimation. 

Consider verifying that the model is properly specified (e.g., the correlations among the 

exogenous variables are free, the correlations between exogenous variables and endogenous 

variables are not free, structural disturbances are not correlated, etc.). Then, check that the 

interaction XZ is properly specified (e.g., the "essential" correlations between X-XZ and Z-XZ 

are free, the variance of XZ is also free, and the values for the loading and measurement error 

variance have been properly calculated and keyed into the estimation program), and the model 

indicators are all mean- or zero-centered. Next, verify that the structural model fits the data, all 

the coefficient estimates are admissible (see Step VI, "Admissible Solutions Revisited" in the 

Testing Latent Variable Models Using Survey Data monograph on the previous web page), and 

the measurement parameters of X and Z in the structural model (i.e., the loadings, measurement 

error variances and the variances of X and Z) are within a few points of their measurement 

model values. If the measurement parameters of X and Z in the structural model are different 

from their measurement model values, recalculate the interaction's loading and measurement 

error variance using the structural model measurement parameter values (see the EXCEL 

template on the previous web page for this purpose). A population interaction is also likely to be 

significant in OLS regression (it produced 19% false negatives in Ping 1996). However, if 

everything checks out in the structural model, and it plus OLS regression suggest XZ's 

association with Y is non significant (NS), the subgroup analysis results are probably spurious 

(the problems with regression are several and include that the coefficients are biased and 

inefficient).  

 

If everything checks out in the structural model, and OLS regression suggests the interaction is 

significant, a final check would be to rerun the structural model using GLS to approximate 

regression's ordinary least squares estimation. Sometimes an interaction is significant using 

GLS/OLS but not significant using maximum likelihood. If the GLS estimation is NS, the OLS 

regression results might also be spurious (3% false negatives in Ping 1996).  

  

If the GLS estimation is significant, experience with real-world data suggests the interaction is 

likely "borderline significant"--its t-value is very nearly 2 using maximum likelihood estimation. 

This is usually the result of low XZ reliability or insufficient sample size. Interaction reliability 



2    12/10/05 © Copyright 2005 Robert Ping 

can be verified using the EXCEL spreadsheets on the previous web page. Insufficient sample 

size can be checked by calculating the sample size (N) that would have been required to produce 

a t-value of 2 using the equation N = 4*n/t2, where n is the current sample size, "*" indicates 

multiplication, and t2 is the square of the current t-value. If the reliability of XZ is 0.7 or above, 

and a few more cases would push the t-value above 2, it might suffice to simply state that the 

interaction "approaches significance," and proceed as though the interaction were significant. No 

statistical assumptions are violated by declaring that, for example, t greater than 1.95 in absolute 

value suggests significance. It is simply conventional in structural equation analysis to declare a 

structural coefficient twice or more the size of its standard error to be significant. In regression 

studies and correlational analysis there are two conventions for significance, p-value = 0.05 and 

p-value = 0.10. A p = 0.05 corresponds to t-value = 1.97 with 200 degrees of freedom (df), and p 

= 0.10 corresponds to t = 1.65 with 200 df. Thus, depending on reviewers, it might suffice to 

state that the interaction "approaches significance" and no more. If challenged it might be useful 

to respond by computing the p-value for the t-value-less-than-two and the model degrees of 

freedom, and comparing it to the p-value of t = 2 with the model degrees of freedom. For 

example, if the target structural coefficient has a t-value of 1.97 with 267 degrees of freedom, the 

corresponding p-value is roughly 0.0499, which is close to the p-value for t = 2 with 267 df, 

0.0465. A fallback position is to preface any discussion, implication, etc. involving the target 

coefficient with "if significant in future studies..." This preface is actually the preferred opening 

remark for any discussion of the model test results because it is well known that a single study 

"proves" nothing. It merely suggests what future studies may observe.  

 

However, there are other estimators and estimation approaches that may produce a t-value of 2 

for the XZ-Y structural coefficient. EQS for example provides a ROBUST ML estimator that is 

less affected by non-normality in the data. Other estimators include pseudo maximum likelihood 

estimation. Other estimation approaches include bootstrapping the interaction's structural 

coefficient (i.e., averaging the resulting coefficients and standard errors--see "Bootstrapping" in 

the Testing Latent Variable Models Using Survey Data monograph on this web site), or 

removing influential case(s) (outliers that contribute most to "flattening" the XZ-Y regression 

line) using Cook's distance in regression, or a scatterplot of the interaction, then re-estimating the 

structural model. However, all of these estimators and approaches have their drawbacks, most 

telling of which is typically reviewer resistance to anything that is not simple, straightforward or 

familiar (a variation on parsimony or Occam's razor, see Charlesworth 1956). It may be easier to 

quickly conduct another study using Scenario Analysis (see the Testing Latent Variable Models 

Using Survey Data monograph on this web site). A significant interaction in the second study 

would lend weight to an insufficient sample-size argument. 

 

There is one other possibility when a median or similar splits of the data suggests the presence of 

an interaction that is non significant when it is specified as XZ in a structural model. It turns out 

that there are infinitely more (mathematical) forms of an interaction between X and Z (or the 

moderation of the X-Y effect by Z). I once proposed to find two dozen interaction forms besides 

XZ, and wound up suggesting XZw, where W can be any positive or negative number. This form 

includes XZ (w = 1), and it includes X/Z (see Jaccard, Turrisi and Wan 1995) (as Z increases in 

the study X is attenuated--w = -1). It also includes XZ2, the interaction between X and the square 

of Z (see Aiken and West 1991). (Parenthetically, this "form" also includes XXw, where Z = W 

and X is moderated by itself, which is called a quadratic when w = 1.) Thus, a significant median 

split may be detecting an interaction that is not of the form XZ (i.e., specifying the significant 

interaction as having the form XZ is incorrect). In this case there is little more that can be done 

besides respecifying the interaction as the quadratic XX and testing that form of an "interaction" 

(i.e., X interacts with itself). Interaction specifications besides XZ and XX are unknown at 
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present. It may be sufficient to state in the Discussion section of any paper that documents the 

test of the proposed model that the hypothesized interaction was not disconfirmed (the median 

split was significant), but the mathematical form of this interaction cannot be easily determined 

(if XZ and XX were both NS).  
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QUESTIONS of the MOMENT... 

 

"Why are most of my hypothesized interactions non significant?" 

 

(The APA citation for this paper is Ping, R.A. (2005). "Why are most of my hypothesized 

interactions non significant?" [on-line paper]. http://www.wright.edu/~robert.ping/mult.doc) 

 

Estimating multiple interactions is discussed in detail in Chapters VIII and IX of the Latent 

Variable Interactions and Quadratics... monograph on this web site. In summary, just as adding 

Z and W, for example, to a model with X and Y can change the significance of the X-Y 

structural coefficient, adding XW and ZW, for example, can attenuate (or amplify) other 

structural coefficients, including those for XZ-Y. This is especially true for adding XW, for 

example, because XZ and XW share a common constituent variable X.  

 

However, it is usually a good idea to verify that model specification and estimation are not 

contributing to the "problem." Specifically, consider verifying that the model is properly 

specified (e.g., the correlations among the exogenous variables, including the interactions, are 

free; the correlations between exogenous variables and endogenous variables are not free; 

structural disturbances are not correlated, etc.). Then, check that the interactions are properly 

specified (e.g., the "essential" correlations between X-XZ and Z-XZ, for example, are free, the 

variance of XZ is also free, and the values for the loading and measurement error variance have 

been properly calculated and keyed into the estimation program), and the model indicators are all 

mean- or zero-centered. Next, verify that the structural model fits the data, all the coefficient 

estimates are admissible (see Step VI, "Admissible Solutions Revisited" in the Testing Latent 

Variable Models Using Survey Data monograph on this web site), and the measurement 

parameters of X and Z in the structural model (i.e., the loadings, measurement error variances 

and the variances of X and Z) are within a few points of their measurement model values. If the 

measurement parameters of X and Z in the structural model are different from their measurement 

model values, recalculate the interaction's loading and measurement error variance using the 

structural model measurement parameter values. 

 

If the structural model and its estimates check out, the possible next steps are several. However, 

most would be labeled "not good science" in theory (hypothesis) testing because they amount to 

searching for significant interactions. For example, in applied regression studies such as 

epidemiology it is common to "step" variables in or out of an equation based on their 

significance to find the "best" model. There is an equivalent technique in structural equation 

analysis. However, the results obviously capitalize on chance and are thus probably inappropriate 

for a theory test. 

 

An approach that might be defensible includes "trimming" or removing the non significant (NS) 

interactions. "Might" of course would depend on the reviewers. Trimming NS associations was a 

common practice in theory tests years ago, especially in studies that might have an intervention 

component (e.g., Sociology). However, based on the research behind Testing Latent Variable 

Models Using Survey Data on this web site, trimming has declined for several reasons, including 

that it is usually not theory-driven. Nevertheless, one could delete the interaction with the 

smallest NS structural coefficient t-value, then the next smallest, etc. until there are no more NS 

interactions. However, because this is "backward elimination" which was criticized above, an 

additional study is desirable to investigate the element of chance introduced by trimming. A 

Scenario Analysis using student subjects (see the Testing Latent Variable Models Using Survey 

Data on this web site) might provide a comparatively easily executed second study of the 
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trimmed model using the existing questionnaire. Specifically, the hypotheses involving the NS 

interactions could be trimmed for the second study and the study would investigate the model 

without the trimmed interactions. The result could become a paper with two studies. "Multiple 

study" papers are common in social science disciplines such as Social Psychology and Consumer 

Behavior, and it might be instructive to examine a few of them to determine how best to present 

two-study results (see recent issues of The J. of Consumer Research, for example).  

 

Although this is not helpful after the study is completed, the best approach would be to limit the 

number of interactions hypothesized in a theoretical model to the one or two that are 

theoretically most important. It is important to understand that interactions generally will explain 

little additional variance, and their primary purpose in theory testing is to help explain why 

attitudes, intentions, etc. in one subgroup in the study are or should be different from another 

subgroup. For example, changes in alternative attractiveness should have less effect on exiting 

for satisfied subjects than dissatisfied subjects (i.e., satisfaction should suppress the alternatives-

exiting association).  
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QUESTIONS of the MOMENT... 

 

"What is the Average Variance Extracted for a Latent Variable Interaction (or Quadratic)?" 

 

(The APA citation for this paper is Ping, R.A. (2005). "What is the average variance extracted 

for a latent variable interaction (or quadratic)?" [on-line paper]. http://www.wright.edu/ 

~robert.ping/ave1.doc) 

 

Average Variance Extracted was proposed by Fornell and Larker (1981) as a measure of the 

shared or common variance in a Latent Variable (LV), the amount of variance that is captured by 

the LV in relation to the amount of variance due to its measurement error (Dillon and Goldstein 

1984). In different terms, AVE is a measure of the error-free variance of a set of items.  

 

AVE is used as measure of convergent validity. Authors in the Social Sciences disagree on what 

constitutes an adequate demonstration of validity. Nevertheless, a minimal demonstration of the 

validity of any LV should probably include the content or face validity of its indicators (how 

well they tap into the conceptual definition of the construct), the LV's construct validity, and its 

convergent and discriminant validity (e.g., Bollen, 1989; DeVellis, 1991; Nunnally, 1993). The 

"validity" of this LV would then be qualitatively assessed considering its reliability and its 

performance over this minimal set of validity criteria. 

 

Construct validity is concerned in part with an LV's correspondence or correlation with other 

LV's. The other LV's in the study should be valid and reliable, then their correlations with the 

target LV (e.g., significance, direction and magnitude) should be theoretically sound. Convergent 

and discriminant validity are Campbell and Fiske's (1959) proposals involving the measurement 

of multiple constructs with multiple methods, and they are frequently considered to be additional 

facets of construct validity. Convergent measures are highly correspondent (e.g., correlated) 

across different methods. Discriminant measures are internally convergent. However, convergent 

and discriminant validity are frequently not assessed in substantive articles as Campbell and 

Fiske (1959) intended (i.e., using multiple traits and multiple methods). Perhaps because 

constructs are frequently measured with a single method (i.e., the study at hand), reliability is 

frequently substituted for convergent validity, and LV correlational distinctness (e.g., the target 

LV's correlations with other measures are less than about 0.7) is substituted for discriminant 

validity. 

 

However, LV reliability is a measure of the correspondence between the items and their LV, the 

correlation between an LV and its items, and "correlations less than 0.7" ignores measurement 

error. Fornell and Larker (1981) suggested that adequately convergent LV's should have 

measures that contain more than 50% explained or common variance in the factor analytic sense 

(less than 50% error variance, also see Dillon and Goldstein 1984). Their Average Variance 

Extracted (AVE) for X with indicators x1, x2, ... , xn is 

 

          Σ[λi
2]Var(X) 

AVE =  ────────────  , (1 

Σ[λi
2]Var(X)+Σ[Var(i)] 

 

where λi is the loading of xi on X, Var denotes variance, i is the measurement error of xi, and Σ 

denotes a sum (Fornell & Larker, 1981). 
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Unfortunately, acceptably reliable LV's can have less than 50% explained variance (AVE). 

Nunnally raised his suggested minimum acceptable reliability from 0.7 (Nunnally 1978) to 0.8 

(Nunnally 1993) perhaps in response to this. Thus, a compelling demonstration of convergent 

validity would be an AVE of .5 or above. 

Although there is no firm rule for discriminant validity, correlations with other LV's less than |.7| 

are frequently accepted as evidence of discriminant validity. A larger correlation can be tested by 

examining its confidence interval to see if it includes 1 (see Anderson and Gerbing, 1988). It can 

also be tested by using a single-degree-of-freedom test that compares two measurement models, 

one with the target correlation fixed at 1, and a second with this correlation free (see Bagozzi and 

Phillips, 1982). If the difference in resulting chi-squares is significant, this suggests the 

correlation is not 1, and this suggests the LV's are correlationally distinct, thus suggesting 

discriminant validity.  

AVE can also be used to gauge discriminant validity (Fornell and Larker 1981). If the squared 

(error-disattenuated or structural equation model) correlation between two LV's is less than either 

of their individual AVE's, this suggests the LV's each have more internal (extracted) variance 

than variance shared between the LV's. If this is true for the target LV and all the other LV's, this 

suggests the discriminant validity of the target LV. 

As far as I know, AVE for a LV Interaction (or a LV Quadratic) has not been derived. However, 

for LV's X and Z with indicators x1, x2, ... , xm, and z1, z2, ... , zn with the usual assumptions (the 

indicators are multivariate normal with mean zero, and the measurement errors are uncorrelated 

and not correlated with indicators), using the Equation 1 formula for AVE and substituting the 

variance of the Latent Variable interaction XZ 

 

Var(XZ) = Var(X)*Var(Z) + Cov2(X,Z) , 

 

where Cov denotes covariance and Var and Cov are error dissattenuated or structural equation 

model estimates (Kendall and Stewart 1958), the AVE of a LV Interaction is  

 

          (Σ[λxiλzj]
2)Var(XZ) 

AVEXZ =  ────────────  , (2  

(Σ[λxiλzj]
2)Var(XZ)+ΘXZ 

 

where [λxiλzj]
2 is the square of λxiλzj for all xi's and zj's (i.e., Σ[λxiλzj]

2 is the sum of squares of the 

products of λx1 with λz1, λz2, ... , λzn, λx2 with λz1, λz2, ... , λzn, ... , and λxm with λz1, λz2, ... , λzn), 

and ΘXZ is  

 

   ΘXZ = Σλxi
2Var(X)Σ[Var(zj)] + Σλzj

2Var(Z)Σ[Var(xi)] + (Σ[Var(xi)])(Σ[Var(zj)]) ,         (3 

 

where Σλxi
2 is the sum of the squares of the loadings on X, Σλzj

2 is the sum of the squares of the 

loadings on Z, Σ[Var(xi)] is the sum of the measurement error variances of the indicators of X, 

and Σ[Var(zj)] is the sum of the measurement error variances of the indicators of Z. Equation 3 

obtains using expectation algebra and by summing the error variances of the indicators xizj 

 

 Var(xizj) = Var([λxiX + xi][λzjZ + zj]) 

   = Var(λxiλzjXZ + λxiXzj + λzjZzj + xizj) 

     = (λxiλzj)
2XZ + λxi

2XVar(zj) + λzj
2ZVar(xi) + Var(xi)Var(zj) , 
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where λxi
2XVar(zj) + λzj

2ZVar(zj) + Var(xi)Var(zj) is the error variance of xizj. For emphasis, 

Var in Equation 2 are error dissattenuated or structural equation model estimates, and λxi, λzj, 

Var(xi) and Var(zj) in Equation 3 are unaveraged values.  

 

Similarly, for a LV Quadratic, XX, substituting the variance of a LV quadratic 

 

Var(XX) = 2Var2(X) 

 

(Kendall and Stewart 1958) into Equation 1 

 

          (Σ[λxiλxj]
2)Var(XX) 

AVEXX =  ────────────  , (4  

(Σ[λxiλxj]
2)Var(XZ)+ΘXX 

 

where [λxiλxj]
2 is the square of the unique products of the loading of the xi's and xj's, λxiλxj, for all 

xi's and xj's (i.e., Σ[λxiλxj
2] is the sum of squares of the products of λx1 with λx1, λx2, ... , λxm, λx2 

with λx2, λx3, ... , λxm, ... , and λxm with λxm), and ΘXX is  

 

        ΘXX = 2(Σ[λxi]
2)Var(X)Σ[Var(xi)] + (Σ[Var(xi)])

2 ,                  (5 

 

where Σ[λxi]
2 is the square of the sum of the loadings on X, and Σ[Var(xi)] is the sum of the 

measurement error variances of the indicators of X. Equation 5 obtains using expectation algebra 

and by summing the error variances of the indicators xixj 

 

 Var(xixj) = Var([λxiX + xi][λxjX + xj]) 

   = Var(λxiλxjXX + λxiXxj + λxjXxi + xixj) 

     = (λxiλxj)
2XX + λxi

2XVar(xj) + λxj
2XVar(xi) + Var(xi)Var(xj) , 

 

where λxi
2XVar(xj) + λxj

2XVar(xi) + Var(xi)Var(xj) is the error variance of xixj. Again for 

emphasis, Var in Equation 4 are error dissattenuated or structural equation model estimates, and 

λxi and Var(xi) in Equation 5 are unaveraged values.  

 

To compute an AVE for an LV Interaction or Quadratic, first compute the squared (unique) 

products of loadings from the structural model, then sum them. Then, sum the loadings and 

measurement errors, and sum the sum of squares of the loadings, and compute the variance of the 

LV Interaction or Quadratic. Next, substitute these values into Equations 3 or 5. Then, substitute 

the results into Equations 2 or 4.  

     (The EXCEL Spreadsheet "For specifying a single indicator LV Interaction or Quadratic..." 

on this web site calculates AVE.)  

  

Unfortunately, experience suggests that AVE in LV Interactions and Quadratics is typically low, 

frequently less than 50%. For example, while they are not below 50% see the low LV Interaction 

and Quadratic AVE's in the EXCEL Spreadsheet "For a Single Indicator LV...," on this web site, 

that result from the comparatively high reliabilities of X and Z. Thus, to judge the validity of an 

LV Interaction or Quadratic, first it must be acceptably reliable (validity assumes reliability). 

Content or face validity is usually assumed unless fewer than all the indicators of the constituent 

variables are used to itemize the LV Interaction or Quadratic. Construct or correlational validity 

is usually difficult to judge, and it might be ignored. Convergent validity (AVE) should be 0.50 

or above (the LV Interaction or Quadratic should be composed of 50% or less error) and it 
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should be discriminant valid with the other model LV's, except perhaps its constituent variables 

(X or Z) (i.e., it is empirically distinct from the other model LV's--its AVE is larger than the 

squared correlations of the other LV's). In summary, while there are no hard and fast rules, 

reliability, and content, convergent and discriminant validity are probably sufficient to suggest 

the validity of an LV Interaction or Quadratic. Reliability, and content and convergent validity 

would be necessary, and construct (correlational) validity is usually ignored. With an AVE near 

0.50 an LV Interaction or Quadratic might be argued to be empirically indistinct from 5-10% of 

the other model LV's by chance (depending on reviewers). More than that would suggest the LV 

Interaction or Quadratic is discriminant invalid, and its validity is impugned. 

 

Experience suggests the substantive effect of the typically low AVE's in LV Interactions and 

Quadratics is their structural coefficients and their significances vary widely across replications. 

Specifically, with an AVE near 0.50 an hypothesized interaction or quadratic can be significant 

in one study but nonsignificant in a replication or near-replication. As a result, replication of a 

model test with hypothesized interactions or quadratics becomes comparatively more important. 

Specifically, an hypothesized interaction or quadratic that is NS in a model test could be 

significant in a replication, or vice versa. A Scenario Analysis using student subjects (see the 

Testing Latent Variable Models Using Survey Data on this web site) might provide a 

comparatively easily executed second study of the hypothesized interaction or quadratic using 

the existing questionnaire. The result could become a paper with two studies. "Multiple study" 

papers are common in social science disciplines such as Social Psychology and Consumer 

Behavior, and it might be instructive to examine a few of them to determine how best to present 

two-study results (see recent issues of The J. of Consumer Research, for example).  

 

For an LV Interaction or Quadratic with an AVE below 0.50, the alternatives besides ignoring 

AVE and hoping reviewers do likewise (see "Is there any way to improve Average Variance 

Extracted (AVE) in a Latent Variable (LV) X?" for the logic of ignoring slightly unacceptable 

AVE) are discussed in several “QUESTIONS OF THE MOMENT” on the “Latent Variable 

Interaction and Quadratic Research” web page. In summary, one can drop cases for a slight 

improvements, drop XZ or XX indicators, or improve the AVE of XZ or XX constituent LV’s. 

(See “Is there any way to improve Average Variance Extracted (AVE) in a Latent Variable (LV) 

X” also under “QUESTIONS OF THE MOMENT” for more.) However, dropping cases is 

tedious and experience suggests that in real world data more than about a 3 point improvement in 

AVE may be unattainable. Dropping XZ or XX indicators is also tedious, and among other 

things the Face or Content validity of XZ or XX is questionable. 
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QUESTIONS of the MOMENT... 

 

"What is the "validity" of a Latent Variable Interaction (or Quadratic)?" 

 

(The APA citation for this paper is Ping, R.A. (2005). "What is the "validity" of a latent variable 

interaction (or quadratic)?" [on-line paper]. http://www.wright.edu/~robert.ping/validity.doc) 

 

Anecdotally, not all authors agree that reliability and validity apply to latent variable (LV) 

interactions or quadratics. Nevertheless, because adding an LV with unknown reliability and 

validity, and thus unknown levels of measurement error, to a theoretical model in order to test 

hypotheses seems unwise. The resulting structural coefficients could be an artifact of 

measurement error.  

 

Authors in the Social Sciences disagree on what constitutes an adequate demonstration of 

validity. Nevertheless, a minimal demonstration of the validity of any LV should probably 

include the content or face validity of its indicators (how well they tap into the conceptual 

definition of the second-order construct), the LV's construct validity, and its convergent and 

discriminant validity (e.g., Bollen, 1989; DeVellis, 1991; Nunnally, 1993). The "validity" of this 

LV would then be qualitatively assessed considering its reliability and its performance over this 

minimal set of validity criteria. 

 

Construct validity is concerned in part with an LV's correspondence or correlation with other 

LV's. The other LV's in the study should be valid and reliable, then their correlations with the 

target LV (e.g., significance, direction and magnitude) should be theoretically sound. Convergent 

and discriminant validity are Campbell and Fiske's (1959) proposals involving the measurement 

of multiple constructs with multiple methods, and they are frequently considered to be additional 

facets of construct validity. Convergent measures are highly correspondent (e.g., correlated) 

across different methods. Discriminant measures are internally convergent. However, convergent 

and discriminant validity are frequently not assessed in substantive articles as Campbell and 

Fiske (1959) intended (i.e., using multiple traits and multiple methods). Perhaps because 

constructs are frequently measured with a single method (i.e., the study at hand), reliability is 

frequently substituted for convergent validity, and LV correlational distinctness (e.g., the target 

LV's correlations with other measures are less than about 0.7) is substituted for discriminant 

validity. 

 

However, LV reliability is a measure of the correspondence between the items and their LV, the 

correlation between an LV and its items, and "correlations less than 0.7" ignores measurement 

error. Fornell and Larker (1981) suggested that adequately convergent LV's should have 

measures that contain more than 50% explained or common variance in the factor analytic sense 

(less than 50% error variance, also see Dillon and Goldstein 1984), and they proposed a statistic 

they termed Average Variance Extracted (AVE) as measure of convergent validity. AVE is a 

measure of the shared or common variance in an LV, the amount of variance that is captured by 

the LV in relation to the amount of variance due to its measurement error (Dillon and Goldstein 

1984). In different terms, AVE is a measure of the error-free variance of a set of items (AVE and 

its computation are discussed in detail elsewhere on this web site).  

 

AVE can also be used to gauge discriminant validity (Fornell and Larker 1981). If the squared 

(error-disattenuated or structural equation model) correlation between two LV's is less than either 

of their individual AVE's, this suggests the LV's each have more internal (extracted) variance 



2 12/10/05 © Copyright 2005 Robert Ping 

than variance shared between the LV's. If this is true for the target LV and all the other LV's, this 

suggests the discriminant validity of the target LV. 

 

Unfortunately, experience suggests that AVE in LV Interactions and Quadratics is typically low, 

frequently less than 50%. For example, while they are not below 50% see the low LV Interaction 

and Quadratic AVE's in the EXCEL Spreadsheet "For a Single Indicator LV...," on this web site, 

that result from the comparatively high reliabilities of X and Z. Thus, to judge the validity of an 

LV Interaction or Quadratic, first it must be acceptably reliable (validity assumes reliability). 

Content or face validity is usually assumed unless fewer than all the indicators of the constituent 

variables are used to itemize the LV Interaction or Quadratic. Construct or correlational validity 

is usually difficult to judge, and it might be ignored. Convergent validity (AVE) should be 0.50 

or above (the LV Interaction or Quadratic should be composed of 50% or less error) and it 

should be discriminant valid with the other model LV's, except perhaps its constituent variables 

(X or Z) (i.e., it is empirically distinct from the other model LV's--its AVE is larger than the 

squared correlations of the other LV's). In summary, while there are no hard and fast rules, 

reliability, and content, convergent and discriminant validity are probably sufficient to suggest 

the validity of an LV Interaction or Quadratic. Reliability, and content and convergent validity 

would be necessary, and construct (correlational) validity is usually ignored. With an AVE near 

0.50 an LV Interaction or Quadratic might be argued to be empirically indistinct from 5-10% of 

the other model LV's by chance (depending on reviewers). More than that would suggest the LV 

Interaction or Quadratic is discriminant invalid, and its validity is impugned. 

 

Experience suggests the substantive effect of the typically low AVE's in LV Interactions and 

Quadratics is their structural coefficients and their significances vary widely across replications. 

Specifically, with an AVE near 0.50 an hypothesized interaction or quadratic can be significant 

in one study but nonsignificant in a replication or near-replication. As a result, replication of a 

model test with hypothesized interactions or quadratics becomes comparatively more important. 

Specifically, an hypothesized interaction or quadratic that is NS in a model test could be 

significant in a replication, or vice versa. A Scenario Analysis using student subjects (see the 

Testing Latent Variable Models Using Survey Data on this web site) might provide a 

comparatively easily executed second study of the hypothesized interaction or quadratic using 

the existing questionnaire. The result could become a paper with two studies. "Multiple study" 

papers are common in social science disciplines such as Social Psychology and Consumer 

Behavior, and it might be instructive to examine a few of them to determine how best to present 

two-study results (see recent issues of The J. of Consumer Research, for example). 

 

For an LV Interaction or Quadratic with an AVE below 0.50, the alternatives besides ignoring 

AVE and hoping reviewers do likewise are to improve AVE in the LV Interaction or Quadratic. 

Low AVE in XZ is caused by low correlation between X and Z and/or comparatively large 

measurement errors in the items of X and or Z (i.e., low X and/or Z reliability). I have a few 

strategies besides rerunning the study with a measurement study to improve the reliability of X 

and Z that would take to long to explain here. If you need to improve AVE a few points you 

might consider e-mailing me for details of these strategies--more than about a 3 point 

improvement in AVE, however, may be unattainable without rerunning the study. 
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QUESTIONS of the MOMENT... 

 

"How does one remedy a 'not Positive Definite' message?" 

 

(The APA citation for this paper is Ping, R.A. (2012). "How does one remedy a 'not Pos-

itive Definite' message?" [on-line paper]. http:// www.wright.edu/~robert.ping/ 

NotPD1.doc .) 

 
(An earlier version of this paper, Ping, R.A. (2009). "How does one remedy a 'not Positive 

Definite' message?" [on-line paper]. http:// www.wright.edu/~robert.ping/NotPD.doc . is avail-

able here.) 

 

Few things are as frustrating, after gathering and entering survey data for a new model, 

and creating and debugging the estimation software program for the model, as the first 

bug-free software run producing a "not Positive Definite" message ("Ill Conditioned" in 

exploratory factor analysis). The definition of this problem provides little help, and there 

is little guidance for remedying matters, besides "check the data and the data correlation 

matrix," "delete items," or "use Ridge Option estimates" (the last of which produces 

biased parameter estimates, standard errors, and fit indices). 

 

Besides data entry errors,1 2 experience suggests that in real-world survey data, causes for 

a Not Positive Definite (NPD) message usually are 1) collinearity among the items, 2) 

measure(s) inconsistency, 3) inadequate starting values, and 4) model misspecification. 

 

(1) Collinearity among the items is easiest to investigate. Specifically, SAS, SPSS, etc. 

item correlations of 0.9 or above should be investigated by removing the item(s) involved 

to see if it remedies NPD. In this case, dropping or combining the highly correlated items 

may remove the NPD message. 3  

 

Occasionally in real world data, NPD can be the result of two or more parallel measures 

(measures of the same construct). With NPD and parallel measures, the measure(s) with 

the lesser psychometrics (reliability/validity) probably should be abandoned, and NPD 

should be reassessed. 

 

(2) Measure Inconsistency: In real world data NPD can accompany lack of consistency in 

the Anderson and Gerbing (1988) sense  (lack of model-to-data fit). Unfortunately, the 

procedure for investigating this possibility is tedious.  

                                                 
1 Experience suggests that random data entry errors seldom produce a "not Positive Definite" message. 

However, because they may create other problems later, it always prudent to examine the data for data 

entry errors.  

 
2 There are other plausible conditions--see for example http://www2.gsu.edu/~mkteer/npdmatri.html. 

 
3 Deleting an item should be done with concern for the content or face validity of the resulting measure. 

Combining items may be less desirable than removing them because it could be argued that the resulting 

combined "item" is no longer an observed variable. 

 

http://www.wright.edu/~robert.ping/NotPD.doc


 

The process begins with maximum likelihood exploratory (common) factor analysis (FA) 

of each measure. Specifically, each measure should be FA’d. Then, pairs of measures 

should be FA’d, then triplets, etc. (Note that one or more measures may be 

multidimensional—experience suggests that usually will not produce NPD.) 

 

Typically, NPD occurs when adding a measure to a group of m (m < n, where n is the 

number of measures) measures that was Positive Definite (PD). When a measure is found 

to create NPD, its items should be “weeded” using reliability maximization.4 In 

particular, after an item is dropped, NPD should be evaluated in a FA with all n of the 

measures. After that, deleted items should be added back to measures, beginning with the 

item contributing most to content validity of the most “important” measure, then 

proceeding to the next most "important" item, etc. With each added item, NPD should be 

checked using FA and all n measures.  

 

Occasionally, the above approach does not remedy NPD (it does not produce a set of n 

measures that is PD in a FA with all n measures) without excessive item weeding (too 

many items are weeded out), or without weeding an item(s) that are judged to be essential 

for face or content validity. In this case, experience suggests that weeding using 

Modification Indices instead of reliability might remedy NPD. (See the EXCEL template 

"For 'weeding' a multi-item measure so it 'fits the data'..." on the preceding web page).  

 

Specifically, the measure to be weeded should be estimated in a single LV measurement 

model (MM) and:  

 

a) it should be estimated using covariances and Maximum Likelihood estimation. 

  

b) The single LV MM should have one (unstandardized) loading constrained to equal 1, 

and all the other (unstandardized) loadings should be free (unconstrained) and their 

estimates should be between 0 and 1.5  

 

c) In the single LV MM, the unstandardized LV variance should be free, and the 

measurement model LV variance estimate should be positive and larger than its error-

attenuated (i.e., SAS, SPSS, etc.) estimate.  

 

d) All measurement error variances should be free and uncorrelated,6 and their estimates 

each should be zero or positive.  

                                                 
4 SAS, SPSS, etc. have procedures that assess the reliability of the remaining items if an item is dropped 

from the group. 

 
5 If one or more loadings in a measure is greater than one, the largest loading should be fixed at 1 and the 

other measure loadings should be freed, including the loading previously fixed at 1. 

  
6 Uncorrelated measurement errors is a classical factor analysis assumption. If this assumption is violated 

(e.g., to obtain model to data fit with an item that must not be deleted), experience suggests that the above 

procedure may still work. If it does not, the interested reader is encouraged to e-mail me for suggestions for 

their specific situation.   



 

e) The measurement model should fit the data very well using a sensitive fit index such as 

RMSEA (i.e., RMSEA should be at least 0.08--see Brown and Cudeck 1993, Jöreskog 

1993). 

 

In the unusual case that MI weeding does not remedy NPD, experience suggests that 

during MI weeding two items in a measure may have had practically the same MI. In this 

case, the removal of either item will improve model to data fit, and, because the deletion 

of the first item did not remove NPD, the second item should be deleted instead (rarely, 

both items should be deleted). Again, deleted items should be added back selectively to 

their respective measures until NPD reoccurs.  

 

(The case where NPD remains unremedied is discussed below.) 

 

For emphasis, the objective should be to find the item(s) responsible for NPD. Stated 

differently, each measure should retain as many items as possible. 

 

(3) Inadequate Starting Values: It is possible in real-world survey data that is actually 

Positive Definite (PD), to obtain a fitted or reproduced covariance matrix that is NPD. 

Experience suggests this usually is the result of structural model misspecification, which 

is discussed below, but it also can be the result of inadequate (parameter) starting values.  

 

Inadequate starting values usually occur in the structural model, and while they can be 

produced by the software (LISREL, EQS, AMOS, etc.), more often they are user 

supplied. Fortunately, adequate starting values for LV variances and covariances can be 

obtained from SAS, SPSS, etc. using averaged items. Starting estimates for loadings can 

be obtained from maximum likelihood exploratory (common) factor analysis,7 and 

regression estimates (with averaged indicators for each measure) can be used for 

adequate structural coefficient starting values. For emphasis, the parameters with these 

starting values should always be unfixed (i.e., free) (except for each measure’s item with 

a loading of 1). 

 

(4) Model Misspecification: It is also possible with PD input to obtain a fitted, or 

reproduced, structural model covariance matrix8 that is NPD because of structural model 

misspecification. Remedying this is very tedious.  

 

The procedure uses three steps beginning with verifying that the structural model paths 

reflect the hypotheses exactly. If they do, check that the full measurement model (FMM) 

is PD. Next, verify that the structural model is specified exactly as the FMM, except that 

                                                                                                                                                 
 
7 Each measure should be factored individually, and in each individual factor analysis the resulting 

standardized loadings should be divided by the largest loading in that factor analysis for SEM starting 

values.  

 
8 NPD parameter matrices (e.g., PSI or THETA-EPS) also can occur, usually with under identified LV's 

having fixed parameters or correlated measurement errors. The interested reader is encouraged to e-mail me 

for suggestions for their specific situation. 



the hypothesized structural paths have replaced several MM correlations. Then, remove 

any structural model misspecification.  

 

Specifically, estimate a full measurement model with all the measures present using steps 

a-e above with “single,” “each,” etc. replaced with “full.” 

 

If the FMM is NPD and remedies 1-3 above have been tried, an approach that uses 

Anderson and Gerbing's 1988 suggestions for establishing internal and external 

consistency should be used. It begins with estimating each LV in its own measurement 

model (with no other measures present), then estimating pairs of LV's in two-measure 

measurement models (with only the two measures present). Next, triplets of LV's are 

estimated in three-measure measurement models, then quadruplets of LV's and so on 

until the full measurement model is estimated.  

 

Specifically, each of the single LV measurement models should be estimated as described 

in steps a) through e) above to establish "baseline" parameter estimates for each measure 

for later use. (If these parameter estimates are already available, this step can be skipped.) 

 

Then, the LV's should be estimated in pairs--for example with 4 LV's, 6 measurement 

models, each containing two LV's are estimated. These measurement models also should 

be estimated using steps a) through e) above. 

 

In addition, 

 

f) Each LV should be specified exactly as it was in its own single LV measurement 

model, no indicator of any LV should load onto a different LV, and no measurement 

error variance of one LV should be allowed to correlate with any measurement error 

variance of any other LV.  

 

g) The covariances between the LV's should be free, and in real world data the resulting 

estimated variances and covariances of each LV, their loadings and measurement error 

variances should be nearly identical to those from the LV's own single LV measurement 

model. 

 

h) Each of these measurement models should fit the data very well using a sensitive fit 

index such as RMSEA.  

 

Next, the LV's should be estimated in triplets--for 4 LV's this will produce 3 

measurement models with 3 LV's in each. Each of these measurement models should be 

estimated using steps a) through h) above.  

 

Then, this process of estimating larger and larger combinations of LV's using steps a) 

through h) should be repeated until the full measurement model with all the LV's present 

would be estimated using steps a) through h).  

 



At this point at lease one measure should have been found to be problematic. Then, 

please contact me for the next steps. 

 

If the FMM is PD and possibilities 1-3 above have been checked, reverify that the 

structural model reflects the hypotheses exactly, and that the structural model is specified 

exactly as the FMM, except that the hypothesized structural paths have replaced several 

MM correlations. Then, try dropping an LV from the structural model. If the structural 

model is still NPD, try dropping a different LV. If repeating this process remedies NPD, 

please email me for the next steps. If repeating this process, dropping each measure one-

at-a-time does not remedy NPD, please email me for different next steps.  
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QUESTIONS of the MOMENT... 

 

"Why are reviewers complaining about the use of PLS in my paper?" 

 

(The APA citation for this paper is Ping, R.A. (2009). "Why are reviewers complaining 

about the use of PLS in my paper?" [on-line paper]. 

http://www.wright.edu/~robert.ping/PLS.doc) 

 

Theory-test papers propose theory that implies a path model. Then, they report a first, 

hopefully adequate, disconfirmation test1 of the model (and by implication the theory) 

that involves a data gathering protocol and a model estimation protocol. Reviewers 

usually have little difficulty evaluating the proposed theory and the data gathering 

protocol, but they may have difficulty evaluating the adequacy of a test that relies on a 

model estimation protocol involving PLS. PLS is not widely used in the social sciences, 

and some reviewers may be unfamiliar with PLS. These reviewers may reject the paper 

because they are unable to judge the adequacy of PLS as estimation software for the 

theory test (see Footnote 1). For the same reason, other reviewers may want to see SEM 

results, and absent those results, they also may reject the paper.  

 

Reviewers who are familiar with PLS may judge PLS to be inadequate for theory testing. 

Anecdotally, some object to its use of least squares estimation that maximizes variance 

explained rather than model-to-data fit of the covariances (as in SEM). Others may object 

to PLS's reliance on bootstrap standard errors (SE), and that the newer PLS software 

implementations appear to produce inconsistent estimates. 

 

BACKGROUND 

 

PLS was proposed about the same time as LISREL (see Wold 1975 for PLS, and 

Jöreskog 1973 for LISREL). However, the differences between PLS and LISREL are 

considerable. For example, PLS assumes formative2 latent variables (LV's), instead of 

                                                 
1 The logic of science dictates that an adequate test should falsify the proposed theory--it 

should show that it is false. If the test fails to falsify the theory, the test may be 

inadequate. Only after the test is (independently) judged to be adequate despite its failure 

to disconfirm, should the test results be viewed as suggesting "confirmation" (i.e., 

confirmation in this one case--confirmation of the theory is an inductive process requiring 

many disconfirmation tests that fail to disconfirm, and thus building confidence in the 

theory.) 

 
2 Blalock (1964) proposed that an LV can be formative or reflective. Reflective items are 

affected by (diagrammatically "pointed to" by) the same underlying concept or construct 

(i.e., the reflective LV). LISREL, EQS, AMOS, etc. assume reflective LV's. 

Formative indicators are measures that affect an LV. Diagrammatically, formative 

indicators point to the LV. A classic example of a formative LV is socio-economic status 

(SES), which is defined by items such as occupational prestige, income and education. 

That the indicators "cause" or point to SES, rather than vice versa, is suggested by the 



reflective LV's as in SEM (e.g., LISREL, EQS, AMOS, etc.). PLS factors are estimated 

as linear combinations (composites) of their indicators, a form of principal component 

analysis. In addition, PLS maximizes the ability of factors (X's) to explain variance in 

responses (Y's).  

 

PLS's positives include that it estimates nominal variables, and it estimates collinear LV's 

without resorting to Ridge estimation. Its maximization of explained variance improves 

forecasting, and, as a result, PLS has a large following outside of theory testing. In 

addition, PLS can estimate reflective LV's. As a result, mixed models with reflective and 

formative LV's are possible.3 

 

PLS's negatives include that, as previously mentioned, it is not widely seen in theory 

testing articles within the social sciences. Anecdotally, it is unknown to some theory 

testers. Its path coefficient estimates are not maximum likelihood (ML), which is 

preferred in theory testing. PLS's path coefficients also are not covariances, and thus they 

may be difficult to interpret. Also, as previously mentioned, PLS assumes formative 

LV's, the need for which may not be well understood in theory testing. 

 

Anecdotally, some reviewers view PLS as a way to avoid dealing with (reflective) 

measures that have poor psychometric properties (e.g., are unreliable, have low Average 

Variance Extracted, are discriminant invalid, etc.). In addition, PLS's ability to specify 

reflective LV's with weights that are proportional to their measurement model loadings 

may be a minus in theory tests. Since real world models also are likely to have reflective 

LV's, substantive researchers who want to estimate mixed models with formative and 

reflective LV's, may have to learn both PLS and SEM software (however, see "How are 

Formative Latent Variables estimated with LISREL, EQS, AMOS, etc.?" on this web 

site.). 

 

PLS's negatives also include issues that appear to be less widely known or appreciated 

outside of statistical circles, such as its reliance on bootstrap (resampling based) Standard 

Errors (SE's). These statistics are biased without correction. (Efron, who popularized 

bootstrapping, apparently spent many years trying to resolve this problem--see Efron and 

Tibshirani 1993, 1997. In an informal review of popular PLS software documentation I 

could find no indication of bootstrap estimates that were corrected for bias and 

inconsistency.) Finally, software implementations of Wold's proposals appear to produce 

inconsistent estimates (e.g., Temme, Kreis and Hildebrandt 2006).  

                                                                                                                                                 

likelihood that increased occupational prestige would increase SES, rather than increased 

SES necessarily would increase occupational prestige. (That being said, judging 

formative and reflective LV's, including SES, can become messy--see "How are 

Formative Latent Variables estimated with LISREL, EQS, AMOS, etc.?" on this web 

site.) 

 
3 PLS factors with indicator weights that are proportional to their SEM loadings should 

produce factors that are similar to their SEM counterparts (e.g., Schneeweiss 1993). 

However, I have yet to produce such results. 



  

In addition, most of PLS's strengths--nominal, formative, and collinear LV's; handling 

LV's with poor psychometrics, and forecasting--are all plausibly "covered" by SEM. For 

example, (truly) categorical (nominal) variables can be estimated in SEM (see "How does 

one estimate categorical variables..." on this web site).  

 

Formative LV's and LV's with poor psychometrics also can be estimated in SEM (see 

"How are Formative Latent Variables estimated with LISREL...?" on this web site). 

While PLS may have an advantage in estimating collinear LV's--its SE's for collinear 

LV's may be less biased than SEM's Ridge estimates--collinear LV's are usually not 

discriminant valid in real-world theory tests, so they seldom appear in real world survey 

data tests (see "What is the "validity" of a Latent Variable Interaction (or Quadratic)?" on 

this web site). 

 

PLS's forecasting capability may be neither a plus nor a minus in theory testing. 

Prediction-versus-explanation is a contentious area in the philosophy of science. Some 

authors argue that explanation is a better test of theory than prediction (e.g., Brush 1989), 

while others argue the reverse (e.g., Maher 1988). Nevertheless, it would be interesting to 

compare the consistency of a model's interpretations across multiple samples between 

SEM (i.e., explanation) and PLS (i.e., prediction).  

 

That being said, SEM eventually may have no advantage over PLS in theory testing. 

SEM's interpretations may be no more consistent across samples than PLS's. And, PLS's 

unfamiliarity to reviewers, and its unadjusted SE's and inconsistent software should be 

remedied over time.  

 

However, at present, a substantive paper that relies solely on PLS may be difficult to 

publish in the social sciences. It is likely that many reviewers will reject PLS because 

they are unfamiliar with it. A few reviewers may reject PLS because they disagree with 

its assumptions. Still fewer reviewers may reject PLS because of its software 

implementation's apparent "inadequacies." 

 

While strong arguments for PLS might be provided in a paper, it may be necessary to 

report PLS and SEM results.4 Specifically, if the model contains nominal LV's, the SEM 

results could be compared to those of PLS. If LV collinearity is a problem, Ridge and 

PLS estimates could be compared.5 Finally, formative LV's and LV's with poor 

                                                 
4 PLS results may or may not approximate SEM results (see McDonald 1996). However, 

it is plausible that generally consistent interpretations for PLS versus those of SEM 

across a holdout sample might support the efficacy of one estimation technique over 

another in the study at hand. 

 
5 However, Ridge SE's are believed to be biased. 

 



psychometric properties6 could be compared between SEM and PLS on their 

performance versus the hypotheses. 
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QUESTIONS of the MOMENT... 

 

"How are Formative Latent Variables estimated with LISREL, EQS, AMOS, etc.?" 

 

(The APA citation for this paper is Ping, R.A. (2010). "How are Formative Latent 

Variables estimated with LISREL, EQS, AMOS, etc.?" [on-line paper]. 

http://www.wright.edu/~ robert.ping/Forma.doc) 
 

(An earlier version of this paper, Ping, R.A. (2009). "How are Formative Latent Variables 

estimated with LISREL, EQS, AMOS, etc.?" [on-line paper]. 

http://www.wright.edu/~robert.ping/Form.doc, is available here.) 

 

 

In theory testing, internal inconsistency (the single construct measurement model does 

not fit the data) usually occurs in a new measure that is developed using many items. In 

fact, authors have noted that about six items seems to be the maximum number of items 

in an internally consistent measure (Anderson and Gerbing 1984, Bagozzi and Heatherton 

1994, Gerbing and Anderson 1993). Parenthetically, this may explain the disappearance 

of older well-established measures, developed before structural equation analysis became 

popular for theory testing, and that typically contained more than six items, (e.g., Comer, 

Machleit and Lagace 1989).  

 

Anecdotally, inconsistency is remedied by deleting items, trading off face validity for 

consistency, until adequate (or trivial—three items) consistency is attained. Occasionally, 

authors have summed a (presumably inconsistent) measure (e.g., Williams and Hazer 

1986) to maintain its face validity. The resulting single-indicator latent variable is 

specified with a loading of unity and a measurement error of zero. In different words, the 

items are assumed to define the latent variable. This was the idea behind Blalock’s (1964) 

proposal of “formative” latent variables. 

 

LATENT VARIABLES 

Blalock (1964) noted that unobserved or latent variables can produce changes in observed 

variables, or vice versa. A "reflective" latent variable is specified using observed 

variables (indicators) that are affected primarily by (diagrammatically "pointed to" by) 

one underlying concept (i.e., its latent variable). Reflective latent variables are ubiquitous 

in theory tests and structural equation analysis.  

 

However, "formative" indicators produce changes in their latent variable. 

Diagrammatically, formative indicators "point to" their latent variable. Formative latent 

variables are rare in theory tests in the social sciences, when compared to reflective latent 

variables. Although they are not new (e.g., Blalock 1964), formative latent variables may 

not be well understood by substantive researchers.  

 

A classic formative latent variable is Socio-Economic Status (SES), that that has the 

indicators Occupational Prestige, Income and Education. The “direction” of these 

indicators is suggested by it being more likely that increased Occupational Prestige will 

http://www.wright.edu/~robert.ping/Form.doc


increase SES, than increased SES will increase Occupational Prestige (i.e., Occupational 

Prestige "causes" or points to SES).  

 

However when SES is examined more closely, things become less clear. An increase in 

SES plausibly could increase income. Thus, the relationship between SES and income 

could be bi-directional (i.e., with arrows between them in both directions) instead of just 

from income to SES. 

 

The definition of a formative latent variable involves the notion that the indicators 

“create” or adequately define the latent variable (Blalock 1964). The notion of an 

“adequate” operational definition is important, because SES, for example, could be 

judged to have additional indicators—Physical Attractiveness for example.  

 

Authors also have noted that formative latent variables have indicators that may not be 

highly correlated (e.g., Bollen and Lennox 1991). Nevertheless, the indicators of SES are 

obviously correlated. Increased education is well known to be correlated with increased 

income. Increased occupational prestige is associated with increased income. And, 

increased education is associated with increased occupational prestige.  

 

In summary, SES appears to have attributes of a formative and a reflective latent variable. 

Experience suggests that such indicator ambiguity in formative latent variables may not 

be uncommon. For example, Ping (2007) specified a latent variable, Goal Congruity, 

reflectively, when it had previously been specified as formative (see Anderson 1988). 

Stated differently, formative latent variables may be more likely than their reported 

specification would suggest (see Cohen, Cohen, Teresi, Marchi and Velez 1990).  

 

Returning to weeding versus face validity, Ping (2007) reported a well-established 

measure, Organizational Commitment (OC), that had low Average Variance Extracted 

(AVE), and, as a result, it exhibited unacceptable discriminant validity using Fornell and 

Larker’s 1981 “squared correlation versus AVE” criterion. As a result, this measure was 

"quarantined" in the paper.1 However, as with SES, the measure might have been 

specified formatively—OC's indicators might have been argued to cause OC, and to 

adequately define it; and OC then might have been a candidate for the structural equation 

analysis model. 

 

As another example, Ping (1997) specified the Cost of Exiting a socio-economic 

exchange relationship (COE) as a reflective second-order latent variable. It had the first-

order (indicator) latent variables Unattractive Alternative relationships (ALTU), 

relationship Investment (INV) and Switching Costs (SC) (presumably because as COE 

changed one or more of ALTU, INV or SC were likely to change). However, as with 

SES, if Unattractive Alternatives, Investments or Switching Costs increased, the Cost of 

Exiting also should increase. Thus, Cost of Exiting might have been specified as a 

                                                 
1 Because OC was a "well established" measure, a model containing OC was estimated. 

However, OC contained more than 50% error variance and it was discriminant invalid, so 

the OC model results received limited discussion. 



formative latent variable instead of reflective latent variable. Specifically, ALTU, INV 

and SC might plausibly have been argued to adequately define COE.  

 

Nevertheless, COE was not estimated formatively because it was psychometrically 

adequate when specified reflectively (i.e., it exhibited adequate reliability, validity and 

consistency). 

 

However, experience suggests this is not always the case with second-order latent 

variables. They can be “cobbled together” post hoc in a study to simplify a large model 

by combining related first-order latent variables (e.g., Dwyer and Oh 1987; Gerbing, 

Anderson Freeman 1994). As a result, second-order latent variables can be minimally-

determined, and they can exhibit inadequate reliability or validity. In addition, they can 

exhibit inadequate external consistency: Their full measurement model (containing all the 

latent variables) can exhibit low model-to-data fit because their first-order "indicator" 

latent variables are correlated with other latent variables in the model (the first-order 

"indicator" latent variables of the second-order latent variable should have only one 

underlying construct, the second-order latent variable). Thus, a formative second-order 

specification may be an alternative to "breaking up" a reflective second-order latent 

variable into its component ("indicator") first-order latent variables because of inadequate 

model-to-data fit. 

 

FORMATIVES 

As the reader may have guessed, this discussion aims at the admittedly difficult task of 

arguing for a formative (re)specification of a “difficult” measure (e.g., one that is in 

danger of being weeded down to face invalidity in order to attain adequate consistency, 

or one that is in danger of being dropped from the model because of inadequate 

psychometrics (e.g., inadequate reliability, AVE, etc.). 

 

However, one might object to using a formative specification for a measure that was 

"created" (itemized) as a reflective measure. In addition, some reflective measures may 

not be able to be re-specified formatively. (Specifically, it may be difficult to argue that a 

measure's items adequately define the target latent variable. Or, some items may not 

cause their construct.) Finally, a formative specification for a mixed reflective-formative 

structural equation analysis model is currently unknown.  

 

We shall address each of these. The first matter, considering a formative re-specification 

for a reflective measure, would require a compelling reason for "saving" a "difficult" 

construct, or “rescuing” items, by resorting to formative re-specification. Such reasons 

might include that the “difficult” latent variable is a focal construct, or it should explain 

nontrivial variance in an endogenous (dependent) variable(s) (i.e., its omission would 

contribute to structural coefficient bias caused by the missing variable problem—see 

James 1980). Or, the items to be rescued are important items, and the operational 

definition of the latent variable would be impaired if they are dropped (i.e., without them 

the remaining items would no longer adequately tap the conceptual definition).  

 



It also might be argued that such a change in itemization is not good science: Items that 

were "created” as reflective can not be re-specified formatively. Nevertheless, this issue 

may be more apparent than real. A reflective item pool should adequately itemize its 

construct (i.e., the item pool should contain items measuring the all the salient observed 

aspects of the target construct). Experience suggests that some of these items also can be 

viewed as formative, and these "bidirectional" items might be judged to adequately define 

their construct (suggesting that their construct might be re-specified formatively). (For 

example, in Cost of Exit (COE) above, the “indicators” Unattractive Alternative 

relationships (ALTU), relationship Investment (INV) and Switching Costs (SC) 

operationally could be reflective or formative).  

 

Philosophically, that "reflective items" should not be re-specified formatively is beyond 

the scope of this discussion. It is tempting to point out, however, that some female reef 

fish change their gender to males when there are too few males present (e.g., Ross 1990). 

Thus, the end (in the present case model disconfirmation) may justify the means (re-

specification). In addition, it may be instructive to note that method should accommodate 

theory, and not vice versa. It could be argued that discarding an important construct, or 

dropping items that are important to a measure’s face validity, in order to accommodate 

an estimation technique (I.e., structural equation analysis), is theory forced to 

accommodate method. 

 

The second matter, that a measure's items should adequately define its latent variable, 

obviously is a matter of judgment. SES, for example, routinely is judged to be defined 

(adequately itemized) by its indicators Occupational Prestige, Income and Education. 

However, SES might be argued to be inadequately defined (itemized) because Physical 

Attraction was not included in its itemization. However, if an indicator in question is 

important to the latent variable, but it does not “cause” its latent variable, the measure 

may not be able to be re-specified formatively.  

 

Items that clearly do not “cause” their construct should be dropped before the remaining 

items that define their latent variable is argued to be adequate. However, experience 

suggests that in real-world data, the paths between a latent variable and its indicators are 

seldom clearly "one way," (e.g., from the indicator to the latent variable, or vice versa). 

Stated differently, experience suggests that comparatively few indicators that were 

“created” reflectively are clearly reflective in real-world survey data.  

 

The third matter, specifying a mixed reflective-formative structural equation analysis, 

may be a matter of  perspective. PLS, a software package for specifying formative latent 

variables, creates “composites”—linear combinations—of indicators, which could be 

argued to be a form of principal component analysis. A linear combination (weighted 

sum) of items from principal component analysis could be specified in structural equation 

analysis with a loading of unity and a measurement error variance of zero. A sum of 

items has been suggested as an alternative specification in structural equation analysis 

(Bagozzi and Heatherton 1994), and a sum of items has been used in structural equation 

analysis (e.g., Williams and Hazer 1986). Thus, principal component factor scores might 

be used in structural equation analysis to adequately specify a formative latent variable. 



Specifically, items that have been argued to adequately define their latent variable, could 

be combined using their factor scores (weighted sums) from a principal components 

factoring (not a common-factor analysis), and then they could be specified as a single 

item latent variable in the structural equation analysis model with a loading of unity and a 

measurement error variance of zero.2  

 

Nevertheless, there are drawbacks (to both specifications). Reflective measures may be 

weeded down to a few items so they fit the data with a reflective specification. As a 

result, they may be in danger of being judged bloated specific (i.e., they no longer 

adequately itemize the construct—see Cattell 1973). Or, a reflective measure can be 

discarded as psychometrically inadequate, and a potentially important construct is thus 

missing from the model. This in turn removes an hypothesis(es), and can raise the specter 

of the estimated model being an inadequate test of the proposed theory (because of the 

"missing variable" problem—see James 1980).  

 

If a latent variable is re-specified as formative, it may receive a less-than-warm reception 

from reviewers, for the reasons mentioned above. In addition, in a re-specification from 

reflective to formative the items appear to no longer have any measurement error.3 In 

addition, a measure re-specified as formative may be forever viewed as a formative 

measure. 

 

However, there also are advantages with either specification. A reflective specification is 

typically well-understood by reviewers. A formative re-specification can retain items that 

are important to their construct's face or content validity. In addition, experience suggests 

that older, well established (even multidimensional), measures developed before the 

advent of structural equation analysis (e.g., Walker, Churchill and Ford 1977) might be 

re-specified as formative (see Williams and Hazer 1986), instead of being weeded to the 

point of being a "shadow of their former self" (e.g., Comer, Machleit and Lagace 1989). 

Formative factor scores more nearly approximate structural equation analysis’ continuous 

data assumption, which is routinely ignored in the use of reflective ordinal indicators. 

Finally, many theory tests propose interesting new theory and a first test of that theory. A 

formative re-specification to "save" a measure in order to provide a first test of of new 

theory may be reasonable because insisting that measures be "perfect" actually may 

restrict the flow of knowledge—new knowledge might go unpublished until a "perfect" 

study is attained.  

 

RE-SPECIFICATION 

                                                 
2 Other specification approaches are plausible (see for example Jarvis, MacKenzie, and 

Podsakoff 2003). 

 
3 However, measurement error is present in both specifications. A reflective estimation of 

a measure produces explicit measurement errors. However, despite the fact that a 

formative specification of the same measure produces no explicit measurement error, the 

formative specification’s items do contain measurement error, and that can be gauged 

using coefficient alpha (i.e., measurement error is independent of specification).  



Re-specifying a measure generated to be specified reflectively involves three steps: 

identifying items that could be argued to be “bi-directional,” determining if these items 

adequately define the target construct, then creating principal components factor scores 

for the formative re-specification. 

 

Specifically, the process should begin with item judging each item in the full candidate 

measure (not a weeded subset) for their formative directionality potential (e.g., will an 

increase in the item likely cause an increase in the target latent variable?). Next, the items 

that survive this item judging should be judged again to determine if they adequately 

define the target construct. Ideally these judgings would be done using a panel of experts 

who are familiar with the target construct and the construct's conceptual definition (i.e., 

using formal item judging). Then, the item-to-total correlations of the items that survived 

these item judgings should be examined, and any negatively correlated items should be 

reflected (recoded) to force all the surviving items to have positive item-to-total 

correlations. Next, any surviving items judged to be conceptually similar should be 

combined (averaged) to reduce overweighting (e.g., combine similar affect items, similar 

intention items, similar action items, similar attribute items, etc.). (Ideally, this also 

would be accomplished with formal item judging.) Alternatively, the conceptually similar 

item(s) with lesser item-to-total correlation could be dropped.  

 

Next, using principal components (PC) (not common-factor) analysis, the 

surviving/combined items should be factored, and the resulting factors should be 

examined. Because important surviving/items to an adequate formative latent variable 

definition may be in Factor 2, etc., the Factor 1 items should be re-judged for their face 

validity (i.e., will dropping the Factor 2, etc. items materially degrade face validity?). 

Any Factor 2, etc. items that are judged to be critical to face validity then should be 

included in a forced single factor.  

 

Then, PC factor scores should be obtained for the surviving/combined (perhaps forced) 

items (i.e., the surviving/combined items should be combined into a single (formative) 

indicator).  

 

Finally, assuming the formative latent variable has adequate reliability and validity4 5 (see 

below), it could be specified with a single factor-score indicator using a loading of 1 and 

a measurement error of zero. 

                                                 
4 Even though formative latent variables appear to be “error free,” error still exists in their 

items (see Footnote 3). Thus, because (model) “reproducibility” in the Campbell and 

Fiske (1959) sense (error is sufficiently low in the model that the observed structural 

effects (associations) are likely to be adequately reproduced in subsequent studies) is 

important in theory tests, the reliability and validity of any formative latent variable 

added to a theory-testing model should be evaluated. Stated differently, the reliability and 

validity of all the model latent variables, formative or otherwise, should be judged to be 

adequate, in order to improve the likelihood that the study results are reproducible. 

   



 

A procedure for specifying a second-order latent variable formatively would be to item 

judge each first-order "indicator" latent variable for its formative potential (e.g., will an 

increase in the first-order "indicator" latent variable plausibly cause an increase in the 

target second-order latent variable?). Next, determine if the surviving first-order 

"indicator" latent variables adequately define (cause) the target construct. Ideally these 

judgings would be done using formal item judging (discussed earlier). Then, an argument 

to support the first-order "indicator" latent variables being used to adequately define the 

second-order latent variable should be created. (Parenthetically, this can be challenging—

in SES, it was comparatively easy to find an unmeasured (missing) item that also could 

be used to define SES. For emphasis however, the issue is an adequate definition—

judging the latent variable to be adequately defined—not necessarily an exhaustive 

definition.)  

 

Next, psychometrically adequate (reflective) first-order latent variables should be 

obtained (i.e., they should be reliable and valid, each should fit its single construct 

measurement model, etc.). Then, (confirmatory) factor scores for each first-order latent 

variable should be produced using a measurement model for each first-order latent 

variable (i.e., linearly combine each first-order latent variable into its (confirmatory) 

single factor indicator).6 Then, the resulting (confirmatory) single factor indicators should 

be factored again using principal components (PC) (not common-factor analysis) to 

obtain PC factor scores for the second-order latent variable. (I.e., the first-order latent 

variables should be turned into single indicators using their measurement model factor 

scores, then these single indicators should be combined using PC factor scores into a 

single indicator for the second-order latent variable.)  

 

Finally, assuming adequate reliability and validity (see below), the second-order latent 

variable should be specified with this single (formative) indicator using a loading of 1 

and a measurement error of zero.  

 

It also may be important to construct a convincing argument for replacing the target latent 

variable’s reflective specification with a formative re-specification. It probably is 

insufficient to argue for a formative specification simply because it is possible. A strong 

argument for "rescuing" the target latent variable probably would be more persuasive. 

(E.g., no psychometrically adequate reflective specification could be found, and the 

                                                                                                                                                 
5 Social Scientists disagree on what constitutes adequate validity. Nevertheless, a minimal 

demonstration of validity probably should include content or face validity (how well 

items tap into the conceptual definition of their latent variable), construct validity (having 

plausible correlations with the other latent variables in the model), convergent validity 

(e.g., having adequate AVE) and discriminant validity (having small correlations with the 

other latent variables). Validity could then be qualitatively assessed considering 

reliability and the latent variable’s performance over this minimal set of validity criteria. 

 
6 If one or more of the first-order "indicator" latent variables is "troubled," it could use 

principal components factor scores instead of common factor scores. 



construct was in danger of being omitted from the model, which would require 

hypothesis omission and potentially increase the missing variable problem. Alternatively, 

one could argue that the formative latent variable was more face valid than the “final” 

psychometrically adequate reflective latent variable.  

 

RELIABILITY AND VALIDITY 

This topic may require a preface. Footnotes 3 and 4 mentioned error in formative latent 

variables, and the importance to model “reproducibility” (Campbell and Fiske 1959) of 

gauging formative latent variables' reliability and validity in theory testing. Although it 

was proposed for, and is used exclusively with, reflective latent variables, Coefficient 

Alpha (Cronbach 1951) should provide an adequate gauge of formative latent variable 

reliability: It gauges the ratio of “True Score” (measurement-error free) variance to total 

variance in a set of items, regardless of the intended use of the items.  

 

While Average Variance Extracted (AVE) was proposed by Fornell and Larker (1981) 

using logic from Canonical Correlation, rather than a reflective specification, AVE is 

calculated using structural equation analysis (SEM) software that assumes a reflective 

specification—i.e., LISREL, EQS, AMOS, etc. However, it could be argued that a 

reflective specification is simply a device to estimate the common variance in a set of 

items. In different words, a set of items’ AVE is exists independently of the method used 

to estimate it. 

 

However in real-world data, items that are re-specified using the suggested procedure are 

typically inconsistent, and their SEM AVE estimate may not be trustworthy. 

Nevertheless, experience suggests that for these items an estimate of their (formative) 

AVE is provided by the percent of variance (POV) statistic in (common) factor analysis.7 

Specifically, because it could be interpreted as the percent item (common) variance 

explained by the set of re-specified formative latent variable items, POV plausibly might 

be used to help gauge validity in a formative re-specification. In particular, after a 

formative re-specification is judged for its face, and construct validity (see Footnote 5), 

(common factor) POV could be used to judge convergent and discriminant validity. 

Specifically, (common factor) POV greater than 50% would suggest that items have at 

least 50% common variance, which is the Fornell and Larker (1981) criterion for 

adequate convergent validity. The discriminant validity of two latent variables would be 

suggested by AVE/POV’s that are greater than the squared correlation between the two 

latent variables, which is the Fornell and Larker (1981) criterion for adequate 

discriminant validity. 

 

DISCUSSION 

Authors have noted that in artificial data, a reflective specification of a latent variable that 

was first specified formatively produces biased structural coefficient(s) (i.e., an upward 

bias for the latent variable’s exogenous path, and a downward bias for its endogenous 

                                                 
7 (Common factor analysis) percent of variance is the sum of each squared (common 

factor) loading (communalities) in Factor 1 divided by the sum of the (standardized) item 

variances, and it has the same algebraic form as AVE (see Fornell and Larker 1981). 



path) (see Jarvis, MacKenzie, and Podsakoff 2003; MacKenzie, Podsakoff and Jarvis 

2005). However, it is difficult to generalize these results to the suggested procedure 

because the items in the suggested formative re-specification of a “difficult” measure 

typically will be different from the items in its (consistent) reflective specification.  

 

Nevertheless, it is possible that a formative re-specification of indicators that first were 

generated to be reflective might somehow bias paths to and from the re-specified latent 

variable. Thus, because the suggested formative re-specification approach has not been 

formally investigated for possible bias and inconsistency, a conservative significance 

criterion probably should be used with it (e.g., |t-values| for associations involving the re-

specified latent variable(s) probably should be greater than 2.20 to suggest significance).  

 

Perhaps curiously, experience suggests that the suggested formative re-specification 

procedure can improve a measure's reliability; or its face validity; or convergent or 

discriminant validity.8 Organizational Commitment, for example, had an AVE of 0.49 in 

Ping 1997. Re-specified as formative using the suggested procedure, it had a POV of 

65%.  

 

Forcing Factor 2, etc. items into Factor 1 typically reduces the POV statistic, and it can 

produce a formative re-specification with a POV below 50%. This situation suggests an 

additional negative for the suggested formative re-specification procedure: item weeding 

still may be required in a formative re-specification. 

 

However, POV might be improved by dropping cases from the data set (dropping cases 

for Organizational Commitment, for example, re-specified as formative using the 

suggested procedure, increased POV to 70%). A "Jackknife-like" (Efron 1981) procedure 

could be used to remove a case from the data set, and POV could be determined for the 

remaining cases. Then, the removed case is replaced, a different case is removed, and 

POV is determined for the remaining cases. This process is repeated for each of the rest 

of the cases to find the case that produces the largest POV improvement.9 

                                                 
8 This appears to beg the question, how can the formative re-specification of an invalid 

reflective measure make it valid (in real-world data)? Obviously, the invalid and valid 

sets of items are likely to be different in size and composition. The formative set of items 

may be more reliable because it typically contains more items. The face validity of the 

formative items may be improved because important face validity items can be 

purposefully retained. Experience suggests that the suggested process of selecting items 

based on their apparent contribution to face validity may improve their convergent 

validity. Discriminant validity may be improved if convergent validity is improved. 

Perhaps curiously, in real-world data, experience suggests that construct (correlational) 

validity changes comparatively little in the suggested re-specification procedure.  

 
9 Dropping the case that detracts most from POV arguably is not a random process, and it 

casts a shadow over any sample "representativeness." An improved procedure would be 

to randomly select a case from a set of cases that detract most from POV. Alternatively, 

cases could be deleted randomly and the first case that improves POV could be dropped. 



 

Additional POV improvement may be obtained by repeating this process using the data 

set with the case that produced the largest POV improvement removed, instead of the full 

data set. Specifically, a case is removed from the first improved POV data set, and POV 

is determined for the remaining cases. Then, the case just removed (not both cases) is 

replaced, a different case is removed, and POV is determined for the remaining cases. 

This process is repeated for each of the rest of the cases to find the largest POV 

improvement with two cases removed (also see Footnote 10). 

 

SUMMARY 

The document highlighted the distinction between a latent variable and its specification. 

It also suggested that a formative re-specification of a reflective latent variable might be 

efficacious in “difficult” measure situations,  

1) as alternative to omitting items that are important to the measure’s face or content 

validity in order to attain adequate internal consistency, or acceptable reliability or 

Average Variance Extracted (AVE);  

2) when faced with omitting a latent variable from the model (and an hypothesis(es)) 

because of inadequate psychometrics (e.g., inadequate reliability or AVE);  

3) as alternative to "breaking up" a second-order latent variable into its component 

("indicator") first-order latent variables because of inadequate psychometrics.  

 

Because reliability and validity are important in theory tests to promote “reproducibility” 

in the Campbell and Fiske (1959) sense (error is sufficiently low that the observed 

structural effects (associations) are likely to be adequately reproduced in subsequent 

studies), the discussion also suggested reliability and validity statistics for a reflective 

latent variable re-specified as formative using the suggested procedure. 
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FREQUENTLY ASKED QUESTIONS (FAQ's) About Interactions and Quadratics... 

  

 

The following are e-mailed questions, in no particular order of importance, that have been asked 

enough times that the responses appear below.  

 

FAQ (D), how does one test hypothesized interaction(s) and/or quadratic(s)?, has become a "cook-

book" that may be of some use to PhD students, substantive researchers, and educators who are 

interested in successfully estimating their first interaction(s) or quadratic(s). It contains a "fast start" 

feature for those who just want essentials. 

 

The APA citation for this paper is Ping, R.A. (2006). "Frequently Asked Questions (FAQ's) About 

Interactions and Quadratics." [on-line paper]. http://www.wright.edu/~robert.ping/Faq.doc . 

 

You may want to use "Find" to go to the answers to the frequently asked questions shown below. To 

do this, launch "Find" by clicking on Edit on the Word toolbar above, then click on Find. Next, copy 

and paste part of the desired question text shown below into the "Find what:" box. Then, click on 

"Find Next."  

 

FREQUENTLY ASKED QUESTIONS: 

 

A. What are the available latent variable interaction and quadratic estimation techniques? 

 

B. What are the differences among them? 

 

C. Which ones should be used for model testing? 

 

D. How does one test hypothesized interactions or quadratics? 

   

E. What about the assumptions behind these techniques, and violations of these assumptions in 

real-world data? 

 

F. What if one or more measures have a natural zero point and mean or zero centering is 

inappropriate? 

  

G. How does one investigate the possibility that a significant but unmodeled interaction or quadratic 

might be responsible for a nonsignificant hypothesized association? 

 

H. How does one interpret a significant interaction or quadratic? 

 

I. Can these interaction and quadratic estimation techniques be used with all of the popular 

structural equation modeling software packages? 

 

J. How should reviewer comments regarding interactions and/or quadratics be handled? 
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K. How are Latent Variable Cubics estimated? 

 

L. How is a "Second-Order" interaction estimated? 

 

 

RESPONSES: 

 

A. What are the available latent variable interaction and quadratic estimation techniques? 

 

The accessible latent variable interaction and quadratic estimation techniques include, 

 

1) Kenny and Judd (1984), which specifies an interaction XZ using indicators that are the 

unique cross products of X and Z. E.g., for X and Z with indicators x1, x2, ... , xn and z1, z2, ... 

, zm , XZ is specified with n times m product indicators, x1z1, x1z2, ... , x1zm, x2z1, x2z2, ... , 

x2zm, ... , xnz1, xnz2, ... , xnzm. 

 

2) Bollen (1995)--XZ is specified with all Kenny and Judd (1984) product indicators, and 2-

stage least squares estimation is used. 

 

3) Jöreskog and Yang (1996), XZ is specified with from one to all Kenny and Judd (1984) 

product indicators, and it assumes intercepts for X and Z. 

 

4) Ping (1995)--XZ is specified with a single indicator x:z = (x1 + x2 + ...  + xn)(z1 + z2 + ...  + 

zm). x:z can be specified with a either a free, but constrained, loading and error term (direct 

estimation), or a previously calculated and fixed loading and error term (2-step estimation). 

 

5) Ping (1996a)--XZ is specified with all Kenny and Judd product indicators. Coefficients are 

estimated using 2-step estimation. 

  

6) Ping (1996c), which uses an adjusted covariance matrix and OLS or ML regression to 

estimate the coefficient(s) of interactions. 

  

7) Jaccard and Wan (1995)--XZ is specified with a 4-indicator subset of the Kenny and Judd 

(1984) product indicators. 

 

8) Jöreskog (2000)--XZ is specified with a single indicator that is the product of the "latent 

variable" scores (factor scores) of X and Z. 

 

9) Wall and Amemiya (2001)-- XZ is specified with subsets of the Kenny and Judd (1984) 

product indicators, and the covariances of XZ with X and Z are freed. 

 

10) Mathieu, Tannenbaum and Salas (1992)-- XZ is specified with a single indicator that is 

the sum of the indicators of X times the sum of the indicators of Z, and it uses a reliability 
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loading for that indicator with a reliability-based measurement error variance, VarXZ*(1-

reliabilityXZ). 

 

11) Algina and Moulder (2001)--proposed modifications to the Jöreskog and Yang (1996) 

approach to address convergence problems. 

 

12) Marsh, Wen and Hau (2004)--XZ was specified with subsets of the Kenny and Judd 

(1984) product indicators, the loadings and measurement error variances of which were 

allowed to be free for estimation rather than fixed or constrained. 

 

13) Klein and Moosbrugger (2000); Schermelleh-Engle, Kein and Moosbrugger (1998); 

Klein and Muthén (2002)--XZ is not explicitly specified with product indicators. 

 

14) Moulder and Algina (2002)--XZ is specified with a 4-indicator subset of the Kenny and 

Judd (1984) product indicators, using the Jöreskog and Yang (1996) approach, and 

coefficients are estimated using 2-step estimation. 

 

Other techniques include Hayduk (1987) and Wong and Long (1987) that require dummy variables 

to estimate a latent variable interaction.  

 

 

B. What are the differences among them? 

 

Techniques (1), (2), (3), and (5) use all the Kenny and Judd (1984) product indicators and thus 

require n times m of these indicators. Technique (3), (9), (11), (12) and possibly (13) and (14) can 

also be used with all the Kenny and Judd (1984) product indicators. Technique (7) uses a subset of 

the Kenny and Judd product indicators, and techniques (9), (12), (13) and (14) can use a subset of the 

Kenny and Judd product indicators. Techniques (4) and (10) use 1 indicator, x:z. Techniques (3), 

(11) and possibly (14) can use a single Kenny and Judd product indicator, usually the product 

indicator with a loading of 1. Techniques (1), (3), (7), (9), (11) and the direct estimation version of 

(4) require the nonlinear constraint equations (e.g., available in LISREL 8 and SAS's 'Proc Calis,' but 

not available in EQS or AMOS). Technique (13) requires the proprietary software QML. Techniques 

(2), (5), (6), (9), (10), (12), possibly (14) and the 2-step version of (4) can be used with EQS and 

AMOS, as well as LISREL 8 and Calis. 

 

Technique (2) does not assume x1, x2, ... , xn and z1, z2, ... , zm are multivariate normal; the rest do 

make this assumption. Thus, technique (2) requires the use of the 2 Stage Least Squares estimator 

(the customary Maximum Likelihood estimator can not be used). Technique (6) can be used with 

OLS or ML Regression. 

 

Techniques (3), (11) and (14) do not require zero or mean centered indicators of X and Z, and 

assumes intercept(s) for the structural equation(s) (a zero or mean centered indicator has a mean of 

zero, and is created by subtracting the indicator's mean from the indicator in each case in the data 

set). The other techniques implicitly assume the indicators of all the latent variables in the model, 
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including the dependent variable(s), are zero or mean centered. 

 

Technique (6) was proposed for interactions only, and was proposed with no standard error term 

(however, Ping 2001 has proposed a standard error term). 

 

 

C. Which ones should be used for model testing? 

 

There is little agreement on the "best" estimation technique. Formal comparisons of several of these 

techniques using artificial data (e.g., Li, Harmer, Duncan, Duncan, Acock and Boles 1998; Marsh, 

Wen and Hau 2004; Molder and Algina 2002) suggest some do not perform well, especially with 

nonnormal data. I have been unable to duplicate some of these results, and several lower-performing 

techniques appear to be the result of assumptions that are unrealistic in real-world data. Thus, 

experience with estimating an XZ structural coefficient, for example, in theory (hypothesis) tests of 

"interesting" models (i.e., models with more than 3 exogenous constructs, not including XZ) and 

over-determined X and Z (i.e., X and Z with 4 to 6 or more indicators), with real world survey data, 

suggests nearly all of these techniques produce interpretationally equivalent results. That is, 

standardized coefficients and t-values produce the same interpretations of the theory test. 

(Unstandardized coefficients will vary among these techniques because not all use Maximum 

Likelihood estimation are used, and techniques (3), (6), (11) and (14) produce intercepts which will 

change the unstandardized coefficients.)  

 

They are all tedious to use. Technique (3) can produce convergence problems (however (11) is a 

modified procedure which reduces convergence problems in (3)). Some of these techniques are 

simply proposals, and have not been formally evaluated for any bias and efficiency (e.g., (8), (9) and 

(10)). 

 

I personally am drawn to Kenny and Judd (1984) product indicator approaches that explicitly use all 

the Kenny and Judd product indicators. The use of all the Kenny and Judd product indicators is 

mathematically elegant and intuitively appealing. However, in "interesting" models (i.e., models with 

more than 3 exogenous constructs, not including XZ) with over-identified X and Z (i.e., with 4 to 6 or 

more indicators each), XZ specified with the full set of Kenny and Judd product indicators will 

almost always be inconsistent with real-world data (i.e., XZ in a single construct measurement model 

will not fit the data, and the full measurement and the structural model containing XZ will usually 

exhibit unacceptable model-to-data fit). As a result, I have found that using all the Kenny and Judd 

product indicators (and thus techniques (1), (2), (3), and (5), and (9), (11), (12) and possibly (13) and 

(14) with all Kenny and Judd (1984) product indicators), despite its appeal, is not particularly useful 

for theory testing with "interesting" structural models and over-identified X and Z in real-world data.  

 

However, most of the techniques that use the full set of Kenny and Judd product indicators can be 

made to fit the data by using a subset of the Kenny and Judd product indicators. However, I am 

usually slow to use technique (7), and techniques (3), (9), (11), (12), (13) and (14) for theory testing 

with a subset of the Kenny and Judd product indicators for several reasons. In artificial data 

"weeding" the Kenny and Judd product indicators curiously does not bias the asymptotic results of 
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these techniques. However, it is easy to show with real-world data that various choices of subsets of 

the Kenny and Judd product indicators can produce various structural coefficient values and 

significances, and thus interpretations. In addition, without all the Kenny and Judd product indicators 

present, XZ, for example, could be judged to be no longer content- or face valid, Further, the 

reliability of XZ with a weeded subset of the Kenny and Judd product indicators is unknown (the 

formula for the reliability of XZ is a function of X and Z, and thus it assumes XZ is operationally X 

times Z --see Bohrnstedt and Marwell 1978). Finally, a detailed interpretation of a significant 

"weeded" XZ that uses factored coefficients (see FAQ H) is problematic because XZ is no longer 

factorable (the X in XZ is no longer operationally the same as the latent variable X because they are 

itemized differently).  

 

For hypothesis testing using survey data this usually leaves technique (4), and technique (6) (with the 

standard error term suggested in Ping 2001). However, technique (6) is limited to a single 

endogenous variable, and it is generally unknown outside of the methods literature. The direct 

estimation version of technique (4) requires tedious (manual) coding of constraint equations, and it is 

difficult to use with more than one interaction or quadratic.  

 

If X or Z cannot be mean- or zero centered, neither technique (4) nor (6) is appropriate. I have seen 

proposals to use an input correlation matrix to avoid zero or mean centering, but unfortunately 

correlational structural analysis can alter the model structure, and it will change model-to-data fit and 

produce incorrect standard errors (see Cudeck 1989 and Jöreskog and Sörbom 1996). Techniques 

(3), (11) or (14) with a subset of the Kenny and Judd product indicators may be the only alternatives 

in this case.  

 

It is widely believed that Maximum Likelihood (ML) coefficient estimates are robust to "reasonable" 

departures from normality that occur, for example, in survey data, but coefficient standard errors may 

not be. If the data is badly non normal or raising the t-value cutoff for the significance of XZ, for 

example, to more than 2 in absolute value, techniques (1), (3), (5), (9), (10), (12) and (14), and in 

particular the 2-step version of technique (4), can be used with EQS's 'ROBUST' ML estimator to 

obtain better estimates of the coefficient standard errors.  

 

 

D. How does one test hypothesized interactions or quadratics? 

 

Unfortunately the answer is, "with considerable effort" when latent variables are involved. To 

understand why, some background is desirable. (As a less desirable alternative, one could skip down 

to the "In summary..." paragraph below.)  

 

The largest barrier to latent variable interaction/quadratic estimation in my opinion is the amount of 

work involved for even a single interaction or quadratic. This is changing, however. For example, 

technique (8) has been implemented in LISREL's PRELIS (although it has received no formal 

evaluation, and preliminary results suggest it produces unusual standard errors--see Schumacker 

2002). This web site also has EXCEL templates to expedite the computation of interaction and 

quadratic loadings and measurement error variances. 
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The next largest barrier to latent variable interaction/quadratic estimation with "interesting" models 

(i.e., models with more than 3 exogenous constructs, not including XZ) and over-determined X and Z 

(i.e., X and Z with 4 to 6 or more indicators) in real world data seems to be model-to-data fit. A 

sufficient condition for unidimensionality of X, for example, is that its single construct measurement 

model (i.e., one involving only X and its indicators) fit the data (e.g., the p-value of chi-square is at 

least slightly non zero). Thus, for X, Z, and XZ, and the dependent latent variable Y, for example, the 

single construct measurement model for each of these variables should fit the data well. 

 

Without good single-construct measurement model fits, the structural model fit will be degraded, and 

adding interactions/quadratics frequently makes things worse. Adding an indicator for an interaction 

that is the product of other indicators does not improve model to data fit. In fact, with more than 

about 6 Kenny and Judd product indicators, model fit becomes unacceptable in "interesting" models 

with over-determined X and Z in real world data. As Bagozzi and Heatherton (1994) and Gerbing 

and Anderson (1993) point out, the same "about 6 items" limit also seems to apply to the items of X, 

Z, etc. (especially in "interesting" models and over-determined X and Z). This usually means that a 

single construct measurement model of an interaction or quadratic specified with more than about 6 

product indicators will not fit the data without somehow reducing the number of product indicators. 

(see "On the Maximum of About Six Indicators per Latent Variable with Real-World Data" on this 

web site for more on this "puzzle of about six indicators"). 

 

Although probably not initially intended as an interaction estimation technique, Jaccard and Wan 

(1995) addressed these model fit problems by "weeding" or deleting Kenny and Judd product 

indicators as one does to attain an internally consistent X or Z (i.e., to attain acceptable single 

construct model-to-data fit). Possibly as a result, most of the more recent interaction techniques 

mentioned in FAQ A use subsets of the Kenny and Judd product indicators. However, experience 

suggests this can produce different structural coefficients and t-values, and thus interpretations in a 

single real world data set, depending on the subset of product indicators used. (Curiously the Jaccard 

and Wan 1995 results, for example, were acceptably asymptotically unbiased in artificial data by 

using "weeded" subsets of Kenny and Judd product indicators.) It could also be argued that XZ is no 

longer content- or face valid when its Kenny and Judd product indicators are omitted. In addition, the 

reliability of XZ is undefined, and detailed interpretation of XZ is problematic (see FAQ C).  

 

Correlating measurement errors in the indicators of X, Z or XZ simply to improve model fit is not 

allowed: None of the techniques discussed in FAQ C are valid if this is done (however, see Latent 

Variable Interactions... Chapter VIII: Intercorrelations on this web site for corrections to the 

specifications with correlated measurement errors). Correlating structural disturbances (i.e., the 

estimation error(s) for the dependent or endogenous variable(s)) to improve model fit may or may 

not be a good idea, depending on the substantive theory behind the model. Data transformations to 

improve model fit may make coefficient interpretation difficult. 

 

Model fit may also be degraded by interaction or quadratic specification. For example, the variance 

of the interaction XZ is frequently constrained to equal the Kenny and Judd (1984) value 

Var[X]*Var[Z]+Cov[X,Z]**2, where ** indicates "raised to the power." However, this can produce 
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unacceptable model fit or convergence problems in real world data, and experience suggests this may 

bias the structural coefficient of XZ in real-world data. This can occur because constraining the 

variance of XZ to Var[X]*Var[Z]+Cov[X,Z]**2 assumes the data is multivariate normal, which is 

seldom true in survey data. Thus, the variance of XZ should be free rather than constrained to the 

Kenny and Judd value Var[X]*Var[Z]+Cov[X,Z]**2 in survey data. 

 

Another specification in survey data that degrades model fit is not freeing the correlations among XZ, 

X and Z. Although the correlation of XZ with X or Z, should be zero in multivariate normal data (see 

Kenny and Judd 1984), in real-world data X and Z are seldom sufficiently multivariate normal to not 

be correlated with XZ, and XZ should be free to correlate with and X and Z in their structural model 

to avoid model fit problems, and possible bias in the structural coefficient of XZ. 

 

Returning to the barriers, estimation convergence can be a problem (i.e., no admissible estimates are 

produced because the iteration limit is exceeded) and improper solutions may obtain even with 

convergence. To avoid these problems, a structural model with an interaction(s) and/or quadratic(s) 

will usually need input starting values for the interaction/quadratic parameters (i.e., manually 

calculated loadings, measurement error variances, and interaction/ quadratic variances/covariances). 

It also may need starting values for all the structural coefficients, and the structural disturbance(s). 

While this is annoying, starting values for structural coefficients and structural disturbance(s) can be 

obtained using OLS regression (the structural disturbance, e, for Y in Y = b1X + b2Z + ... + bnW + e is 

estimated by Var(Y)(1-R2), where Var(Y) is the SPSS, SAS, etc. variance of Y, and R2 is from the 

OLS regression of Y on its independent variables). A starting value for the variance of XZ, Var(XZ), 

is approximately the SPSS, SAS, etc. variance of XZ, Var(XZ). Starting values for the loadings and 

measurement error variances of XZ can be computed using the EXCEL spreadsheets on this web site. 

 

In addition, the covariance matrix used to estimate the model should contain variances and 

covariances that are about equal to 1 to avoid computational problems during estimation. 

Numerically large variances in the covariance matrix to be estimated can produce a large determinant 

of the covariance matrix, and the reciprocal of this determinant is used to estimate the model. If this 

determinant is large, its reciprocal is a number that is near zero, and the model may be empirically 

not identified and it may not converge. Thus, if convergence is a problem after providing good 

starting values for every estimated parameter in the model, consider scaling down any unusually 

large indicator variances. The variances of indicators of a latent variable should be approximately the 

same if they are congeneric. If not, check for input errors (e.g., "1" keyed as "10," etc.). Next, scale 

the large (first order, e.g., X, Z, etc.) indicator variances (interaction and quadratic variance are scaled 

indirectly as will be explained later). Although there is little guidance for scaling in this situation, it 

useful to think of scaling as re-coding a variable from cents to dollars; from a Likert scale of 1, 2, 3, 

4, 5 to a scale of .2, .4, .6, .8, 1, for example, using a scaling factor of 5. The effect of a scaling factor 

is squared in the resulting variance, so if variance should be reduced by a factor of 5, plan to divide 

each case value by the square root of 5. Further, interactions and quadratics should not be scaled 

directly. Plan to scale their constituent variables instead--scaling X and Z, for example will 

automatically scale XZ by the product of the squares of the scaling factors for X and Z. Finally, 

verify that all the indicators of a construct have about the same scaled variance, and start by scaling 

the largest variance in the input covariance matrix (the entire matrix does not have to be scaled). In 
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addition to changing variances, scaling will change indicator loadings, and scaling will usually affect 

unstandardized structural coefficients in the model (standardized coefficients should be unchanged). 

 

 

In summary, to test one or more hypothesized latent variable interaction or quadratic in a theoretical 

model, consider choosing an estimation technique that uses popular structural equation software and 

an estimator that reviewers will recognize. (Even though it unrealistically assumes multivariate 

normality, Maximum Likelihood estimates are generally preferred for theory testing in the Social 

Sciences. Fortunately, its coefficient estimates appear to be robust to "reasonable" departures from 

normality, but its standard errors are believed to be biased. Thus, the customary t-value cutoff of 2 in 

absolute value should probably be increased for an interaction/quadratic, or an estimator such as 

EQS's "Robust" ML estimator should be used to obtain a better estimate of coefficient standard 

errors.) Also consider using an estimation technique that has been formally evaluated, one that uses 

content- or face valid indicators, and one for which reliability can be computed and detailed 

interpretation is not problematical. The estimation technique chosen should also be likely to 

converge and produce acceptable or admissible parameter estimates, and adequate model-to-data fit. 

At the risk of appearing self promotional, the 2-step version of technique (4) was developed to meet 

these criteria. 

 

Next, the reliability and validity of any interaction/quadratic to be estimated should be gauged. In 

theoretical model tests reliability and validity are important to avoid estimation results and thus 

interpretations that are an artifact of measurement (e.g., based primarily on measurement error). 

Interaction and quadratic reliabilities are available in the EXCEL spreadsheets on this web site. 

(However, these reliabilities assume XZ, for example, is itemized with all the indicators of X and all 

the indicators of Z--the reliability of XZ itemized with subsets of the Kenny and Judd product 

indicators is unknown.) A minimal demonstration of validity should probably include: content or 

face validity (how well the a latent variable's indicators match or tap its conceptual definition), 

construct validity (its correlations with other latent variables are theoretically sound), convergent 

validity (e.g., its average extracted variance is greater than .5--see Fornell and Larker 1981), and 

discriminant validity (e.g., its correlations with other measures are less than .7--also see Fornell and 

Larker 1981 for a more stringent criterion) (e.g., Bollen 1989, DeVellis 1991, Fornell and Larker 

1981, Nunnally 1978). Thus, an interaction, XZ for example, might be judged content or face valid if 

X and Z are content valid and the specification of XZ includes all the indicators of X and Z. 

Interaction and quadratic Average Extracted Variances are available in the EXCEL spreadsheets on 

this web site. However, the construct (correlational) validity of an interaction or a quadratic is 

usually impossible to judge. 

 

If the interaction(s) or quadratic(s) are not reliable (i.e., .7 or above), they probably should not be 

estimated because they will also not be convergent valid, suggesting they are composed of more than 

50% error variance, and they may also be discriminant invalid using Fornell and Larker's (1981) 

criterion. If they are reliable but fail one or more validity tests, these validity deficiencies should be 

noted in the limitation portion of any final report. 

 

Parenthetically, consider not deleting cases to reduce nonnormality--a necessary condition for 
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interactions is nonnormality in the data. Then, mean or zero-center all the structural model variables, 

even the dependent/endogenous variables (e.g., Y) by subtracting each indicator's mean from its 

value in each of the cases. 

 

Next, create the indicators of the interaction(s)/quadratic(s) in the data set, xizj, for example, for most 

of the techniques in FAQ A, or x:z for technique (4). If "Direct Estimation" using technique (4) is to 

be used, the single indicator should not be formed using averages of the indicators of X or Z, for 

example, because averaging seems to produce estimation problems. Otherwise a summed or 

averaged indicator product, x:z for example, could be used for the "2-Step" version of technique (4), 

and summed indicators should be used for latent variable regression to be consistent with the 

EXCEL template on this web site, and the examples in Latent Variable Interactions... monograph 

(beginning with Chapter VIII: Suggestions/"Step-by-Step"), which is also on this web site. However, 

and averaged indicator product, x:z for example, is preferred because it produces an 

interaction/quadratic variance that does not overwhelm the input covariance matrix because of its 

magnitude (which can produce estimation problems). 

 

Next, compute starting values for at least the interaction(s) and/or quadratic(s) parameters-- this 

includes estimates of all the free covariances with the other latent variables in the model-- and 

specify these in the structural model (measurement model estimates of variance and covariance 

should be sufficient). Be certain to estimate starting values consistently using summed indicators or 

averaged indications (e.g., avoid using summed starting values with averaged indicators). If more 

starting values are desirable (i.e., because the structural model estimates fail to pass the adequacy 

tests discussed below), additional measurement model parameter estimates and structural coefficient 

estimates from regression should be sufficient. 

 

Consider analyzing a covariance matrix--analyzing correlation matrices should probably be avoided. 

Avoid correlating indicator measurement errors in the structural model--this violates the assumptions 

in most of the latent variable interaction and quadratics estimation approaches and, although 

corrected specification equations are available (e.g., Latent Variable Interactions... Chapter VIII: 

Intercorrelations on this web site), interaction/quadratic specification is much more complicated, and 

so many authors have warned against correlated measurement errors that their use may not be 

acceptable to reviewers. 

 

Free the variance of the interaction(s) or quadratic(s). Similarly, allow the interaction(s) and/or 

quadratic(s) to correlate by freeing the correlational paths between them. Also allow the 

interaction(s) and/or quadratic(s) to correlate with the other exogenous latent variables in the model 

by freeing the correlational paths between them (e.g., XZ should be correlated with X, Z and the other 

exogenous latent variables). (interactions involving an endogenous LV, "endogenous interactions," 

have additional considerations and this matter is discussed in "Questions of the Moment" on this web 

site.) If there are large variances in the input covariance matrix or the covariance matrix implied by 

the raw input data (i.e., the variances are not all about the same size), scale the large variances or the 

raw data to lessen the chance of estimation difficulties. 

 

For every interaction (e.g., XZ) to be estimated, consider also estimating the two related quadratics 
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(XX and ZZ). An interaction can be mistaken for a quadratic (see Lubinski and Humphreys 1990) 

(and vice versa, see Latent Variable Interactions... on this web site), and authors recommend 

estimating XZ in the presence of XX and ZZ as a stronger test of an hypothesized interaction (i.e., in 

competition with its related quadratics). 

 
If more than one interaction or quadratic is to be estimated, they should all be estimated together in 

one model. However, just as adding Z and W, for example, to a model with X and Y can change the 

significance of the X-Y structural coefficient, adding XZ, XW and ZW can attenuate other structural 

coefficients, including those for XZ-Y, XW-Y and ZW-Y. This is especially true for XZ-Y and XW-

Y, for example, because they share a common constituent variable X. Thus, estimating multiple 

interactions can produce significance difficulties among the interactions (the interested reader is 

directed to Latent Variable Interactions... Chapters VIII and IX on this web site for details on over 

coming this difficulty). 

 

Examples of LISREL and other estimation "programs" are shown in Cortina, Chen and Dunlap 

(2001); Li, Harmer, Duncan et al (1998); Schumacker (2002); Schumacker and Marcoulides (1998) 

(e.g., Chapter 4); and Latent Variable Interactions... Chapter VIII: Suggestions/"Step-by-Step" (on 

this web site). Unfortunately, some of these examples contain errors. In addition, the variance of XZ, 

for example, is typically constrained rather than free, and XZ is typically not allowed to correlate 

with X and Z (while these are the correct recommendations for normally distributed data, real world 

survey data is seldom sufficiently normal for a constrained and uncorrelated XZ to avoid producing 

reduced model-to-data fit, and biased structural coefficients.  

 

Once the model is estimated, examine model fit and the standardized structural coefficient estimates. 

Also examine the estimated variances of the model constructs, and the error terms of the structural 

equations (i.e., structural disturbances). Model fit should be acceptable using a sensitive fit index 

such as RMSEA (i.e., .05 or less suggests close fit, .051-.08 suggests acceptable fit-- see Brown and 

Cudeck 1993, and Jöreskog 1993). The standardized structural coefficient estimates should be 

between -1 and +1, and the structural disturbances should all be positive. The estimated variances 

and covariances of the model LV's should be positive and similar to than their error-attenuated (i.e., 

SAS, SPSS, etc.) counterparts. (Internally consistent LV's in the Gerbing and Anderson 1988 sense 

produce structural model LV variances and covariances that are nearly identical to their measurement 

model counterparts. This provides one of the strongest demonstrations of trustworthy structural 

model parameter estimates.) In addition, the structural model loadings and measurement error 

variances should all be between 0 and 1, and for internally consistent LV's they should all be within a 

few points of their measurement model values. Finally, a regression model of the interaction (e.g., 

XZ, X, Z, for example, and their predicted variable, Y) should produce unstandardized regression 

coefficients that are interpretationally equivalent to their corresponding structural coefficients in the 

SEM interaction model (corresponding t-values should have the same sign and roughly the same 

magnitude).  

 

If the model estimation fails to pass any of these tests, the problem is almost always one of four 

things: multicollinearity, misspecification, incorrect or insufficient starting values, or empirical 

underidentification. To investigate these, verify mean centering: were the indicators mean centered 
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before the interaction/quadratic indicator(s) were formed in the data set? Try mean centering all the 

indicators in the model, even those not involved in the interactions/quadratics. Next, check model 

specification. Are all the exogenous variables, including the interactions/quadratics, free to correlate? 

Are the indicator loadings between 0 and 1 (e.g., for each multiple indicator latent variable was one 

indicator fixed at one to provide a metric, and are there indicators larger than 1?--if so, fix the largest 

indicator to 1, etc.). Then check to see that all the starting values for the structural coefficients are 

non zero, and none of the variances and covariances of the constructs (e.g., PHI's in LISREL) are 

zero. Was the variance of XZ and/or XX constrained? If so, try freeing it. If direct estimation is being 

used, try using 2-Step estimation. If there are large variances in the indicator covariance matrix try 

scaling them. If none of these work, please send me an e-mail. 

 

If 2-step estimation is used, the measurement parameter estimates for X and Z, for example, in the 

structural model should be very close to their counterparts in the measurement model (i.e., they 

should be the same to 2 or more decimal digits between the (full) measurement and structural 

models). If they are not, the structural model should be re-estimated replacing the calculated loadings 

and measurement error variances for XZ with loadings and measurement error variances for X and Z 

from the structural model. 

 

If XZ is estimated with its related quadratics XX and ZZ, this should be done in two model 

estimations. In estimation 1, constrain the interactions/quadratics' structural coefficients to zero, and 

examine their resulting modification indices (LMTEST in EQS) for the largest one (i.e., a 

modification index above about 3.8, which roughly corresponds to a structural coefficient t-value of 

2 with 1 degree of freedom). For emphasis, avoid jointly freeing the XZ-Y,  XX-Y, and ZZ-Y 

associations--the frequent result is that all three associations are nonsignificant (NS) because XZ,  

XX, and ZZ are usually highly correlated. If the modification index for the hypothesized XZ-Y 

association is significant (about 3.8 or above), remove the related quadratics from the structural 

model and free the XZ-Y association in a second model estimation (estimation 2) to verify the XZ-Y 

significance, then report the results. Even if the modification indices for the XX-Y and/or the ZZ-Y 

associations are also "significant" (and/or larger), one's hypothesis predicts the XZ-Y association, and 

the XX-Y or ZZ-Y modification index may be "significant" by chance.  

 

If the modification index/structural coefficient for the hypothesized interaction is non significant in 

estimation 1, there are several possibilities. To investigate further, obtain estimation 2. If the 

interaction is again non significant, this suggests the interaction is non significant and the interaction 

hypothesis is disconfirmed. However, if the interaction is significant in estimation 2 (i.e., without the 

related quadratics) and one or more related quadratics were significant in estimation 1, this suggests 

the interaction and one or more if its related quadratics may be "interchangeable." For example if the 

XX-Y structural coefficient was significant in estimation 1, this suggests that replacing the interaction 

with XX in estimation 2 is also significant. One could do one of four things at this point: Ignore the 

interchangeable quadratic because it was not hypothesized and report the significant estimation 2 

interaction. Or, one could interpret the significant estimation 2 interaction and comment on the 

alternative equation 2 specification with XX and its implications. Specifically, an interchangeable XX 

suggests that Z moderates the X-Y association as hypothesized, but X also moderates itself in the X-Y 

association (but not both). This "self moderation" is also called "satiation" or "diminishing returns" 
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because the XX-Y association is shaped like part of a horseshoe (see Chapter III: Visualizing... in 

Latent Variable Interactions... on this web site), and the XX-Y relationship may be much more 

"interesting" from theoretical and practical standpoints (see Howard 1989 for interesting examples of 

quadratic relationships). For example, experience suggests that the XX-Y specification will produce a 

larger standardized coefficient, suggesting that XX explains more variance in Y than XZ does. 

However, because XX may have been significant by chance, another study is indicated to sort this 

matter out further. The third alternative is to ignore the interchangeable quadratic and report the 

significant estimation 2 interaction, then design a new study pitting the interaction against the 

quadratic (see Testing Latent Variable Models with Survey Data, Step III on this web site for a 

comparatively easy study that could be used to sort this matter out further). The fourth alternative is 

to combine alternatives 2 and 3 by reporting the second study's results with the first. 

 

For emphasis, if the structural coefficients for XZ-Y,  XX-Y, and ZZ-Y are all non significant in 

estimation 1 (i.e., their modification indices are below about 3.8), this does not always mean that XZ-

Y is non significant. Thus, estimation 2 should be obtained to verify the XZ-Y association.  

 

Consider analyzing a covariance matrix if possible. Occasionally, a correlational matrix, rather than a 

covariance matrix, is used as the matrix to be analyzed in a theory test. Despite statements or 

implications in their user manuals, LISREL, EQS, AMOS, etc. all appear to assume that a covariance 

matrix is to be analyzed, and analyzing a correlation matrix usually changes model-to-data fit (chi-

square is typically incorrect), and it produces incorrect standard errors (which introduces Type I and 

Type II errors-- see Cudeck 1989, Jöreskog and Sörbom 1996). If a correlation matrix must be 

analyzed in a theory test, consider comparing the results with those from a covariance matrix 

estimation. If both models fit the data and they are interpretationally equivalent (i.e., the set of 

significant variables and their interpretations are the same in both estimations), then the use of 

correlations probably will not be misleading.  

 

If an hypothesized interaction and/or quadratic is nonsignificant, it is usually because of model 

problems, its reliability is too low, the data set is too small, the inclusion of other 

interactions/quadratics, and/or they hypothesized moderated relationship is actually quadratic/cubic. 

It is always a good idea to verify that model specification and estimation are not contributing to 

nonsignificance. Specifically, consider re-verifying that the model is properly specified (e.g., the 

correlations among the exogenous variables, including the interactions, are free; the correlations 

between exogenous variables and endogenous variables are not free; structural disturbances are not 

correlated, etc.). Then, check that the interactions are properly specified (e.g., the "essential" 

correlations between X-XZ and Z-XZ, for example, are free, the variance of XZ is also free, and the 

values for the loading and measurement error variance values have been properly calculated and 

keyed into the estimation program), and the model indicators are all mean- or zero-centered. Next, 

verify that the structural model fits the data, all the coefficient estimates are admissible (see Step VI, 

"Admissible Solutions Revisited" in the Testing Latent Variable Models Using Survey Data 

monograph on this web site), and the measurement parameters of X and Z in the structural model 

(i.e., the loadings, measurement error variances and the variances of X and Z) are within a few points 

of their measurement model values. If the measurement parameters of X and Z in the structural 

model are different from their measurement model values, recalculate the interaction's loading and 
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measurement error variance using the structural model measurement parameter values. 

 

To improve reliability the interested reader is directed to Netemeyer, Johnson and Burton (1990). 

Insufficient sample size can be checked by recalculating the t-value that would result from using a 

larger sample size (N) in the equation t*SQRT(N/n), where t is the current t-value, "*" indicates 

multiplication, SQRT is the square root function and n is the current sample size. If the reliability of 

XZ is 0.7 or above, its Average Variance Extracted is above .5, and a few more cases would push the 

t-value above 2, it is tempting to simply declare that the interaction "approaches significance" and 

proceed as though the interaction were significant. This is because a t-value of 2 for significance is 

simply a convention. Stated differently, no statistical assumptions are violated by declaring that a t-

value greater than 1.95 in absolute is likely to be non zero in the population. However, because the 

standard error of XZ is believed to be biased with Maximum Likelihood estimation, a t-value larger 

than 2 in absolute values should probably be used to gauge the significance of XZ.  

 

There are other estimators and estimation approaches that may produce a significant interaction that 

is non significant with Maximum Likelihood. EQS for example provides a ROBUST ML estimator 

that is less affected by non normality in the data. Other estimation approaches include bootstrapping 

the interaction's structural coefficient (i.e., averaging the resulting coefficients and standard errors--

see "Bootstrapping" in the monograph Testing Latent Variable Models Using Survey Data (Step V) 

on this web site), or removing influential case(s) (outliners that contribute most to "flattening" the 

XZ-Y regression line) using Cook's distance in regression, or a scatterplot of the interaction, then re-

estimating the structural model. However, all of these estimators and approaches have their 

drawbacks, most telling of which is typically reviewer resistance to anything that is not simple, 

straightforward and familiar (a variation on parsimony or Occam's razor, see Charlesworth 1956). It 

may be easier to quickly conduct another study using Scenario Analysis, which is described next. A 

significant interaction in the second study would lend weight to an insufficient sample-size 

argument. 

 

A less desirable alternative is of course to conduct another study. A Scenario Analysis using student 

subjects (see the Testing Latent Variable Models Using Survey Data, Step III on this web site) might 

provide a comparatively easily executed second study to obtain a larger sample. Because a scenario 

analysis is an experiment, it also increases nonnormality which McClelland and Judd 1993 suggest 

will increase the likelihood of a significant interaction. This second study could be reported with the 

first, as in done in several social science disciplines (e.g., Social Psychology and Consumer 

Behavior). 

 

Occasionally, a non significant hypothesized interaction/quadratic is the result of the presence of 

other hypothesized interactions and/or quadratics--interactions and quadratics are typically highly 

intercorrelated and as a result they can mask each other. To investigate this, try constraining the 

interactions/quadratics' structural coefficients to zero, and examine the resulting modification indices 

(LMTEST in EQS) for a significant modification index (i.e., a modification index above about 3.8, 

which roughly corresponds to a path coefficient t-value of 2 with 1 degree of freedom). Next, free 

this structural coefficient and examine the resulting modification indices for the un-freed 

interaction/quadratic(s). This process of examining modification indices, freeing 
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interaction/quadratic(s), and reexamining modification indices should identify the 

interaction/quadratic that is "suppressing" the others. 

 

Assuming the suppressor interaction is also non significant, an approach that might be defensible 

would be to "trim" or remove the suppressing interaction(s). "Might" of course would depend on the 

reviewers. Trimming non significant associations was a common practice in theory tests years ago, 

especially in studies that might have an intervention component (e.g., Sociology). However, based on 

the research behind Testing Latent Variable Models Using Survey Data on this web site, its use in 

theory tests has declined. If non significant interactions are trimmed, an additional study is desirable 

to investigate the element of chance introduced by this trimming. A Scenario Analysis using student 

subjects (see the Testing Latent Variable Models Using Survey Data, Step III on this web site) might 

provide a comparatively easily executed second study of the trimmed model using the existing 

questionnaire. Specifically, the hypotheses involving the NS interactions could also be trimmed for 

the second study and it would investigate the model without the trimmed interactions. The result 

could become a paper with two studies. "Multiple study" papers are common in social science 

disciplines such as Social Psychology and Consumer Psychology and Consumer Behavior, and it 

might be instructive to examine a few of them to determine how best to present two-study results 

(see recent issues of The J. of Consumer Research, for example). 

 

 

E. What about the assumptions behind these techniques, and violations of these assumptions in 

real-world data? 

 

All the techniques just discussed in FAQ (C) above, except for (2) which assumes 2-stage least 

square estimation, assume that the indicators of X and Z are multivariate normal. All but technique 

(3) assume each latent variable indicator in the structural model is mean or zero centered (i.e., the 

latent variables each have a mean of zero). They all assume that indicator measurement errors are not 

correlated (however, see Latent Variable Interactions... Chapter VIII on this web site for corrected 

specifications in the presence of correlated measurement errors). These assumptions were made to 

simplify the algebra used to derive each technique.  

 

However, because survey data is seldom multivariate normal, the multivariate normal (ML) 

assumption behind most of the latent variable (LV) interaction/quadratic specification techniques is 

seldom met. However, substantive researchers have generally ignored this same assumption behind 

OLS Regression for years (the implementation of OLS Regression in SAS, SPSS, etc. standard errors 

assume the variables are normally distributed). Nevertheless, studies suggest that ML coefficient 

estimates are robust to "moderate" departures from normality, but the standard errors are not 

(assuming proper model specification such as a free variance of XZ and free correlations between XZ 

and X and Z). If a structural coefficient has a t-value close to 2, EQS's ROBUST Maximum 

Likelihood estimator, which is less distributionally dependent, could be used to shed more light on 

significance. Experience suggests, however, that t-values are only slightly changed for these LV's and 

models in real-world data, sometimes in the "wrong" direction, and an alternative is to increase the 

XZ significant-t-value cutoff 5% to 2.1 in absolute value.  
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The mean or zero centering assumption, however, is typically essential to successful estimation. 

Technique (3) does not make this assumption, and technique (6) discusses un-centered variables, but 

no guidance on how to use (6) with un-centered variables is provided. Although there are proposals 

to use an input correlation matrix to avoid zero or mean centering, correlational structural analysis 

can alter the model structure, change model-to-data fit, and produce incorrect standard errors--see 

Cudeck 1989 and Jöreskog and Sörbom (1996). 

 

Experience suggests that it is sometimes possible with real-word data not to mean-center one or more 

variables, and still be able to estimate an interaction involving the un-centered variable. In this case 

success appears to depend on the amount of collinearity between the un-centered variable and the 

interaction. If this collinearity is high, as it usually is, successful estimation is frequently impossible 

without "ridge" estimation and unreasonably large structural coefficient(s). 

 

However, there may be another alternative to mean centering, which is to use median splits of the 

data to detect an interaction or a quadratic with un-centered data. This approach is criticized because 

it can produce false negative or, occasionally, false positive interactions. However, the results 

reported in Ping (1996b) suggest that for sufficiently reliable latent variables, median splits could be 

relied upon when the differences across the split are sufficiently significant. There are no hard and 

fast rules, but reliability should be as high as possible and probably above .8, and significance should 

be high and probably above t = 2.5 (or very low and below t = 1). There are some drawbacks to this 

approach, however. Median splits do not test the hypothesized latent variable model. The interaction 

is missing from the final test of the hypothesized model and the effects of its correlations with other 

predictors on the model's structural coefficients are not accounted for (the "missing variable" 

problem--see James 1980).  

 

 

F. What if one or more measures have a natural zero point and mean or zero centering is 

inappropriate? 

 

As previously mentioned, technique (3) does not make this assumption. In addition, it is occasionally 

possible with real-word data not to mean-center one or more variables, and still be able to estimate 

an interaction involving the un-centered variable. However, success appears to depend on the amount 

of collinearity between an un-centered variable and its related interaction (e.g., X and XZ). If this 

collinearity is high, successful estimation is frequently impossible using the techniques discussed in 

FAQ A above, and/or the structural coefficient(s) are impossibly large. Alternatives to mean 

centering are discussed in Paragraph 3 of FAQ (E) above and in Latent Variable Interactions..., 

Chapter VIII: Mean Centering, on this web site. 

 

 

 

G. How does one investigate the possibility that a significant but unmodeled interaction or 

quadratic might be responsible for a nonsignificant hypothesized association? 

 

If the Z-Y association in Y = b1X + b2Z  + b3W is hypothesized to be significant (i.e., b2 should be 
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significant) but it turned out to be non significant, one could ask, is there an interaction or quadratic 

suppressing b2 (i.e., XZ, ZZ or ZW-- a relevant suppressor of b2 will involve Z)? This occurs more 

often than substantive researchers realize, and it is one explanation for an hypothesized association 

being significant in one study and not significant or with the opposite sign in another study (i.e., 

inconsistent results across studies). 

 

To investigate the possibility of unhypothesized but significant interactions and/or quadratics, several 

non equivalent approaches could be taken. One approach would be to perform the overall F test 

described in FAQ G and then examine the  interactions and quadratics used for this F test for 

significant relevant suppressor(s). However it is very likely in real world data that there will be no 

significant interactions or quadratics in the set of interactions and quadratics that were involved in 

estimating this F. It is also likely that any significant suppressors in this set will become 

nonsignificant when the other nonsignificant interactions and quadratics are trimmed. Further, if any 

significant suppressors remain after trimming, it is also likely that one or more of them can become 

nonsignificant if a significant interaction or quadratic is temporarily removed (i.e., significance 

depends on the presence of other interactions or quadratics). 

 

Another approach would be to use the technique discussed in Latent Variable Interactions..., Chapter 

IX on this web site) on the "relevant suppressors" (i.e., each nonsignificant association in the model 

could be probed for moderation-- is it being suppressed?). The interested reader is directed to Latent 

Variable Interactions..., Chapter IX on this web site for the details. 

 

 

H. How does one interpret a significant interaction or quadratic? 

 

Interpretation approaches such as graphing (see Aiken and West 1991), which are popular with 

ANOVA and categorical data, are one approach. Another approach that is more revealing involves 

factored coefficients (e.g., the structural equation Y = b1X + b2Z + b3XZ can be factored into Y = b2Z 

+ (b1 + b3Z)X, and the factored coefficient of X is (b1 + b3Z)) is interpreted). For more, the interested 

reader is directed to the paper "Interpreting Latent Variable Interactions" on this web site, and Latent 

Variable Interactions..., Chapter III also on this web site. 

 

 

I. Can these interaction and quadratic estimation techniques be used with all of the popular 

structural equation modeling software packages? 

 

With some exceptions, yes. Technique (13) requires a proprietary software package available from 

the authors of that technique. Direct estimation using LISREL's constraint equations or the CALIS 

equivalent can be used only with those software packages. The 2-step techniques can be used with 

any of the popular structural equation software packages (e.g., LISREL, EQS, CALIS, AMOS, etc.). 

Some time ago, AMOS was alleged to be having difficulty calculating some model fit indices with 

mean-centered data. Specifically, some AMOS fit indices are alleged to be incorrect (too large) with 

mean centered data, which may erroneously suggest lack of fit. However, RMSEA and CFI appeared 

to be correct, as did the model parameter estimates (e.g., loadings, errors, structural coefficients, 
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etc.). 

 

 

J. How should reviewer comments regarding interactions and/or quadratics be handled? 

 

Reviewers occasionally ask, "are there any unmodeled significant interactions or quadratics?" This 

question is routinely asked in experimental studies analyzed with ANOVA. The procedure for 

answering this question is to specify all possible interactions and quadratics and perform an overall F 

test on any change in R2 that results from adding them to the structural model. Unfortunately this 

cannot be done automatically as it is in ANOVA, and the procedure is discussed further in FAQ (G) 

above. 

 

 

K. How are Latent Variable Cubics estimated? 

 

There are other higher-order latent variables besides interactions and quadratics that may be 

important in model tests with survey data and I received the first request for specification of a cubic 

in 2003. When compared to interactions, related non-linear variables such as quadratics, XX and ZZ, 

and their cubic relatives, XXX and ZZZ, in 

 

Y = β0 + β1X + β2Z + β3XX + β4XZ  + β5ZZ + β6XXX + β7ZZZ + ζY ,  (1 

 

where β1 through β7 are unstandardized structural coefficients (also termed associations or, 

occasionally, effects), β0 is an intercept, and ζY is the estimation or prediction error, also termed the 

structural disturbance term, have received comparatively little methodological attention in survey 

research (however, see Aiken and West 1991). Perhaps as a result quadratics and cubics are seldom 

investigated in theoretical models involving survey data. However, they have been proposed and 

investigated in several social science literatures. 

 

Specifying and estimating a cubic with Ordinary Least Squares (OLS) regression is easily 

accomplished when X, Z and Y are measured without error. Unfortunately when these variables are 

measured with error, the coefficient estimates from OLS regression in the above Equation 1 (i.e., the 

β's) will be biased in unknown directions, and they will be inefficient (i.e., they vary widely across 

replications) (Busemeyer and Jones 1983).  

 

Latent Variable Interactions..., Chapter X and the working paper "Notes on Cubics, and 

Interactions and Quadratics in Latent Variables" on this web site discuss the specification, 

estimation and interpretation of latent variable cubics. While they both propose latent variable 

specifications of cubics involving latent variables, the working paper is more recent. 

 

 

L. How is a "Second-Order" interaction estimated? 

 

"Second-order" constructs were proposed by Jöreskog (1970). "Second-order" constructs are 
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unobserved or latent variables that have other unobserved latent variables as their "indicators." Each 

of these "indicator" (first-order) latent variables has its respective observed indicators as usual. 

 

These "Second-order" latent variables (LV's) have received attention recently, and "Second order" 

LV interactions have been of interest since at least 1997 (see Ping 1997). However, specifying and 

estimating these latent variables, although not difficult, is not a straightforward task using popular 

structural equation analysis such as LISREL, EQS, etc. In addition, there is little guidance for 

estimating an interaction involving a "Second-order" latent variable (e.g., XZ in 

 

Y = β0 + β1X + β2Z + β3XZ + ζY , 

 

where X or Z is a "Second-order" construct, β1 through β3 are unstandardized "regression" or 

structural coefficients [also termed associations or, occasionally, effects], β0 is an intercept, and ζY is 

the estimation or prediction error, also termed the structural disturbance term). 

 

Chapter X in Latent Variable Interactions... on this web site discusses interactions involving 

"Second-order" constructs, specifically an interaction between a first-order latent variable and a 

"Second-order" latent variable. The working paper "Are their Second-Order Interactions? If So, How 

Are they Estimated?" also on this web site, also addresses "Second-order" interactions. Of the two 

the working paper is more recent. 

 

 

REFERENCES 
Aiken, Leona S. and Stephen G. West (1991), Multiple Regression: Testing and Interpreting Interactions, Newbury 

Park, CA: SAGE Publications. 

Algina, James and Bradley C. Moulder (2001), "A Note on Estimating the Jöreskog-Yang Model for Latent Variable 

Interaction Using LISREL 8.3," Structural Equation Modeling, 8 (1) 40-52.  

Anderson, James C. and David W. Gerbing (1988), "Structural Equation Modeling in Practice: A Review and 

Recommended Two-Step Approach," Psychological Bulletin, 103 (May), 411-23. 

Bagozzi, Richard P. and Todd F. Heatherton (1994), "A General Approach to Representing Multifaceted Personality 

Constructs: Application to State Self-Esteem," Structural Equation Modeling , 1 (1), 35-67. 

Bohrnstedt, G. W. and G. Marwell (1978), "The Reliability of Products of Two Random Variables," in Sociological 

Methodology, K. F. Schuessler ed., San Francisco: Jossy Bass, 254-273. 

Bollen, Kenneth A. (1989), Structural Equations with Latent Variables, New York: Wiley. 

Bollen, Kenneth A. (1995), "Structural Equation Models that are Nonlinear in Latent Variables: A Least Squares 

Estimator," Sociological Methodology, 25, 223-251. 

Browne, Michael W. and Robert Cudeck (1993), "Alternative Ways of Assessing Model Fit," in Testing Structural 

Equation Models, K. A. Bollen et al. eds., Newbury Park CA: SAGE Publications.  

Busemeyer, Jerome R. and Lawrence E. Jones (1983), "Analysis of Multiplicative Combination Rules When the Causal 

Variables are Measured With Error," Psychological Bulletin, 93 (May), 549-62. 

Charlesworth, M. J. (1956), "Aristotle's Razor," Philosophical Studies (Ireland), 6: 105-112. 

Cortina, Jose M. Gilad Chen and William P. Dunlap (2001), "Testing Interaction Effects in LISREL: Examination and 

Illustration of Available Procedures," Organizational Research Methods, 4 (4), 324-360. 

Cudeck, Robert (1989), "Analysis of Correlation Matrices Using Covariance Structure Models," Psychological Bulletin, 

105(2), 317-327. 

DeVellis, Robert F. (1991), Scale Development: Theory and Applications, Newbury Park, CA: SAGE Publications. 

Fornell, Claes and David F. Larker (1981), "Evaluating Structural Equation Models with Unobservable Variables and 

Measurement Error," Journal of Marketing Research, 18 (February), 39-50. 

Gerbing, David W. and James C. Anderson (1993), "Monte Carlo Evaluations of Goodness-of-Fit Indices for Structural 



 19 5/10/06 © Copyright 2001, -02, -03, -04, -05, 2006 Robert Ping 

Equation Models," in Testing Structural Equation Models, K. A. Bollen and J. S. Long, eds., Newbury Park, CA: 

SAGE Publications. 

Hayduk, Leslie A. (1987), Structural Equation Modeling with LISREL: Essential and Advances, Baltimore, MD: Johns 

Hopkins Press.  

Howard, John A.(1989), Consumer Behavior in Marketing Strategy, Englewood Cliffs, NJ: Prentice Hall.  

Jaccard, James and C. K. Wan (1995), "Measurement Error in the Analysis of Interaction Effects Between Continuous 

Predictors Using Multiple Regression: Multiple Indicator and Structural Equation Approaches," Psychological 

Bulletin, 117 (2), 348-357. 

James, Lawrence R. (1980), "The Unmeasured Variables Problem in Path Analysis," Journal of Applied Psychology, 

65 (4), 415-421. 

Jöreskog, Karl G. (1970), "A General Method for Analysis of Covariance Structures," Biometrika, 57, 239-251. 

Jöreskog, Karl G. (1993), "Testing Structural Equation Models," in Testing Structural Equation Models, Kenneth A. 

Bollen and J. Scott Long eds., Newbury Park, CA: SAGE. 

Jöreskog, Karl G. and Fan Yang (1996), "Nonlinear Structural Equation Models: The Kenny and Judd Model with 

Interaction Effects," Advances in Structural Equation Modeling Techniques, G.A. Marcoulides, R.E. Schumacker, 

eds., Hillsdale, NJ: LEA. 

Jöreskog, Karl G. and Dag Sörbom (1996), Lisrel 8 User's Reference Guide, Chicago: Scientific Software International, 

Inc. 

Jöreskog, Karl G. (2000), "Latent Variable Scores and Their Uses," (on-line paper), http://www.ssicentral.com/lisrel/ 

techdocs/lvscores.pdf. 

Kenny, David and C. M. Judd (1984), "Estimating the Nonlinear and Interactive Effects of Latent Variables," Psycho-

logical Bulletin, 96, 201-10.  

Klein, A. G. and H. Moosbrugger (2000), "Maximum Likelihood Estimation of Latent Interaction Effects with the LMS 

Method," Psychometrika, 65, 457-474. 

Klein, A. G. and B. O. Muthén (2002), "Quasi Maximum Likelihood Estimation of Structural Equation Models with 

Multiple Interactions and Quadratic Effects," Unpublished ms., Graduate School of Education, UCLA. 

Li, Fuzhong, Peter Harmer, Terry E. Duncan, Susan C. Duncan, Alan Acock and Shawn Boles (1998), "Approaches to 

Testing Interaction Effects Using Structural Equation Modeling Methodology," Multivariate Behavioral Research, 

33 (1), 1-39. 

Lubinski, D. and Humphreys, L.G. (1990), "Assessing Spurious Moderator Effects: Illustrated Substantively with the 

Hypothesized ("Synergistic") Relation Between Spatial and Mathematical Ability," Psychological Bulletin, 107, 

385-393. 

Marsh, Herbert W., Zhonglin Wen and Kit-Tai Hau (2004), "Structural Equation Models of Latent Interactions: 

Evaluation of Alternative Estimation Strategies and Indicator Construction," Psychological Methods, 9 (3), 275-300. 

Mathieu, J. E., S. I. Tannenbaum and E. Salas (1992), "Influences of Individual and Situational Characteristics on 

Measuring of Training Effectiveness," Academy of Management Journal, 35, 828-847. 

McClelland, G. H. and C. M. Judd (1993), "Statistical Difficulties of Detecting Interactions and Moderator Effects," 

Psychological Bulletin, 114 (2), 376-390. 

Molder, Bradley C. and James Algina (2002), "Comparison of Methods for Estimating and Testing Latent Variable 

Interactions," Structural Equation Modeling, 9 (1), 1-19. 

Netemeyer, Richard G., Mark W.  Johnson and Scot Burton (1990), "Analysis of Role Conflict and Role Ambiguity in a 

Structural Equations Framework," Journal of Applied Psychology, 75 (2), 148-157. 

Nunnally, Jum C. (1978), Psychometric Theory, 2nd Ed., New York: McGraw-Hill. 

Ping, R. (1995), "A Parsimonious Estimating Technique for Interaction and Quadratic Latent Variables," The Journal of 

Marketing Research, 32 (August), 336-347. 

Ping, R. (1996a), "Latent Variable Interaction and Quadratic Effect Estimation: A Two-Step Technique Using Structural 

Equation Analysis," Psychological Bulletin, 119 (January), 166-175.  

Ping, R. (1996b), "Improving the Detection of Interactions in Selling and Sales Management Research," Journal of 

Personal Selling and Sales Management, 16 (Winter), 53-64. 

Ping, R. (1996c), "Latent Variable Regression: A Technique for Estimating Interaction and Quadratic Coefficients," 

Multivariate Behavioral Research, 31 (1), 95-120. 

Ping, R. (1997), "Voice in Business-to-Business Relationships: Cost-of-Exit and Demographic Antecedents," Journal of 

Retailing, 73 (Summer), 261-281. 



 20 5/10/06 © Copyright 2001, -02, -03, -04, -05, 2006 Robert Ping 

Ping, R. (1999b), "Latent Variable Interactions: Substantive Considerations," 1999 Winter American Marketing 

Association Educators' Conference Proceedings, Chicago: American Marketing Association. 

Ping, R. (2001), "A Suggested Standard Error for Interaction Coefficients in Latent Variable Regression," 2001 Academy 

of Marketing Science Conference Proceedings,  Miami: Academy of Marketing Science. 

Schermelleh-Engle, K., A. Kein and H. Moosbrugger (1998), "Estimating Nonlinear Effects using a Latent Moderated 

Structural Equations Approach," in Interaction and Nonlinear Effects in Structural Equation Modeling, R. E, 

Schumacker and G. A. Marcoulides, eds., Mahwah, NJ: Erlbaum. 

Schumacker, Randall E. and George A. Marcoulides (1998), Interaction and Nonlinear Effects in Structural Equation 

Modeling, Mahwah, NJ: Erlbaum. 

Schumacker, Randall E. (2002), "Latent Variable Interaction Modeling," Structural Equation Modeling, 9 (1), 40-54. 

Wall, M. M. and Y. Amemiya (2001), "Generalized Appended Product Indicator Procedure for Nonlinear Structural 

Equation Analysis," Journal of Educational and Behavioral Statistics, 26, 1-29. 

Wong, S. K. and J. S. Long (1987), "Reparameterizing Nonlinear Constraints in Models with Latent Variables," 

Technical Report, Washington State University. 

 



TMPLTJMR.xls 

 

The excel spreadsheet file titled “TMPLTJMR.xls” has been added to the metadata 

record for “Theoretical Model Testing with Latent Variables” as an additional file.  

Please download this additional file to access the original spreadsheet.    



EXCEL Template for Computing Starting or Fixed Values 

for Latent Variable (LV) Interactions and Quadratics 

Using a Single Indicator Interaction Specification 

 

 

 
The APA citation for this paper is Ping, R.A. (2017). "EXCEL template for computing starting or fixed values for 

latent variable (LV) interactions and quadratics using a single indicator interaction specification." [on-line paper]. 

http://www.wright.edu/~robert.ping/jmr(1).doc . 

 

(Note a previous version of this paper is available at www.wright.edu/~robert.ping/jmr.doc .) 

 

 

The EXCEL spreadsheet is intended to assist in the specification of the single 

interaction/quadratic indicators, x:z, x:x and z:z (i.e., Ping 1995, 1996 single indicators). It uses 

measurement model parameter estimates for the loadings, measurement error variances, the 

variances associated with the latent variables X and Z, and the correlations between X and Z; 

along with the SAS, SPSS, etc. covariances among X, Z, XZ, XX and ZZ. The spreadsheet 

assumes that X and Z are unidimensional, preferably consistent (i.e., their measurement models 

fit the data) with mean-centered indicators, and it assumes that there are no correlated 

measurement errors involving X or Z. 

To use this spreadsheet, plan to estimate a measurement model containing at least X and 

Z (a larger or a full model measurement model could be used as long as the model latent 

variables are all unidimensional). If starting values for all the phi's (covariances) associated with 

XX, XZ and ZZ are desired, also obtain SAS, SPSS, etc. estimates of the covariance matrix for 

X, Z, XX, XZ and ZZ.  

The spreadsheet may be a bit confusing/vague about 1) “averaging,” about 2) the “phi’s” 

on the spreadsheet and the “Error Attenuated Cov’s” on the spreadsheet, and 3) “two-steps.” I 

prefer “averaging” the XX, XZ and ZZ loadings even though Ping 1995 and 1996 describe 

unaveraged results—the spreadsheet assumes averaging because otherwise the model covariance 

matrix can produce determinants that are “too large” for some computers.  

Regarding 2), the “Error Attenuated Cov's” on the spreadsheet are optional unless “phi” 

starting values for XX, XZ or ZZ are desired. (I usually use phi starting values—they are 

formally correct for multivariate normal X and Z and they seem to speed up estimation. Note that 

X=(x1+...+xn)/n and Z=(z1+...+zm)/m are used to create the “Error Attenuated Cov’s” for 

averaging.)  

About 3): Ping 1996 suggested estimating XX, XZ, etc. in “two steps.” Step 1 is to use 

the spreadsheet’s (fixed) loadings, error variances, etc. for XX, XZ, etc. from the measurement 

model for X and Z. Step 2 is to use fixed loadings, measurement error variances, etc. for XX, XZ 

from the structural model estimated using the spreadsheet in a second structural model. The 

loadings, error variances, etc. for XX, XZ, etc. will be different between the two structural 

models (due to non normality), and the second structural model results should be reported, unless 

all the model’s t-values are practically unchanged between the two structural model estimations 

(e.g., different in the second decimal place or less). (Experience suggests a third estimation or 

more is usually never required, unless there are errors in the XX, XZ, etc. specifications. If more 

than two structural models are necessary to obtain “convergence” in model estimates, please 

email me for suggestions.) 



The bold entries, and the italicized entries, on the spreadsheet should be deleted (to avoid 

contamination with the example data). The result should be error messages or zeroes in most of 

the non-blank areas of the spreadsheet that should correct themselves once new data is entered. 

(Note much of the spreadsheet is “protected” to ensure the calculations, etc. cannot be erased.)  

Next, the measurement model loadings, measurement error variances, and variances for 

X and Z should be entered (or copied and pasted) into the appropriate locations on the 

spreadsheet (i.e., loadings go in the "lambda" lines, measurement error variances go in the 

"theta" lines, and measurement model variances/covariances for X and Z go in the "phi" matrix). 

(Note there are locations for 10 loadings and measurment errors—the example has fewer than 10 

loadings and measurment errors with blanks because the measures had 5 and 4 items. These 

entries will all appear on the EXCEL spreadsheet in bold font as like in the example—again, the 

unbolded cells are unrelated to entering data). At this point the loadings (lambda) and 

measurement error variances (theta) for XX, XZ and ZZ will be available near the bottom of the 

spreadsheet, along with reliabilities and AVE’s for X, Z, XX, XZ, .and ZZ. 

If starting “phi” values for X, Z, XX, XZ, and ZZ are desired, also enter the SAS, SPSS, 

etc. covariances for X, Z, XX, XZ, and ZZ in the "Error Attenuated Cov's" matrix (again, don’t 

forget to average X=(x1+...+xn)/n and Z=(z1+...+zm)/m). These entries will all appear on the 

EXCEL spreadsheet in italicized font as they did in the example values. Once this is 

accomplished the rest of the covariances in the "phi" matrix should be nonzero. 

Obviously deleting old data is important when using this spreadsheet, and it is probably a 

good idea to always delete the "Error Attenuated Cov's" entries even if starting values for the 

balance of the "phi's" are not desired to avoid accidentally using incorrect phi’s later. 

When the spreadsheet has downloaded, it can be saved for repeated later use (i.e., without 

going back on line). Thus, it is possible to save a “master” copy of the on-line version of this 

EXCEL spreadsheet locally for modification, subsequent calculations, saving modified copies, 

etc. For example, I use the spreadsheet to calculate X and Z reliabilities and AVE’s even for 

models with no XZ, etc. (I keep track of what model variables X and Z represent in the saved file 

name--e.g., “XisSAT_YisALt.xls, etc.) 

 

At the risk of overdoing it, I have one more word(s) about Latent Variable (LV) 

Interaction and Quadratic validity (a disinterested reader could skip to the bottom of the text). 

Authors in the Social Sciences disagree on what constitutes an adequate demonstration of 

validity. Nevertheless, a minimal demonstration of the validity of any LV should probably 

include the content or face validity of its indicators (how well they tap into the conceptual 

definition of the second-order construct), the LV's construct validity, and its convergent and 

discriminant validity (e.g., Bollen, 1989; DeVellis, 1991; Nunnally, 1993). The "validity" of this 

LV would then be qualitatively assessed considering its reliability and its performance over this 

minimal set of validity criteria. 

 

Construct validity is concerned in part with an LV's correspondence or correlation with 

other LV's. The other LV's in the study should be valid and reliable, then their correlations with 

the target LV (e.g., significance, direction and magnitude) should be theoretically sound. 

Convergent and discriminant validity are Campbell and Fiske's (1959) proposals involving the 

measurement of multiple constructs with multiple methods, and they are frequently considered to 

be additional facets of construct validity. Convergent measures are highly correspondent (e.g., 

correlated) across different methods. Discriminant measures are internally convergent. However, 



convergent and discriminant validity are frequently not assessed in substantive articles as 

Campbell and Fiske (1959) intended (i.e., using multiple traits and multiple methods). Perhaps 

because constructs are frequently measured with a single method (i.e., the study at hand), 

reliability is frequently substituted for convergent validity, and LV correlational distinctness 

(e.g., the target LV's correlations with other measures are less than about 0.7) is substituted for 

discriminant validity. 

 

However, LV reliability is a measure of the correspondence between the items and their 

LV, the correlation between an LV and its items, and "correlations less than 0.7" ignores 

measurement error. Fornell and Larker (1981) suggested that adequately convergent LV's should 

have measures that contain more than 50% explained or common variance in the factor analytic 

sense (less than 50% error variance, also see Dillon and Goldstein 1984), and they proposed a 

statistic they termed Average Variance Extracted (AVE) as measure of convergent validity. AVE 

is a measure of the shared or common variance in an LV, the amount of variance that is captured 

by the LV in relation to the amount of variance due to its measurement error (Dillon and 

Goldstein 1984). In different terms, AVE is a measure of the error-free variance of a set of items 

(AVE and its computation are discussed in detail elsewhere on this web site).  

 

AVE can also be used to gauge discriminant validity (Fornell and Larker 1981). If the 

squared (error-disattenuated or structural equation model) correlation between two LV's is less 

than either of their individual AVE's, this suggests the LV's each have more internal (extracted) 

variance than variance shared between the LV's. If this is true for the target LV and all the other 

LV's, this suggests the discriminant validity of the target LV. 

 

Unfortunately, experience suggests that AVE in LV Interactions and Quadratics is 

typically low, frequently less than 50%. For example, while they are not below 50% see the 

lower LV Interaction and Quadratic AVE's in the EXCEL Spreadsheet example when compared 

to high AVE’s of X and Z. Thus, to judge the validity of an LV Interaction or Quadratic, first it 

must be acceptably reliable (validity assumes reliability). Content or face validity is usually 

assumed unless fewer than all the indicators of the constituent variables are used to itemize the 

LV Interaction or Quadratic. Construct or correlational validity is usually difficult to judge, and 

it might be ignored. Convergent validity (AVE) should be 0.50 or above (the LV Interaction or 

Quadratic should be composed of 50% or less error) and it should be discriminant valid with the 

other model LV's, except perhaps its constituent variables (X or Z) (i.e., it is empirically distinct 

from the other model LV's--its AVE is larger than the squared correlations of the other LV's). In 

summary, while there are no hard and fast rules, reliability, and content, convergent and 

discriminant validity are probably sufficient to suggest the validity of an LV Interaction or 

Quadratic. Reliability, and content and convergent validity would be necessary, and construct 

(correlational) validity is usually ignored. With an AVE near 0.50 an LV Interaction or Quadratic 

might be argued to be empirically indistinct from 5-10% of the other model LV's by chance 

(depending on reviewers). More than that would suggest the LV Interaction or Quadratic is 

discriminant invalid, and its validity is impugned. 

 

Experience suggests the substantive effect of the typically low AVE's in LV Interactions 

and Quadratics is their structural coefficients and their significances vary widely across 

replications. Specifically, with an AVE near 0.50 an hypothesized interaction or quadratic can be 



significant in one study but nonsignificant in a replication or near-replication. As a result, 

replication of a model test with hypothesized interactions or quadratics becomes comparatively 

more important. Specifically, an hypothesized interaction or quadratic that is NS in a model test 

could be significant in a replication, or vice versa.  

 

For an LV Interaction or Quadratic with an AVE below 0.50, the alternatives besides 

ignoring AVE and hoping reviewers do likewise are to improve AVE in the LV Interaction or 

Quadratic. Low AVE in XZ is caused by low correlation between X and Z and/or comparatively 

large measurement errors in the items of X and or Z (i.e., low X and/or Z reliability). (Please see 

www.wright.edu/~robert.ping/ImprovXZ_AVEa.doc for more on improving XZ and XX 

reliability and validity.) 
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The excel spreadsheet file titled “Cubic.xls” has been added to the metadata 

record for “Theoretical Model Testing with Latent Variables” as an additional file.  

Please download this additional file to access the original spreadsheet.    
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The excel spreadsheet file titled “weeding1.xls” has been added to the metadata 

record for “Theoretical Model Testing with Latent Variables” as an additional file.  
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EXCEL Template for Obtaining Internally Consistent Subsets of Items 

 

 

This EXCEL template is intended to help delete items from a measure to produce two or 

more sets of items that "fit the data" (are internally consistent). 

 

The APA citation for these instructions is Ping, R.A. (2006). "More about the template for 

obtaining an internally consistent set of items." [on-line paper]. 

http://www.wright.edu/~robert.ping/weeding.doc. 

  

 

New measures will almost never "fit the data" using a single construct measurement 

model without dropping items to attain model-to-data fit. In addition, most well established 

measures developed before covariant structure analysis (LISREL, AMOS, etc.) became popular 

also will not fit the data without item weeding.  

It turns out that measures used with covariant structure analysis are limited to about six 

items (see discussions in Anderson and Gerbing 1984, Gerbing and Anderson 1993, Bagozzi and 

Heatherton 1994, and Ping 2008). One explanation is that correlated measurement errors, 

ubiquitous in survey data but customarily not specified in covariant structure analysis, eventually 

overwhelm model-to-data fit in single-construct and full measurement models as indicators are 

added to the specification of a construct. And, that usually happens with about 6 items per 

construct. 

There are ways around item weeding, such as various item aggregation techniques (see 

Bagozzi and Heatherton 1994), but many reviewers in the Social Sciences do not like these 

approaches. Unfortunately, reviewers also may not like dropping items from measures because 

of concerns over face- or content validity (how well the items "tap" the conceptual and 

operational definitions of their target construct). One "compromise" is to show the full measure's 

items in the paper, and assuming the full measure does not fit a single construct measurement 

model, show one submeasure that does fit the data and is maximally "equivalent" to the full 

measure in face or content validity. However, to do that, several submeasures are usually 

required, and finding even one is frequently a tedious task. 

This template will assist in finding at least two subsets of items from the target measure 

that fit the data in a single construct measurement model of the items. The process is as follows. 

First, exploratory (common) factor analyze the target measure with its items using Maximum 

Likelihood estimation and varimax rotation. If the measure is multidimensional, start with the 

Factor 1 items. The other factors and the full measure can be used later.  

Next, estimate a single construct (confirmatory) measurement model using the Factor 1 

items (if the measure is unidimensional Factor 1 is the full measure). If the first measurement 

model fits the data item omission is not required. If this measurement model does not fit the data, 

find the "First Order Derivatives" in the output. (I will assume LISREL 8, which requires "all" 

on the OU line to produce First Order Derivatives. As far as I know, most other estimation 

packages produce statistics equivalent to First Order Derivatives. For example in SIMPLIS “First 

Order Derivatives” are available by adding the line “LISREL Output: FD.”). Paste the lower 

triangle of First Order Derivatives for "THETA-EPS" into the template making sure you retain 

the item names so you can figure out which item to drop (see the example on the template). Then 



find the largest value in the "Overall Sum" column--it will be the same as the "Max =" value in 

the lower right corner of the matrix. 

Now, reestimate the measurement model with the item having the largest "Overall Sum" 

omitted (call this Reestimation 1). Record the Chi Square and RMSEA values on the spreadsheet 

for reference. If they are acceptable, use the items in this measurement model as submeasure 1.  

There is no agreement on acceptable single construct measurement model fit. I use either 

a Chi Square that is slightly nonzero for single construct measurement models (e.g., 1E-07, not 

0), or an RMSEA that is .08 or slightly below, but many authors would suggest much stronger fit 

criteria for single construct measurement models.1 

If the unomitted items do not fit the data, find the "First Order Derivatives" for "Theta-

Eps" in the Reestimation 1 output. Paste these into the second matrix in the template, record the 

Chi-Square and RMSEA values, and reestimate the single construct measurement model 

(Reestimation 2).  

Repeating this process, eventually Chi Square will become nonzero, and after that 

RMSEA will decline to 0.08 or less (the recommended minimum for fit in full measurement and 

structural models--see Brown and Cudeck 1993, Jöreskog 1993). This should happen with about 

7 or 8, down to about 5, remaining items. If acceptable fit does not happen by about 4 items, an 

error has probably been made, usually by omitting the wrong item.  

Each subset after Chi Square becomes non zero is a candidate subset for "best," but 

because items are disappearing with each step, these smaller subsets are usually less face valid, 

and thus the first acceptable subset is usually the preferred one.  

To find another subset of items, repeat the above process using "Modification Indices" 

for "Theta Epsilon." (The SIMPLIS command line is “LISREL Output: MI.”) The theory behind 

Modification Indices is different from First Derivatives, and a different subset usually results. 

Another subset of items usually can be found using reliability. The reliability of all the 

Factor 1 items is computed using SAS, SPSS, etc., the item that contributes least to reliability is 

deleted, and the reliability of the remaining items is computed. This process is continued until 

deleting any item reduces reliability. The remaining items usually will fit the data in a single 

construct measurement model. 

 

If the full measure was multidimensional, there may be several more subsets found by 

repeating the above procedures using the full measure's items instead of the Factor 1 items, then 

using the reliability procedure just mentioned. Experience suggests these subsets are smaller, but 

they frequently include items from Factor 2, etc. and thus they may be more face valid. This 

process can also be used on any Factor 2 items, Factor 3, etc. 

 

There are many more subsets that can be found by omitting the next largest "Overall 

Sum" item instead of the "Max =" item. Specifically, the second largest item in Reestimation 1 

could be omitted in place of the largest. Then, continuing as before omitting the largest "Overall 

Sum" items, The result is frequently a different subset of items that fits the data. Another subset 

can usually be found using this "Second Largest" approach using modification indices instead of 

first derivatives. Others can be found omitting the second largest overall sum item in 

Reestimation 2, instead of Reestimation 1, etc., with or without deleting the second largest in 

Reestimation 1. This "Second Largest" strategy can also be used on the full set of items.  

Experience suggests that there are about N-things-taken-6-at-a-time combinations of 

items with real world data that will fit the data, where N is the number of items in the full 



measure (more, if 5, 4 and 3 item subsets are counted). For example, if the original measure has 

8 items, with real world data there are about 8!(8-6)!/6! = 112 6-tem subsets of items that might 

fit the data. While the above strategies will not find all of them, experience suggests they should 

identify several two subsets that are usually attractive because they are comparatively large 

(again however, usually with about 6 items) and they should appear to tap the target construct 

comparatively well. 

The above spreadsheet approaches may not always identify the highest reliability subsets 

of items, but experience suggests the resulting subsets are usually larger and as, or more, face 

valid than those produced by other approaches. However, with low reliability measures, even 

though the "First Derivative" or "Modification Indices" subsets should be only a few points 

lower in reliability than a subset found by, for example, dropping items that contribute lest to 

reliability, the higher reliability subset may be preferred to a higher face validity subset.  

It may be instructive to (re)submit all the subsets found to an item-judging panel for their 

selection of the "best" subset for each construct.  

Other comments: There are exceptions to several of the assertions made above, but this is 

probably not the place for an exhaustive exposition on item deletion strategies. For emphasis, the 

template assumes lower triangular matrices. There is an additional example in Appendix E of the 

monograph, Testing Latent Variable Models..., on the web site.  
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ENDNOTES 

 
1 In my opinion, some authors go too far in real world data with single construct measurement model fit, resulting in 

unnecessarily small submeasures. There are several issues here, including model fit versus face or content validity, 

and experience suggests that with real-world data, "barely fits" in single construct measurement models is almost 



                                                                                                                                                             
always sufficient to attain full measurement model fit. Thus, in real world data, subsets of items that each produce a 

comparatively small but nonzero Chi Square or an RMSEA that is just below .08 are usually "consistent enough" to 

later produce a full measurement model that fits the data. I prefer the RMSEA criterion because it seems to produce 

fewer problems later. Again, however, many authors would not agree with this strategy. Later, if it turns out that the 

full measurement model does not adequately fit the data, simply estimate the next item weeding single construct 

measurement model and drop the next largest "Overall Sum" items to improve full measurement model fit. 



TMPLTPB.xls 

 

The excel spreadsheet file titled “TMPLTPB.xls” has been added to the metadata 

record for “Theoretical Model Testing with Latent Variables” as an additional file.  

Please download this additional file to access the original spreadsheet.    



This EXCEL spreadsheet is intended to assist with the specification of Kenny and 

Judd (1984) product indicators for the interactions/quadratics, XX, XZ and ZZ, using 

measurement model parameter estimates for the loadings, measurement error variances 

and variances associated with the latent variables X and Z, and SAS, SPSS, etc. 

covariances among X, Z, XZ, XX znd ZZ. The spreadsheet assumes that X and Z are 

unidimensional (i.e., consistent-- they fit the data) with mean centered indicators, and that 

there are no correlated measurement errors involving X or Z.  

To use the spreadsheet, estimate a measurement model containing at least X and Z 

(a larger or a full model measurement model could be used as long as all the model latent 

variables are unidmensional). If starting values for the PHI's associated with XX, XZ and 

ZZ are desired, also obtain SAS, SPSS, etc. estimates of the covariance matrix for X, Z, 

XX, ZX and XX, in that order (i.e., if starting values for XX, XZ and/or  ZZ are not 

required, skip the SAS, SPSS, etc. estimates). Next, the bold entries and the italicized 

entries on the spreadsheet should be deleted to avoid mixing old data with new data, and 

the result should be error messages or zeroes in most of the non-blank areas of the 

spreadsheet (that should correct themselves once new data is entered). Then the 

measurement model loadings, measurement error variances, and variances for X and Z 

should be entered into the appropriate locations on the spreadsheet (i.e., loadings go in 

the "lambda" lines, measurement error variances go in the "theta" lines, and measurement 

model variances/covariances for X and Z go in the "Phi" matrix). These entries will all 

appear in bold font-- unbolded cells are unrelated to entering measurement model 

parameter estimates). At this point the loadings (lambda) and measurement error 

variances (theta) for XX, XZ and ZZ will be available near the bottom of the spreadsheet. 

If starting values for for the PHI matrix are desired, also enter the SAS, SPSS, etc. 

covariances for X, Z, XX, XZ, and ZZ in the "Error Attenuated Cov's" matrix. These 

entries will all appear on the EXCEL spreadsheet in italicized font. Once this is 

accomplished the rest of the covariances in the "Phi" matrix should be nonzero. 

Obviously deleting old data is important to using this spreadsheet, and it is 

probably a good idea to always delete the "Error Attenuated Cov's" entries even if 

starting values for the balance of the "Phi's" are not desired. 

For emphasis, when this spreadsheet (and the others) are visible on a local computer, it 

can be saved on that computer for later use (i.e., without going back on line). Thus, it is 

possible to save a copy of the on line version of the EXCEL spreadsheet locally to be 

used as a "master copy" for modification, subsequent calculations, saving modified 

copies, etc. 



Tmplmvbr.xls 

 

The excel spreadsheet file titled “Tmplmvbr.xls” has been added to the metadata 

record for “Theoretical Model Testing with Latent Variables” as an additional file.  

Please download this additional file to access the original spreadsheet.    



EXCEL Template for Computing the (Measurement Error) Adjusted Covariance Matrix 

for Latent Variable Regression 
 

(The APA citation for this paper is Ping, R. A. (2008). "EXCEL Template for Computing the 

(Measurement Error) Adjusted Covariance Matrix for Latent Variable Regression." [on-line paper]. 

http://www.wright.edu/~rping/ItemWeed.doc) . 

 

This EXCEL spreadsheet adjusts a covariance matrix from SAS, SPSS, etc. 

involving the latent variable Y, a set of up to 5 other latent variables, A through E, and, 

optionally, all possible interactions and quadratics involving A through E (i.e., AA, BB, 

AB, CC, AC, BC, DD, AD, BD, CD, EE, AE, BE, CE, DE) for use in error-adjusted-OLS 

regression ("latent variable" regression). This may seem like a step backward in structural 

equation analysis, but there are situations involving latent variables where LISREL, EQS, 

AMOS, etc. are difficult to impossible to use and (error-adjusted) OLS regression is 

helpful (e.g., model building where OLS regression's forward selection and backward 

selection are useful, latent variable models with one or more categorical variables, etc.). 

The adjustment uses measurement model parameter estimates for the loadings, 

measurement error variances and variances associated with the latent variables Y, and A 

through E. The spreadsheet assumes that Y, and A through E are internally consistent 

(each of their single construct measurement models fit the data), they have mean centered 

indicators, and that there are no correlated measurement errors involving any of the latent 

variables A through E. 

To use the spreadsheet, a (full) measurement model containing Y and up to five 

latent variables of interest should be estimated. Next, the bold entries and the italicized 

entries on the spreadsheet should be deleted to avoid mixing old data with new data, and 

the result should be zeroes in most of the non- blank areas of the spreadsheet (these 

values should correct themselves once new data is entered). Then, the covariance matrix 

to be adjusted should be created using SAS, SPSS, etc. and the variables of interest. Note 

that this covariance matrix should be created with Y, the dependent/endogenous variable 

named first. Next, the measurement model loadings, measurement error variances, and 

variances for Y and the variables of interest should be entered into the appropriate 

locations on the spreadsheet (i.e., loadings go in the "lambda" lines, measurement error 

variances go in the "theta" lines, and measurement model variances/covariances for X 

and Z go in the "Phi" matrix). These entries will all appear in bold font--un-bolded cells 

are unrelated to entering measurement model parameter estimates). At this point the 

adjusted covariance matrix will be available beneath the covariance matrix to be adjusted 

in the middle of the spreadsheet. 

 

Several comments may be of interest. Obviously deleting old data is important in using 

this spreadsheet. For emphasis, when this spreadsheet (and the others) are visible on a 

local computer, it can be saved on that computer for later use (i.e., without going back on 

line). Thus, it is possible to save a copy of the on line version of the EXCEL spreadsheet 

locally to be used as a "master copy" for modification, subsequent calculations, saving 

modified copies, etc. The data that appears in the website version of this spreadsheet is 

also shown in a reordered form in Tables AE1 and AE2 of the monograph 

INTERACTIONS AND QUADRATICS IN SURVEY DATA: A SOURCE BOOK FOR 

THEORETICAL MODEL TESTING (2nd Edition), on this web site. Several entries in 



Table AE2 are slightly different from the spreadsheet "Adjusted Covariance Matrix..." 

entries (e.g., Var(SxA) which is Var(AB) in the "Adjusted Covariance Matrix..." of the 

spreadsheet) for unknown reasons (possibly transcription errors from the spreadsheet to 

the Table AE2 matrix-- however, the Table AE2 matrix was used to create the latent 

variable regression results shown in Tables E, G and H, not the spreadsheet). 



NOTES ON “USED DATA”-- 

REUSING A DATA SET TO CREATE 

A SECOND THEORY-TEST PAPER 

 

 
Ping R.A. (2013). "Notes on 'Used Data.'" Am. Mktng. Assoc. (Summer) Educators' Conf. Proc. 

 

ABSTRACT 

 

 There is no published guidance for using the same data set in more than one theory-test 

paper. Reusing data may reduce the “time-to-publication” for a second paper and conserve funds 

as the “clock ticks” for an untenured faculty member. Anecdotally however, there are reviewers 

who may reject a theory-test paper that admits to reusing data. The paper critically discusses this 

matter, and provides suggestions. 

INTRODUCTION 

Anecdotally, there is confusion among Ph.D. students about whether or not the same data 

set ought to be used in more than one theory-test paper. Some believe that data should be used in 

only one such paper. Others believe that data may be reused.  

In a small and informal survey of journal editors, none was found to be opposed to 

reusing data, even when their journals’ “instructions to the writers” stated or implied that the 

study, and presumably its data, should be original.  

In an anecdote from this survey, an editor summarized his experience with a paper that 

used data from a previous article. One reviewer rejected the paper because the data was not 

“original,” while the other reviewers saw no difficulty with a paper that relied on “used data.” 

This anecdote hints there also may be confusion about used data among some reviewers, and, 

since they are likely authors, presumably among some authors. 

In a small pretest of a study of faculty at Research 1 universities who had Ph.D. students, 

none could recall the topic of reusing data in theory tests ever being discussed. 



Because the consequences of any such confusion might include that the diffusion of 

knowledge may be impeded (e,g., an important study could be delayed, or go unpublished, 

because the author(s) had difficulty funding a second study), the paper critically discusses the 

reuse of data in theory tests, and provides suggestions. Along the way, several matters are raised 

for possible future discussion and pursuit.  

USED DATA 

“Used data” is ubiquitous. Secondary data from, for example, the US Census Bureau, and 

the Bureau of Labor Statistics, are in use almost everywhere. The advantages of (re)using this 

data include reduced costs and time. But data collected by governments/non-governmental-

organizations/commercial firms may not be ideal for a theory test. (It tends to be descriptive, and 

multi-item measures typical in theory tests may be unavailable; raw secondary data may be 

difficult to obtain; or it may not measure all the variables that are important to the researcher.) 

This paper will focus on the initial reuse of primary data; typically with 

formative/reflective (multi item) measures intended or used for theory testing. Theory-testing 

situations that might be judged to involve the initial reuse(s) of data include creating two or more 

papers based on a single data set gathered by the author(s). Other situations include creating a 

paper based on data that was previously collected for commercial purposes. (Anecdotally, in 

Europe, Ph.D. candidates’ dissertation data may have been gathered and used by a “sponsoring 

company” for the company’s commercial purposes that are unrelated to the dissertation.) They 

also include reanalyzing a published data set for illustrative or pedagogical purposes (typically 

for a suggested methodology), and reanalyzing a paper’s data to further understand or “probe” a 

result observed in the paper. Less obviously, improving measure psychometrics (e.g., deleting 

measure items to improve reliability), and model-building also involve reusing data.  



The advantages and disadvantages of reusing data are discussed next. Then, suggestions 

for theory testing are provided, and avenues for future research are sketched.  

ADVANTAGES OF RESUSING A THEORY-TEST DATA SET 

One advantage of reusing data is that it can reduce the elapsed time between theory 

generation and analysis, the resources required for data gathering (e.g., costs), and in some cases 

(e.g., data gathered by others) the expertise required to gather data. For example, in a model with 

several variables, after a paper that tests hypothesized links among (exogenous) model 

antecedents and their (endogenous) consequences, more papers in which the antecedents (or the 

consequences) are themselves linked, might be theoretically interesting enough for submission 

without gathering additional data. (Criteria for “theoretically interesting” might include new 

theory that either extends, or fills a gap in, extant theory.) 

Reusing data may enable the division of a large paper into two or more papers, in order to 

satisfy a journal’s page limit. For example, in a model with multiple final endogenous 

(consequence) variables, these variables might be divided into two sets of consequence variables 

(with their antecedents), and thus two papers, one for each resulting model. In each paper, this 

might reduce the number of hypotheses and their justifications, and the discussion and 

implications sections. 

Stated differently, it might mean that an important study would not be delayed, or go 

unpublished, because of paper size, or difficulty funding an additional study.  

Other advantages of reusing data might include: 

o “Piggy backing” a theory test onto a commercial survey. This and using data already 

gathered by a commercial firm also may save time and costs.  



o Combining two surveys into a single survey. Unrelated surveys may not be easily 

combined, but, for example, when two models have some of the same latent variables, 

time and money might be conserved.  

o Publication of a dissertation with changes. (These changes should be based on additional 

theory, such as an additional path(s), that was developed prior to any data analysis 

beyond that for the dissertation. Stated differently, the logic of science (e.g., Hunt 1983) 

permits empirical discovery, hypothesis, then testing; but testing must be conducted using 

different data from that used in empirical discovery—see Kerr 1998 (I thank a reviewer 

for this citation)). 

o The use of secondary data.  

Although it is now less popular that it was, meta analysis (e.g., Glass 1976) uses previously 

gathered data. In addition, methodologists and others also have used previously published data 

sets to illustrate a suggested methodology (e.g., Jöreskog and Sörbom 1996, and Bentler 2006).  

Reuse of a paper’s data includes estimating associations “Post Hoc”--after the model has 

been estimated (see Friedrich 1982)--to further understand or explain an observed association(s). 

It also includes reanalysis of the paper’s data to illustrate different model assumptions. (For 

example, Ping 2007 reported results with and without Organizational Commitment in the 

proposed model for discussion purposes.) 

Reusing data also enables psychometric improvement of measures. Measure items are 

routinely deleted serially with measure (or model) reestimation to improve reliability and facets 

of validity (e.g., average extracted variance—see Fornell and Larker 1981). This might be argued 

to be reuse of the data set (i.e., data snooping) to find the “best” itemization of a measure.  



DISADVANTAGES OF RESUSING A THEORY-TEST DATA SET 

Reusing data to produce more “hits” may not be viewed others as a worthy endeavor. 

Absent a compelling explanation such as reducing paper size, or sharpening the focus of a paper 

(e.g., a previous paper was on the antecedent-consequences links, and the next paper is about the 

links among the consequences), a reviewer (or reader) might judge data reuse as opportunism 

rather than “proper” science.  

 A second paper that, for example, replaces correlations in a previously published model’s 

antecedents with paths, may be judged conceptually too similar to the first paper for publication. 

Thus, instead of conserving time, time may be wasted on a second paper that experiences 

rejections because of its insufficient contribution beyond the first paper. 

 Further, papers that are variations on a single model, and that reuse not only data but 

theory/hypotheses, measures, and methods, and share some results that are identical to a previous 

paper could be judged idioplagaristic. As a result, time and effort may be lost in rewriting to 

perceptually separate papers that use the same data set. 

Care must be taken in how a model is divided into submodels. For example, omitting one 

or more significant exogenous variables in a model may bias the path coefficients of an 

endogenous variable to which they are linked (i.e., the “missing variable problem”--James 1980). 

And, it is easy to show that omitting one or more dependent variables in a model may change 

model fit, and thus standard errors and model paths’ significance.  

“Piggy backing” onto commercial survey (or using commercial data) may save time and 

costs, but an academic researcher may have difficulty controlling some of the project. For 

example, overall questionnaire design and its testing may not be under the control of the 

academic researcher. Similarly the sampling frame, sampling, and activities to increase response 



rates also may not be under the direction of the academic researcher. Further, the appearance of 

an academic researcher’s “independence” from the survey “issues” (i.e., the researcher is not “up 

to something”) may be lost by not using university letterhead or return address. (Or arguably 

worse: using university letterhead and return address to collect data that also will be analyzed by 

a commercial firm). Finally, having someone else “doing some of the work” can deprive a 

researcher of valuable experience in data gathering. (This could be an important disadvantage: 

for a dissertation, demonstrating data gathering expertise is typically required.) 

Last, a questionnaire that combines several surveys may be too large for its respondents: 

it may increase their fatigue, and it may produce echeloning, respondent irritation over similarly 

worded items, etc., that can increase response errors, and produce low response rates. 

DISCUSSION 

It may not be apparent that a model might contain candidate submodels for additional 

papers. Several examples might help suggest a framework for finding candidate submodels.  

Finding Submodels  

In Figure 1, a disguised (but actual) theoretical latent variable model (Model 1), the blank 

(fixed at zero) paths (e.g., A2 -> A3) could be freed to help produce submodels. To improve 

readability, several Model 1 latent variables were rearranged, and exogenous (antecedent) latent 

variables (those without an antecedent) were relabeled “A” (see Figure 3). Terminal 

(endogenous) consequences (latent variables that are not antecedents) were relabeled “TC,” and 

intermediate (endogenous) latent variables were relabeled “E.”  

Next, each blank (fixed at zero) path was considered for being freed, then in which 

direction it might be freed. Then, several of these new paths were discarded because they were 



theoretically implausible, of little interest theoretically, or directionality could not be established 

(bidirectional/non recursive paths were not considered). Next, several A’s were relabeled as E’s. 

The results included Model 1 and the (full) Figure 3 model, plus several submodels 

involving the A’s and E’s that were judged interesting enough for possible submission. For 

example, a submodel involving E5, and the other E’s and A’s (to avoid missing variable 

problems—A4, for example is an indirect antecedent of E5) (Submodel 1) was judged to have 

submission potential (E5 was judged to be an important consequence) (see Figure 4). (Submodel 

1 could be abbreviated E5 = f (E4, E6, E7, Ei, Ea, Eb, A2, A4 | i = 1-3, paths among E’s free as 

shown in Figure 3, paths among Ea, Eb, A2 and A4 free as shown in Figure 3), where “f” 

denotes “function of, as shown in Figure 4” and “|” means “where.”)  

A “hierarchy of effects” (serial) respecification of Figure 3 also was considered. 

Specifically, a second-order latent variable S1 was specified using Ea, A2, Eb and A4 (see 

Figure 2, and see Jöreskog 1971). Similarly, second-order latent variables S2 and S3 were 

specified using E1-E7 (see Figure 2), and the proposed sequence S1, S2, S3 then TC was 

specified. (Experience suggests that a second-order latent variable can be useful to combine, and 

thus simplify, latent variables in a model (e.g., Dwyer and Oh 1987)). 

Similarly, there was an interesting submodel involving Eb (Eb = f  (Ea, A2, A4)) (not 

shown, but see Figure 3), and another interesting submodel involving E1-E3 (Submodel 2) ({Ei} 

= f (A2, A4, Ea, Eb | i = 1-3, paths among A2, A4, Ea and Eb free as shown in Figure 3, paths 

among Ei free as shown in Figure 3), where “{}” means “set of ”) (not shown, but see Figure 3). 

In summary, several models were found, each having a “focal consequence” latent variable(s) 

that was judged to be important enough to have submission potential.  



Figure 6 shows a different disguised theoretical latent variable model (Model 2) where 

antecedent (exogenous) latent variables have been labeled “A,” and terminal consequences 

(latent variables that are not antecedents) have been labeled “TC.” In Figure 7, Model 2 was 

rearranged for clarity, bolded paths were added to replace the originally blank (fixed at zero) 

paths in Model 2, and intermediate latent variables were (re)labeled E (Model 3). Because much 

of the theory and many of the measures in Model 2 were new, the first paper (with Figure 6’s 

Model 2 and no bolded paths) was too large for journal acceptance. As a result, TC3 (itself an 

interesting focal variable) was excised for placement in a second paper (i.e., TC3 = f (A3, Ei | i = 

1-7, all paths among A3 and Ei fixed at zero) (not shown, but see Figure 7). An additional model 

with the focal variable E2 = f (A3, E1, E3 | bolded paths among A3, and E1 and E3 free as shown 

in Figure 7) (Submodel 3) was judged interesting enough for journal submission (A3 is an 

indirect antecedent of E2 and is specified to avoid the missing variable problem) (not shown, but 

see Figure 7). Another interesting model was discovered, with the bolded Figure 7 paths among 

E4-E7 (with A3 and E1-E3 without their bolded paths, and without TC3), that was judged to be a 

“hierarchy of effects” (sequential) model (i.e., first E4, next E5 or E7, then E6, then E7) 

(Submodel 4) (not shown, but see Figure 7).  

An additional model with a theoretically plausible and interesting non-recursive (bi-

directional) path between E6 and E7 (see Figure 5, and see Bagozzi 1980) also was discovered 

using Figure 7. (A non-recursive model that was identified—see for example Dillon and 

Goldstein 1984, p.447—was not immediately obvious. At least two variables were required for 

identification of the bi-directional path between E6 and E7: one that should significantly affect 

E6 but should not be linked to E7, and another that should significantly affect E7 but should not 

be linked to E6. Because nearly all the Figure 7 latent variables were theoretically linked to both 



E6 and E7 (and could not be omitted without risking the missing variable problem), theoretically 

plausible demographic variables D1 and D2 were added to attain identification). Finally, a 

comparison of the Figure 7 model’s estimates for males versus those for females was considered. 

In summary, after rearranging and re-labeling the Figure 6 latent variables for clarity, 

previously fixed but theoretically plausible paths were freed. Then, interesting focal variables 

were found and submodels with as many of the Figure 6 variables as antecedents as possible (to 

avoid the missing variable problem) were estimated (to determine if the results were still 

“interesting”). In addition, the Figure 7 model was found to contain a hierarchy of effects 

submodel, and at least one of the paths was plausibly non-recursive. Finally, the Figure 6 model 

was estimated for males, then reestimated for females, and the results were compared. 

Experience suggests that models with many variables may contain “interesting” 

submodels. Models with several “intermediate” variables (e.g., Figure 3), and those with 

multiple antecedents or several terminal consequences (e.g., Figure 7) also are likely to contain 

interesting submodels. As the examples suggested, in addition to “single consequence” 

submodels, linked antecedent and linked consequence submodels (e.g., Figure 7), second order, 

hierarchy-of-effects and non-recursive submodels are possible. Comparing model results for 

categories of a demographic(s) variable also might produce interesting results.  

Irregularities 

Unfortunately, data reuse may provide opportunities for “irregularities.” For example, 

combining two surveys into a single survey provides an opportunity to “data snoop” across 

surveys. While this might generate interesting theory, it also might result in a paper that 

“positions” exploratory research (data snooping, then theory/hypotheses, and then a theory 



disconfirmation test using the data-snooped data) as confirmatory research (theory/hypotheses 

prior to any data analysis involving these hypotheses, then disconfirmation ).  

Data reuse also may provide a temptation to “position” the results of post hoc analysis as 

though they were originally hypothesized. For example, care must be taken that paths discovered 

by post hoc data analysis (e.g., to explain an hypothesized but non-significant association) are 

not then hypothesized as though they were not the results of data snooping.  

(Parenthetically, “data snooping” also might be acceptable using a split sample, or a 

simulated data set. With a split sample, half of the original data set might be used for data 

snooping, and the other half could be used to test any resulting hypotheses. Similarly, a 

simulated data set might be generated using the input item-covariance matrix from the original 

data set, then used for data snooping. Then, the original data set could be used to test any 

resulting hypotheses. In both cases, the additional hypotheses, and the split half or simulated data 

set procedure should be mentioned in the interest of full disclosure.  

Improving Psychometrics 

Viewing sequentially dropping items (item weeding) to improve measure psychometrics 

as reanalysis of a data set, thus reusing data, may require additional discussion. Item weeding is 

routinely done in structural equation analysis to improve internal and external consistency, and 

reliability and validity in measures. These activities have been criticized (e.g., Cattell 1973; 

Fornell and Yi 1992; Gerbing, Hamilton and Freeman 1994; Kumar and Dillon 1987a, 1987b), 

however these complaints did not involve data reuse, and these objections are now seldom heard.  

Item weeding is (implicitly) justified as required to separate measurement from model 

structure (e.g., Anderson and Gerbing 1988). (Ideally it produces a compromise between 

measurement model “fit” and face validity). However, it is easy to show that in real-world data 



these efforts can reduce the standard errors of the structural model’s path coefficients. Stated 

differently, item weeding could be viewed as data snooping to (perhaps inadvertently) weaken 

the desired disconfirmation test of a proposed model by finding itemizations that are more likely 

to improve the chances of “confirming” the model. 

Alternatives to weeding are few. In real-world data, summing unweeded indicators may 

not be acceptable because the resulting measure may be unreliable. However, Gerbing and 

Anderson (1984) suggested in effect that deleted items could be specified as a second factor in a 

second-order latent variable (e.g., Jöreskog 1971). The software they suggested to expedite this 

task, ITAN (Gerbing and Hunter 1988) is no longer readily available, but experience suggests 

that in real-world data exploratory factor analysis could be used to create second-order latent 

variables from the “factors” (to likely reduce both the “data snooping,” and to reduce the item 

deletions and thus improve measure face validity). 

SUGGESTIONS FOR THEORY TESTING  

Authors may want to be more aware of the opportunities attending data reuse. Even if 

they elect not to reuse their data for publication, finding submodels might be used as way to 

discover additional interesting research topics. Authors could then write a second paper on an 

interesting submodel while conducting a new data gathering activity to test that submodel. They 

also might estimate the submodel using the “old” data before the new data are available, to 

develop at least a framework for several sections of the new paper, including possibly the 

reliability and validity of the submodels’ measures (these should be reconfirmed using the new 

data), and the results and discussion sections. 



Once the new data are available, the second paper could be revised based on the new 

data. The used-data issue would be avoided, and time might be conserved by the parallel 

activities of writing a new paper while collecting data for its test. 

However, given the risks that the new paper might be judged too similar to any previous 

paper, or it may be judged idioplagaristic, authors may elect to conserve time and funds by 

constructing a new paper based on the used data. In that event, the editor of any target journal 

probably should be contacted, to gauge their reaction to reusing data (there is the obvious matter 

of possibly compromising the double blind review process, even if the editor instructs the 

reviewers that the authors are not necessarily the same as before). 

In addition, to anticipate any reviewer objections, authors should consider a “full 

disclosure” of the history of the data, and the paper. Specifically, any prior publication, such as 

publication of a previous paper involving the data, publication of the paper as an abstract, a 

conference paper, etc. probably should be noted to address any reviewer questions about the 

paper’s relationship to any other published papers.  

Any previous use of the data briefly should be described in the first submission of a paper 

that reuses data, to address any reviewer questions about the originality of the data given the 

sample appears to be identical to a previously published article(s). If reuse becomes an issue 

during review, additional details, previous paper descriptions, and assurances such as “analysis 

of the data for the present paper was conducted after theorizing,” and “theorizing was not revised 

to fit the data,” etc. could be provided. Further, any valid justifications, such as “the present 

paper is the result of pruning the prior paper to meet the page limitation,” could be stated.  

In addition, in a combined survey, it could be stated that extensive pretesting was 

conducted to reduce survey recipient fatigue; or in a study that piggybacked onto a commercial 



study, that the lead researcher was careful to maintain strict control of all phases of the study. 

Further, it could be stated that every effort was made to reduce idioplagarism, that care was taken 

in creating submodels to eliminate the missing variable problem, and that the model was tested 

with and without omitted consequent variable to estimate any bias due to model fit. 

(parenthetically, this “data history” also may be important after paper acceptance, so readers can 

gauge the acceptability of the paper for themselves). 

Ideally, if data are to be reused, that decision should be made prior to any data gathering. 

Specifically, after the initial model is developed, any additional submodels and their hypotheses 

should be developed before any data are gathered. This should reduce any temptation to develop 

hypotheses then insert them in the original paper based on data snooping. 

If the decision to reuse data is made after data has been gathered, all submodel(s) and 

their hypotheses should be developed before any submodel is estimated. Again, this may reduce 

any temptation to insert “data snooped” hypotheses in the same paper.  

Addressing the matter of multiple papers with many of the same variables, and the same 

hypotheses for these variables, the same measures and sample, many of the same findings, etc. 

being judged too similar, or even idioplagaristic, may require effort. Similarity might be reduced 

by emphasizing that, although the new paper involves previously studied constructs, it provides 

important new theory about the relationships among them. For example, Submodel 1 in Figure 3 

proposed previously unexplored antecedents (E4, E6 and E7) of an important variable (E5).  

Reducing the appearance of idioplagarism may require writing a fresh paper, instead of 

rewording (or cutting and pasting), for example, the hypotheses justifications, and the 

descriptions of the measures, sampling, data gathering, the results, etc. of a prior paper. 



Finally, if multiple papers using the same data set are jointly submitted for review, ideally 

each paper should acknowledge the existence of the other(s). A (brief) explanation of each could 

be provided, and copies might be placed on a commercial web site, for the reviewers. 

Several comments may deserve emphasis: publishing similar versions of a paper, for 

example a conference version or an “earlier” version of a paper, could be argued to be 

idioplagarism. An alternative may be to consider publishing an abstract rather than a full paper. 

Similarly, submitting an unaltered or slightly altered paper to multiple outlets also could be 

viewed as idioplagaristic. (This is proscribed by many publication outlets. Typically it is 

discovered by having a common reviewer, and anecdotally, violation can be grounds for 

rejection, or desk rejection of any future submission.) One should resist the temptation to hide 

any reuse of data. (A reviewer who is familiar with any previous paper may question the 

originality of the data.)  

At the risk of overdoing it, theory should always precede data analysis. Specifically, 

while hypotheses may be developed or revised using data, they should not be tested using the 

same data. (However, hypotheses developed after post hoc analysis of the data are appropriate 

for the paper’s discussion or future research sections--with a caveat that these results may be an 

artifact of the present data set, and thus are exploratory and are in need of disconfirmation in a 

future study.)  

FUTURE RESEARCH 

It may be instructive to survey Ph.D. students, journal editors, and faculty for their 

attitudes about reusing data. If students have either no attitude, or a weakly held one, while some 

journal editors and reviewers do not object, this might suggest an additional publication strategy 

for untenured faculty “while the P&T clock ticks.” (However, it is plausible that “top tier” 



journal editors and reviewers, when reviewing for these journals, might covertly object to 

reusing data—indeed a comment from a reviewer in the present venue hinted that they may 

object to reusing data.) 

A similar study of these attitudes in the European Union also might be interesting. If 

Ph.D. students and others are encouraged, in effect, to seek a “sponsoring company” for their 

research (with the possibility that their academic research may become part of the sponsoring 

company’s commercial research), this might suggest at the very least, topics for debate, if not 

avenues for research and publication. 

SUMMARY 

Because there is no published guidance concerning the use of the same data set in several 

theoretical model-test papers, and there may be confusion among Ph.D. students and reviewers 

about whether this is appropriate in theory tests, the paper critically discussed reused data in 

theoretical model tests, and provided suggestions.  

Experience suggests that models are likely contain at least one submodel that might be a 

candidate for an additional paper. And, although it was anecdotal, some editors and reviewers 

had no objection to “used data” in theory tests. However, authors should be aware of the risks 

that attend used data in theory tests: reviewers may not approve of reusing data, and any 

subsequent paper based on used data may be judged conceptually too similar to the first paper for 

publication. Papers based on used data also may be judged idioplagaristic when compared to 

other papers to use the data. Further, care must be taken in specifying submodels to avoid the 

“missing variable” problem.  

Suggestions for authors included that they may want to contact the editors of target 

journals to gauge the acceptability of a paper based on used data. And, that if data is to be reused, 



that decision ideally should be made prior to data collection, to reduce any temptation to add 

additional hypotheses to the paper based on “data snooping” the data once it was collected. And, 

if data are reused, authors should consider a “full disclosure” of the history of the data set. 
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Figure 1—Abbreviated Latent Variable Model (Model 1) (Disguised) (see p. 6) 
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Figure 2—Respecified Figure 3 Model (see p. 7) 
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Figure 3—Rearranged Figure 1 Model with Plausible Additional Paths (in bold) (see p. 6) 
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Figure 4—Submodel 1 (of Figure 3) (see p. 7) 
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Figure 5—An Abbreviated Non-Recursive Respecification of Figure 7 (see p. 8) 
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Figure 6—Abbreviated Latent Variable Model (Model 2) (Disguised) (see p. 8) 
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Figure 7—Rearranged Abbreviated Model 2 with Plausible Additional Paths (in bold) (see p. 8) 
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WHY ARE THE HYPOTHESIZED ASSOCIATIONS NOT SIGNIFICANT? 

A  THREE-WAY  INTERACTION? 

 

Robert A. Ping, Wright State University, Dayton, OH 

 

ABSTRACT 

 

There is little guidance for estimating a latent variable (LV) "three-way" 

interaction (e.g., XZW). The paper explores these variables, and suggests their 

specification. It also provides a pedagogical example to suggest the utility of three-way 

interactions. Hypothesizing these LV’s is discussed, their reliability is derived, a remedy 

for their nonessential ill-conditioning (their high correlations with X, Z and W) in real-

world data is suggested, and an approach to interpreting them is illustrated. 

 

INTRODUCTION 
 

"Two-way" interactions in structural equation analysis (SEM) such as XZ, XW 

and ZW in 

 

1) Y = β0 + β1X + β2Z + β3W + β4XZ  + β5XW + β6ZW + β7XZW + ζY , 

 

where X, Z, W and Y are non-categorical variables, β1 through β7 are unstandardized 

structural coefficients, β0 is an intercept (typically ignored in SEM), and ζY is the 

structural disturbance (estimation error) term, have received considerable theoretical 

attention (see Aiken and West 1991). They also have been investigated with survey data 

in several substantive literatures (see Aiken and West 1991, p. 2; Bohrnstedt and Marwell 

1978; Jaccard, Turissi and Wan 1990, p. 79; Lubinski and Humphreys 1990; and 

Podsakoff, Tudor, Grover and Huber 1984 for partial lists of citations).  

 

However, non-categorical "three-way" interactions in survey data (e.g., XZW in 

Equation 1) have received little attention. They also have yet to appear in published SEM 

models, perhaps because there is little guidance for estimating them. This paper sheds 

additional light on these LV’s and their estimation. Specifically, it discusses their 

specification, estimation and interpretation. Along the way their utility is illustrated, and 

a remedy for a property of these LV's in real world data that apparently is not well 

known, their nonessential ill-conditioning, is proposed. Hypothesizing a three-way 

interaction is discussed, their reliability is derived, and an approach to interpreting these 

LV’s is illustrated.  

 

To help motivate this topic, we will skip ahead to a pedagogical example. In 

studies of firms' Reactions to Dissatisfaction in Business-to-Business relationships, the 

relationship of the subject's Switching Costs (SC’s) (costs to replace the primary 

supplier) with the subject's Opportunism (OPP) (guileful self-interest seeking) was 

observed to be non-significant (NS) in Ping (1993), and positive in Ping (2007). 

Similarly, the OPP association with the subject's Investment (INV) (expenditures to 

maintain the relationship) was NS in Ping (1993), and positive in Ping (2007). This 



suggested the possibility that INV and SC were being moderated (Ping 1996d).1 

Subsequently, it was judged plausible that INV moderated SC (argument omitted).2 In a 

reanalysis of one of the above studies' data sets, however, INVxSC was not significant.  

 

Another possibility was that Alternatives (ALT) (attractive replacement 

relationships) moderated an interaction between INV and SC.3 Specifically, it was 

plausible that there was a three-way interaction among ALT, INV and SC: 

ALTxINVxSC. In the reanalysis data set ALTxINVxSC was significant.4  

 

Next, we will discuss two-way interactions, which will lead to a proposed 

specification of a three-way interaction involving LV’s, then the details of the above 

pedagogical example (that will illustrate their estimation and interpretation). 

 

INTERACTIONS IN SURVEY MODELS 

 

It will be important later to briefly discuss two-way interaction specification, in 

order to lay the groundwork for specifying XZW. There have been several proposals for 

specifying two-way LV interactions including (1) Kenny and Judd 1984; (2) Bollen 1995; 

(3) Jöreskog and Yang 1996; (4) Ping 1995; (5) Ping 1996a; (6) Ping 1996b; (7) Jaccard 

and Wan 1995; (8) Jöreskog 2000; (9) Wall and Amemiya 2001; (10) Mathieu, 

Tannenbaum and Salas 1992; (11) Algina and Moulder 2001; (12) Marsh, Wen and Hau 

2004; (13) Klein and Moosbrugger 2000/Schermelleh-Engle, Kein and Moosbrugger 

1998/Klein and Muthén 2002; and (14) Moulder and Algina 2002.  

 

These proposed techniques are based on the Kenny and Judd (1984) product-of-

indicators proposal (x1z1, x1z2, ... x1zm, x2z1, x2z2, ... x2zm, ... xnzm, where n and m are the 

number of indicators of X and Z respectively). However, in theoretical model tests using 

real world survey data, where models with several, usually over-determined, LV’s (i.e., 

LV's with four or more indicators), are the rule, specifying XZ with all the Kenny and 

Judd product indicators typically produces model-to-data fit problems. Specifically, in 

                                                 
1 A moderated variable's structural coefficient estimate occurs at the mean of the 

moderator variable in a study (see Aiken and West 1991). When a significant moderation 

is unspecified, variation in the moderator variable's mean across studies can produce wide 

variation in the moderated variable’s structural coefficients. 

 
2 Details of the study will be omitted to sidestep matters that are unimportant to the 

methodological matters at hand. And, hereafter Y will be used instead of OPP. 

 
3 An additional possibility was that ALT moderated INV and it moderated SC. A three 

way interaction is possible in this case also—ALT may moderate INVxSC.  

 
4 In theory testing, such explorations are within the logic (science) of discovery (see Hunt 

1983). Specifically, a "discovery," such as a three-way interaction, that can be 

theoretically supported is proposed in the Discussion section of the study at hand for 

disconfirmation in a subsequent study. 



Techniques 1 and 5, the resulting specification of XZ in its single construct measurement 

model usually will not fit the data (i.e., this specification of XZ is inconsistent with the 

data), and full measurement and structural models containing this specification of XZ can 

exhibit unacceptable model-to-data fit.  

 

Several proposals use subsets of the Kenny and Judd (1984) product indicators, or 

indicator aggregation, to avoid these inconsistency problems (Techniques 3, 5, 7, 9, 11, 

12 and 14). Unfortunately, omitting Kenny and Judd product indicators raises questions 

about the face or content validity of the resulting interaction. Specifically, if all the 

indicators of X are not present in the itemization of XZ, is XZ still the "product of the LV 

X and the LV X"? (techniques 3, 7, 9, 11, 12 and 14). This specification has additional 

drawbacks: the reliability of XZ is unknown for a partially itemized XZ. As we shall see, 

the formula for the reliability of XZ is a function of X and Z with all their items (see 

Bohrnstedt and Marwell 1978). Further, a procedure for determining which product 

indicators to retain is unknown. And, deleting Kenny and Judd product indicators can 

produce interpretation problems because the X in XZ is no longer operationally the same 

as X in Equation 1, for example.  

 

Some proposed techniques do not involve Maximum Likelihood estimation, or 

commercially available estimation software (Techniques 2, 6 and 13). And, several of 

these proposals have not been evaluated for possible bias and lack of efficiency (i.e., 

Techniques 8 and 10).  

 

A SINGLE INDICATOR 

  

The following will rely on the Ping (1995) proposal for specifying XZ because it 

has the fewest of the above drawbacks. This proposed specification uses a single 

indicator for XZ that is the product of sums of the indicators for X and Z. Specifically, 

for X with the indicators x1 and x2, and Z with indicators z1 and z2 the single indicator of 

XZ would be xz = (x1+x2)(z1+z2). Ping (1995) suggested that under the Kenny and Judd 

(1984) normality assumptions,5 a loading, λxz, and measurement error variance, θεxz, for 

this single indicator are 

 

2) λxz = ΛXΛZ , 

 

and 

 

2a) θεxz = ΛX
2Var(X)θZ + ΛZ

2Var(Z)θX + θXθZ , 

 

where ΛX = λx1 + λx2, Var indicates error disattenuated variance, θX = Var(εx1) + Var(εx2), 

εx1 is the measurement error of x1, εx2 is the measurement error of x2, Λz = λz1 + λz2, θz = 

Var(εz1) + Var(εz2), λxz = ΛXΛZ, θεxz = (ΛX)2Var(X)θZ + (ΛZ)2Var(Z)θX + θXθZ , and λ 

                                                 
5 X and Z are assumed to be independent of their measurement errors (εx1, εx2, εz1, and 

εz2), their measurement errors are mutually independent, the indicators x1, x2, z1, and z2, 

and the measurement errors (εx1, εx2, εz1, and εz2) are multivariate normal with mean zero. 



and θ are loadings and measurement error variances. The indicators xi and zj are mean-

centered by subtracting the mean of xi, for example, from xi in each case, and the single 

indicator of XZ, xz, becomes 

 

xczc = [Σ(xi
u - M(xi

u))] [Σ(zj
u - M(zj

u))] , 

 

where xi
u and zj

u are uncentered indicators (denoted by the superscript “u”), M denotes a 

mean, and Σ is a sum taken before any multiplication. Centering xi and zj not only helps 

provide simplified Equations 2) and 2a), it reduces the high correlation or nonessential 

ill-conditioning (Marquardt, 1980; see Aiken and West, 1991) of X and Z with XZ that 

produces unstable (inefficient) structural coefficient estimates that can vary widely across 

studies. 

 

Using simulated data sets and data conditions that were representative of those 

encountered in surveys, Ping's (1995) results suggested that the proposed single indicator 

for an interaction produced unbiased and consistent coefficient estimates. 

 

This single-indicator specification can be estimated in two steps. First, the data for 

the single indicator of XZ is created by computing the sum of the indicators of X times 

the sum of the indicators of Z in each case. Next, the measurement parameters in 

Equations 2 and 2a (i.e., λx1, λx2, etc., Var(εx1), etc., Var(X), etc.) are estimated in a 

measurement model (MM) that excludes XZ. Then, the loadings and measurement error 

variances for XZ’s (λxz and θxz ) are computed using equations 2 and 2a, and using these 

parameter estimates. Finally, specifying the calculated loadings and error variances λxz 

and θxz  for the product indicator as fixed values, the structural model is estimated. 

 

If the structural model estimates of the measurement parameters for X and Z (i.e., 

λx1, λx2, etc., Var(εx1), etc., Var(X), etc.) do not approximate those from the MM (i.e., 

equality in the first two decimal places) the loadings and error variances of the product 

indicator are recomputed using the structural model estimates of the equation 2 and 2a 

measurement parameters. Experience suggests that with consistent LV’s zero to two of 

these iterations are sufficient to produce exact estimates (i.e., equal to “direct” estimates 

of XZ-- see Ping 1995). 

 

THREE WAY INTERACTIONS 

  

XZW also could be specified as the product of sums of indicators (e.g., xzw = 

(Σxi)(Σzj)(Σwk)). However, mean centering xi, zj and wk does not reduce the 

multicollinearity (nonessential ill-conditioning--see Marquardt 1980, and Aiken and West 

1991) between XZW and X, Z and W that typically occurs in real-world data.6 

Unfortunately, the bias from this multicollinearity can produce an apparently non-

                                                 
6  Authors seem to be unaware of this multicollinearity in real world data (e.g., Aiken and 

West 1991). (See for example, the uncomfortably high correlations between 

ALTxINVxSC, in several specifications, and ALT, INV and SC in Table A.) 



significant (NS) three-way interaction. For example, in the pedagogical example 

ALTxINVxSC specified with mean-centered X, Z and W was NS. 

 

A SPECIFICATION  
  

An alternative specification that avoids multicollinearity bias is to use the 

indicator  

 

3) xc(zw)c = [Σxi
u - M(Σxi

u)][(Σzj
u)(Σwk

u) - M((Σzj
u)(Σwk

u))] , 

 

where xi
u, zj

u and wk
u are uncentered indicators (denoted by the superscript “u”), M 

denotes a mean, and Σ is a sum taken before any multiplication, to spec the 3 way 

Xc(ZuxWu)c.
7  

 

The loading and error variance of xc(zw)c is derived in Appendix A.. 

 

AN EXAMPLE 

 

Returning to the pedagogical example, after developing a plausible argument for 

ALT moderating the Y-INVxSC association, the three-way interaction ALTc(INVuxSCu)c 

in  

 

5) Y = aSAT + bALTc + cINVu + dSCu + gALTc(INVuxSCu)c + h(INVuxSCu)c + ζ , 

 

where a, b, etc. are structural coefficients, was specified in a measurement model for 

Equation 5 to gage each LV's psychometrics.8  

 

ALTc(INVuxSCu)c was specified by computing the Equation 3 single indicator, 

altc(inv∙sc)c = [Σalti
u - M(Σalti

u)][(Σinvj
u)(Σsck

u) - M((Σinvj
u)(Σsck

u))] in each case, then 

the loading and measurement error variance was computed using the Equations 4e and 4f 

(alti
u, invj

u and sck are the uncentered indicators of ALT, INC and SC respectively, and M 

denotes a mean).  

 

                                                 
7 In the following, x, z, w, xc, zc, wc, (zw)c, xi

u, zj
u, wk

u denote unstandardized variables. 

 
8 Some authors recommend including the two-way interactions, ALTxINV, ALTxSC and 

INVxSC, in Equation 5, unless theory suggests they are zero (e.g., Aiken and West 

1991). However, theory typically suggests that associations should be non-zero, and in a 

theory test this is the usual rationale for including variables. Thus, because we could not 

develop plausible arguments for including ALTxINV or ALTxSC, Equation 5 was 

specified without them. Theory appeared to support including INVxSC, and, although it 

was previously observed to be non-significant, it was specified because 

ALTc(INVuxSCu)c is the interaction of two (hypothesized) antecedents of Y, ALT and 

(INVxSC). (This matter is discussed later.) 



Specifically, estimates of the loading and measurement error variance of 

ALTc(INVuxSCu)c were computed using the loadings, variances, covariances and 

measurement error variances of ALTc, INVu and SCu from earlier measurement models 

(MM's) without the interactions,9 and SPSS estimates of the means. 

 

Then, the measurement model for Equation 5 was estimated, using LISREL 8 and 

Maximum Likelihood estimation. The resulting loadings and measurement error 

variances of SAT, ALT, INV, SC and Y were sufficiently similar to those from previous 

MM's containing just SAT, ALT, INV, SC and Y, that a second Equation 5 measurement 

model estimation (to revise the computed interaction loadings and measurement error 

variances) was judged not necessary (see Ping 1996a). Because the Equation 5 

measurement model fit the data, ALTc(INVuxSCu)c was judged to be externally 

consistent. Finally, ALTc(INVuxSCu)c was judged to be trivially internally consistent.  

 

RELIABILITY AND VALIDITY 

  

The reliability of Xc(ZW)c is unknown, and it is derived in Appendix B.  

 

The reliability of ALTc(INVuxSCu)c was computed to be 0.89. Specifically, SPSS 

values for the means of INV and SC, the square root of the MM variances for the 

standard deviations of INV and SC, the MM value for the correlation between INV and 

SC, SPSS reliabilities of ALT, INV and SC,10 and the calculated error-disattenuated 

correlation of ALTc and (INVxSC)c (see Ping 1996c) were substituted into Equation 6. 

Then, ALTc(INVuxSCu)c was judged to be valid.11  

                                                 
9 If ALT, INV and SC are internally and externally consistent their measurement 

parameters should not change materially with the addition of other latent variables, 

including two- and three-way interactions--see Ping 1996a. 
 
10 The latent variable reliabilities of ALT, INV and SC are practically equivalent to their 

coefficient alpha reliabilities (Anderson and Gerbing 1988). 

 
11 There is little agreement on validity criteria. A minimal demonstration of validity 

might include content or face validity (how well an LV's indicators tap its conceptual 

definition), construct validity (the target LV's correlations with other LV's are 

theoretically sound), convergent validity (e.g., its average extracted variance (Fornell and 

Larker 1981) is greater than .5), and discriminant validity (e.g., its correlations with other 

measures are less than some cutoff value) (e.g., Bollen 1989, DeVellis 1991, Fornell and 

Larker 1981, Nunnally 1978) (see Ping 2004a). ALTc(INV*SC)c was judged to be 

content valid because ALT, INV and SC were content valid, and the specification of 

ALTc(INV*SC)c included all the indicators of ALT, INV and SC. To gage convergent 

and discriminant validities, the formula for the Average Variance Extracted (AVE) of 

Xc(ZW)c,  

 

(Σλxi
2
)(Σλzj

2
)(Σλwk

2
)Var(XZW)/[(Σλxi

2
)(Σλzj

2
)(Σλwk

2
)Var(XZW) + ΘxcΘ(zw)c] 

 

(Fornell and Larker 1981), where (Σλxi
2
) is the sum of the squares of λxi, etc., Var(XZW) 



 

Next, the structural model was estimated using LISREL 8 and Maximum 

Likelihood estimation, and the abbreviated results are shown in Table B. Then, the Y 

associations with ALT, INV and SC were interpreted to account for their moderation. 

First, the plausible moderation of INVxSC by ALT was trivially "confirmed"12 by the 

significant ALTc(INVuxSCu)c coefficient in Table B.) Then, the (now moderated) Y-ALT 

association was interpreted. Specifically, Equation 5 was "factored"13 to produce the 

(full) structural coefficient ("simple slope"--see Aiken and West 1991) of ALTc: 

 

 Y = aSAT + (b + g(INVuxSCu)c)ALTc + cINVu + dSCu + h(INVuxSCu)c + ζ  

 

and the coefficient of ALT was interpreted using (b' + g(INVuxSCu)c)--the results are 

shown in Table C.14  

 

Next, Equation 5 was re-factored to produce the moderated coefficient of INV, 

 

Y = aSAT + bALTc + cINVu + dSCu + gALTc(INVuxSCu)c + h(INVuxSCu)c + ζ 

    = aSAT + bALTc + cINVu + dSCu + gALTc(INVuxSCu-m) c + h(INVuxSCu-m)c + ζ 

    = aSAT + bALTc + dSCu  

            + cINVu + gALTc(SCu-m/INVu)cINVu + h(SCu-m/INVu)c INVu + ζ 

= aSAT + bALTc + cINVu + dSCu  

            + (c + gALTc(SCu-m/INVu)c + h(SCu-m/INVu)c)INVu + ζ , 

 

where INV is non zero and m = M((Σzj
u)(Σwk

u)), and INVu was interpreted (see Table D). 

 

Finally, Equation 5 was again re-factored to produce a moderated coefficient of 

SC in, 

 

Y = aSAT + bALTc + cINVu  

                                                                                                                                                 

is the variance of XZW (available in the structural model), and ΘxcΘ(zw) is the 

measurement error variance of xc(zw)c (see Equations 4a through 4d in Appendix A), was 

used, and ALTc(INV*SC)c was judged to be convergent and discriminant valid using 

Fornell and Larker’s criteria (see Fornell and Larker 1981). Finally, the construct 

(correlational) validity of ALTc(INV*SC)c was impossible to judge. 
 
12 Specifically, the test failed to disconfirm the moderation. True "confirmation" would 

be suggested inductively by many such "confirmation" results. 

 
13 In this case the "factored" coefficient of ALT was the partial derivative of Y with 

respect to ALTc. The term "factored" emphasizes that ALT is the same (i.e., centered and 

fully itemized) in all of its occurrences in Equation 5. 

 
14  Graphs also can be used for interaction interpretation (e.g., Aiken and West (1991)). 

However, the significances required for interpreting the originally hypothesized 

individual effects of ALT, INV and SC are not available using graphs. 



       + (d + gALTc(INVu-m/SCu) + h(INVu-m/SCu)c)SCu  + ζ 

 

for interpretation, and the results (not reported) were similar to Table D. 

 

DISCUSSION  
 

Because these specifications of a three-way interaction have not been formally 

evaluated for possible bias and inconsistency, their threshold for significance proabably 

should be conservative (e.g., |t-value| > 2.10). 

 

ALTcxINVcxSCc- was non significant while ALTc(INVuxSCu)c was significant, as 

previously reported. In addition, the ALTc(INVuxSCu)c structural coefficient was 

different from the INVc(ALTuxSCu)c and SCc(INVuxALTu)c structural coefficients 

(unstandardized beta=0.23, 0.01 and 0.29; t=2.64, 0.83 and 1.90 respectively). This 

suggests there are several specifications of a three-way interaction: an “all centered” 

specification (ALTcxINVcxSCc), and three “permutation” three-way interaction 

specifications, ALTc(INVuxSCu)c, INVc(ALTuxSCu)c and SCc(INVuxALTu)c. This, plus 

some authors’ preference for including ALTxINV, ALTxSC and INVxSC, appears to 

suggest that a “proper” disconfirmation test of a three-way interaction should include all 

the relevant two-way interactions, ALTxINV, ALTxSC and INVxSC, plus the “all 

centered” three-way interactions, and ALTcxINVcxSCc, plus the “permutation” three-

ways interactions ALTc(INVuxSCu)c, INVc(ALTuxSCu)c and SCc(INVuxALTu)c.  

 

However, experience suggests that justifying all the relevant two-way interactions 

and all the “permutation” three-way interactions, may be difficult. Because in theory 

testing, variables probably should not be added to a model without theoretical 

justification, some two- and three-way interactions ways may not be candidates for the 

model.  

 

In addition, “permutation” three-way interactions may be sufficiently correlated to 

suppress each other. For example, in the pedagogical example, the “permutation” three-

ways were all non-significant when they were jointly specified.  

 

Further, experience suggests that the two-way interactions corresponding to 

ALTcxINVcxSCc—the “all centered” two-way interactions ALTcxINVc, ALTcxSCc and 

INVcxSCc—typically can not be specified jointly with the “permutation” three-way 

interactions. For example, in the pedagogical example, two of these two-way interactions 

were highly correlated with ALTc(INVuxSCu)c (0.85 or higher) and INVcxSCc was 

uncomfortably, and negatively (-0.46), correlated with ALTc(INVuxSCu)c. Thus, in a 

three-way interaction specification, the “all centered” two-way interactions should be 

excluded if a “permutation” three-way interaction is specified. 

 

This usually limits the specification alternatives for Equation 5 to one 

“permutation” three-way interaction with its corresponding two-way interaction, or the 

“all centered” three-way interaction, with its corresponding two-way interactions.  

 



Nevertheless, XcZcWc may be the preferred specification in theory testing. While 

it can be non-essentially ill-conditioned, (in which case a plausible “permutation” three-

way interaction such as Xc(ZuxWu)c should be tested instead), this three-way interaction 

form is recommended in regression (Aiken and West 1991), all the two-way interactions 

can be included, and it also could be argued to provide the stronger disconfirmation  test--

it jointly tests all three moderation hypothesis, ALT moderates INVxSC, INV moderates 

ALTxSC and SC moderates ALTxINV. Parenthetically, all the two-way interactions 

probably should be included to improve detailed interpretation, unless they cannot be 

adequately theoretically justified. For example, in Equation 5 with all the two-way 

interactions and XcZcWc instead of Xc(ZuWu)c the factored coefficient of X becomes 

 

 Y = a’SAT + b’Xc + c’Zc + d’Wc + g’XcxZcxWc + hXcxZc  

+ iXcxWc + jZcxWc + ζ’ , 

 

                = a’SAT + c’Zc + d’Wc + jZcxWc + b’Xc + hXcxZc 

                        + iXcxWc + g’XcxZcxWc + ζ’ , 

 

                = a’SAT + c’Zc + d’Wc + jZcxWc  

                        + (b’ + hZc + iWc + g’ZcxWc )Xc + ζ’ , 

 

the significances of which could be at least slightly different from Equation 5 without the 

two-way interactions, even if the coefficients h and i are non-significant. (Note that Xu, 

Zu and Wu have been replaced by Xu, Zu and Wu respectively). 

 

Thus, one approach might be to test an “all centered” three-way interaction first. 

Then, if the “all centered” three-way interaction is non-significant, this could be argued 

to imply that not all three-way moderations are significant. The next step might be to test 

one or more plausible “permutation” three-way interactions, as discussed above.  

 

The loading, measurement error variance and reliability of an “all centered” three-

way interaction are derived in Appendix C. 

 

Spreadsheets for estimating the loading, measurement error variance and 

reliability for the “all centered” and “permutation” interaction specifications are available 

by e-mail. 

 

The paper assumes that the three-way interaction was discovered (i.e., it was not 

hypothesized before the data was collected without having been previously discovered). 

In an informal, and so far incomplete, survey of articles, most articles replicate this 

assumption: a three-way interaction is discovered, or the hypothesized three-way 

interaction was discovered in a prior study. Thus, the above may be a guide to most three-

way interaction situations. 

 

However, there are several other plausible situations: an hypothesized three-way 

interaction that was discovered in a previous study, and two hypothesized two-way 

interactions that involve three first-order latent variables. In the second situation, a proper 



test would be to include the associated three-way interaction because the two-way 

interactions all could be conditional (i.e., moderated by a third latent variable). The 

procedure would be as follows: 

1) Gage the reliability and validity, and the internal and external consistency, of 

X, Z and W, and the other model latent variables. For emphasis, all the 

model’s latent variables must be internally consistent (i.e., X’s single 

construct measurement model fits the data, Z’s single construct measurement 

model fits the data, etc.); and the full measurement model with all the model’s 

latent variables, including X, Z, W, XZ, ZW, XW and XZW should be shown 

to be externally consistent. Consistency is particularly important because the 

parameter estimates in the interaction specifications are assumed to be 

trivially different between the measurement model without XZW and the 

measurement and structural models with XZW (which consistency ensures). 

2) Since an “all centered” specification of XZW, XcZcWc, where Xc, Zc and Wc 

are mean- or zero-centered (e.g., the values of Xc, for example, in each case 

are equal to the case value x minus the mean of all the values of x), provides 

the strongest disconformation test--it can jointly test all three moderation 

hypotheses (X moderates ZW, Z moderates XW, and W moderates XZ)--

XcZcWc is specified and tested first. Xc, Zc and Wc are zero-centered (e.g., the 

values of Xc, for example, in each case are equal to the case value x minus the 

mean of all the values of x). Then, XcZcWc and the relevant two-way 

interactions, XcZc, XcWc and ZcWc, are jointly specified. (The two-way XcZc, 

for example, is required because XcZcWc is the moderation of the XcZc-Y 

association by Wc and both Xc and ZcWc should be present to avoid creating 

an additional missing variable problem for Y.) 

3) Next, estimates of the loading and measurement error variance for XcZcWc, 

along with those for XcZc, XcWc and ZcWc,
15 should be computed using the 

loadings, variances, covariances and measurement error variances of Xc, Zc 

and Wc from their external consistency measurement models (MM's) without 

the interactions (see Footnote 8), and SPSS estimates of the means. 

4) Then, the reliability and validity of XcZcWc, XcZc, XcWc and ZcWc, should be 

verified, and the external consistency of  the model with XcZcWc, XcZc, XcWc 

and ZcWc should be gaged. 

5) Next, the structural model should be estimated, and if the structural model 

parameter estimates for X, Z and W are not sufficiently similar to those from 

the external consistency measurement model, the structural model parameter 

estimates should be used to revise the computed interaction loadings and 

measurement error variances, and the structural model should be re-estimated. 

 

In the first situation, estimating XZW should proceed using steps 1-5 above. 

Then,  

6) If the “all centered” three-way interaction is non significant, the next step 

would be to test one or more permutation three ways (e.g., Xc(ZW)c, etc.) 

                                                 
15 XcZc and XcWc were ignored in the pedagogical example because they were judged 

implausible. 



Specifically, the estimates of the loading and measurement error variance for 

Xc(ZW)c, for example, are computed using the loadings, variances, 

covariances and measurement error variances of Xc, and (ZW)c in the 

consistency measurement models without the interactions (see Footnote 8), 

and SPSS estimates of the means. 

7) Next, the reliability and validity of Xc(ZW)c and (ZcW)c should be verified, and 

the external consistency of  the model with Xc(ZW)c and (ZcW)c should be 

gauged. 

8) Then, the structural model should be estimated, and if the structural model 

parameter estimates for X, Z and W are not sufficiently similar to those from 

the external consistency measurement model, the structural model paramater 

estimates should be used to revise the computed interaction loadings and 

measurement error variances, and the structural model should be re-estimated.  

 

In Step 2 XcZc, XcWc and ZcWc, were specified for completeness. However, in 

theory testing, variables probably should not be added to a model without theoretical 

justification. Thus, any two-way and three-way interactions should be theoretically 

justified (argued to be plausible). Some of the two-way interactions were omitted in the 

example because they could not all be theoretically justified. However, any two-way 

interaction(s) omitted limits the test to those interaction that are present. For example, if 

XcZc for example is omitted, XcZcWc no longer tests the moderation of XcZc by Wc.  

 

Because the ALTxINVxSC interaction was significant, an ALTxINVxSC-->Y 

hypothesis for a subsequent study might be, "ALT moderates the investments-switching 

costs interaction." On the other hand, it might be argued that INVxSC jointly amplifies 

the ALT-->Y association (see Table C—at low INV and SC ALT was non-significant, 

while at higher INV and SC, ALT was significant). This latter hypothesis (and its analog 

which was not observed in the present study, ALT is negative/positive when INVxSC is 

low, but positive/negative when it is high--which would apply if the Table C structural 

coefficients changed sign) in effect treats INVxSC as a single variable (which of course it 

is). Choosing among these alternative hypotheses might depend on which is easier to 

argue. 

 

For emphasis, in the pedagogical example a significant three-way interaction was 

discovered after the data was gathered. Thus, any hypotheses and justifications involving 

it should not be added to any paper except in the Discussion section. Specifically, 

misreporting the above three-way interaction as hypothesized before the data was 

collected not only would be intellectually questionable, it would ruin the model 

(disconfirmation) test--the three-way hypothesis can no longer formally be disconfirmed 

by the data at hand.16  

                                                 
16 The three-way interaction could be re-tested using random subsets of data and 

simulated data sets generated from the covariance matrix of the study data set. However, 

the three-way interaction could still be an artifact of the data set at hand, and these retests 

could be argued to be opportunistic substitutes for new data from a subsequent study to 

formally test the interaction. 



 

 Parenthetically, there are several “shortcuts” that may save time and specification 

effort. For example, Equation 5 could be estimated using OLS regression, and if the “all 

centered” three-way interaction (with the plausible two-way interactions) is significant, 

experience suggests the structural equation results for the “all centered” three-way 

interaction are likely to be significant as well. If the “all centered” three-way interaction 

is not significant in regression, Equation 5 could be estimated using OLS regression and a 

plausible “permutation” three-way interaction. If this is significant, experience suggests 

the structural equation results for the “permutation” three-way interaction should also be 

significant. While a three-way interaction may still be significant in structural equation 

analysis, experience suggests that if the “all centered” and the plausible “permutation” 

three-way interactions are not significant in OLS regression, the structural equation 

specifications of these three-way interactions also may be non-significant.  

 

In addition, while specifying all three “permutation” three-way interactions jointly 

typically suppress each other, testing them in pairs may suggest which one to attempt to 

justify. For example in the pedagogical example, when all three “permutation” three-way 

interactions were tested jointly in regression, and the least significant “permutation” 

three-way interaction and its related two-way interaction were dropped, this suggested 

that ALT(INVxSC) was significant.  

 

In the pedagogical example ALT moderated INVxSC, and the results are shown 

in Table E.  

 

The original motivation for interactions were hypothesized associations of INV 

and SC with Y that were unstable across studies. Stated differently it was the plausible 

moderation of INV and SC that was of interest. Thus, for example, Table D presented the 

INV-Y associations (the SC-Y were similar). 

 

Table C presented the moderation of ALT by the INVxSC interaction. This also 

was of interest because the significant three-way interaction suggested the ALT-->Y 

association hypothesized in the studies was in fact conditional. 

 

 In summary, the significant three-way interaction ALTc(INVuxSCu)c implies that 

all constituent variables’ associations with Y (e.g., ALTc-->Y, INVu-->Y and SCu-->Y) 

are conditional. 

 

Equation 4c and 4d could be used to specify desired two-way interactions. These 

calculations are also included in the three-way interaction spreadsheets available by e-

mail. 

 

SUMMARY AND CONCLUSION 

 

Because there is little guidance for estimating a latent variable (LV) "three-way" 

interaction (e.g., XZW), the paper explored these variables, and the results suggested that 

a "three-way" interaction may have several non-equivalent specifications. The paper also 



provided a pedagogical example to suggest the utility of these LV’s. Hypothesizing a 

"three-way" interaction was discussed, their reliability was derived, a remedy for their 

nonessential ill-conditioning (their high correlations with X, Z and W) in real-world data 

was suggested, and an approach to interpreting them was illustrated. 

 

          In summary, a procedure for estimating XZW would follow steps 1 through 8 in 

the Discussion section. 
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Table A--Selected Correlationsa 

 
a SATu denotes an uncentered SAT, SATc denotes a mean-centered SAT, etc.; AcIcSCc is the product of mean-centered 

(MC) ALT, MC INV and MC SC. 

 

AuIuSCu is the product of uncentered (UC) ALT, UC INV and UC SC.      

Ac(ISC)c is the product of centered ALT and the mean-centered product of UC INV and UC SC. 

 

 

 

Table B--Equation 5 Unstandardized Structural Coefficient Estimates 

 
Y = aSATu + bALTc + cINVu + dSCu + gALTc(INVuxSCu)c + h(INVuxSCu)c  

  -.06 .14 -.08 .24  .02  -.02     Unstd Beta 

  -.85 2.43 -.42 .97  2.11  -.41     T-value 

SATu SATc ALTu ALTc INVu INVc Scu SCc

AcIcSCc -0.3641 -0.3641 0.5657 0.5657 -0.4513 -0.4513 -0.4662 -0.4662

AuIuSCu -0.0382 -0.0382 0.4059 0.4059 0.5499 0.5499 0.5792 0.5792

Ac(ISC)c -0.0094 -0.0094 0.0930 0.0930 -0.0501 -0.0501 -0.1397 -0.1397



Table C--Interpretation: (Factored Coefficient) ALT Associations with Y 

  Due to the INVxSC Interactiona  
 

 

a The unstandardized structural coefficients suggest that the ALT-Y association was positive over the range 

of INV and SC in the study. The structural coefficient t-values suggest, however, that the moderated Y-

ALT association was NS for low values of INV and SC in the study.  
b Mean value in the study. 
c The SQUARE of the Standard Error (SE) of the Equation 5 factored coefficient of ALT is: 

Var(b + g(INVxSC-MINVxSCT)) = Var(b) + (INVxSC- MINVxSCT)2Var(g) + 2(INVxSC-MINVxSCT)Cov(b,g) 

  = SE(b)2 + (INVxSC-MINVxSCT)2SE(g)2 + 2(INVxSC- MINVxSCT)Cov(b,g).  

 

SC =

1 2 3 3.26
b

4 5

INV = 1 0.1672 0.1889 0.2106 0.2162 0.2323 0.2540

2 0.1889 0.2323 0.2757 0.2870 0.3191 0.3626

2.51
b

0.2000 0.2544 0.3089 0.3231 0.3634 0.4179

3 0.2106 0.2757 0.3409 0.3578 0.4060 0.4711

4 0.2323 0.3191 0.4060 0.4286 0.4928 0.5797

5 0.2540 0.3626 0.4711 0.4993 0.5797 0.6882

ALT-structural coefficient standard errors
c

INV = 1 0.1382 0.1290 0.1199 0.1176 0.1111 0.1026

2 0.1290 0.1111 0.0944 0.0903 0.0795 0.0677

2.51
b

0.1243 0.1024 0.0828 0.0783 0.0675 0.0598

3 0.1199 0.0944 0.0731 0.0688 0.0607 0.0626

4 0.1111 0.0795 0.0607 0.0596 0.0665 0.0925

5 0.1026 0.0677 0.0626 0.0679 0.0925 0.1359

ALT-structural coefficient t-values

INV = 1 1.2100 1.4647 1.7560 1.8385 2.0906 2.4762

2 1.4647 2.0906 2.9209 3.1780 4.0142 5.3592

2.51
b

1.6083 2.4844 3.7318 4.1280 5.3875 6.9841

3 1.7560 2.9209 4.6631 5.2038 6.6931 7.5250

4 2.0906 4.0142 6.6931 7.1959 7.4104 6.2685

5 2.4762 5.3592 7.5250 7.3503 6.2685 5.0637



Table D--Interpretation: (Factored Coefficient) INV Associations with Y 

   Due to the ALTxSC Interaction (unstandardized betas and se’s omitted)a 

 
a The unstandardized structural coefficients suggest that at low values of ALT, INV and SC the INV-Y 

association was positive, while at high values of ALT, INV and SC it was negative. However, the structural 

coefficient t-values suggest that only the negative associations were significant in the study (as originally 

hypothesized). (These results also hint that significant positive associations might occur only if the average 

ALT, INV and SC were materially higher in the study.) The "band of significance" in the study extended 

from the lower left corner (high ALT and low SC) to the upper right corner (low ALT and high SC). The 

maximum associations and t-values in the study were at high ALT.  
b Mean value in the study. 
c The SQUARE of the Standard Error (SE) of the Equation 5 factored coefficient of INV is: 

Var(c + g(ALTxSC-MINVxSCT/INV))  

= Var(c) + (ALTxSC-MINVxSCT/INV)2Var(g) + 2(ALTxSC-MINVxSCT/INV)Cov(c,g). 

              = SE(c)2 + (ALTxSC-MINVxSCT/INV)2SE(g)2 + 2(ALTxSC-MINVxSCT/INV)Cov(c,g).  

INV (T-values)

Centrd       --------------------------------SC=---------------------------------

ALT= ALT= 1 2 3 3.26 b 4 5 INV=

1 -1.51 0.71 0.68 0.66 0.65 0.63 0.59 1

0.47 0.39 0.30 0.27 0.17 -0.01 2

0.37 0.27 0.12 0.08 -0.08 -0.39 2.51

0.29 0.15 -0.04 -0.10 -0.33 -0.81 3

0.14 -0.05 -0.35 -0.46 -0.85 -1.74 4

0.03 -0.23 -0.64 -0.79 -1.35 -2.57 5

2 -0.51 0.67 0.65 0.63 0.62 0.60 0.56 1

0.45 0.38 0.29 0.26 0.17 -0.01 2

0.36 0.26 0.12 0.08 -0.08 -0.39 2.51

0.28 0.15 -0.04 -0.10 -0.33 -0.83 3

0.14 -0.05 -0.35 -0.46 -0.87 -1.90 4

0.02 -0.23 -0.65 -0.80 -1.44 -2.98 5

2.51 b 0 0.65 0.63 0.61 0.60 0.58 0.55 1

0.44 0.37 0.28 0.26 0.16 -0.01 2

0.35 0.25 0.12 0.07 -0.08 -0.39 2.51

0.27 0.14 -0.04 -0.10 -0.33 -0.84 3

0.13 -0.05 -0.35 -0.46 -0.88 -1.97 4

0.02 -0.23 -0.65 -0.81 -1.48 -3.14 5

3 0.49 0.63 0.61 0.59 0.58 0.56 0.53 1

0.43 0.36 0.28 0.25 0.16 -0.01 2

0.34 0.25 0.12 0.07 -0.08 -0.39 2.51

0.26 0.14 -0.04 -0.10 -0.33 -0.85 3

0.13 -0.05 -0.35 -0.46 -0.89 -2.04 4

0.02 -0.22 -0.65 -0.82 -1.52 -3.21 5

4 1.49 0.59 0.57 0.55 0.55 0.53 0.50 1

0.40 0.35 0.27 0.24 0.15 -0.01 2

0.32 0.24 0.11 0.07 -0.08 -0.39 2.51

0.25 0.14 -0.04 -0.10 -0.32 -0.86 3

0.13 -0.05 -0.35 -0.46 -0.91 -2.11 4

0.02 -0.22 -0.66 -0.84 -1.58 -3.09 5

5 2.49 0.55 0.53 0.52 0.51 0.49 0.47 1

0.38 0.33 0.25 0.23 0.15 -0.01 2

0.31 0.23 0.11 0.07 -0.07 -0.39 2.51

0.24 0.13 -0.04 -0.10 -0.32 -0.88 3

0.12 -0.05 -0.35 -0.46 -0.93 -2.11 4

0.02 -0.22 -0.67 -0.85 -1.61 -2.71 5



Table E--Interpretation: (Factored Coefficient) INVxSC Associations with Y 

  Due to the ALT(INVxSC) Interactiona 

 

 

 

 

 
a The structural coefficient t-values suggest that the ALT moderated the INVxSC-Y association as 

suspected. They also reveal that at low ALT the INVxSC-Y association was negative, but at very high ALT 

it was positive. 
b Mean value in the study. 
c The SQUARE of the Standard Error (SE) of the Equation 5 factored coefficient of (INVxSC)c is: 

Var(b + gINVxSC)  

= Var(b) + (INVxSC)2Var(g) + 2(INVxSC)Cov(b,g). 

              = SE(b)2 + (INVxSC)2SE(g)2 + 2(INVxSC)Cov(b,g).  

 

 

Centered SE of t-Value

ALT ALT (INVxSC)c (INVxSC)c (INVxSC)c

Value
b

Value Coefficient
c

Coefficient
d

Coefficient

1 -1.51 -0.060 0.003 -17.47

2 -0.51 -0.038 0.004 -9.89

2.51 0 -0.027 0.004 -6.51

3 0.49 -0.016 0.004 -3.65

4 1.49 0.005 0.005 1.00

5 2.49 0.027 0.006 4.23



Appendix A—The Derivation of the Loading and Measurement Error Variance of xc(zw)c 

 

 

Under the Kenny and Judd (1984) normality assumptions the variance of the 

product of xc = [Σxi
u - M(Σxi

u)] and (zw)c = [(Σzj
u)(Σwk

u) - M((Σzj
u)(Σwk

u))] is  

 

4a) Var(xc(zw)c) = (ΛXΛZW)2Var(Xc(ZuxWu)c) + ΛX
2Var(Xc)Θ(zw)c  

  + ΛZW
2Var((ZuWu)c)Θxc + ΘxcΘ(zw)c, 

 

(e.g., Ping 1995) where ΛX = Σλxi is the loading of X on xc, ΛZW is the loading of ZW on 

(zw)c, Var(XZW) is the error disattenuated variance of XZW, Var(X) is the error 

disattenuated variance of X, and Θ(zw)c is the measurement error variance of (zw)c. 

Var(ZW) is the error disattenuated variance of ZW, and Θxc = ΣVar(εxi) is the 

measurement error variance of xc. This provides a specification of the XZW using the 

indicator xc(zw)c with the loading ΛXΛZW and the measurement error variance of 

ΛX
2Var(X)Θ(zw)c + ΛZW

2Var(ZW)Θxc + ΘxcΘ(zw)c, if estimates of the parameters associated 

with ZW are available (the parameters associated with X are available in the 

measurement model) (see Ping 1995). 

 

To provide an estimate of Var((ZuWu)c), 

 

4b) Var((ZuWu)c) = Var((ZuWu) - E(ZuWu))  

    = Var(ZuWu) 

    = E2(Z)Var(W) + E2(W)Var(Z) + 2E(Z)E(W)Cov(Z,W) 

    + Var(Z)Var(W) + Cov2(Z,W) 

 

(Bohrnstedt and Goldberger 1969), where E(*) denotes the expectation (mean) of * and 

E2(*) its square, Cov(Z,W) is the covariance of Z and W, and Cov2(Z,W) is its square (Z 

and W are uncentered and have non-zero means). Since first moments (means) are 

unaffected by measurement error, E(Z), for example, can be estimated using E(Σzj
u) (the 

SAS, SPSS, etc. mean of Σzj
u) (Lord and Novic 1968), and the variances of Z and W, and 

their covariance, can be estimated in a measurement model without ALTc(INVuxSCu)c 

(see Footnote 8).  

 

To provide an estimate of ΛZW and Θ(zw)c, 

 

 (zw)c = (Σzj
u)(Σwk

u) - M((Σzj
u)(Σwk

u)) 

 = [(Σλzj)Z + Σεzj][(Σλwk)W + Σεwk] - M((Σzj
u)(Σwk

u))  

 = (ΛZZ + Σεzj)(ΛWW + Σεwk) - M((Σzj
u)(Σwk

u)) 

 = ΛZZΛWW + ΛZZΣεwk + ΛWWΣεzj + ΣεzjΣεwk - M((Σxi
u)(Σxi

u)),  

 

with the usual assumptions that the LV's are independent of measurement errors, 

measurement errors have zero expectations, and measurement errors are independent. 

 

Thus,  

 



 Var((zw)c) = Var(ΛZZΛWW + ΛZZΣεwk + ΛWWΣεzj + ΣεzjΣεwk - M((Σxi
u)(Σxi

u))) 

= Var(ΛZZΛWW + ΛZZΣεwk + ΛWWΣεzj + ΣεzjΣεwk) 

= Var(ΛZZΛWW) + Var(ΛZZΣεwk + ΛWWΣεzj + ΣεzjΣεwk)  

+ 2Cov(ΛZZΛWW, ΛZZΣεwk + ΛWWΣεzj + ΣεzjΣεwk) 

= Var(ΛZZΛWW) + Var(ΛZZΣεwk) + Var(ΛWWΣεzj) + Var(ΣεzjΣεwk)  

= (ΛZΛW)2Var(ZW) + ΛZ
2Var(ZΣεwk) + ΛW

2Var(WΣεzj)  

+ Var(ΣεzjΣεwk) . 

 

From Equation 4b 

 

 Var((zw)c) = (ΛZΛW)2Var(ZW) + ΛZ
2(E2(Z)Var(Σεwk) + Var(Z)Var(Σεwk)) 

+ ΛW
2(E2(W)Var(Σεzj) + Var(W)Var(Σεzj)) + Var(Σεzj)Var(Σεwk) 

= (ΛZΛW)2Var(ZW) + ΛZ
2(E2(Z)Θw + Var(Z)Θw) 

+ ΛW
2(E2(W)Θz + Var(W)Θz + ΘwΘz ,  

 

where Θw = ΣVar(εwk) and Θz = ΣVar(Σεzj), because the covariances involving 

measurement errors are zero, and the expansions of Var(XuεXu) and Var(εXuεXu) contain 

zero E(εXu) terms. 

 

As a result, in Equation 4a  

 

4c) ΛZW = (Σλzj)(Σλwk)
 

 

and 

 

4d) Θ(zw)c = ΛZ
2(E2(Z)Θw + Var(Z)Θw) + ΛW

2(E2(W)Θz + Var(W)Θz + ΘwΘz 

 

and the parameters in Equation 4a all can be estimated. Specifically, the loading of XZW,  

 

4e) ΛXΛZW = (Σλxi)(Σλzj)(Σλwk) 

 

and the measurement error variance of xc(zw)c, 

 

4f) ΛX
2Var(X)Θ(zw)c + ΛZW

2Var(ZW)Θxc + ΘxcΘ(zw)c , 

 

where ΛZW, Var(ZW) and Θ(zw)c are determined using Equations 4b, 4c and 4d. 



Appendix B—The Derivation of the Reliability of Xc(ZW)c 

 

The reliability of Xc(ZW)c is 

 

 Var(Xc(ZW)c) 

 ρXcZcWc =  ——————— , 

        Var(xc(zw)c) 

 

where Xc, Z and W are true scores (Z and W arew uncentered), and xc, zc and wc are 

observed scores. This might be calculated from the structural model, and SPSS using the 

cases for the indicator xc(zw)c. 

 

The following is more elegant: because 

 

 Cxc,(zw)c
2 + VzcV(zw)cρxcρ(zw)c 

6) ρXc(ZW)c =  ———————————— , 

 Cxc,(zw)c
2 + VxcV(zw)c 

 

(Bohrnstedt and Marwell 1978) where xc and (zw)c are observed (SPSS, SAS, etc.) 

variables (i.e., sums of indicators), Cxc,(zw)c denotes the (observed) covariance of xc and 

(zw)c, Vxc, for example, denotes the (observed) variance of xc, and ρ denotes reliability 

(Bohrnstedt and Marwell 1978). The reliability of (zw)c is, 

 

  E(z)2VWρW + E(w)2Vzρz + 2E(z)E(w)Cz,w + VzVwρzρw + Cz,w
2 

6a) ρ(zw)c =  ——————————————————————————— , 

   E(z)2Vw + E(w)2Vz + 2E(z)E(w)Cz,w + VzVw + Cz,w
2 

 

(Bohrnstedt and Marwell 1978). E(Z), for example, in Equation 6a can be estimated 

using E(Σzj
u) (Lord and Novic 1968), and ρZ, for example can be estimated using 

coefficient alpha (Anderson and Gerbing (1988), and the other parameters in Equation 6 

and 6a can be estimated using structural model parameter estimates.  



Appendix C—The Derivation of the Loading, Measurement Error Variance and 

Reliability of an “All-Centered” Three-Way Interaction, XcZcWc 

 

 

Loading and Measurement Error Variance 

 

The loading, measurement error variance and the reliability of the indicator, 

xczcwc, of an “all centered” interaction, XcZcWc, are as follows: under the Kenny and 

Judd (1984) normality assumptions (see Footnote 4) 

 

7) Var(xczcwc) = Var(xc)Var(zc)Var(wc) + 2Var(xc)Cov2(zc,wc) 

  + 2Var(zc)Cov2(xc,wc) + 2Var(wc)Cov2(xc,zc)   

  + 8Cov(xc,zc)Cov(xc,wc)Cov(zc,wc)   

 

(Kendall and Stewart 1958) where xc, zc and wc are sums of indicators. In Equation 7) 

 

7a) Var(xc)Var(zc)Var(wc)  

= (ΛXc
2Var(Xc) + ΘXc)(ΛZc

2Var(Zc) + ΘZc) (ΛWc
2Var(Wc) + ΘWc) 

 

  = ΛXc
2Var(Xc)ΛZc

2Var(Zc)ΛWc
2Var(Wc) + ΛZc

2ΛWc
2Var(Zc)Var(Wc)ΘXc  

+ ΛXc
2ΛWc

2Var(Xc)Var(Wc)ΘZc + ΛWc
2Var(Wc)ΘXcΘZc  

+ ΛXc
2ΛZc

2Var(Xc)Var(Zc)ΘWc + ΛZc
2Var(Zc)ΘXcΘWc  

+ ΛXc
2Var(Xc)ΘZcΘWc + ΘXcΘZcΘWc,  

 

where xc, for example, equals ΛXc
2Var(Xc) + ΘXc, and ΛX = Σλxi is the loading of X on xc, 

Θxc = ΣVar(εxi) is the measurement error variance of xc and εxi is the measurement error 

of xi  

 

 Also in Equation 7, 

 

7b) 2Var(xc)Cov2(zc,wc)  

= 2(ΛXc
2Var(Xc)+ΘXc)Cov2(ΛzcZc+εzc,ΛwcWc+εwc) 

 

= 2ΛXc
2ΛZc

2ΛWc
2Var(Xc)Cov2(zc,wc)+ΘXcΛzc

2ΛWc
2Cov2(Zc,Wc). 

 

Similarly, 

 

7c) 2Var(zc)Cov2(xc,wc)  

= 2ΛXc
2ΛZc

2ΛWc
2Var(Zc)Cov2(xc,wc)+ΘZcΛzc

2ΛWc
2Cov2(Xc,Wc) 

 

7d) 2Var(wc)Cov2(xc,zc) 

= 2ΛXc
2ΛZc

2ΛWc
2Var(Wc)Cov2(xc,zc)+ΘwcΛzc

2ΛWc
2Cov2(Xc,Zc), 

 

and  

 

7e) 8Cov(xc,zc)Cov(xc,wc)Cov(zc,wc)  



= 8[Cov(ΛXcXc + Σεxj,ΛZcZc + Σεzj)* 

       Cov(ΛZcZc + Σεzj,ΛWcWc + Σεwj)* 

       Cov(ΛXcXc + Σεxj,ΛWcWc + Σεwj)] 

 

= 8ΛXc
2ΛZc

2ΛWc
2Cov(Xc,Zc)Cov(Xc,Zc)Cov(Xc,Zc), 

 

where Σεxj, for example, is the sum of the measurement errors of xj. 

 

Substituting Equations 7a-7e into Equation 7, then simplifying by replacing the 

sum of the first term in Equations 7a-7d, plus Equation 7e, with their equivalent, 

ΛXc
2ΛZc

2ΛWc
2Var(XcZcWc) (Kendall and Stewart 1958), Equation 7 becomes 

 

7f) Var(xczcwc) = ΛXc
2ΛZc

2ΛWc
2Var(XcZcWc) 

 

+ ΛZc
2ΛWc

2Var(Zc)Var(Wc)ΘXc  

+ ΛXc
2ΛWc

2Var(Xc)Var(Wc)ΘZc + ΛWc
2Var(Wc)ΘXcΘZc  

+ ΛXc
2ΛZc

2Var(Xc)Var(Zc)ΘWc + ΛZc
2Var(Zc)ΘXcΘWc  

+ ΛXc
2Var(Xc)ΘZcΘWc + ΘXcΘZcΘWc 

+ ΘXcΛzc
2ΛWc

2Cov2(Zc,Wc) 

+ ΘZcΛzc
2ΛWc

2Cov2(Xc,Wc) 

+ ΘwcΛzc
2ΛWc

2Cov2(Xc,Zc) . 

 

Thus, the loading of XcZcWc is ΛXcΛZcΛWc and the measurement error variance of 

XcZcWc is given by the sum of the second through the last terms of Eqn 7f. 

 

 

Reliability 

 

The reliability of XcZcWc is  

 

 Var(XcZcWc) 

 ρXcZcWc =  ——————— , 

        Var(xczcwc) 

 

where Xc, Zc and Wc are true scores, and xc, zc and wc are observed scores. This might be 

calculated from the Structural model, and SPSS using the cases for the indicator xczcwc. 

 

The following is more elegant: because 

  

Cov(aT,bT) = Cov(a,b)  

 

(Lord and Novic 1968), where aT and bT are true scores and a and b are observed scores, 

 

Var(Xc) = ρXcVar(xc) 

 

and 



 

Cov2(a,b) = r2(a,b)Var(a)Var(b),  

 

where r(a,b) is the correlation of a and b, Equation 7 can be rewritten as  

 

8a) Var(xczcwc) = Var(xc)Var(zc)Var(wc)[1 + 2r2(zc,wc) 

  + 2r2(xc,wc) + 2r2(xc,zc)  

  + 8r2(xc,zc)r
2(xc,wc)r

2(wc,zc)Var(xc)Var(zc)Var(wc)] . 

 

Similarly, replacing xc, zc and wc in Equation 7 with Xc, Zc and Wc 

 

8b) Var(XcZcWc) = Var(Xc)Var(Zc)Var(Wc) + 2Var(Xc)Cov2(Zc,Wc) 

  + 2Var(Zc)Cov2(Xc,Wc) + 2Var(Wc)Cov2(Xc,Zc)   

  + 8Cov(Xc,Zc)Cov(Xc,Wc)Cov(Zc,Wc)   

 

                       = Var(xc)Var(zc)Var(wc)[ρXcρZcρWc + 2ρXcr
2(zc,wc) 

  + 2ρZcr
2(xc,wc) + 2ρWcr

2(xc,zc)  

  + 8r2(xc,zc)r
2(xc,wc)r

2(wc,zc)Var(xc)Var(zc)Var(wc)] 

 

and  

 

                  ρXcρZcρWc + 2ρXcr
2(zc,wc) + 2ρZcr

2(xc,wc) + 2ρWcr
2(xc,zc) 

  + 8r2(xc,zc)r
2(xc,wc)r

2(wc,zc)Var(xc)Var(zc)Var(wc) 

 ρXcZcWc =  —————————————————————————— . 

                         1 + 2r2(zc,wc)+ 2r2(zc,wc) + 2r2(xc,zc)  

          + 8r2(xc,zc)r
2(xc,wc)r

2(wc,zc)Var(xc)Var(zc)Var(wc) . 

 

 



BUT WHAT ABOUT CATEGORICAL (NOMINAL) VARIABLES 

IN LATENT VARIABLE MODELS? 

 

ABSTRACT 

 

The paper suggests an approach for specification, estimation and interpretation of a 

categorical or nominal exogenous (independent) variable in theory or hypothesis tests of 

latent variable models with survey data. An example using survey data is provided. 

 

 

Anecdotally, categorical variables (e.g., Marital Status) are ubiquitous in applied 

marketing research. However, they are absent from published theory (hypothesis) tests of 

latent variable models using survey data. 

One plausible explanation is there is no explicit provision for "truly" categorical 

variables in the popular structural equation (covariant structure) analysis software 

packages (e.g., LISREL, EQS, AMOS, etc.). There, the term "categorical variable" means 

an ordinal variable (e.g., an attitude measured by a Likert scale) (e.g., Jöreskog and 

Sörbom 1996), rather than a nominal variable such as Marital Status.  

Further, normality is a fundamental assumption in covariance structural analysis 

(e.g., in LISREL, EQS, Amos, etc.) for maximum likelihood estimation, the preferred 

estimator for hypothesis tests involving latent variables and survey data (e.g., Jöreskog 

and Sörbom 1996). A (truly) categorical independent variable is typically estimated using 

"dummy" variables that are not normally distributed. (For example, while case values for 

the categorical variable Marital Status, for example, might be 1 for Single, 2 for Married, 

3 for Divorced, etc., new variables, for example Dummy_Single, Dummy_Married, etc., 

are created and estimated instead of Marital Status. Dummy_Single might have a case 

value of 1 if Marital Status = Single, and 0 otherwise, Dummy_Married might have cases 

that have the value 1 if Marital Status = Married, and 0 otherwise, etc.)  



There are other less obvious barriers in survey-data theory tests to adding (truly) 

categorical exogenous variables to models that also contain latent variables, including 

determining the significance of a categorical variable when its dummy variables are 

estimated instead. If each dummy variable is significant (or nonsignificant), it seems 

reasonable to conclude that the categorical variable from which the dummies were 

created is significant (or nonsignificant). However, if some dummy variables are 

significant but some are not, there is no guidance for estimating the significance of the 

categorical variable from which they were created. In addition, interpreting a significant 

categorical variable can involve interpreting changes in intercepts, parameters that are not 

usually estimated in theoretical model testing.  

Several approaches have been suggested for estimating categorical variables (e.g., 

dummy variable regression, logistic regression, latent category models, etc.). However, 

there is no guidance for estimating a "mixed" model--one that combines a categorical 

exogenous variable with latent variables--in theory (hypothesis) tests involving survey 

data.  

This paper addresses these matters. It suggests a specification for a categorical 

variable in theory (hypothesis) tests of latent variable models involving survey data. It 

also discusses the estimation and interpretation of a categorical variable in these "mixed" 

models. 

AN EXAMPLE 

To expedite the presentation of these matters, we will use a real-world data set involving 

buyer-seller relationship Satisfaction (SAT), Alternative relationship attractiveness 

(ALT), and Exit propensity (EXI). Data (200+ cases) was collected in a survey to test a 



larger model in which Satisfaction and Alternative Unattractiveness were hypothesized to 

be negatively associated with Exiting. SAT, ALT and EXI were measured using multiple 

item measures (Likert scales). The resulting latent variables, SAT, ALT and EXI were 

judged to be valid and reliable, and the itemizations of each were judged to be internally 

and externally consistent in the Anderson and Gerbing (1988) sense.1 

The structural equation 

EXI = b1SAT + b2ALT + ζ,                (1 

where bi are structural coefficients and ζ is structural disturbance, was estimated using 

LISREL and maximum likelihood estimation, and SAT and ALT were significantly 

(negatively) associated with EXI as shown in Table A.  

SAT was measured with five-point Likert-scaled items that each could be 

analyzed as a categorical variable. (E.g., the SAT indicator Sa2 had 5 categories: those 

respondents who strongly agreed they were satisfied, those who agreed they were 

satisfied, those who were neutral, etc.) For pedagogical purposes SAT was replaced in 

Equation 1 with one of its high loading indicators, Sa2. The resulting model was 

estimated, and Sa2 and ALT were significantly and negatively associated with EXI, also 

as shown in Table A.  

Next, dummy variables for the categories of Sa2 (i.e., category 1 = strongly 

dissatisfied, category 2 = dissatisfied, category 3 = neutral, category 4 = satisfied, and 

category 5 = very satisfied) were created. Specifically, in each case, Sat_Dummyi = 1 if 

Sa2 = i (i = 1 to 5) in that case. Otherwise, Sat_Dummyi = 0. Thus for example, in each 

                                                 
1 Other study details are omitted to skirt matters such as conceptual and operational definitions, etc. that 

were judged to be of minimal importance to the present purposes. 



case where Sa2 = 1, Sat_Dummy1 was assigned the value of 1. For those cases where 

Sa2 equaled some other value (i.e., 2, 3, 4 or 5), Sat_Dummy1 was assigned 0.  

Equation 1 was altered to produce the structural model  

EXI = b11Sat_Dummy1 + b12Sat_Dummy2 + b13Sat_Dummy3  

+ b14Sat_Dummy4 + b15Sat_Dummy5 + b2'ALT + ζ',           (2 

where b1j and b2' (j = 1 to 5) are structural coefficients, and ζ' is structural disturbance.  

 Unfortunately, Equation 2 currently cannot be estimated satisfactorily using 

LISREL (or other popular covariant structure packages such as EQS, AMOS, etc.). The 

covariance matrix produced by the dummy variables is not positive definite. 

The usual "remedy" is to estimate Equation 2 with one dummy variable omitted 

(e.g., Blalock 1979). However, this approach is unsatisfactory for theory testing because 

omitting a dummy variable in Equation 2 alters the significances of the remaining 

dummy variables, depending on which dummy variable is omitted. For example, see the 

significances in Tables B and C of Sat_Dummy2 or Sat_Dummy4 when Sat_Dummy1 or 

SAT_Dummy5 was omitted from Equation 2. 

Ping (1996) proposed a latent variable estimation approach that will estimate 

Equation 2 without omitting dummy variables. The approach, Latent Variable 

Regression, adjusts the Equation 2 variance-covariance matrix for the measurement 

errors in ALT and EXI using Equation 2 measurement model loadings and measurement 

error variances. The resulting error-disattenuated variance-covariance matrix is then input 

to OLS regression. This approach was judged to be acceptably unbiased and consistent in 

the Ping (1996) article.  



In order to use Latent Variable Regression to estimate Equation 2, the error-

adjusted covariance matrix for Equation 2, and "regression through the origin" was used 

(to accommodate the collinearity of the dummy variables--see Blalock 1979). 

Specifically, the (error attenuated) variances and covariances of ALT, EXI and the five 

indicators for the SAT dummy variables were obtained using SPSS. Next, the 

measurement model for Equation 2 was estimated using the (consistent) indicators for 

ALT and EXI, and single indicators for the five SAT dummy variables (i.e., 

Sat_Dummy1, Sat_Dummy2, etc.), with LISREL and maximum likelihood estimation. 

Then, the loadings and measurement error variances from this measurement model were 

used to adjust the SPSS variances and covariances of ALT, EXI and the SAT dummy 

variables using equations proposed by Ping (1996) such as 

Var(ξX) = (Var(X) - θX)/ΛX
2  

and 

Cov(ξX,ξZ) = Cov(X,Z)/ΛXΛZ , 

where Var(ξX) is the error adjusted variance of X, Var(X) is the error attenuated variance 

of X (available from SAS, SPSS, etc.), ΛX = avg(λX1 + λX2 + ... + λXn), avg = average, 

and avg(θX = Var(εX1) + Var(εX2) + ... + Var(εXn)), (λ's and εX's are the measurement 

model loadings and measurement error variances--1 and 0 respectively--for the SAT 

dummy variables, and n = the number of indicators of the latent variable X), Cov(ξX,ξZ) 

is the error adjusted covariance of  X and Z, and Cov(X,Z) is the error-attenuated 

covariance of X and Z.2 

                                                 
2  These equations make the classical factor analysis assumptions that the measurement errors are 

independent of each other, and the xi's are independent of the measurement errors. The indicators for X and 

Z must be consistent in the Anderson and Gerbing (1988) sense.  



 The resulting error-adjusted variance-covariance matrix for Equation 2 was then 

input to SPSS' OLS regression procedure, and the results are shown in Table D. 

DISCUSSION 

The dummy variables for categories 4 and 5 (Sat_Dummy4 and Sat_Dummy5) in 

Table D were nonsignificant, while the other dummy variables were significant. 

Comparing the Table D results for ALT to those from Tables B and C, the statistics for 

the coefficient of ALT were practically unaffected by omitting a single dummy variable, 

or by using regression through the origin. Also note that the unstandardized coefficient 

for Sat_Dummy2 with Sat_dummy1 omitted in Table B was Sat_Dummy2 - 

Sat_Dummy1 (within rounding), in Table D. Similarly, the unstandardized coefficient for 

Sat_Dummy3 with Sat_dummy1 omitted in Table B was Sat_Dummy3 - Sat_Dummy1, 

in Table D within rounding. Similarly, the other Table B dummy variables were the 

difference within rounding between their Table D value and Sat_Dummy1. For this 

reason Sat_Dummy1 is sometimes referred to as a "reference variable." In Table C 

Sat_Dummy5 is the reference variable for the unstandardized coefficient values shown 

there. 

However, the interpretation or "meaning" of the unstandardized coefficients of the 

dummy variables is slightly different from the unstandardized coefficient of ALT. For 

example, the signs on the Table D unstandardized coefficients of the dummy variables 

have no meaning. Specifically, Sat_Dummy1, for example, is not "positively" associated 

with EXI. The unstandardized coefficient of Sat_Dummy1 is the absolute value of the 

change in the mean of EXI "caused" (associated) with Sat_Dummy1 (1.51). In this case, 

the mean of EXI changed in absolute value for the "very dissatisfied" category by the 



amount 1.51. Similarly, the absolute value of the change in EXI for the "very satisfied" 

(Sat_Dummy5) was .15. (Nevertheless, the "direction" of the associations of the set of 

dummy variables with EXI can be inferred--see below).  

THE SATISFACTION-EXITING HYPOTHESIS 

Satisfaction was hypothesized to be associated with Exiting, but so far we have 

estimated only variables derived from Satisfaction, its dummy variables, and several of 

them were nonsignificant. To estimate the effect of Satisfaction on Exiting using the 

dummy variables, the coefficients of the dummies were aggregated using a weighted 

average,3 and the results are shown in Table E. Interpreting this aggregated result, 

Satisfaction, estimated as a categorical variable, was significantly associated with Exiting 

as hypothesized.  

The "direction" of this association can be inferred by linearly ordering the 

unstandardized coefficients of the dummy variables from low to high. In this case EXI 

(i.e., its means in absolute value) decreased as the category represented by the dummy 

variables increased, which is consistent with the Table A result that Satisfaction is 

negatively associated with Exiting. Specifically, in the lower satisfaction categories, 

Sat_Dummy1 and Sat_Dummy2, Exiting was higher (i.e., the means were higher), while 

in the higher satisfaction categories, Sat_Dummy4 and Sat_Dummy5, Exiting was lower.  

COMMENTS  

                                                 
3 An overall F test of the "effect" of the dummies (e.g., F = [( R2

2 - R1
2 )/( k2 - k1 )] / [( 1- R2

2 )/( N - k2 - 1 )] 

where Ri2 is R Square (or Squared Multiple Correlation), i = 1 denotes the model with the dummies 

omitted, i = 2 denotes the model with the dummies included, ki is the number of exogenous variables 

(predictors), and N is the number of cases--see for example Jaccard, Turrisi and Wan, 1990) is 

inappropriate because R2's are not comparable between intercept and no intercept models (Hahn 1977). (In 

addition, R2 is usually incorrectly calculated in no intercept models--see Gordon 1981). 



Anecdotally, it is believed that regression through the origin (no intercept 

regression) is biased, perhaps because its R2 appears to be biased (Gordon 1981)--

especially when the intercept is likely to be non-zero. However, experience suggests that 

with dummy variables, coefficient estimates are consistent between intercept regression 

and no intercept regression. For example, the coefficient estimates from omitting a 

dummy variable (which used intercept regression) such as those in Tables B and C were 

the difference between the omitted dummy variable's coefficient and the other 

coefficients in the no intercept results shown in Table D, within rounding). Also, the 

Equation 2 coefficients for ALT were practically unaffected by regression through origin 

(e.g., see Table B and Table D).  

However, these results do not "prove" anything. They merely hint that the 

suggested approach may be useful for a categorical exogenous variable4 in theory 

(hypothesis) tests of latent variable models with survey data. Nevertheless, as an 

additional example, ALT was estimated as a categorical variable with the results shown 

in Table F. These results paralleled those from estimating Satisfaction. For example, the 

Equation 2 coefficients for SAT were practically unaffected by regression through origin. 

Similarly, the coefficient estimates from omitting a dummy variable (which used 

intercept regression) were the difference between the omitted dummy variable's 

coefficient and the other coefficients in the no intercept results in Table F (within 

rounding). The "direction" of this effect was inferred by linearly ordering the 

unstandardized coefficients for the Alt_Dummy variables. As these means increased (al4 

increased), Exiting increased, which is consistent with Equation F in Table F. Finally, the 

                                                 
4 Blalock (1979) points out that multiple categorical variables cannot be jointly estimated using regression 

through the origin. 



aggregated coefficient for the Alt4 dummy variables, "confirmed" the Equation F results 

that Alternatives, estimated as a categorical variable, was positively associated with 

Exiting as hypothesized. 

However, the proposed approach is tedious to use. The adjusted variance-

covariance matrix for Latent Variable Regression must be manually calculated. Similarly, 

the standard errors for Latent Variable Regression must be manually calculated 

(measurement model covariances could be substituted for the calculated covariances), 

and aggregation of the dummy variable coefficient results must be manually performed. 

(EXCEL templates are available from the authors for these calculations.)  

The sample size of each dummy variable was a fraction of the total sample. 

Although most of the dummy variables were significant in the examples, the typically 

small sample sizes of survey data tests (e.g., about 200 cases) can produce one or more 

nonsignificant associations in the dummy variables because of their small subsamples. 

Thus, aggregation of the dummy variables is desirable to judge the overall significance of 

the categorical variable from which they were created.5 

The suggested aggregation approach for the dummy variables was uninvestigated 

for any bias and inefficiency. Thus, the significance threshold for the aggregated 

coefficient of a categorical variable probably should be higher than the customary |t-

value| = 2.0, where "| |" indicates absolute value. For example, since the significances of 

the Table E and Table F aggregated coefficients were materially larger than t = 2.0, they 

were judged to be significant. 

                                                 
5 Parenthetically, the significance of the Sa2-Exiting association in Table A, for example, was very 

different from that of the aggregation of its dummy variables shown in Table E because the associations 

themselves were estimated differently.  



Obviously, Latent Variable Regression is limited to a estimating a single 

dependent or endogenous variable, and it provides Least Squares coefficient estimates, 

rather than the preferred Maximum Likelihood estimates. However, Castella (1983) has 

proposed adding a "leverage data point" that "forces" a regression intercept of zero (i.e., 

the intercept or constant estimated in no-origin regression is zero). This leverage data 

point also may permit Equation 2, for example, to be estimated using covariant structure 

analysis and all its dummy variables with maximum likelihood.  

Unfortunately, the results for the dummy variables are sensitive to how the 

dummy variables are coded. Changing the assignment of 1 for category exclusion (e.g., 

Sat_Dummy5 = 1 if Sa2 = 5, and Sat_Dummy5 = 0 otherwise) to -1, for example, for 

category inclusion, reverses the signs on all the dummy variables in the tables. However, 

this sensitivity to coding provides further "meaning" for dummy variables. Specifically, 

the absolute value of the unstandardized coefficient of Sat_Dummy5, for example, in 

Table D is the change from zero, the (arbitrary) category exclusion value for the dummy 

variable coding, for the mean of EXI that is "caused" (associated) with Sat_Dummy5 

(.15). In this case, the mean of EXI changed in absolute value (from zero) for the "very 

satisfied" category by the amount .15. Similarly, the absolute value of the change in EXI 

(from zero) for the "very dissatisfied" (Sat_Dummy1) was 1.51.  

The "direction" of a (truly) categorical association across its categories can be 

nearly impossible to hypothesize in the customary manner. For example, it is not obvious 

how one would argue, a priori, the "directionality" of any association between the eight 

VALS Psychographic categories (SRI International 1989) and Exiting using customary 

hypotheses such as   



H2: VALS increases Exiting 

or 

H2': VALS decreases Exiting. 

However, an hypothesis involving VALS and Exiting might be stated without 

"directionality" as  

H2": VALS is associated with (affects) Exiting. 

Any "directionality" could be inferred later from linearly ordering the resulting means 

(even if they were difficult to explain). Such an approach of disconfirming an association 

stated without directionality, then observing or "discovering" directionality is within the 

"logic of  discovery" (e.g., Hunt 1983), so long as this "discovery" of directionality is 

presented as potentially an artifact of the study that must be hypothesized, theoretically 

supported, then disconfirmed in an additional study. 

SUMMARY 

The paper suggested an approach to estimating an exogenous (truly) categorical 

variable (e.g., Gender) in theory (hypothesis) tests of latent variable models with survey 

data. The approach involved using dummy variables for the categories, and Latent 

Variable Regression (Ping 1996). The dummy variable estimation results were 

aggregated to gauge the disconfirmation of a categorical variable hypothesis. The paper 

also suggested that associations between exogenous categorical variables and endogenous 

latent variables might be hypothesized without the customary "directionality" statement 

(that can be difficult to predict in categorical variables). 
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Table A--Abbreviated Equation 1a Estimation Resultsb  

 

 

Equation 1 Estimation Results:  

 

 

Equation 1 with Sa2d Estimation Results:                

 

 

_________________ 
a EXI = b1SAT + b2ALT + ζ . 
b The structural models were judged to fit the data. Estimates involved LISREL and 

maximum likelihood. 
c SE is Standard Error. 
d EXI = b1'Sa2 + b2'ALT + ζ" . 

Endog EXI

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.63 0.11 -5.93

SAT -0.58 0.10 -5.76

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.69 0.07 9.65

SA2 -0.42 0.05 -7.79



Table B--Abbreviated Equation 2 Results with Sat_Dummy1 Omitteda b   

 

 

 
_____________________________ 

a EXI = b11Sat_Dummy1 + b12'Sat_Dummy2 + b13'Sat_Dummy3  

            + b14'Sat_Dummy4 + b15'Sat_Dummy5 + b2''ALT + ζ''' 
b The structural model was judged to fit the data. Estimates involved LISREL and 

maximum likelihood. 
c SE is Standard Error. 

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.68 0.07 9.92

Sat_Dummy3 -0.98 0.26 -3.79

Sat_Dummy4 -1.30 0.26 -5.05

Sat_Dummy2 -0.02 0.26 -0.06

Sat_Dummy5 -1.36 0.28 -4.87



Table C--Abbreviated Equation 2 Results with Sat_Dummy5 Omitteda b   

 

 

 

_____________________________ 

a EXI = b11'Sat_Dummy1 + b12"Sat_Dummy2 + b13"Sat_Dummy3  

            + b14"Sat_Dummy4 + b15Sat_Dummy5 + b2"'ALT + ζ'''' 
b The structural model was judged to fit the data. Estimates involved LISREL and 

maximum likelihood. 
c SE is Standard Error. 

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.68 0.07 9.92

Sat_Dummy3 0.38 0.15 2.48

Sat_Dummy1 1.36 0.28 4.87

Sat_Dummy4 0.06 0.12 0.51

Sat_Dummy2 1.34 0.18 7.53



Table D-- Abbreviated Equation 2 Results with all the Sa2 Dummy Variablesab   

 

 

 

 

_______________________ 

a EXI = b11''Sat_Dummy1 + b12'''Sat_Dummy2 + b13'''Sat_Dummy3  

            + b14'''Sat_Dummy4 + b15'Sat_Dummy5 + b2''''ALT + ζ''''' 
b Estimation involved Latent Variable Regression with least squares. 
c The standard error (SE) is from Ping (2001). 

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.68 0.07 9.92

Sat_Dummy1 1.51 0.36 4.20

Sat_Dummy5 0.15 0.18 0.85

Sat_Dummy3 0.54 0.24 2.21

Sat_Dummy2 1.50 0.28 5.37

Sat_Dummy4 0.22 0.20 1.09



Table E--Aggregation Resultsa b  

 

 

______________ 
a The Case Weighted Average is Σwibi , where Σ is summation, i = 1 to 5, wi is the 

weighted average (number of cases in category i divided by the total number of cases) of 

the unstandardized coefficient, bi , of Sat_Dummyi, and i = 1 to 5. 

b The aggregated Standard Error is the Square Root of the variance of the weighted sum 

of the individual standard errors (e.g., sqrt(Var(w1SE1 + w2SE2 + w3SE3 + w4SE4 + 

w5SE5) = sqrt(Σwi
2SEi

2 + 2(ΣCov(SEi,SEj))), where "sqrt" is the square root, Var is 

variance, wi is the weighted average (number of cases in category i divided by the total 

number of cases) of the unstandardized coefficient of Sat_Dummyi, SE is standard error, 

Σ is summation, i = 1 to 5, j = 2 to 5, and i > j. 

 

T-value of

Case Case

Weighted Weighted 

Average Standard Error of Average 

of the the Case of the 

Unstandardized Weighted Average Unstandardized

Structural of the Unstandardized Structural

Coefficients Structural Coefficients Coefficients

0.51 0.21 2.47



Table F--Abbreviated Estimation Resultsa for ALT as a Categorical Variable  

 

 

a) Abbreviated Equation 1 with Al4b Estimation Results: c  

 

 

b) Abbreviated Equation 2 Results with Al4b and Alt_Dummy1 Omitted e  

 

 

c) Abbreviated Equation 2 Results with Al4b and Alt_Dummy5 Omitted f  

 

 

d) Abbreviated Equation 2 Results with All Al4b Dummy Variablesg  

Exog Unstd

Variable Str Coef SE
d

t-value

SAT -0.57 0.07 -8.59

AL4 0.52 0.05 9.69

Exog Unstd

Variable Str Coef SE
d

t-value

SAT -0.56 0.07 -8.56

Alt_Dummy3 0.67 0.18 3.85

Alt_Dummy5 1.80 0.26 7.02

Alt_Dummy4 1.56 0.20 7.72

Alt_Dummy2 0.27 0.17 1.61

Exog Unstd

Variable Str Coef SE
d

t-value

SAT -0.56 0.07 -8.56

Alt_Dummy3 -1.12 0.19 -5.83

Alt_Dummy1 -1.80 0.26 -7.02

Alt_Dummy4 -0.23 0.19 -1.21

Alt_Dummy2 -1.53 0.21 -7.42

Exog Unstd

Variable Str Coef SE
d

t-value

SAT -0.56 0.07 -8.56

Alt_Dummy5 5.70 0.23 24.45

Alt_Dummy4 5.47 0.23 23.89

Alt_Dummy1 3.90 0.34 11.54

Alt_Dummy3 4.58 0.26 17.90

Alt_Dummy2 4.17 0.29 14.62



Table F (con't.)--Abbreviated Estimation Resultsa for ALT as a Categorical Variable  

 

 

e) Aggregation Results h i  

 

 

________________ 
a The structural models were judged to fit the data. Exhibits a) through c) involved 

LISREL and maximum likelihood estimates, and Exhibit d) involved Latent Variable 

Regression and least squares estimates. 
b Al4 was the heaviest loading indicator of ALT. 
c EXI = b1"SAT + b2"Al4 + ζ'''''' . 
d SE is Standard Error. 
e EXI = b1'''SAT + b21Alt_Dummy1 + b22Alt_Dummy2 + b23Alt_Dummy3  

            + b24Alt_Dummy4 + b25Alt_Dummy5 + ζ'''''' . 
f EXI = b1''''SAT + b21Alt_Dummy1 + b22'Alt_Dummy2 + b23'Alt_Dummy3  

            + b24'Alt_Dummy4 + b25Alt_Dummy5 + ζ'''''''' . 
g EXI = b1'''''SAT + b21'Alt_Dummy1 + b22"Alt_Dummy2 + b23"Alt_Dummy3  

            + b24"Alt_Dummy4 + b25"Alt_Dummy5 + ζ''''''''' 
h The Case Weighted Average is Σwibi , where Σ is summation, i = 1 to 5, wi is the 

weighted average (number of cases in category i divided by the total number of cases) of 

the unstandardized coefficient, bi , of Alt_Dummyi, and i = 1 to 5. 

i The aggregated Standard Error is the Square Root of the variance of the weighted sum 

of the individual standard errors (e.g., sqrt(Var(w1SE1 + w2SE2 + w3SE3 + w4SE4 + 

w5SE5) = sqrt(Σwi
2SEi

2 + 2(ΣCov(SEi,SEj))), where "sqrt" is the square root, Var is 

variance, wi is the weighted average (number of cases in category i divided by the total 

number of cases) of the unstandardized coefficient of Alt_Dummyi, SE is standard error, 

Σ is summation, i = 1 to 5, j = 2 to 5, and i > j. 

 

T-value of

Case Case

Weighted Weighted 

Average Standard Error of Average 

of the the Case of the 

Unstandardized Weighted Average Unstandardized

Structural of the Unstandardized Structural

Coefficients Structural Coefficients Coefficients

4.48 0.27 16.86



INTERACTIONS MAY BE THE RULE RATHER THAN THE EXCEPTION,  

BUT . . . : 

A NOTE ON ISSUES IN ESTIMATING INTERACTIONS  

IN THEORETICAL MODEL TESTS 

 

ABSTRACT 

Authors have called for more frequent investigation of interactions in theoretical models 

involving survey data. However, there are competing proposals for interaction 

specification in structural equation models. And, there are other interaction issues that 

have received little or no attention in theoretical model testing. For example, what types 

of evidence suggest that an interaction should be hypothesized? Is an interaction a 

construct or a mathematical form, or both? There are theoretical and practical issues 

involving the existing structural equation estimation proposals for interactions. For 

example, specifying the interaction between X and Z, for example, as XZ is an 

insufficient disconfirmation test. This paper critically addresses these and other theory-

testing matters in conceptualizing, estimating and interpreting interactions in survey data.  

 

 

Authors have noted that in some disciplines interactions may be the rule rather than the 

exception in survey data models (e.g., Jaccard, Turrisi and Wan 1990). However, 

interactions in published theoretical model tests with survey data are comparatively rare 

(Aiken and West 1991). Perhaps as a result, recent conference keynote speakers have 

called for increased investigations of substantive interactions. While infrequent 

appearances of interactions in substantive structural equation papers may have been the 

result of the unavailability of suitable analysis tools until recently, substantive researchers 

may not be accustomed to conceptualizing and estimating interactions. Theoretical model 

building with an interaction involves conceptualizing at least three variables, developing 

theory to justify two variables' proposed associations with a target variable, then 

developing additional theory for the variability (form) of least one of these relationships. 

In ANOVA, interactions are usually estimated en masse after the main effects are 

estimated. In this event, theorizing about interactions occurs after they are found to be 

significant, if at all.  
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The "value" added by the increased effort required for theorizing and assessing 

interactions may seem comparatively low, especially for theoretical models involving 

"interesting" new constructs or "interesting" new paths among relationships. There is also 

the tedium of interaction specification using the existing structural equation estimation 

proposals.  

Anecdotally, some authors believe interactions should not appear in theoretical 

models because they are not "proper" constructs. They are not "indicated" (pointed to) by 

observed variables.  

Further, specifying an hypothesized interaction between X and Z, for example, as 

the product of X and Z, XZ is an insufficient test of the hypothesized interaction. XZ is 

but one of many interaction forms (Jaccard, Turrisi and Wan 1990). 

 

THE PRESENT RESEARCH 

This paper critically addresses several matters related to interactions in theoretical model 

tests involving survey data. For example, it discusses foreseeing the plausibility of an 

interaction at the model-building stage, then justifying these interactions theoretically. It 

also discusses how interaction hypotheses are phrased, and it discusses issues involving 

the existing estimation proposals for interactions such as a lack of an adequate interaction 

disconfirmation test. Along the way it discusses matters such as interpreting interactions 

in survey data, probing for interactions after the hypothesized model has been estimated, 

and the "trap" of hypothesizing interactions that are found post hoc as though they were 

hypothesized before the model was first estimated.  
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CONCEPTUALIZING INTERACTIONS 

We will discuss each of these matters, beginning with conceptualizing or envisioning 

interactions--foreseeing their plausibility at the model-building stage.  

Because interactions are usually characterized as "moderators," this might hinder 

their theory development. The term "moderator" might signal that X, for example, 

reduces the Z-Y association as X increases, and that interactions are restricted to this 

case. However, X actually might reduce the Z-Y association as X decreases. In this case 

X amplifies the Z-Y assoc. There are other forms of the interaction meaning of 

"moderation" as well. For example, X could reduce the Z-Y association at one end of the 

range of X in the study, and it could amplify the Z-Y association at the other end. These 

interactions are termed disordinal interactions.  

Thus, it may be useful to resist thinking of interactions as moderators in the 

development of a model. Instead, it may be fruitful to think of what might happen to the 

Z-Y relationship, for example, when X was at a low level versus when X was high. For 

example, it is well known that relationship satisfaction reduces relationship exiting, and 

attractive alternatives increase exiting (e.g., Ping 1993). However, what would happen if 

a data set were split at the median of satisfaction, and the strength of the alternatives-

exiting association were compared between the two split halves? Alternatives should 

increase exiting when satisfaction is lower, but when satisfaction is higher, the effect of 

alternatives on exiting should be lower or non significant (see Ping 1994).  

While this split-halves approach has been disparaged for interaction estimation 

(e.g., Lubinski and Humphreys 1990) it may be a fruitful "though experiment" for 

conceptualizing interactions. Because of concerns about model parsimony, this thought 
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experiment should probably be restricted to major constructs, but for the "most 

important" pair of variables that should be related, could this relationship plausibly 

change in strength or direction between low and high values of a third variable? 

Specifically, for low values of X, for example, should the Z-Y association somehow be 

different from the Z-Y association when X is high?  

Obviously this though experiment could be conducted on new models. It also 

could be conducted on previously investigated models that did not consider interactions. 

Specifically, because a disordinal interaction could have caused a main effect to be non 

significant in a published study (see Aiken and West 1991), previous studies with non-

significant hypothesized associations might be fruitfully considered for the above thought 

experiment. A disordinal interaction also could have caused a main effect to be positive 

in one study and negative in another (see Aiken and West 1991). Thus, previous studies 

with an association that is not consistently significant, or not consistent in sign might be 

fruitfully considered for the thought experiment. It even might be fruitful to consider the 

major associations in a previously investigated model for the thought experiment, even if 

they have been consistently significant and in the same direction.   

There is an additional way to identify interactions for theory development  (and 

estimation in a future study): post hoc probing for them as in ANOVA. This matter will 

be discussed later. 

 

JUSTIFYING INTERACTIONS 

However, an interaction can be challenging to justify theoretically. While existing theory 

might be available to directly support a plausible interaction, it is more likely that there 
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has been little previous thought about the target interaction. This lack of previous though 

about a topic has been a hallmark of science, and researchers have used many strategies 

to construct explanations for the topic under study. While these can include deduction, 

induction and abduction (see Peirce 1931–1935, 1958), in general, researchers use any 

sort of evidence, including direct experience such as exploratory focus groups, to support 

a proposed interaction.  

For example, and as previously mentioned, satisfaction and alternatives both 

affect exiting. However, Ping (1994) argued that satisfaction attenuates the alternative-

exiting association. To justify this hypothesis he used prior arguments that at high-

satisfaction subjects were not aware of alternatives (Dwyer, Schurr and Oh 1987) or they 

devalued them (Thibaut and Kelly 1959). He also noted that alternatives previously had 

been argued to reduce exiting, and that argument had been empirically "confirmed." To 

resolve this paradox, he proposed the interaction. In this case he used existing arguments 

about high satisfaction, existing theory and prior results about alternatives-exiting, and a 

proposal that the prior alternatives-increases-exiting results likely applied to lower 

satisfaction samples to justify a proposed interaction. These results also might have been 

found in focus groups of low and high satisfaction subjects.  

However, it usually is insufficient to use "experience" and previous writings as 

justification; a "why" must be supplied. For example, at low satisfaction increasing 

alternatives are likely to increase exiting because with reduced satisfaction (reduced 

relationship rewards) the alternatives' rewards may appear more attractive than the 

current relationship's. At high satisfaction, alternatives are not likely to be associated with 

exiting because the effort (cost) to compare rewards is unnecessary, or the alternative's 
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rewards are less than certain (a risk). In general, rewards and cost (see for example Shaw 

and Costanzo 1982), and risk (Kahneman and Tversky 1979) have been used to justify 

considerable research involving human behavior, and they might continue to be useful for 

interactions. Examples of interaction justification can be found in Aiken and West 

(1991), and the citations therein, Ajzen and Fishbein (1980), Kenny and Judd (1984) and 

Ping (1994, 1999). 

 

HYPOTHESIZING INTERACTIONS 

Given that X, for example, is argued to increase the Z-Y association, should the 

hypothesis be stated as "X moderates the Z-Y association?" Terms such as "interacts 

with," "modifies," "amplifies" or "increases" would be more precise. Specifically,  

H: X interacts with/modifies/amplifies/increases the Z-Y association 

would be more precise. However, it still may be insufficient, especially if the low-high 

though experiment and justification approach suggested above is used. In this case 

H: At low X, the Z-Y association is comparatively weak, while at high X the Z-Y 

association is stronger,  

would fit a low-high argument. 

AN EXAMPLE As previously mentioned, attractive alternatives are likely to 

increase relationship exiting. Relationship dissatisfaction amplifies this alternatives-

exiting relationship. Specifically, when dissatisfaction is low the positive alternatives-

exiting association should be weak (small, possibly non significant). However, when 

dissatisfaction is high, the alternatives-exiting association should be stronger (larger 

compared to the low dissatisfaction coefficient).  



 6 

Thus, in this case a "complete" interaction hypothesis would be  

H1a: Dissatisfaction is positively associated with exiting, 

H1b: Alternatives are positively associated with exiting, and 

H1c: Dissatisfaction moderates/interacts with/attenuates/reduces the alternatives-

exiting association. 

Alternatively, 

H1c': As dissatisfaction increases, the alternatives-exiting association becomes 

weaker.  

Note that the interaction hypothesis is accompanied by two other hypotheses involving 

exiting with satisfaction and alternative, and that "moderates," meaning "to reduce' is 

appropriate.  

Instead, one might hypothesize  

H1c": When dissatisfaction is low the alternatives-exiting association is weaker 

than it is when dissatisfaction is higher. 

Obviously, an equivalent interaction hypothesis statement would be "as 

dissatisfaction declines, the alternatives-exiting association becomes weaker." However, 

this may not match the above argument quite as well as H1c-H1c". It would match the 

above argument if the "direction" of the argument were reversed (i.e., "when 

dissatisfaction is high the positive alternatives-exiting association should be strong 

(large), but when dissatisfaction is lower, the alternatives-exiting association should be 

weaker (smaller, possibly non significant)). 

A property of the dissatisfactionXalternatives interaction that is useful in 

justifying interactions and framing their hypotheses is their symmetry. To explain, an 
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abbreviated structural equation involving dissatisfaction (DISSAT), alternatives (ALT), 

and exiting (EXIT) would be  

EXIT = a DISSAT + b ALT + c DISSATxALT .            (1 

Factoring,  

EXIT = a DISSAT + (b + c DISSAT)ALT .               (2 

In words, since b and c are constants, as DISSAT changes from subject to subject in the 

study, the structural coefficient of ALT, b+c DISSAT, changes.  

However, Equation 1 could be re factored into 

EXIT = bALT + (a +c ALT) DISSAT .                (3 

Thus, as ALT changes, the structural coefficient of DISSAT, a+cALT, changes. Thus, 

ALT interacts with DISSAT. 

In general, if X interacts with Z in the Z-Y association, then Z interacts with X in 

the X-Y association. In the DISSATxALT case it turns out that it is easier to argue that 

increasing alternatives increases the dissatisfaction-exiting association, so an interaction 

hypothesis such as  

H1c'": Alternatives moderate/interact with/attenuate/reduce the dissatisfaction-

exiting association, 

H1c"": As alternatives increase, the dissatisfaction-exiting association becomes 

stronger, or 

H1c""': When alternatives are low the dissatisfaction-exiting association is weaker 

than it is when alternatives is higher, 

is appropriate. 
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For emphasis, two thought experiments are possible with DISSAT: what happens 

to the DISSAT-EXIT association as ALT changes, and what happens to the ALT-EXIT 

association as DISSAT changes? 

 

INTERACTION COST-BENEFITS 

The "value" of the increased effort required for theorizing and determining interaction 

effects may be comparatively low, especially for theoretical models involving 

"interesting" new constructs or new relationships among constructs.  

Specifically, and as mentioned earlier, an interaction involves theory development 

for two variables' association with a target variable, and additional theory development 

for the variability (form) of least one of these relationships. In addition, interactions 

typically explain comparatively little additional variance (Cohen and Cohen 1983). 

Specifically, in Equation 1, adding DISSATxALT explains little additional variance in 

EXIT. However, in theory testing it is more important to know how an interaction affects 

a target relationship, and thus the behavior of its factored coefficient (e.g., b+cDISSAT in 

Equation 2), rather than to explain lots of additional variance. (Materially explaining 

additional variance is important in model building, e.g., epidemiology.) Parenthetically, 

experience suggests that even for an interaction that explains comparatively little 

additional variance, a factored coefficient such as (b+cDISSAT) can be quite large for 

some values of DISSAT. 

Interactions reduce parsimony. Specifically, adding an interaction decreases 

degrees of freedom, and increases model collinerarity. However, if there is strong 

theoretical justification for an interaction, it is likely the interaction will be significant in 
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any reasonably sized sample. In addition, an hypothesized interaction's collinerarity is an 

important part of a model's test. 

Papers with interactions tend to be overly methods oriented, and the interactions 

tend to dominate the paper. One method to reduce the appearance of a "methods paper" is 

to place the interaction details in an appendix. Considering interaction(s) for major 

exogenous constructs only also should reduce their apparent "dominance" in a paper. 

PROPOSED APPROACHES  Unfortunately, issues with structural equation 

estimation approaches for interactions may further reduce their apparent value. 

Specifically, there are several proposals for specifying latent variable interactions 

including (1) Kenny and Judd 1984; (2) Bollen 1995; (3) Jöreskog and Yang 1996; (4) 

Ping 1995; (5) Ping 1996a; (6) Ping 1996b; (7) Jaccard and Wan 1995; (8) Jöreskog 

2000; (9) Wall and Amemiya 2001; (10) Mathieu, Tannenbaum and Salas 1992; (11) 

Algina and Moulder 2001; (12) Marsh, Wen and Hau 2004; (13) Klein and Moosbrugger 

2000/Schermelleh-Engle, Kein and Moosbrugger 1998/Klein and Muthén 2002; and (14) 

Moulder and Algina 2002.  

They are all very tedious to use, most are inaccessible to substantive researchers 

(Cortina, Chen and Dunlap 2001), and some do not involve Maximum Likelihood 

estimation, or commercially available estimation software (proposals 2, 6 and 13). 

Several of these proposals have not been formally evaluated for bias and 

inefficiency (i.e., proposals 8 and 10). In additional proposal 10 did not perform well in a 

comparison of interaction estimation approaches (see Cortina, Chen and Dunlap 2001).  

Most of these proposals are based on the Kenny and Judd product indicators (for 

example, x1z1, x1z2, ... x1zm, x2z1, x2z2, ... x2zm, ... xnzm, where n and m are the number of 
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indicators of X and Z respectively). However, specifying all the Kenny and Judd product 

indicators usually produces model-to-data fit problems (e.g., Jaccard and Wan 1995).  

Several proposals use weeded subsets of the Kenny and Judd (1984) product 

indicators or indicator aggregation to avoid these inconsistency problems (proposals 3, 4, 

5, 7, 9, 11, 12 and 14). Unfortunately, weeding the Kenny and Judd product indicators 

raises questions about the face or content validity of the resulting interaction (e.g., if all 

the indicators of X and Z are not represented in the indicators of XZ, for example, is XZ 

still the product of X and Z as they were operationalized in the study?) (proposals 3, 7, 9, 

11, 12 and 14). In addition, the formula for the reliability of a weeded XZ is unknown. 

Specifically, the formula for the reliability of XZ is a function of (unweeded) X and 

unweeded Z, and thus it assumes XZ is operationally (unweeded) X times (unweeded) Z. 

Weeded Kenny and Judd product indicators also produce interpretation problems using 

factored coefficients because XZ is no longer (unweeded) X times (unweeded) Z 

operationally (see Equation 2).  

Finally, although proposal 4 has none of these drawbacks except that it is tedious, 

and it assumes the loadings are tau equivalent. Proposal 4's tediousness may be reduced 

using the specification templates at http://home.att.net/~rpingjr/research1.htm. Although 

the tau equivalency assumption can be removed using weighting, experience with real-

world data suggests that interaction significance is not particularly sensitive to this 

assumption. 

 

INTERPRETING INTERACTIONS 
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Once an interaction in survey data is estimated, how should one interpret it? Two point 

graphical techniques that are used in ANOVA ignore much of the information available 

in survey data. For example, authors have noted that interaction significance varies 

(Aiken and West 1991, Jaccard, Turrisi and Wan 1990).  

There have been several proposals for interpreting regression interactions (e.g., 

Aiken and West 1991; Darlington 1990; Denters and Van Puijenbroek 1989; Friedrich 

1982; Hayduk 1987; Hayduk and Wonnacott 1980; Jaccard, Turissi and Wan 1990; 

Stolzenberg 1979). However, there is little guidance for interpreting latent variable 

interactions. The following presents an approach adapted from Friedrich's (1982) 

suggestions for interpreting interactions in regression (see Darlington 1990; Jaccard, 

Turrisi and Wan 1990). 

AN EXAMPLE To explain this suggested interpretation approach, a real-world, but 

disguised, survey data set will be analyzed. The abbreviated results of a LISREL 8 

Maximum Likelihood estimation of a structural model is shown in Table A. There the XZ 

interaction is large enough to warrant interpretation (i.e., its coefficient bXZ is significant). 

Interpretation of this interaction relies on tables such as Table B that are constructed 

using factored coefficients such as the factored coefficient of Z, bZ + bXZX, from Table 

A. Column 2 in Table B, for example, shows the factored coefficient of Z from Table A 

(.047 - .297X) at several Column 1 levels of X in the study. Column 3 shows the standard 

errors of these factored coefficients of Z at the Column 1 levels of X, and Column 4 

shows the resulting t-values. Footnotes b) through d) in Table B further explain the 

Columns 1-4 entries. In particular, Footnote b) explains how values for the unobserved 

variable X are determined by the values of its indicator that is perfectly correlated with it 
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(i.e., the indicator of X with a loading of 1). In addition, Footnote d) discusses the 

Standard Error of the variable Z coefficient. The variance of b is of course the square of 

the Standard Error of b, and Cov(bZ,bXZ), the covariance of bZ and bXZ, is equal to 

r(bZ,bXZ)SE(bZ)SE(bXZ), where r is the "CORRELATIONS OF ESTIMATES" value for 

bZ and bXZ in LISREL 8, and SE indicates Standard Error. 

Footnote a) of Table B provides a verbal interpretation of the moderated Z-Y 

association shown in Columns 2 and 4. Specifically, when the level of X was low in the 

study (i.e., 1.2 to above 3 in Column 1), small changes in Z at a particular value of low X 

were positively associated with Y (i.e., the coefficient of Z was 0.89-- see Column 2). 

However, as X increased in the study, Z was less strongly associated with Y (i.e., the 

column 2 Z coefficient declined), until near the study average for X, 4.05, the Z-Y 

association was non significant (e.g., at X = 4.05 the Z-Y association was 0.04, t = 0.59-- 

see Columns 1, 2 and 4). Then, when the level of X was above the study average, Z was 

again significantly associated with Y (i.e., the Z-Y association was -0.23, t = -2.48-- see 

Columns 1, 2 and 4- small changes in Z at a particular value of high X were negatively 

associated with Y). 

Because there are always two factored-coefficients produced by a significant 

interaction (e.g., Equations 2 and 3), and the XZ interaction was large enough to warrant 

the Table B attention, Columns 5-8 are provided in Table B to help interpret the factored 

coefficient of X, -.849 - .297Z. Column 6 shows this factored coefficient at several 

Column 5 levels of Z. Column 7 shows the standard errors of this factored coefficient at 

these levels of Z, and Column 4 shows the resulting t-values. Again, additional 

information regarding Columns 5-8 is provided in Footnotes e) through i), and Footnote 
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e) provides a verbal summary of the moderated X-Y association produced by the 

significant XZ interaction in Table A. 

DISCUSSION  Notice that in Table A bZ was non significant (t = 0.59), yet the 

factored coefficient of Z was significant at both ends of the range of X in the study (see 

Column 4 of Table B). Z had a negative association with Y when the existing level of X 

was high or above its study average in the sample, but its association with Y was positive 

when X was lower or below its study average. Similarly, bX was significant (t= -5.32), 

yet the coefficient of X moderated by Z was non significant when Z was very low in the 

sample (see Column 8 of Table B).  

Finally, notice that bZ was not significant in Table A, yet it was included in the 

Table B, Columns 2 and 3, calculations. This was done because if Z is excluded, the t-

value of the factored coefficient of Z is singular at the mean of X (i.e., it is undefined, and 

in a neighborhood of the mean of X the t-value of the factored coefficient approaches 

infinity).  

 

INSUFFICIENT DISCONFIRMATION 

Unfortunately, specifying an hypothesized interaction as XZ is an insufficient 

disconfirmation test of the interaction hypothesis. XZ is one of many interaction forms 

(see Jaccard, Turrisi and Wan 1995). Specifically, there are at least a countable infinity 

more possible mathematical forms an interaction can take besides XZ. Specifically, XZw, 

where W can be any (positive or negative) real number, is an interaction. This interaction 

form includes not only XZ (w = 1), it also includes X/Z (see Jaccard, Turrisi and Wan 

1995) (w = -1). It also includes XZ2, the interaction between X and the square of Z (see 



 14 

Aiken and West 1991), and it curiously includes XXw, where Z = X and X is moderated 

by itself (which is called a quadratic when w = 1) (see Lubinski and Humphreys 1990). 

Thus, an hypothesized population interaction may not have the form XZ. And, specifying 

it as XZ may produce non-significant results. In this case, an erroneous conclusion that 

there is no interaction between X and Z also may result.  

Unfortunately, latent variable interaction specifications besides XZ are unknown 

at present. However, as a post hoc test it may be efficacious to use a median split (a 

subgroup analysis) of the data to test for the hypothesized interaction. While this test is 

fallible (Ping 1996c observed 8% false positives with subgroup analysis), if this produces 

a significant interaction, it suggests the hypothesized interaction may have been 

"confirmed" (i.e., in was confirmed in this test only), but its form is unknown at present.  

 

INTERACTION EPISTEMOLOGY 

Anecdotally, some authors believe interactions should not be included in model because 

they are not constructs--they are "indicated" (pointed to) by products of observed 

variables, and these product variables cannot be observed. Again anecdotally, interactions 

have implausible reliabilities, and the validity criteria do not apply. Thus, interactions are 

inappropriate for the structural equation models used to estimate theoretical models.  

It is difficult to argue that interactions are constructs in the usual sense. However, 

they are "construct-like": they have reliability and aspects of validity. 

RELIABILITY The reliability of interaction XZ is 

Corr 2X,Z + ρXρZ 

ρXZ =  ———————                 

  Corr 2
X,Z + 1 
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(Bohrnstedt and Marwell 1978, see Busemeyer and Jones 1983), which produces the 

implausible result that the reliability of XZ increases as the correlation between X and Z 

increases. However, this result parallels the result that the reliability of X is a function of 

the sum of the correlations of the indicators of X, and it increases as the correlation 

between the indicators increases. 

VALIDITY It could be argued that most of the usual validities do apply to interactions. 

Authors disagree on what constitutes an adequate set of validity criteria (e.g., Bollen 

1989, Campbell 1960, DeVellis 1991, Heeler and Ray 1972, Nunnally 1978, Peter 1981). 

Nevertheless, a minimal demonstration of validity in theory testing might include content 

or face validity (how well a latent variable's indicators tap its conceptual definition), 

construct validity (its correlations with other latent variables are theoretically sound), 

convergent validity (e.g., its average extracted variance is greater than 0.5--Fornell and 

Larker 1981), and discriminant validity (e.g., its correlations with other measures are less 

than 0.7, or ) (e.g., Bollen 1989, DeVellis 1991, Fornell and Larker 1981, Nunnally 

1978). The validity of a measure is then qualitatively assessed considering reliability and 

the measure's performance over this minimal set of validity criteria. 

An interaction XZ is content or face valid if X and Z are content valid and the 

specification of XZ includes all the indicators of X and Z. (Without all the indicators of X 

accounted for in the itemization XZ, it does not specify the interaction between X and Z 

because the two X's are different constructs.) The formula for the Average Variance 

Extracted (AVE) of XZ is Σ(λxiλzj)
2Var(XZ)/[Σ(λxiλzj)

2Var(XZ) + ΣVar(εxz)], where 

Σ(λxiλzj)
2 is the sum of squares of λxiλzj, i = 1 to m, j = 1 to n, m is the number of 

indicators of X, n is the number of indicators of Z, and Var(XZ) is the error-
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dissattenuated variance of XZ (available in the structural model) (Fornell and Larker 

1981). However, the construct (correlational) validity of a second-order is usually 

impossible to judge. 

Thus, interactions may or may not be constructs as they are usually defined. 

However, structural models always contain one or more exogenous variables, structural 

disturbances, that are specified as a model variable yet they are not "indicated" or 

"pointed to" as a construct would be. Thus, structural models never contain just 

constructs as they are usually defined. Also, while not everyone would agree, Bollen 

(1989:268) states, " . . . the model . . . helps us to understand the relations between 

variables . . . " This suggests that the objective of theoretical model testing is to test 

hypothesized relations between variables. It also could be argued that constructs are 

important in structural equation analysis only to enable covariant structural analysis, and, 

given that they are sufficiently present to enable that end, that relationships, including 

moderated relationships, are the primary focus of theoretical model testing.  

 

POST HOC PROBING 

Obviously interactions can be "discovered" post hoc (i.e., after the hypothesized model 

has been estimated for the first time) as they are in ANOVA. Significant interactions 

could be used to improve interpretation of study results. Specifically, significant 

unhypothesized interactions may provide plausible explanations for hypothesized but 

non-significant first-order associations (main effects), which avoids casting a shadow on 

the relevant theory (a non-significant result suggests the relevant theory does not apply), 

and it improves the interpretation of significant associations that are actually conditional. 
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Unfortunately, survey researchers are discouraged from post-hoc probing for 

interactions (e.g., Aiken and West 1991, Cohen and Cohen 1983) on grounds this is 

unscientific because these variables were not hypothesized. However, the logic of model 

testing and its variables can easily be separated from the logic of discovery and its 

variables (e.g., interactions) (e.g., Hunt 1983) as long as any discovered interactions are 

clearly presented as "discovered." Specifically, any interactions discovered in post-hoc 

probing should be presented as potentially an artifact of the sample: Their existence in 

any population and thus in other samples/studies should be viewed as an empirical 

question to be answered in later studies.   

Because of the potential for detecting spurious interactions (unhypothesized 

interactions that do not exist in the population and are significant by chance in the 

sample), an F-test is desirable to determine if any unhypothesized interactions are likely 

to be significant above the level of chance. To accomplish this, after the hypothesized 

structural model has been estimated, all possible interactions should be added to the 

hypothesized model.  

AN F-TEST To reduce the likelihood of spurious (chance) interactions, the increase in 

R2 (e.g., the "Squared Multiple Correlations for Structural Equations" in LISREL) due to 

adding all implied interactions to a model should be significant. A test statistic that 

assesses this increase is 

F = [( R2
2 - R1

2 )/( k2 - k1 )] / [( 1- R2
2 )/( N - k2 - 1 )] 

where R2
2 is the total explained variance (Squared Multiple Correlations for Structural 

Equations) in the structural model with the interactions added, R1
2 is the total explained 

variance in the structural model with no interactions added, k1 is the number of 
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exogenous variables (predictors) in the structural model without the interactions, k2 is the 

number of exogenous variables in the structural model plus the number of interactions 

added, and N is the number of cases (see for example Jaccard, Turrisi and Wan 1990). 

This F statistic has k2 - k1 and N - k2 - 1 degrees of freedom. 

Calculating F  With a single endogenous or dependent variable (e.g., in the 

structural model Y = b1X + b2Z + b3W + ζ, Y is the endogenous or dependent variable 

and there are three exogenous variables or predictors of Y on the right-hand side of the 

equal sign) the F statistic is a straightforward calculation.  

With multiple dependent or endogenous variables the suggested F-test is 

performed multiple times, once for each endogenous variable. (An overall F-test is 

discussed later.) First, the linear equations implied by the structural model are written out, 

the relevant interactions are added, and F is computed for each equation as above.  

If F is significant, it means there is likely to be one or more non-spurious 

interactions in the population model (represented by the present sample). If F is not 

significant, it suggests it is unlikely there are any population interactions in the 

population model.  

ESTIMATION Next, the interactions are estimated. However, adding all possible 

interactions to a model can produce few or no significant interactions. Experience 

suggests this is common in real-world data because interactions are typically highly 

correlated. Thus, a "search technique" is required.  

In general, depending on the search technique, different search results can obtain. 

However, Lubinski and Humphreys' (1990) suggestion that an interaction, XZ for 

example, should be estimated with its relevant quadratics, XX and ZZ, suggests a post 
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hoc search technique for interactions: Gauge each interaction with its relevant quadratics 

(Step 1); then estimate a final model containing only the significant interaction(s) from 

each of these tests (Step 2). This avoids mistaking an interaction for its related quadratic 

(see Lubinski and Humphreys 1990), and the number of interactions to be jointly tested 

in Step 2 is reduced, which should materially reduce their masking each other. 

DISCUSSION The next step would be to develop theoretical justifications for surviving 

interactions to further reduce the likelihood of their being an artifact of the sample. Stated 

differently, if a post-hoc interaction cannot be theoretically justified, it should not be 

interpreted or used as an explanation for a non-significant association because this 

difficulty with theoretical justification may suggest that it is implausible. In fact, if an 

interaction cannot be theoretically justified, it probably should not be included in the Step 

2 estimation. 

It is possible that in Step 2, one or more interactions will be non significant. In 

that case, several approaches could be taken to further investigate the set of post hoc 

interactions. However, forward selection using LISREL's Modification Indices may be 

most appropriate because it is the most conservative. Specifically, the surviving Step 1 

interactions are specified with their paths fixed at zero. Then, the interaction with the 

largest Modification Index (MI) is freed, the structural model is re-estimated, and if the 

interaction is significant, the next largest MI is freed, etc. until no more freed interactions 

are significant. 

The suggested F-test can become an overall test with multiple structural equations 

using a Bonferroni approach (see Neter, Kunter, Nachtsheim and Wasserman 1996; 

however, also see Perenger 1998). Specifically, the confidence of multiple F-tests is 
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greater than 1 minus the sum of the p-values of each test. Thus, if the confidence of the 

significant F-tests is at least 95%, for example, the overall confidence could be argued to 

be at least 95%. The amount of specification work could be reduced using the 

specification templates at http://home.att.net/~rpingjr/research1.htm. 

A TRAP For emphasis, in theoretical model testing, the only situation where 

one should hunt for significant interactions after the hypothesized model has been first 

estimated is when one wishes to explain a non-significant first-order association (e.g., a 

or b in Equation 1), or to verify that a significant first-order association is not conditional. 

Otherwise, hunting for unhypothesized interactions can turn into "data snooping." Data 

snooping can tempt one to hypothesize significant interactions that are found, as though 

they were hypothesized before the model was first estimated. This is considered 

"unsound science" in hypothesis testing. It reverses the "hypothesis-before-first-test" 

logic of empiricism; producing a "test-before-hypothesis" study, which capitalizes on 

chance. In a follow-up study or replication, significant interactions could be 

hypothesized, then tested to investigate whether or not they were significant by chance in 

the previous study.  

REPLICATION A replication or follow up study to test any significant interactions 

identified using post-hoc probing could be conducted using scenario analysis. Scenario 

analysis has been used elsewhere in the Social Sciences, and it could be used to provide a 

follow-up study or replication that could be reported along with the study in which 

interactions were discovered post hoc. A Scenario Analysis is a comparatively quick and 

inexpensive experiment in which subjects read written scenarios that portray a situation 
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in which the study constructs are manipulated. Then they are asked to complete a 

questionnaire containing the study measures (see Ping 2004).  

A Scenario Analysis using student subjects might provide a comparatively easily 

executed second study of the significant interactions using the existing questionnaire. 

Specifically, theoretical justifications and hypotheses could be added for significant post 

hoc interactions, and the 2nd study would investigate the resulting model with the 

significant interactions specified. The result could become a paper with two studies. 

("Multiple study" papers are common in social science disciplines such as Social 

Psychology and Consumer Behavior, and it might be instructive to examine a few of 

them to determine how best to present two-study results (see recent issues of The Journal 

of Consumer Research, for example).).  

The results of scenario analysis when compared with other research designs such 

as cross sectional surveys (see for example Rusbult, Farrell, Rogers and Mainous, 1988), 

have been reported to be similar enough to suggest that scenario analysis may be useful 

in "validating" post hoc interactions. Additional benefits of adding such a study to the 

original study include that it would provide a second study along with the original study 

(as routinely done in experimental studies in several branches of the Social Sciences). 

 

SUMMARY AND CONCLUSION 

This research critically addressed several matters related to interactions in theoretical 

models using survey data that have received comparatively little attention. For example, 

it discussed how to envision interactions (foresee them a priori at the model building 

stage) and suggested ways to justify and hypothesize them. It discussed the costs of 
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estimating a-priori interactions, issues with the proposed interaction estimation proposals, 

and that current estimation proposals provide an insufficient interaction disconfirmation 

test. Along the way it discussed interpreting a latent variable interaction, conceptual 

difficulties with adding an interaction to a covariant structure model, post-hoc probing for 

interactions, and the temptation to hypothesize significant post-hoc interactions as though 

they were envisioned before the data was collected.  
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Table A- Equation 2 Structural Model Estimation Results 

 

Y =    bXX  +  bZZ  +  bXZXZ  +  bXXXX  +  bZZZZ  

                                 -.849     .047      -.297          .001           .004        (= unstd. b) 

                                (-5.32)   (0.59)    (-4.00)       (0.10)        (0.09)      (= t-value) 
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Table B- Unstandardized Y Associations with Z and X Implied by the Table A Results 

 

                Z-Y Association                            X-Y Association   
                  Moderated by Xa                                Moderated by Ze                     
                                 SE of     t-value                                 SE of     t-value 

                     Z            Z           of Z                        X           X         of X      

       X         Coef-     Coef-      Coef-          Z        Coef-     Coef-     Coef- 

     Levelb   ficientc   ficientd    ficient      Levelf   ficientg   ficienth   ficient 

        5 -0.23 0.09 -2.48           5 -1.31       0.25      -5.19  

     4.05i 0.04 0.08  0.59           4 -1.01       0.19      -5.33  

        4  0.06 0.08  0.77        3.44i -.84       0.16      -5.32  

        3  0.36 0.12  2.92           3 -.71       0.14      -5.15 

        2  0.65 0.18  3.52           2 -.42       0.11      -3.59 

     1.2 0.89 0.24  3.70           1       -.12       0.13       -.90  

 

      (1)          (2)          (3)          (4)           (5)          (6)         (7)         (8) (Col. Number) 

 

                                      
a The Table displays the variable association of X and Z with Y produced by the significant XZ 

interaction. In Columns 1-4 when the level of X was low in Column 1, small changes in Z were 

positively associated with Y (see Column 2). At higher levels of X however, Z was less strongly 

associated with Y, until near the study average for X, the association was non significant (see 

Column 4). When X was above its study average, Z was negatively associated with Y. 
b X is determined by the observed variable (indicator) with the loading of 1 on X (i.e., the 

indicator that provides the metric for X). This indicator, and therefore X ranged from 1.2 (= low 

X) to 5 in the study. 
c  The coefficient of Z was (.047-.297X)Z with X mean centered. E.g., when X = 1.2 the 

coefficient of Z was .047-.297*(1.2 - 4.05) = .89. 
d  The Standard Error of the Z coefficient is: 

     ____________       ________________________________ 

   √ Var(bZ+bXZX)  = √ Var(bZ) + X2Var(bXZ) + 2XCov(bZ,bXZ), 

where Var and Cov denote variance and covariance, and b denotes unstandardized structural 

coefficients from Table A. 
e This portion of the Table displays the association of X and Y moderated by Z. When Z was 

low in Column 5, the X association with Y was not significant (see Column 8). However, as Z 

increased, X's association with Y quickly strengthened, until it was negatively associated with Y 

for most values of Z in the study. 
f Z is determined by the observed variable (indicator) with the loading of 1 on Z (i.e., the 

indicator that provides the metric for Z). This indicator, and therefore Z ranged from 1 (= low Z) 

to 5 in the study.  
g  The unstandardized coefficient of X is (-.849-.297Z)X with Z mean centered. E.g., when Z = 1 

the coefficient of X is -.849-.297*(1-3.44) = -.12. 
h  The Standard Error of the X coefficient is: 

     ____________       ________________________________ 

   √ Var(bX+bXZZ)  = √ Var(bX) + Z2Var(bXZ) + 2ZCov(bX,bXZ) , 

where Var and Cov denote variance and covariance, and b denotes unstandardized structural 

coefficient from Table A. 
i  Mean value in the study. 
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ON THE MAXIMUM OF ABOUT SIX INDICATORS 

PER LATENT VARIABLE WITH REAL-WORLD DATA 

 

 
 

ABSTRACT 

 

Authors have noted that consistent latent variables have a maximum of about six 

indicators each. This paper discusses this perhaps surprising behavior and its implications, and 

an explanation is offered. Approaches to utilizing more than about six indicators in latent 

variables are also discussed, and several novel approaches are proposed. Each of these 

approaches is explored using real-world data. 

 

 

Theoretical model tests (hypothesis testing) involving structural equation analysis 

combine unobserved or latent variables with proposed linkages among these variables (a model) 

and proposed (observed) measures of these unobserved variables. These model tests usually 

involve several steps including defining the model constructs, stating the relationships among 

these constructs, developing appropriate measures of the constructs, gathering data using these 

measures, validating these measures, and validating the proposed model.  

Commenting on step three, developing appropriate measures, authors have noted that 

latent variables seem to have an upper limit of about six indicators each (Anderson & Gerbing, 

1984; Gerbing & Anderson, 1993; Bagozzi & Heatherton, 1994; Ping, 2004). This apparent 

"maximum" for latent variable itemization has produced an unfortunate result. Cattell (1973) 

commented that measures used with structural equation analysis tend to be "bloated specific" 

(operationally narrow) instances of their target construct. Larger well-established measures 

developed before structural equation analysis became popular have virtually disappeared from 

published theoretical model tests involving latent variables. When they do appear in published 

studies involving structural equation analysis, they frequently are "shadows of their former 

selves" because of extensive item weeding (i.e., the deletion of items from a measure to attain 

model-to-data fit). 
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This paper explores the apparent ceiling of about six indicators per latent variable. An 

explanation for this result in real-world data is proposed, and approaches to avoiding this 

apparent limit in theoretical model testing are explored using real-world data. 

 

The observed upper limit of about six indicators per latent variable in published model 

tests is apparently the result of persistent model-to-data fit difficulties (i.e., inconsistency,1 see 

Anderson & Gerbing, 1982) with itemizations containing more than about six indicators per 

latent variable in real-world data. Gerbing and Anderson (1993) commented that "...fit indices 

indicated less fit as the...number of indicators per factor, increased..." They went on to propose 

that "Models with few indicators per factor...have fewer df (degrees of freedom), leaving more 

'room to maneuver' the parameter estimates so as to minimize the fit function, which in turn is a 

function of the residuals."  

An Additional Explanation  

Intuitively, lack of model-to-data fit in a set of items is the result of unrelated items in 

that set of items--items that do not "cluster" well enough with the other measure items. 

Mechanically, the input correlation between an unrelated item in a measure and each of the other 

measure items cannot be satisfactorily accounted for by the model paths connecting them.2 

Gerbing and Anderson's (1993) comment above suggests that "unrelatedness" increases simply 

by specifying additional indicators. 

The Footnote 2 equation for the model-implied covariance of two unidimensional items 

suggests an alternative explanation for increased "unrelatedness" when an additional indicator is 

added to a latent variable. Specifying indicators without accounting for correlations among 

measurement errors in real-world data (e.g., because of common method) may eventually ruin 
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model-to-data fit. In different words, by ignoring the potential for correlated measurement errors 

in real-world data, and thus not specifying them, the sum of the residuals (i.e., the sum of the 

differences between the Footnote 2 computed covariances of the items without the correlated 

error terms, and the input covariances) eventually becomes unacceptably large. 

Next, we will discuss several remedies for lack of model-to-data fit, which will 

subsequently be investigated using real-world data. 

Classical Remedies for Lack of Fit 

Classical remedies for lack of model-to-data fit include removing items (item weeding), 

and correlating indicator measurement errors. The pros and cons of each of these remedies are 

discussed next. 

Item Weeding  In published theoretical model tests involving structural equation analysis 

and real-world data, the about-six-indicators limit frequently produces "item weeding," the 

removal of items from a measure, to attain a set of indicators that fits the data. This approach has 

the benefit of producing a subset of items that "clusters" together (i.e., their single construct 

measurement model is consistent; it fits the data). 

However, because the items to be deleted are usually unknown beforehand, item weeding 

usually capitalizes on chance. In addition, the process of weeding is tedious. As we will see, 

there may also be several subsets of items for a latent variable that will fit the data (i.e., item 

weeding may be indeterminate). Finally, structural coefficients, standard errors, and thus 

observed significances and their interpretation, can vary across these weeded itemizations (i.e., 

the interpretation of structural coefficients in a model involving weeded subsets can be 

equivocal). 
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Item weeding to attain model fit in valid and reliable measures has also been criticized 

because it impairs content or "face" validity3 (e.g., Cattell, 1973, 1978; see Gerbing, Hamilton & 

Freeman, 1994). As mentioned earlier, Cattell (1973) remarked that the resulting weeded 

measures tend to be bloated specific (operationally narrow) instances of their target construct. 

Correlated Measurement Errors It is well known that correlating measurement errors can 

improve model-to-data fit. This result becomes apparent by examining the Footnote 2 Equation. 

Including a non-zero correlated measurement error term can improve the model-implied 

(computed) covariance estimate, and thus it can reduce the corresponding residual. The use of 

correlated measurement errors presumably to improve fit has been reported (e.g., Bagozzi, 

1981a; Byrne & Shavelson, 1986; Bearden & Mason, 1980; Duncan, Haller & Portes, 1971; 

Reilly, 1982), although this approach has become increasingly rare in recent published model 

tests. It has the benefit of producing a (sub)set of items that appears to "cluster" together (i.e., 

their single construct measurement model is consistent; it fits the data). However, as we will see, 

the indiscriminant use of correlated measurement errors can result in a set of items that appears 

to be consistent but is actually multidimensional (see Gerbing & Anderson, 1984).  

Authors have criticized the use of correlated measurement errors to improve fit (e.g., 

Bagozzi, 1983; Fornell, 1983; Gerbing & Anderson, 1984) for several reasons. These include 

that it is a departure from the assumptions underlying classical test theory and factor analysis, 

and the correlated measurement errors that are specified are typically unhypothesized and thus 

discovered by capitalizing on chance. In addition, the process of identifying measurement errors 

that should be correlated is tedious, and, as we will see later, there may be several sets of 

correlated measurement errors that will produce model-to-data fit (i.e., the results of correlating 

measurement errors may be indeterminate). 
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Recent Remedies for Lack of Fit 

Comparatively recent remedies for lack of model-to-data fit include using second-order 

constructs, and aggregating items. These remedies are discussed next. 

Second-Order Constructs Gerbing and Anderson (1984) argued that a second-order construct 

is an alternative to using correlated measurement errors.4 They suggested that a pair of items 

with correlated measurement errors could be re-specified as a factor (i.e., as a latent variable, and 

without using correlated measurement errors), and that a second factor containing the rest of the 

items, along with the first factor, could be specified as the "indicator" latent variables of a 

second-order construct. This approach has the benefit of producing a set of items that in their 

second-order specification fits the data. 

However, because the items that should be specified in the first factor are unknown 

beforehand, the process of identifying these first-factor items could be viewed as capitalizing on 

chance. In addition, the process of identifying the first-factor items is tedious, and there may be 

several second-order constructs that will fit the data (i.e., the results of this approach may be 

indeterminate). 

Aggregation Kenny (1979) is apparently credited with an approach that involves summing 

items in a measure to provide a single indicator of a latent variable. The approach uses 

reliabilities for loadings and measurement error variances, and variations of this approach have 

been used in the Social Sciences with structural equation analysis presumably to avoid item 

weeding. (e.g., Heise & Smith-Lovin, 1981; James, Mulaik & Brett, 1982; Williams & Hazer, 

1986).5 
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This full or total aggregation (Bagozzi & Heatherton, 1994) alternative to item weeding 

has several merits including that it allows the use of older well-established measures having 

more than six items with structural equation analysis (e.g., Williams & Hazer, 1986).  

An assumption in structural equation analysis is that the indicators are continuous. When 

it is averaged, a summed indicator produces a more-nearly-continuous indicator (e.g., averaged 

ordinal-scaled indicators then take on ratio-valued numbers) that better approximates this 

continuous data assumption, and thus an aggregated indicator can reduce the bias that attends the 

criticized use of structural equation analysis with ordinal (e.g., rating scale) data (e.g., Bollen, 

1989; Jöreskog & Sörbom, 1996).  

A summed indicator also reduces the size of the input covariance matrix (i.e., the input 

covariances of a summed indicator replace the input covariances of the several indicators 

comprising the sum), thus reducing the asymptotic incorrectness of the input covariance matrix 

for a given sample size. In different words, this helps enable the use of the methodological small 

samples typical in survey-model tests in the Social Sciences (e.g., 200-300) with larger structural 

models by improving the ratio of the sample size to the size of the covariance matrix.6 The use of 

summed indicators also separates measurement issues from model structure issues in structural 

equation models. In different words, for an unsaturated structural model, lack of fit with a 

summed-indicators model unambiguously suggests structural model misspecification, rather than 

suggesting a combination of measurement model difficulties and structural model 

misspecification. 

However, the indiscriminant use of summed indicators could produce a summed item that 

is composed of multidimensional items. Summed indicators are also non-traditional in structural 

equation analysis, and their use could be viewed as not particularly elegant when compared to 
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multiple indicator specification. Further, it is believed that a reliability loading can underestimate 

the loading of a summed item. 

Other Remedies 

There are several other remedies for lack of model-to-data fit, including partial 

aggregation, gauging external consistency only, and using measure validation studies. These 

remedies are discussed next. 

Partial Aggregation  Bagozzi and Heatherton (1994) also used partial aggregation--

items were grouped into subsets and each subset was summed. This approach avoids the use of 

reliability loadings used in full aggregation if three or more consistent subsets of items can be 

found. This approach also has all the benefits and drawbacks of full aggregation. However, 

because the items that should be aggregated are unknown beforehand, partial aggregation could 

be viewed as capitalizing on chance. The process of finding consistent subset of items is also 

tedious, and there may be several aggregations of items that will fit the data (i.e., the results of 

partial aggregation may be indeterminate). 

External Consistency Only An additional alternative to item weeding would be to weed 

(unidimensional) measures jointly, instead of weeding them singly. Item weeding is typically 

performed one measure at a time (i.e., using single construct measurement models--see Jöreskog, 

1993) to establish the internal consistency of each measure (i.e., each measure fits its single 

construct measurement model--see Anderson and Gerbing, 1988). Later, the resulting internally 

consistent (unidimensional) measures are jointly specified in a full measurement model (i.e., a 

measurement model that contains all the measures) to assess the external consistency of the 

(unidimensional) measures (i.e., the measures jointly fit a unidimensionally specified full 

measurement model--again see Anderson and Gerbing 1988). However, it could be argued that 
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the ultimate objective of item weeding is for a full (unidimensionally specified) measurement 

model to fit the data (to isolate any structural model fit problems to the structural paths among 

the latent variables). Thus, it should be possible to accomplish full measurement model fit by 

using measures that are unidimensional in the exploratory common factor sense, omitting the 

internal consistency evaluation step, and item-weeding using a full measurement model only. 

Although this remedy has not been used as far as we know, it should have the benefit of 

producing measures with fewer items weeded out. However, because the items that should be 

weeded are typically unknown beforehand, this alternative could be viewed as capitalizing on 

chance. In addition, the process of weeding is tedious, and there may be several sets of the 

resulting items that will fit the data (i.e., the results of this weeding may be indeterminate). 

Further, skipping the internal consistency step violates the current received view in theoretical 

model testing using survey data: Anderson and Gerbing's (1988) "Two-Step" approach to model 

respecification in order to attain model-to-data fit (i.e., first verify internal consistency, then 

verify external consistency). 

Measure Validation An approach that might reduce some of the drawback of the above 

approaches would be to conduct a measure validation study. Ideally, measure validation uses 

several data sets, one to show measure adequacy (i.e., acceptable psychometrics), and one more 

to validate (i.e., disprove) the adequacy of the measure.  

A measure validation approach might allow the "discovery" of "the" (content valid) 

weeded subset of items for each measure, "the" (acceptable) second-order construct structure, 

"the" partial aggregation structure, "the" correlated measurement error structure, or "the" 

external-consistency-only structure of a measure in study one, and the (dis)confirmation of that 

structure could be attempted in study two. Thus, this approach might permit the use of weeded 
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subsets, second-order constructs, etc. with less criticism because capitalizing on chance would be 

removed in the second study.  

EXAMPLES 

To investigate their efficacy, the above approaches were used with a real-world data set. 

A mailed-out survey used in a theoretical model test produced more than 200 usable responses. 

Among the variables in the hypothesized model was the construct N that was measured using a 

new 18-item measure.7 While the measure for N was judged to be content or face valid, it was 

multidimensional (i.e., it had three dimensions using maximum likelihood exploratory common 

factor analysis). The items in the first factor were subsequently judged to be valid and reliable 

(the coefficient alpha for Factor 1 was .963), but the single construct measurement model for the 

Factor 1 items was inconsistent (i.e., it was judged to not fit the data using a single construct 

measurement model--chi square/df/p-value/RMSEA/GFI/AGFI = 270/35/0.0/.227/.670/.481).8 

Appendix A provides an example of item weeding to produce a subset of consistent items 

for N. In summary, a total of 20 consistent but different weeded subsets of the items of N were 

found using a procedure suggested by Ping (1998) (see Ping, 2004). The search for additional 

weeded subsets was discontinued after it became difficult to determine which weeded subset had 

the "best" content validity. 

Because the weeded items were unknown beforehand, the resulting consistent subsets of 

items all capitalized on chance. In addition, the process of weeding was very tedious, and 

because the weeding produced multiple itemizations, the resulting subsets of weeded items were 

indeterminate.9 Finally, in a simple structural model of the antecedents of N, one of the structural 

coefficients, its standard error, and thus its significance, became non significant as alternative 
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weeded itemizations of N were specified. Thus, the interpretation of the structural model 

involving weeded itemizations of N was equivocal. 

Appendix B provides an example of the use of correlated measurement errors to produce 

a set of items for N that fits the data. In summary, two sets of correlated measurement errors 

were found that resulted in all of the Factor 1 items fitting a single construct measurement model 

for N. An efficient procedure for finding these correlated measurement errors was discovered, 

and this procedure was used to find a third set of correlated measurement errors that permitted 

the full 18 item set to fit a single construct measurement model for N.  

Because the measurement errors that were correlated were unknown beforehand, these 

correlated measurement errors capitalized on chance. Further, the process of identifying 

measurement errors that should be correlated was tedious. There were also several sets of 

correlated measurement errors, and thus the resulting sets of correlating measurement errors 

were indeterminate. 

Appendix C probed the use of second-order constructs to enable model-to-data fit using 

the Factor 1 items from the measure for N. In summary, no second order specification of Factor 

1 could be found that fit the data without resorting to correlated measurement errors. This 

suggests that with real-world data a second-order specification for inconsistent items may not 

always be readily apparent. Specifically, these results suggest that in real-world data logically 

grouping inconsistent items (e.g., Hunter and Gerbing, 1982; Gerbing, Hamilton and Freeman, 

1994) and combining weeded and weeded-out items (e.g., Gerbing & Anderson, 1984) in 

second-order constructs may not always result in a second-order construct that fits the data.  

Appendix D provides examples of the use of full aggregation. Using factor scores the full 

18-item measure for N was aggregated and used to estimate a structural model containing N. 
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Aggregation was also accomplished with a single averaged indicator for N composed of its 

Factor 1 items, then a single averaged indicator for N composed of weeded Factor 1 items. In 

summary, three interpretationally equivalent (i.e., the directions and significances of their 

structural coefficients were equivalent) full aggregation approaches were reported in addition to 

the use of factor scores; averaged indicators with averaged LISREL 8 loadings and measurement 

errors, with averaged maximum likelihood EFA loadings and measurement errors, and with 

reliability loadings and measurement errors. 

Appendix E presents the results of investigating the other suggestions: Partial 

Aggregation, gauging External Consistency Only to achieve measurement model fit, and the use 

of Measure Validation. 

Using Partial Aggregation, several partitionings of the items were investigated. These 

included logical groupings of all 18 items in the measure for N (i.e., groupings of items that 

appeared to tap the same facet of N as Bagozzi and Heatherton, 1994 suggested), creating two 

summed indicators for N from its Factor 1 items (i.e., an indicator that was the average of the 

weeded Factor 1 items, and another indicator that was the average of the Factor 1 items that were 

weeded out), creating 3 summed indicators for N from its Factors 1, 2 and 3 items as three 

averaged indicators for N, subsets of the 18 items of N using maximum likelihood exploratory 

common factor analysis (EFA) with forced 7, 6, etc. factor solutions, and subsets of the Factor 1 

items of N using EFA with forced 7, 6, etc. factor solutions. However, none of these partial 

aggregations of the items of N fit the data. 

This suggests that the specification of a measure with a large number of items may not 

always be readily apparent using partial aggregation, even when the items cluster together 
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unidimensionally in an exploratory factor analysis (i.e., an acceptable partial aggregation of the 

Factor 1 items of N could not be found). 

Investigating the omission of the internal consistency verification step and achieving 

model-to-data fit using External Consistency Only, we itemized the 9 latent variables in the study 

with their Factor 1 items. Then we estimated a full measurement model containing all the model 

latent variables with each set of items specified unidimensionally (each item was specified with 

only one underlying latent variable). This full measurement model was judged to fit the data 

without deleting any additional items to attain model-to-data fit. 

This suggests that in real-world data omitting the internal consistency verification step for 

unidimensional items in the maximum likelihood exploratory factor analysis sense may produce 

a full unidimensionally specified measurement model that fits the data, thus separating 

measurement from structure as Anderson and Gerbing (1988) and others have stressed.  

In order investigate the use of a Measure Validation study to avoid some of the above 

criticisms of item weeding, correlated measurement errors, etc., we conducted a Scenario 

Analysis. A Scenario Analysis is an experiment in which subjects read written scenarios that 

portray a situation or scenario in which the study constructs are manipulated. Then they are 

asked to complete a questionnaire containing the study measures. Unfortunately the protocol 

used for the scenario analysis produced missing treatments. As a result, while the resulting 

scenario analysis was useful for assessing reliability and facets of validity, its results were not 

appropriate for finding "the" (content valid) weeded subset of items for N, "the" correlated 

measurement error structure, etc. in order to permit the use of weeded subsets, second-order 

constructs, etc. with fewer of the criticisms mentioned earlier.  

Discussion  
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These results suggest that several of the proposed alternatives to item weeding may not 

always be useful in real-world data. Second-order constructs failed to perform in the example.  

The example also suggested that partial aggregation of a multidimensional measure may 

not always be an alternative to item weeding in real-world data. Similarly, the example use of a 

measure validation study with Scenario Analysis did not perform as expected. 

Of the alternatives to item weeding discussed, only full aggregation, external consistency 

only, and correlated measurement errors performed in the example.  

Because correlated measurement errors are comparatively rare in recent published model 

tests, it seems almost pointless to discuss them further. In addition, the example illustrated how 

they are found by chance. Because there were several sets of correlated measurement errors, the 

results of correlating measurement errors can be indeterminate, and an unexplored issue is the 

effect of changes in correlated measurement errors on structural coefficients.  

The example suggested that full aggregation might be used to specify a multidimensional 

measure as a 2nd order construct. Nevertheless, item weeding will probably continue as the 

preferred approach to attaining measurement model-to-data fit in survey data model tests even 

though its use has been criticized, and as the examples suggested, the results of these tests and 

their interpretation may change materially when items are omitted simply to attain measurement 

model to data fit.  

However, the example also suggested an improved approach to item weeding: for each 

weeded measure find several item weedings that fit the data, then re-convene the item-judging 

panel to determine which set of items that best taps the conceptual definition for the measure's 

construct. A through weeding would include the results of weeding the full measure (e.g., the 18 

item measure for N), along with "jacknifed" weedings of the full measure (i.e., remove the first 
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item, then weed the rest; replace the first item then remove the second item and weed the rest; 

etc.). It would also include weedings from pairwise combinations of any factors (e.g., for the 

items of N, F1 and F2, F1 and F3, and F2 and F3), along with their "jacknives," and weedings 

from F1 and its "jacknives." A through presentation of the results of weeding to an item-judging 

panel would include the full measure and the Factor one items, along with the weeded subsets. 

If the full measure or its F1 items are judged to be more content valid than any of the 

weeded submeasures, External Validity Only and full aggregation could be used for that 

(sub)measure10 (i.e., other weeded measures might be combined with Externally Valid Only 

measures or fully aggregated measures).  

Several comments may be of interest. Appendix A illustrated the alternative explanation 

proposed earlier for the apparent ceiling of about six internally consistent indicators: item 

weeding reduced the number of unspecified but significant measurement error intercorrelations 

that contributed to the residuals in a single construct measurement model (specified without 

correlated measurement errors). Specifically, before weeding there were 25 significant 

modification indices for the correlations between the measurement errors in the Factor 1 items 

(not reported), and the sum of these modification indices without regard to sign was 474. As each 

item was weeded (removed), the number of these significant modification indices declined, and 

so did their sum without regard to sign. Perhaps surprisingly, the resulting consistent weeded 

subset, Subset 2, had three significant modification indices for the correlations between the 

remaining measurement errors.  
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APPENDICES 

APPENDIX A--Item Weeding 

To investigate item weeding, the full 18-item measure for N was subjected to a procedure 

for item weeding suggested by Ping (1998) (see Ping, 2004). This procedure uses partial 

derivatives of the likelihood function with respect to the measurement error terms (Modification 

Indices for Theta Epsilon in LISREL, LMTEST in EQS). Specifically, a single construct 

measurement model for the full 18 item (multidimensional) measure of N was specified 

unidimensionally and with the correlations among the measurement errors fixed at zero. This 

produced a matrix of modification indices for the fixed correlated measurement errors which was 

then examined, and the item in that matrix with the largest summed modification index without 

regard to sign (i.e., the sum of the item's column of modification indices without regard to sign) 

was deleted. Next, the single construct measurement model without this item was re-estimated, 

and the item with the largest summed modification index without regard to sign in the resulting 

modification indices for the correlations among the measurement errors was deleted. This 

process was repeated, deleting an item at each step, until a subset of the 18 items was found that 

fit the data.  

The resulting 5-item subset (Subset 1--containing the items n1, n12, n14, n15 and n18) was 

consistent (it fit the data--chi square/df/p-value/RMSEA/GFI/AGFI = 2.84/5/.723/0/.991/.974) 

(see Footnote 8 for a discussion of model fit), and it contained items from Factor 1 (n12, n14, n15 

and n18) and an item from Factor 3. There was another consistent 5-item subset (Subset 1a-- n4, 

n12, n14, n15 and n18--chi square/df/RMSEA/GFI/AGFI = 9.09/5/.105/.079/.973/.919), that 

contained the Factor 1 items and a Factor 2 item. However, we could not find a consistent subset 
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with items from all three factors. Nevertheless, it was possible to find consistent subsets with 

items from several factors.  

Using this derivative procedure on the 10 items of Factor 1, a different consistent subset 

obtained (Subset 2--n9, n13, n15, n16, n17 and n18--chi square/df/p-value/RMSEA/GFI/AGFI = 

15/9/.086/.072/.961/.910). This 6-item subset was judged to be slightly more content or face 

valid than Subsets 1 or 1a, and its items clustered together using maximum likelihood 

exploratory common factor analysis slightly better than Subset 1 (the percent of the variance 

explained for Subset 2 was 75.7%, versus 59.8% for Subset 1 and 66.8% for Subset 1a).    

Several more consistent subsets were then obtained. Obviously any subset of Subset 2 

would fit the data, and there were 41 of these (= the total number of combinations of 6 things 

taken 5, 4 then 3 at a time). In addition, arbitrarily omitting an item from the Factor 1 set of 10 

items produced two more consistent subsets, Subset 3 (n9, n10, n11 and n17--chi square/df/p-

value/RMSEA/GFI/AGFI = 3.34/2/.187/.072/.987/.939), and Subset 4 (n11, n13, n16, n17 and n18--

chi square/df/p-value/RMSEA/GFI/AGFI = 2.64/5/.754/0.0/.992/.976). These subsets clustered 

together about as well as Subset 2 (71.6% and 75.1% explained variance respectively) and 

judging which had the "best" content validity became impossible without resorting to an item-

judging panel. However, we judged each of the weeded measures to be less content valid than 

either the original 18-item measure, or the 10 item Factor 1 measure.  

We then discontinued the search.11 In summary, we identified 20 consistent subsets of the 

18-item measure for N using the derivative procedure.  

Finally, we gauged the sensitivity of structural coefficients to changing the itemization of 

N. In a simple saturated structural model with N as the single endogenous variable, the structural 

coefficients and standard errors were judged to vary unpredictably across these different 
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itemizations of N. For example, the t-value for one of the 4 significant structural coefficients 

changed from t = 2.66 to t = 0.91 by changing the itemization of N from weeded Subset 1a to 

Subset 4.12 

APPENDIX B--Correlated Measurement Errors 

In order to investigate correlated measurement errors, the full 18-item measure for N was 

subjected to a procedure involving modification indices. A single construct measurement model 

for the full (multidimensional) measure of N was specified unidimensionally and with the 

correlations among the measurement errors fixed at zero to produce a matrix of modification 

indices for the fixed correlated measurement errors. Then, the measurement error correlation 

corresponding to the largest of these modification indices was freed (i.e., the corresponding 

measurement errors were allowed to correlate) (a modification index of 3.8 is significant at p = 

.05 with 1 degree of freedom, see the second part of Footnote 14). Next, the single construct 

measurement model was estimated with this measurement error correlation freed, and the largest 

of the resulting modification indices for the remaining fixed correlations among the measurement 

errors was found and freed. This process was repeated, freeing a measurement error correlation 

at each step, a total 90 times before we decided to abandon this "forward selection" process of 

identifying correlated measurement errors.13  

However, we used the above "forward selection" approach on a smaller subset of items, 

the Factor 1 items (10 items-- n9 through n18), until the set of Factor 1 items was judged to fit the 

data. The Factor 1 items with correlated measurement errors was judged to be consistent (i.e., it 

fit the data--chi square/df/p-value/RMSEA/GFI/AGFI = 34/20/.022/.074/.949/.861) (see 

Footnote 8 for comments on model fit). The procedure required 27 estimations and produced 15 

significant correlated measurement errors (9:10,11; 10:12,13,16,17; 11:--; 12:13,17; 13:14,15,16; 
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14:17,18; 15:16,18; 16:--; 17:--; where for example 9:10,11 denotes the correlations between ε9 

and ε10, and ε9 and ε11, where ε denotes a measurement error term, and 11:-- for example 

indicates that ε11 was not correlated with its higher-ordinality measurement errors, ε12 through 

ε18).  

To find another set of correlated measurement errors for the Factor 1 items, we specified 

a single construct measurement model for the Factor 1 items with all the measurement error 

correlations fixed at zero, except for the ε9 correlations which were freed.14 Estimating this 

model we recorded the significant measurement error correlations between ε9 and ε10 through ε18. 

Next we re-fixed the measurement error correlations with ε9 to zero, and freed the ε10 

measurement error correlations with its higher-ordinality measurement errors, ε11 through ε18 

(i.e., all measurement error correlations were fixed at zero except for those between ε10 and ε11, 

ε10 and ε12, ... , and ε10 and ε18). After estimating this model, we recorded the significant 

measurement error correlations between ε10 and ε11 through ε18. Repeating this process of re-

fixing the previously freed measurement error correlations, and freeing and estimating the 

higher-ordinality measurement error correlations for ε11, then ε12, ... , then ε18 (e.g., the ε11 

correlations with ε12 through ε18, the ε12 with ε13 through ε18, etc.), the result was a set of 

significant measurement error correlations for ε9 through ε18.  

Next, we re-specified the single construct measurement model for Factor 1 with the all 

measurement error correlations again fixed at zero. Then, we freed the significant modification 

indices just recorded for ε9, ε10, etc. (i.e., based on their recorded modification indices, the 

significant correlations for ε9 were freed, the significant correlations for ε10 were freed, etc.). 

This single construct measurement model was estimated (chi square/df/p-

value/RMSEA/GFI/AGFI = 31/14/.004/.098/.956/.828) and the nonsignificant measurement 
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error correlations were trimmed (i.e., fixed at zero--for example 10:11,15 were trimmed because 

they were nonsignificant when estimated in the presence of the other specified measurement 

error correlations). This trimmed model was then estimated, and because it did not yet fit the data 

(chi square/df/p-value/RMSEA/GFI/AGFI = 53/24/.0004/.097/.931/.841) the modification 

indices (MI's) for the remaining non-freed measurement error correlations were examined to find 

the largest significant MI, MI9,12 (= the modification index for the ε9-ε12 correlation = 10.30). 

The ε9-ε12 correlation was then freed and the resulting single construct measurement model was 

estimated. This measurement model was judged to fit the data (chi square/df/p-

value/RMSEA/GFI/AGFI = 41/21/.009/.079/.945/.870).  

Several comments may be of interest. There were two sets of correlated measurement 

errors that would permit Factor 1 items to fit the data in a single construct measurement model. 

Stated differently, there was more than one set of correlated measurement errors that would 

make the Factor 1 items consistent in a single construct measurement model. While the 

correlations from the second or "column-wise" selection approach were more parsimonious (i.e., 

there were fewer of them) and they were found using half as many estimations (12--1 for each 

item, one more to trim the nonsignificant intercorrelations, plus one to add the additional 

intercorrelation MI9,12--versus 27 for forward selection), their comparative statistics are trivially 

different (AIC/CAIC/EVCI for the column-wise selection = 105/229/.815 versus 104/240/.803 

for forward selection). 

Since the second or column-wise selection approach required considerably fewer 

estimations, we tried it on the full set of 18 items. Obtaining a set of measurement error 

correlations that were judged to make the full 18-item measure consistent required 19 

estimations, one for each item, one to trim the resulting nonsignificant correlations, and 9 more 



 22 

estimations to add enough additional correlations to obtain consistency (chi 

square/df/RMSEA/GFI/AGFI = 122/69/.00007/.077/.906/.768).  

Thus, the original multidimensional set of 18 items could be specified so that it fit the 

data in a single construct measurement model using correlated measurement errors. Stated 

differently, correlated measurement errors masked a multidimensional measure.  

Finally, the trimming step in the column-wise selection approach (i.e., to remove 

nonsignificant correlated measurement errors) suggests that some measurement error correlations 

were collinear. Stated differently, freeing a correlation affected the significance or lack thereof in 

other correlations. This may explain the apparent indeterminancy in measurement error 

correlations. Specifically, the starting point (i.e., the measurement errors that were initially 

allowed to correlate) determined the remaining significant measurement error correlations. 

APPENDIX C--Second-Order Constructs 

To investigate the use of second-order constructs we tried several approaches. The initial 

objective was to find a second-order construct for the Factor 1 items that would fit its single 

construct measurement model. To this end authors have suggested grouping items into subsets 

using their content or face validity (i.e., grouping items that seem to be related based on their 

wording--see Hunter and Gerbing, 1982; Gerbing, Hamilton and Freeman, 1994). For example, 

we grouped the Factor 1 items into two subsets based on wording (i.e., the subset 1 items were 

used to indicate latent variable 1, the subset 2 items were used to indicate latent variable 2, and 

latent variables 1 and 2 were specified as the "indicators" of the now second-order Factor 1), then 

three subsets. However, we were unable to find a grouping of the Factor 1 items based on item 

wording that fit their single construct measurement model (i.e., the measurement model 

containing only the second-order construct) without resorting to correlated measurement errors.  
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Authors have also suggested that weeded-out items might be specified as a second 

"indicator" factor in a two-factor second-order construct (i.e., a second-order construct with the 

weeded items as one "indicator" latent variable, and the items that were not weeded out as the 

other indicator latent variable--see Gerbing and Anderson, 1984). To this end we specified a 

second-order construct with the weeded-out items as one "indicator" latent variable, and the 

surviving items as another "indicator" latent variable. Again, we were unable to find a second-

order construct that would fit their single construct measurement model without resorting to 

correlated measurement errors. 

We also tried a second-order construct with the two factors that resulted from a forced 

two-factor solution in maximum likelihood exploratory common factor analysis of the Factor 1 

items, then a forced three-factor solution. These second-order constructs also would not fit their 

single construct measurement model without resorting to correlated measurement errors.  

Finally, we tried specifying a second-order construct with three consistent subsets of the 

Factor 1 items (i.e., two consistent four-item subsets, and one three item subset that fit the data 

exactly). This second-order construct also did not fit the data without resorting to correlated 

measurement errors. 

Several comments may be of interest. These results suggest that with real-world data the 

use of a second-order construct may not always easily improve model-to-data fit. 

APPENDIX D--Full Aggregation 

In full aggregation, a set of items is summed to form a single indicator. Because the 

resulting latent variable is underdetermined with only one indicator, it requires that two of its 

three estimated parameters, its loading, its measurement error variance or its latent variable's 

variance, be fixed for identification.  
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It is easy to show that the loading of a summed indicator is the sum of its individual 

indicator loadings, and that its measurement error variance is the sum of the individual indicator 

measurement error variances.15  

A reliability loading and the well-known measurement error estimate Variance*(1-

reliability) has been used in the social sciences. It is easy to show that these estimates for an 

aggregated indicator are exact when the variance of its latent variable is 1 and latent variable 

reliability is available (see Appendix F).  

Ping (2004) suggested using maximum likelihood exploratory factor analysis (EFA) 

loadings and reliability measurement error variances for a fully aggregated indicator. There is an 

additional estimate of the measurement error variance available using EFA results (see Equation 

F6 in Appendix F).  

An additional approach would be to replace indicators with their fully aggregated EFA 

factor scores.  

Each of these aggregation alternatives will be explored next. 

While it is obviously possible to aggregate a multidimensional measure, none of the 

above estimates for the resulting single indicator's loading and measurement error variance 

would be appropriate (because each requires or assumes unidimensionality), with the exception 

of factor scores. Pursuing that option we produced factor scores using maximum likelihood 

exploratory factor analysis and the full 18 item measure of N. Specifically, maximum likelihood 

EFA of N produced three factors, and the factor score for each of these factors was summed then 

averaged. Next, a full structural model (i.e., with all the latent variables and N as the single 

endogenous variable) were estimated with N specified using this single aggregated factor score 

indicator (with a loading of 1 and a measurement error of 0). The resulting structural model was 
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judged to fit the data (chi square/df/RMSEA/GFI/AGFI = 2349/1449/0/.066/.650/.614) (see 

Footnote 8 for comments about assessing model-to-data fit).  

Next, we estimated a series of structural models involving N and the other model latent 

variables with a full aggregation (average) of the F1 items, or a full aggregation (average) of a 

weeded subset of the F1 items, Subset 2 from Appendix A (items n9, n13, n15, n16, n17 and n18). 

The resulting single indicator used the estimates for loadings and measurement error variances 

mentioned above, averaged LISREL 8 loadings and measurement errors, averaged maximum 

likelihood EFA loadings and measurement errors, reliability loadings and measurement errors 

(see Appendix F), and factor scores. 

The structural coefficients on the paths to N from the other 8 latent variables were 

compared to the structural coefficients produced by the equivalent structural model (i.e., 

containing N and the other 8 latent variables) that used either the 10 items in F1 or Subset 2, with 

N specified with multiple indicators that were the individual items of F1 or Subset 2. 

The Subset 2 full measurement model fit the data (chi square/df/RMSEA/GFI/AGFI = 

2789/1733/0/.065/.630/.596), as did its (saturated) structural model (chi square/df/RMSEA/GFI/ 

AGFI = 2789/1733/0/.065/ .630/.596). The structural coefficients that resulted were used as a 

basis for assessing the efficacy of the various alternative loadings and measurement error 

variances mentioned above.  

In summary, the factor score indicator produced by a maximum likelihood EFA with just 

the Subset 2 items (i.e., with no other items present in the EFA) was judged to produce the 

smallest differences between the corresponding t-values of the Sunset 2 (baseline) structural 

model and the factor score indicator structural model. The root mean square (RMS) (pairwise) 

difference of t-values across the 8 structural coefficients on the paths to N was .002 and the 



 26 

average difference without regard to sign (MAD) was .005 (with a range of between .000 for the 

nonsignificant structural coefficients to .012 for the significant structural coefficients) (structural 

coefficient RMS = .011, MAD = .024, range = [.004, .066]). 

The smallest structural coefficient differences were produced by the averaged LISREL 8 

loadings and measurement errors--the RMS difference of structural coefficients across the 8 

structural coefficients on the paths to N was .007 and the MAD was .015 (the range was .001 to 

.041) (t-value RMS = .065, MAD = .149, range = [.001, .353]).  

The t-value and structural coefficient differences for the other aggregation approaches 

were nearly identical to those produced by the averaged LISREL 8 loadings and measurement 

errors. For example, the average of the maximum likelihood EFA loadings and an Equation F6 

measurement error variance produced a t-value RMS, MAD and range of .062, .149 and [.001, 

.353], respectively. Its structural coefficient RMS, MAD and range were .005, .015 and [.000, 

.024], respectively. The reliability loading and measurement error was similar (t-value RMS = 

.065, MAD = .149, range = [.001, .353]) (structural coefficient RMS = .006, MAD = .015, range 

= [.001, .031]). 

These results were then used to predict the ranking of the performance of N specified 

using the fully aggregated F1 items and the above approaches. As a baseline structural model the 

External Consistency Only (see Appendix E) (full) measurement model for N using the F1 items 

was re-specified as a structural model. An External Consistency Only full measurement model 

uses unidimensional sets of indicators that are not necessarily internally consistent (i.e., their 

single construct confirmatory measurement model may not fit the data). In the present case, each 

latent variable in the External Consistency Only full measurement model had a unidimensional 

itemization (in a maximum likelihood EFA sense), but none of these itemizations was consistent 
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(in the confirmatory factor analysis sense). However, the resulting External Consistency Only 

full measurement model measurement model fit the data (chi square/df/RMSEA/GFI/AGFI = 

3480/1979/0/.073/.590/.556) (see Footnote 8 for comments about assessing model fit), as did the 

corresponding structural model (chi square/df/RMSEA/GFI/AGFI = 

3480/1979/0/.073/.590/.556). 

As with the weeded Subset 2 of the measure for N, the factor score indicator was judged 

to have produced the smallest t-value differences (t-value RMS = .032, MAD = .070, range = 

[.001, .167]). However, it also produced the smallest structural coefficient differences (structural 

coefficient RMS = .013, MAD = .022, range = [.000, .085]). 

The other approaches investigated produced nearly identical results. For example, 

averaged LISREL 8 loadings and measurement errors produced t-value RMS, MAD and range of 

.048, .124, [.066, .236], respectively (structural coefficient RMS = .050, MAD = .093, range = 

[.005, .300]). Averaged maximum likelihood EFA loadings and measurement errors were similar 

(t-value RMS = .048, MAD = .122, range = [.066, .236]) (structural coefficient RMS = .050, 

MAD = .092, range = [.004, .300]), as were reliability loadings and measurement errors (see 

Appendix F) (t-value RMS = .047, MAD = .120, range = [.066, .236]) (structural coefficient 

RMS = .050, MAD = .093, range = [.000, .300]). 

The details of these estimations were as follows. For the factor score approach, a 

maximum likelihood EFA of the 10 F1 items (i.e., with all other items absent) was performed, 

and the resulting factor scores were added to the data set (i.e., the resulting factor scores were 

saved and given the variable name FS). Next, N was specified using the single indicator FS with 

a fixed loading of 1 and a fixed measurement error variance of 0 (i.e., the variance of N, PHIN, 

was free). The resulting structural model was judged to fit the data (chi 
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square/df/RMSEA/GFI/AGFI = 2327/1449/0/.065/.652/.616) (see Footnote 8 for comments 

about assessing model-to-data fit). 

In the LISREL 8 loadings and measurement errors approach, a single construct 

measurement model of the 10 F1 items (i.e., with all other latent variables absent) was estimated 

with the variance of N free (i.e., one indicator loading was fixed at 1 to provide a metric for N). 

Although this single construct measurement model did not fit the data (chi 

square/df/RMSEA/GFI/AGFI = 273/35/0/.219/.687/.509), the F1 items were unidimensional 

using maximum likelihood EFA, so the resulting loadings were averaged and the resulting 

measurement error variances were divided by 102 (using expectation algebra, the variance of an 

average of independent measurement errors, a constant times the sum of the measurement errors, 

is the constant squared times the sum of the variances of the measurement errors). Next, the F1 

indicators were averaged, then N was specified using the resulting single indicator with a fixed 

loading and measurement error variance equal to the averaged LISREL 8 loadings and the 

"averaged" measurement error variances just described, respectively (i.e., the variance of N, 

PHIN was free). The resulting structural model fit the data with the same fit statistics as the factor 

score model. 

For the maximum likelihood EFA loadings and its Equation F6 measurement error 

variance estimation, a maximum likelihood EFA of the 10 F1 items (i.e., with all other items 

absent) was performed. The resulting loadings were re-scaled then averaged,16 and the 

measurement error variance of this single was calculated using Equation F2 in Appendix F. Next, 

the F1 items were averaged, and N was specified using the resulting single indicator with a fixed 

loading and measurement error variance equal to the averaged EFA loadings and the Equation F6 

measurement error variance just described, respectively (i.e., the variance of N, PHIN again was 
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free). The resulting structural model also fit the data with the same fit statistics as the factor score 

model. 

In the reliability loading and measurement error approach, the coefficient alpha reliability 

(α) and the error-attenuated variance (V) (i.e., from SPSS, SAS, etc.) of the F1 items was 

determined. The F1 items were again averaged to form a single indicator of N, and this single 

indicator's the measurement error variance was fixed at the Equation F2 value of = V*(1- α), the 

loading of the single averaged indicator of N was fixed at the square root of the coefficient alpha 

reliability, and the variance of N, PHIN was freed. Again the resulting structural model fit the 

data with the same fit statistics as the factor score model. 

Several comments may be of interest. Specification of the weeded and "weeded-out" 

items of F1 was accomplished using several aggregation approaches.  

The successful estimation of a structural model for a multidimensional N specified with 

aggregated factor scores, suggests that aggregated factor scores might be an alternative to a 2nd 

order factor or partial aggregation (see Appendix E) for specifying a multidimensional measure 

in structural equation analysis. In the present case an 18 item measure which formed three factors 

using maximum likelihood EFA was fully aggregated using (averaged) maximum likelihood 

EFA factor scores.  

Other full aggregation indicators, loadings and measurement error terms were 

investigated (e.g., normed indicators) but not reported because they were judged to have 

performed worse than the reported approaches. 

The results from reliability and LISREL 8 loadings were a surprise. Fixing the loading to 

the square root of coefficient alpha overstates the loading (see Equation F3 in Appendix F) 

which should not have performed well. Similarly, the LISREL 8 single construct measurement 
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model for the items of F1 did not fit the data, yet the resulting loadings and measurement error 

variances were useful in this investigation. However, the External Consistency Only 

measurement model for N with the F1 items did fit the data, and the F1 loadings and 

measurement error variances were trivially different from those produced by single construct 

measurement model for the items of F1. This suggests an additional full aggregation approach 

which is identical to the LISREL 8 approach (a), except that it uses loadings and measurement 

error variances from an External Consistency Only measurement model for N. 

Comparing the structural coefficients and t-values for the 18-item measure for N with 

those from F1 and the weeded Subset 2 (not reported), structural coefficients and significances 

changed materially when items were removed from an aggregated indicator for N (2 structural 

coefficients that were significant using the 18 item measure became nonsignificant when items 

were dropped, and 1 structural coefficient became significant when items were removed). In 

different words, this also suggests that changes in content or face validity of a measure (i.e., the 

items included or excluded in a measure) may change the construct validity of that measure (i.e., 

the correlations among the other latent variables in the model).  

Finally, to investigate the sensitivity of structural coefficients and their significances to 

small changes in itemization with full aggregation, we specified N with fully aggregated weeded 

Subsets 1 through 4 and 1a (see Appendix A). The resulting sensitivity to different weeded 

subsets of items observed were similar to those reported in Appendix A. This suggests not only 

that item changes may change the study results and their interpretation, but that full aggregation 

may not mask these changes. 

APPENDIX E--Other Approaches 
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Partial Aggregation  To investigate partial aggregation, we grouped the items of N into subsets 

of items based on similar face or content validity (i.e., we grouped items that appeared to tap the 

same facet of N together) as Bagozzi and Heatherton (1994) suggested. We then specified N with 

the summed items (i.e., N was specified with 2 or 3 summed indicators). However, neither of 

these groupings fit a single construct measurement model for N. 

Next we created two indicators for N from the results of weeding. We summed the 

weeded Factor 1 items, then did the same for the Factor 1 items that were weeded out. Using a 

fixed reliability measurement error variance for the summed weeded-out items because the latent 

variable was underdetermined, the measurement model was judged to not fit the data (chi 

square/df/RMSEA/GFI/AGFI = 16/8/.047/.082/.979/.871) (the model fit is close to being 

acceptable, but N was not unidimensional--modification indices suggested that the "weeded out" 

indicator loaded significantly on several latent variables). 

Next, we created three indicators for N using the summed items from Factor 1 for one 

indicator, the summed items from Factor 2 for another, and the summed items from Factor 3 for 

the last indicator. However, N was again not unidimensional in the full measurement model 

containing N and the other latent variables, and it did not fit the data. 

Finally, we tried obtaining subsets of the items of N using maximum likelihood 

exploratory common factor with forced 7, 6, etc. factor solutions, and each factor's items were 

then summed. While the 7, 6, etc. forced factor varimax and oblimin exploratory factorings 

converged with the 18 item measure of N, and the 6, 4 and 3 factor exploratory factorings also 

converged with the Factor 1 items of N, the forced 7 and 5 factors with the Factor 1 items did not 

converge. In addition, none of the successful forced factorings fit the data (the 3-factor solution 

was not unidimensional in the full measurement model). 
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These results suggest that partial aggregation may not always allow the specification of a 

large number of items (i.e., more than about 6). Specifically, in the present case none of the 

partial aggregating approaches produced a full measurement model that was external consistent.  

External Consistency Only To investigate omitting the internal consistency step for 

unidimensional measures and achieving full measurement model-to-data fit using external 

consistency only, we itemized each of the 9 latent variables with their Factor 1 items. Each latent 

variable thus had a unidimensional itemization (in a maximum likelihood exploratory factor 

analysis sense), but none of these itemizations was consistent (i.e., none fit their single construct 

measurement model). However, a full measurement model containing the 9 latent variables 

specified unidimensionally with their respective Factor 1 items (i.e., each item was "pointed to" 

by only one latent variable) was judged to fit the data (chi square/df/RMSEA/GFI/AGFI = 

3480/1979/0/.073/.590/.556) (see Footnote 8 for comments on assessing model-to-data fit). 

 To probe the limits of this externally consistent measurement model we weeded each of 

the multidimensional measures until they became unidimensional in a maximum likelihood 

exploratory factor analysis (EFA) of the un-weeded items. Specifically, each multidimensional 

measure was specified in a single factor measurement model as though it were unidimensional. 

For each measure the partial derivative technique used in Appendix A was used to weed the first 

item from that measure. The un-weeded items in that measure were factored using maximum 

likelihood EFA to check their factor structure. If the un-weeded items were multidimensional 

another item was weeded using the partial derivative technique, and the factor structure of the 

resulting un-weeded items was again checked using maximum likelihood EFA. This process was 

repeated until the measure was unidimensional using maximum likelihood EFA. 
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A full measurement model containing these larger but unidimensional measures was also 

judged to fit the data, but LISREL produced a warning message that the sample size was smaller 

than the number of parameters to be estimated, and that the parameter estimates were thus 

unreliable. 

Measure Validation Measure validation (i.e., the determination of the adequacy--reliability and 

validity--of a measure) in survey models can take several approaches. These include a separate 

large scale study(s) aimed solely at validating the study measures. However, presumably because 

of budget and time constraints, large scale measure validation studies are sometimes bypassed, 

and measure adequacy is gauged in a small scale pretest survey(s) (e.g., 100 cases). These small 

pretest surveys are used to preliminarily assess the measures, and to determine response rates. 

Obviously, weeded subsets, second-order constructs, etc. may be difficult if not impossible to 

investigate with the resulting small data sets. 

Again perhaps because of budget and time constraints, the final- (model-) test data set is 

sometimes used for measure validation. In this case the final-test data are used for two separate 

purposes: to assess the measures, and to validate or test the hypothesized model that uses these 

measures. In this case weeded subsets, second-order constructs, etc. could obtain, but all the 

earlier criticisms (capitalizing on chance, etc.) then apply. 

To investigate the use of a separate large-scale measure validation study that takes less 

time and is less expensive than to a mailed-out survey, we conducted a Scenario Analysis. A 

Scenario Analysis is an experiment in which the subjects (usually students) read written 

scenarios that portray a situation in which the study constructs are verbally manipulated (i.e., 

high for one experimental subject--"you are very satisfied with..."--low for another--"you are 

very dissatisfied with..."). Then the subjects are asked to complete the study questionnaire which 
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contains the measures to be validated. Compared with other research designs such as cross 

sectional surveys, the results of Scenario Analyses have been reported to be similar enough that 

they might be useful in measure development and validation (Ping, 2004).  

A Scenario Analysis designed to assess N and the other study measures was conducted 

using students. An audit of the resulting completed questionnaires suggested, however, that 

many scenarios were incomplete or were not administered. Specifically, while there were nine 

variables in the proposed model, eight were exogenous, and thus the scenario required 28 = 256 

completed questionnaires to produce one questionnaire for each treatment (i.e., treatment1 = high 

exogenous variable1, high exogenous variable2, ... , high exogenous variable8; treatment2 = high 

exogenous variable1, high exogenous variable2, ... , low exogenous variable8; treatment3 = high 

exogenous variable1, high exogenous variable2, ... , low exogenous variable7, high exogenous 

variable8; treatment4 = high exogenous variable1, high exogenous variable2, ... , low exogenous 

variable7, low exogenous variable8; ... ; treatment256 = low exogenous variable1, low exogenous 

variable2, ... , low exogenous variable7, low exogenous variable8). However, substantially fewer 

than 256 usable questionnaires were obtained, and re-administering the missing scenarios was 

judged to be out of the question because it was nearly impossible to determine which scenarios 

were missing.17 The effect of these missing treatments was subsequently judged to be unknown. 

However, comparing the results of single construct exploratory common factor analysis 

of each measure, of the 9 measures, the behavior of 7 measures was same between the scenario 

analysis and the final test: 5 measures were unidimensional in both studies and 2 measures were 

multidimensional in the two studies, while 2 measures were unidimensional in scenario analysis 

and multidimensional in the final test, and no measures were multidimensional unidimensional in 

scenario analysis and unidimensional in the final test (not reported). However, loadings in the 
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unidimensional measures were different between the data sets (i.e., an item that loaded high in 

the scenario data loaded lower in the final test data, and vice versa). Further, the 

multidimensional factor structure was not constant across the data sets--the number of factors 

were usually different between the data sets, but items in the scenario factor 1's were contained 

in (i.e., a subset of the) final test factor 1's in all but 1 case. 

Further, reliabilities were within a few points of each other between the two data sets. 

While Average Extracted Variances (AVE's) (see Fornell & Larker, 1981) varied more widely (1 

to 19 points), when the scenario AVE's were above .5 so were the final test AVE's. 

Encouraged by these sanguine results despite the missing treatments, we weeded the 

measure for N using the scenario data. As discussed in Appendix A, the first weeded subset of 

the Factor 1 N items in final test data was Subset 2 (n9, n13, n15, n16, n17 and n18). However, n16 

was the first item weeded out of Factor 1 in the scenario data (not reported). Thus, for the focal 

construct N, weeded subsets would not (all) be the same across data sets, and finding "the" 

weeded subset of items for the Factor 1 items of N using this scenario data set was judged 

unlikely. 

Similarly, the first set of correlated measurement errors found for the Factor 1 items of N 

in the final test data was (9:10,11; 10:12,13,16,17; 11:--; 12:13,17; 13:14,15,16; 14:17,18; 

15:16,18; 16:--; 17:--; where for example 9:10,11 indicates the correlations between ε9 and ε10, 

and ε9 and ε11--ε is a measurement error term, and 11:-- for example indicates that ε11 was not 

correlated with its higher-ordinality measurement errors, ε12 through ε18). However, 17:18 was 

the first correlated measurement error identified in the Factor 1 items of N using the scenario 

data (ε17 and ε18 were not correlated in the Factor 1 items in the final test data). Thus, the 

correlated measurement errors for N would not all be the same across data sets, and finding "the" 
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correlated measurement errors for the Factor 1 items of N using this scenario data set was also 

judged to be unlikely. 

We did not investigate 2nd order constructs or partial aggregation because they did not 

perform in the final test data. Similarly, because the itemizations of Factor 1 in nearly half of the 

study latent variables were different between the two data sets, weeding using external 

consistency only was also not investigated in the scenario data. 

Since the reliabilities were similar between the two data sets, however, we did investigate 

full aggregation. However, the correlations were not same between data sets. For example, N had 

a correlated with S, an important study variable, of .10 in the scenario data, but this correlation 

was -.54 in full test data. Thus, the proposed structural model was not investigated in the 

scenario data because structural coefficients are related to partial correlations (and the scenario 

data was intended for measure validation rather than model validation). 

In summary, while this scenario analysis may have been useful for assessing N and the 

other study measures' reliability and facets of validity (even with missing treatments), its results 

were not appropriate for finding "the" (i.e., a content valid) weeded subset of items for N, "the" 

correlated measurement error structure, etc. in order to permit the use of weeded subsets, second-

order constructs, etc. with fewer of the criticisms mentioned earlier because capitalizing on 

chance would be removed in the second study. However, it remains an open question whether or 

not a "proper" scenario analysis (i.e., one in which all the treatments were administered) would 

have produced the same conclusion regarding weeded subsets, etc.  

Unfortunately, since one was not performed for this analysis (or the original model test, 

due to budget and time constraints), it is also an open question whether a large scale measure 



 37 

validation study could have been used to find "the" weeded subset of items for N, "the" 

correlated measurement error structure, etc.  

APPENDIX F--Derivation of Single Indicator Loadings and Measurement Error Variances 

Werts, Linn and Jöreskog (1974) proposed that the latent variable reliability (ρX) of a of a 

unidimensional measure X (i.e., the measure has only one underlying latent variable) is given by 

            L2
X Var(X) 

F1) ρX = ـــــــــــــــــــــــــــــــ  , 

                   L2
X Var(X) + EX 

 

where LX is the sum of the loadings of the items in the measure X on their latent variable X, 

Var(X) is the (error disattenuated) variance of X (i.e., from a measurement model of X), and EX is 

the sum of the measurement error variances of the items in the measure X as they load on their 

latent variable X. It is also well known that EX is given by 

F2) EX = Var(X) (1 - ρX) , 

 

where Var(X) is the (error attenuated) variance of X (e.g., obtained using SAS, SPSS, etc.). By 

solving Equation (F1) for LX and substituting Equation (F2) into the result, 

F3) LX = [Var(X) ρX / Var(X)]1/2 

 

which becomes 

F4) LX = [ρX]1/2 

 

when Var(X) equals Var(X) (e.g., if X, and thus X, is standardized and its variance is equal to 1), 

or 

F5) LX ≈ [ρX]1/2 

 

otherwise, where ≈ indicates "approximately equal to." 

Finally, Anderson and Gerbing (1988) pointed out that for a unidimensional measure 

there is little practical difference between coefficient alpha (α) and latent variable reliability ρ. 
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Thus, for a single indicator specification of a standardized latent variable X (i.e., its 

variance is fixed at 1), its loading, LX, is the square root of its latent variable reliability ρ (see 

Equation F1), and its measurement error variance, EX, is 1 - ρX (see Equation F2).  

These parameters can be estimated for a standardized latent variable X by substituting 

coefficient alpha reliability, α, into Equations (F2) and (F4), and for an unstandardized latent 

variable X its single indicator loading can be approximated using Equation (F5) and α , and its 

measurement error variance can be estimated using Equation F2.  

Ping (2004) suggested summing maximum likelihood exploratory factor analysis (EFA) 

loadings for LX, and using Equation F2 for the measurement error variance of a fully aggregated 

measure. Because EFA also produces an estimate of the Average Extracted Variance (AVE), the 

explained variance for a factor, the equation for the AVE of X (see Fornell & Larker, 1981) 

     Σ(lxj (j=1,p))
2 Var(X) 

 AVEX = ـــــــــــــــــــــــــــــــــــــــــــ  

              Σ(lxj (j=1,p))
2 Var(X) + EX 

 

     Σ(lxj (j=1,p))
2 

 ,  ــــــــــــــــــــــــــــــ =           

              Σ(lxj (j=1,p))
2 + EX 

 

where lxj is a loading, Σ is a sum (of squared loadings--Equation F1 involves the square of the 

sum), and Var(X) = 1, can be solved for the measurement error variance of a sum of indicators, 

EX 

         Σ(lxj (j=1,p))
2 (1 - AVE) 

F6) EX = ــــــــــــــــــــــــــــــــــــــــ  , 

                  AVE 

 

where AVE is the explained variance of (unidimensional) factor containing the items in X. 
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Thus, an additional estimate of the loading of a summed indicator composed of 

unidimensional items is the sum of its EFA loadings, and an additional estimate of its 

measurement error variance is given by Equation (F6). 

 

ENDNOTES 

                                                 
1 In this case inconsistency is actually unacceptable consistency: the observed or input 

correlation between two indicators of the same latent variable is not acceptably numerically 

similar to the path analytic (Wright, 1934) product of the coefficients on the loading paths from 

their common latent variable. 

 
2 Using path analysis (Wright, 1934) the covariance of two unidimensional items x1 and x2 (i.e., 

items with only one underlying latent variable) implied by a model is the product of the path 

coefficients on their paths from their common latent variable (i.e., the product of their loadings), 

plus the product of the path coefficients due to correlated measurement error (i.e., 1*2 + 

1*1*Cov(1,2), where  denotes loading,  denotes measurement error, 1 is the implied path 

coefficient on the path between each measurement error and their respective x, and Cov denotes 

covariance). Because correlations between measurement errors are usually assumed to be zero, 

the covariance term is usually ignored.  

 
3 Content or face validity is usually established by qualitatively judging how well items match 

the conceptual definition of the target construct. 

 
4 A second-order construct has other constructs as its "indicators." For example in Dwyer and 

Oh's (1987) study of Environmental Munificence and Relationship Quality, the second-order 

construct Relationship Quality had the first-order constructs Satisfaction, Trust, and Minimal 

Opportunism as indicators (see Bagozzi, 1981b; Bagozzi and Heatherton, 1994; Gerbing and 

Anderson, 1984; Gerbing, Hamilton and Freeman, 1994; Hunter and Gerbing, 1982; Jöreskog, 

1970; and Rindskopf and Rose, 1988 for accessible discussions of second-order constructs). 

 
5 Bagozzi and Heatherton (1994) also used a variation of this approach that did not use reliability 

loadings. 

 
6 For example, a model with just-identified latent variables (3 items per latent variable), and 5 

latent variables requires 240 cases to produce at least two cases per input covariance matrix 

element. The same model with 5 summed indicators and 240 cases would have 16 cases 

available to compute each input covariance matrix element. 

 
7 The study details have been omitted to skirt matters such as conceptual definitions, hypotheses, 

etc. which were judged to be of minimal importance to the present purposes. 
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8 Anderson and Gerbing (1984) suggested that GFI and AGFI may not be appropriate gauges of 

model-to-data fit in larger models. An RMSEA (Steiger, 1990) of .05 suggests close fit and 

values through .08 suggest acceptable fit--see Browne and Cudeck (1993); Jöreskog (1993). 

 
9 However, this indeterminacy could be remedied by reconvening an item-judging panel to judge 

the resulting measures and thus identify a weeded subset of items that best taps the conceptual 

definition of N. 

 
10 The variations of full aggregation (e.g., factor scores, LISREL 8 parameters, etc.) have not 

been formally investigated for structural coefficient bias and inefficiency, as far as we know, and 

the structural coefficient results from External Consistency Only and full aggregation should be 

compared for validation. A disagreement in nonsignificance (e.g., a structural coefficient varies 

between nonsignificance and significance with External Consistency Only and factor scores) 

should probably be judged nonsignificant.  

 
11 Other omissions were possible--e.g., omitting a Subset 2 item from the set of 18, etc., and 

there were 18 of these, some of which may have duplicated Subset 1. 

 
12 While these two itemizations had no items in common, equivalent behavior was observed with 

Subset 2 and Subset 1 or Subset 1a that did have common items. Parenthetically, the reliability of 

the antecedent latent variable was .86. However, similar behavior was observed for a latent 

variable with much lower reliability. Finally, there were other structural coefficients that were 

completely unaffected by changes in the itemizations of N.  

 
13 This process was actually repeated more than 180 times to check for errors because the results 

appeared to be cycling. Whether or not this process would have converged with this number of 

potential correlated measurement errors (171) is unknown. 

 
14 Correlating all measurement errors with ε9 was not identified, so the correlation between ε9 

and ε13 was fixed at zero because its modification index (MI) was .0001, suggesting the 

correlation was nonsignificant. A MI in this case is approximately a Chi-Square statistic for 

freeing the correlation between ε9 and ε13--a MI of .0001 suggests the path coefficient on the 

correlation between ε9 and ε13 would have a Chi-Square difference (from 0) of .0001 which is 

nonsignificant with a p-value of .992 and 1 degree of freedom. 

 
15 Using expectation algebra and the usual assumptions regarding latent variables and their errors 

of measurement, the variance of a sum of indicators xi, Var(x1+x2+...+xp) = Var(λx1X + εx1 + 

λx2X + εx2 + ... + λxpX + εxp) = (Σλxj (j=1,p))
2Var(X) + ΣVar(εxj (j=1,p)), where λ is a loading, X is a 

latent variable, and ε is a measurement error. 

 
16 Because exploratory factor analysis assumes variances of 1, the loadings were re-scaled by 

dividing each loading by the maximum loading to allow for latent variable variances other than 

1. This produces one loading equal to one and the other loadings in the customary .6 to .9 range. 
17 In retrospect, we should have at least numbered the scenarios by treatment. 
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 ABSTRACT 

 

Because there is little guidance for estimating interactions involving a second-order latent 

variable (a latent variable with other latent variables as its "indicators"), the paper explores second-

order latent variables and the estimation of a second-order interaction. It suggests a specification for 

an interaction between a second-order latent variable and a first-order latent variable (a latent 

variable with observed indicators). It also illustrates the estimation of these interactions/quadratics 

using real-world data. 
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FIRST-ORDER-BY-SECOND-ORDER 

LATENT VARIABLE INTERACTIONS, 

AND SECOND-ORDER LATENT VARIABLES 

 

 

Tests of hypothesized latent variable interactions (e.g., XZ in 

Y = β0 + β1X + β2Z + β3XZ + ζY , (1 

where X and X are latent variables, β1 through β3 are unstandardized structural coefficients, β0 is an 

intercept, and ζY is the structural disturbance term) in theoretical (hypothesis testing) models have 

appeared in substantive articles (e.g., Bansal & Taylor, 2002; Bhuian, Menguc & Borsboom, 2005; 

Bisbe & Otley, 2004; Cadogan, Cui & Li, 2003; Capaldi & Stoolmiller, 1999; De Ruyter & Wetzels, 

2000; Featherman & Pavlou, 2003; Fullerton & Taylor, 2002; Gustafsson, 1997; Harris, Mowen & 

Brown, 2005; Huang, Lu & Wong, 2003; Iglesias, 2004; Jensen & Szulanski, 2004; Kuklinski & 

Weinstein, 2001; Lam, 1999; Lee & Ganesh, 1999; Lusch & Brown, 1996; Masterson, 2001; 

Matsuno, Mentzer & Ozsomer, 2002; Ozsomer & Simonin, 2004; Ping, 1999; Porter & Lilly, 1996; 

Singh, 1998; Taylor, 1997; Torsheim, Aaroe & Wold, 2001; and Zhou, Yim & Tse, 2005). 

But suppose Z is a second-order latent variable (it has "indicators" that are latent variables). 

How should XZ be specified? Extant interaction specification guidance is exclusively for first-order-

by-first-order interactions. 

Second-order (confirmatory) latent variables (LV's) were proposed by Jöreskog (1970) (see 

Thurstone, 1947). These LV's have other LV's as their "indicators" (e.g., Z in Figure 1 and 1a). Each 

of these "indicator" LV's has observed indicators as usual. For example Dwyer and Oh (1987) 

proposed that the second-order LV Relationship Quality had as its "indicators" the first-order LV's 

Satisfaction, Trust, and Minimal Opportunism (guileful self-interest seeking) (see Bagozzi, 1981a; 

Bagozzi & Heatherton, 1994; Gerbing & Anderson, 1984; Gerbing, Hamilton & Freeman, 1994; 
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Hunter & Gerbing, 1982; Jöreskog, 1971a, 1971b; and Rindskopf & Rose, 1988 for discussions of 

second-order LV's). 

Although comparatively rare, second-order latent variables in the Jöreskog-Thurstone  sense 

have been reported in substantive articles (e.g., Bagozzi, 1981a, 1981b; Bagozzi & Heatherton, 1994; 

Dwyer & Oh, 1987; Gerbing, Hamilton & Freeman, 1994; Ping, 1994, 1997, 1999; Weeks, 1980). 

Rarer still is a second-order interaction, perhaps because there is little guidance for its estimation. 

Because some authors believe interactions are more likely than their reported occurrence 

suggests (e.g., Jaccard, Turrisi & Wan, 1990; see the citations in Aiken & West, 1991), this paper 

explores an interaction between a second-order latent variable and a first-order latent variable. The 

paper suggests a specification for this interaction. It begins with a discussion of second-order latent 

variables, which leads to a suggested specification. Along the way the paper touches on latent 

variable interactions in general. It concludes with a pedagogical example using real-world data. 

 SECOND-ORDER LATENT VARIABLES 

A second-order latent variable (LV) involves first-order LV's. A first-order LV can be 

conceptualized as a unidimensional set of items in an exploratory factor analysis. The relationship 

between indicators and their unobserved LV typically assumes the unobserved LV "drives" the 

indicators (i.e., these indicators are assumed to be observable instances or manifestations of their 

unobserved LV, and thus changes in the unobserved LV are "indicated" by observable changes in the 

items in its measure--see Bagozzi, 1984). 

A second-order LV can be conceptualized as multiple factors in an exploratory factor analysis 

(e.g., in Figure 1: 1a, Factor 3 = Z3 , etc.) that are not particularly orthogonal. Ideally, when the items 

in each of these factors are summed, an exploratory factor analysis of the resulting summed items is 

unidimensional. A second-order LV also "drives" its factors, and these "indicator" first-order LV's in 



 3 

turn "drive" their observed indicators. A diagram of a second-order LV shows it specified or 

connected to its "indicator" first-order LV's with paths or arrows from the second-order LV to its 

"indicator" first-order LV's, then arrows from the first-order "indicator" LV's to their observed 

indicators (see Z in Figure 1 and 1a). Because the relationships between a second-order LV and its 

"indicator" LV's is imperfect, the "indicators" have "measurement errors" ('s) that are the structural 

disturbances in their relationships with their second-order LV (see Figure 1:1a). 

As the Dwyer and Oh (1987) example suggests, a second-order LV can be used to in effect 

combine several related (first-order) LV's into a single higher-order LV to simplify a structural 

equation model. Although other uses for second-order latent variables have been proposed (e.g., 

Gerbing & Anderson, 1984; Rindskopf & Rose, 1988), their use in published substantive articles has 

been primarily to simplify a structural equation model by combining first-order LV's into a single 

(higher order) LV. 

Unidimensionality 

In theoretical model (hypothesis) tests, the unidimensionality, reliability and validity of the 

LV's representing the model constructs are important to evaluating the operationalization of the 

model constructs. Thus, a second-order LV should be unidimensional, reliable and valid in a 

theoretical model test.  

In substantive articles the unidimensionality of a first-order LV is typically demonstrated in 

several steps. Its internal consistency is established by a single-construct measurement model (MM) 

(a MM containing only the LV and its observed indicators) fitting the data (see Anderson & Gerbing, 

1988). Next, the external consistency of pairs of these internally consistent LV's are evaluated using 

model-to-data fit in a series of two-construct MM's (MM's containing only two LV's and their 

observed indicators, with each LV specified unidimensionally). Then, trios of these LV's are 
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evaluated in similar three-construct MM's, then sets of four LV's, etc. (see Jöreskog, 1993). Finally, 

the external consistency of all the LV's together is evaluated using their model-to-data fit in a full 

MM of all the study LV's specified unidimensionally (see Anderson & Gerbing, 1988).  

Anecdotally, after the internal consistency of the model LV's has been established, the 

consistency of pairs, trios, etc. of LV's are sometimes skipped to save time, and the full MM is 

evaluated next because internally consistency LV's may be sufficient for the full MM to fit the data 

acceptably in real-world data. However, if there are indicators that are unacceptably externally 

inconsistent (i.e., if "properly" specified they would load significantly on more than one LV), they 

could be found using the modification indices of the fixed loadings (i.e., a large modification index 

for a fixed loading would suggest an externally inconsistent indicator), and these indicators could be 

excized.  

Consistency for a second-order LV exists at several levels. Gerbing, Hamilton and Freeman 

(1994) argued that for a second-order LV internal consistency should be established at the second-

order level. They suggested in effect that first-order "indicator" LV's should be unidimensional in the 

exploratory (common) factor analysis sense rather than internally consistent. Then, the second-order 

LV should be (internally) consistent in its single factor measurement model (i.e., one with only the 

second-order LV, its "indicator" first-order LV's, and their observed indicators specified 

unidimensionally). 

Other approaches to establishing second-order consistency are possible. The internal 

consistency of the "indicator" LV's could be established (i.e., each "indicator's" single construct 

measurement model (MM) fits the data). Then, a single factor second-order MM (i.e., one with only 

the second-order LV, its "indicator" LV's, and their observed indicators) could be estimated to 

establish the internal consistency of the second-order LV. Next, MM's with pairs of these internally 
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consistent LV's could be estimated treating the second-order LV as just another LV (i.e., it does not 

have to appear in every pair of LV's). Then, trios of LV's could be evaluated, etc. culminating in a 

full MM containing the second-order LV and all the other LV's. A shortcut would be to skip the 

estimation of pairs, etc. of LV's, and estimate the full MM, checking for unacceptable multiple 

loaders using the modification indices of fixed loadings. 

Discussion In effect, correlated measurement errors could be used with "indicator" LV's by 

correlating their structural disturbance terms. Assuming the resulting model is identified, this 

approach would improve model-to-data fit in a second-order LV. However, most of the criticisms of 

correlated measurement errors among observed indicators would also apply in this case (e.g., 

Bagozzi, 1983; Fornell, 1983; Gerbing & Anderson, 1984). 

Internal consistency in first-order LV's is a stricter form of unidimensionality that usually 

limits the number of indicators per latent variable to about six in real-world data (see Anderson & 

Gerbing, 1984; Bagozzi & Heatherton, 1994; Gerbing & Anderson, 1993). The resulting measures 

tend to be operationally narrow instances of their target construct (i.e., content or "face" validity is 

sacrificed for consistency--see Cattell, 1973, 1978; see Gerbing, Hamilton & Freeman, 1994). Thus 

Gerbing, Hamilton and Freeman's (1994) suggestion of using unidimensional "indicators" in the 

exploratory factor analysis sense, instead of internally consistent "indicators," is substantively 

appealing because it should result in fewer items deleted from "indicator" latent variables (Gerbing, 

Hamilton and Freeman 1994 reported one second-order LV with a 16-item "indicator"). 

If item deletion is required to attain consistency, it should be done with concern for the 

content or "face" validity of the resulting LV. Specifically, in establishing external consistency, the 

item with the largest significant modification index (MI) of the fixed loadings should not be deleted 

without weighing the deletion's impact on content validity. Similarly, in establishing internal 
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consistency, an item should not be deleted without weighing the deletion's impact on content 

validity. 

Reliability 

  One formula for LV reliability of X, with indicators x1, x2, ... , xn is 

             (Σλi)
2Var(X) 

 Latent Variable Reliability =  ────────────  , (2 

 (Σλi)
2Var(X)+ΣVar(i) 

 

where λi is the loading of xi on X, i is the measurement error for xi, and Σ denotes a sum (Werts, 

Linn and Jöreskog, 1974; see Bagozzi, 1980; Bollen, 1989; Dillon & Goldstein, 1984; Fornell & 

Larker, 1981). 

However, Gerbing and Anderson (1988) pointed out for unidimensional LV's there is little 

practical difference between coefficient alpha (Cronbach, 1951) and Latent Variable Reliability. 

Rindskopf and Rose (1988) distinguished between second-order- and first-order reliability 

(i.e., "indicator" LV's each have a reliability, and a second-order LV has a reliability due to its 

"indicators"). Thus, to gauge the reliability of a second-order LV, it may be sufficient to gauge 

reliability at the second-order level (acceptably reliable first-order LV's can have unacceptably 

reliable indicators--ones with loadings, that when squared reveal a measure of item reliability, that 

are less than the square root of the customary "cut-off" for acceptable reliability, .7). This is 

accomplished using Equation 2 by substituting the "indicator" loadings, 's, for λ's, and "indicator" 

structural disturbance terms, 's, for 's. 

Discussion "Indicator" LV's could be weeded (i.e., delete items with due care for content validity) 

to improve their coefficient alpha. 

Experience with second-order LV's suggests their reliabilities can be low. (e.g., Rindskopf 

and Rose 1988 reported second-order reliabilities as low as .309 presumably using Equation 2).1 
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Validity 

Authors in the Social Sciences disagree on what constitutes an adequate demonstration of 

validity (e.g., Bollen, 1989; Campbell, 1960; DeVellis, 1991; Heeler and Ray, 1972; Nunnally, 1978; 

Peter, 1981), and this is reflected in the published second-order substantive articles. Nevertheless, a 

minimal demonstration of the validity of a second-order LV should probably include the following: 

its content or face validity (how well its "indicators" tap into the conceptual definition of the second-

order construct), its construct validity, and its convergent and discriminant validity (e.g., Bollen, 

1989; DeVellis, 1991; Nunnally, 1978). The "validity" of the second-order LV would then be 

qualitatively assessed considering its reliability and its performance over the above minimal set of 

validity criteria. 

Construct validity is concerned in part with an LV's correspondence (i.e., correlation) with 

other LV's. To begin to suggest construct validity, the other LV's in the study should be valid and 

reliable, and their correlations with the target LV (e.g., significance, direction and magnitude) should 

be theoretically sound. 

Convergent and discriminant validity are Campbell and Fiske's (1959) proposals involving 

the measurement of multiple constructs with multiple methods, and they are frequently considered to 

be additional facets of construct validity. Convergent measures are highly correspondent (e.g., 

correlated) across different methods. Discriminant measures are internally convergent. However, 

convergent and discriminant validity are frequently not assessed in substantive articles as Campbell 

and Fiske (1959) intended (i.e., using multiple traits and multiple methods-- see Bollen, 1989; Heeler 

& Ray, 1972). Perhaps because constructs are frequently measured with a single method (i.e., the 

study at hand), reliability is frequently substituted for convergent validity, and LV correlational 

distinctness (e.g., correlations with other measures less than .7) is substituted for discriminant 
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validity. 

Discussion Fornell and Larker (1981) suggested that adequately convergent LV's should have 

measures that contain more than 50% explained variance in the factor analytic sense (also see Dillon 

and Goldstein, 1984). Their Average Variance Extracted (AVE)  

          Σλi
2Var(X) 

AVE =  ────────────  , (3 

Σλi
2Var(X)+ΣVar(i) 

 

where λ,  and Σ are as in Equation (2), can be used to gauge percent explained variance in an LV.  

Unfortunately, acceptably reliable LV's can have less than 50% explained variance (AVE). Thus, a 

convincing demonstration of convergent validity would be an AVE of .5 or above. 

Although there is no firm rule for demonstrating discriminant validity, correlations with other 

LV's less than |.7| are frequently accepted as evidence of discriminant validity. A larger correlation 

can be tested by examining its confidence interval to see if it includes 1 (see Anderson and Gerbing, 

1988). It can also be tested by using a single-degree-of-freedom test that compares two measurement 

models, one with the target correlation fixed at 1, and a second with this correlation free (see 

Bagozzi and Phillips, 1982). If the difference in resulting chi-squares is significant, this suggests the 

correlation is not 1, and this suggests the LV's are correlationally distinct.  

AVE can also be used to gauge discriminant validity (Fornell and Larker 1981). If the 

squared (error-disattenuated) correlation between two LV's is less than either of their individual 

AVE's, this suggests the LV's each have more internal (i.e., extracted) variance than variance shared 

with other LV's. This in turn suggests discriminant validity. 
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Thus, in addition to being reliable at least at the second-order level, a second-order LV 

should be at least content or "face" valid, its correlations with other LV's should be theoretically 

sound, and it should be convergent and discriminant valid (e.g., using AVE). Second-order AVE 

could be computed using Equation 3 by substituting the "indicator" loadings on their second-order 

LV, 's, and "indicator" structural disturbance terms, 's, for 's. 

Second-order AVE's are seldom published. However, AVE is much less than reliability (see 

Equations 2 and 3), and experience suggests a rough estimate of AVE is the cube of reliability. Thus, 

reliability should probably be above .8 to avoid an AVE below .5. Because second-order reliabilities 

in several published articles were less than .8, it is likely that several second-order LV's in published 

articles were not convergent valid in the Fornell and Larker (1981) sense. 

 SECOND-ORDER INTERACTIONS 

First Orders 

The amount of interaction between X and Z in their association with Y (also termed X's 

moderation of the Z-Y association, or Z's moderation of the X-Y association) is the strength (i.e., the 

magnitude) of the coefficient of XZ, β3, in an equation such as Equation 1. 

Specification  There have been several proposals for specifying a latent variable interaction 

(e.g., Hayduk, 1987; Jaccard & Wan, 1995; Kenny & Judd, 1984; etc.). The most frequently 

encountered specification in substantive articles was suggested by Ping (1995). This specification 

uses a single indicator for an interaction, XZ, that is the product of the sum or an average of the 

indicators of X and the sum or an average of the indicators of Z. Under the Kenny and Judd (1984) 

normality assumptions and expectation algebra,2 the loading, λxz, and error variance, Var(εxz), for this 

single indicator of XZ with averaged indicators (so the variance of XZ is commensurate with X and 
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Z) are 

λxz = ΛXΛZ/mn, (4 

and 

Var(εxz) = [ΛX
2Var(X)Var(εz) + ΛZ

2Var(Z)Var(εX) + Var(εX)Var(εz)]/(mn)2 , (4a 

where m and n are the number of indicators of X and Z respectively, Var(X) and Var(Z) are error-

dissattenuated variances, λ's are loadings, ΛX = λx1+λx2+...+λxm, Λz = λz1+λz2+...+λzn, ε's are 

measurement errors, Var(εX) = Var(εx1)+Var(εx2)+...+Var(εxm), and Var(εX) = 

Var(εz1)+Var(εz2)+...+Var(εzn). Equations (4) and (4a) can be estimated directly using some structural 

equation software (e.g., LISREL 8 or CALIS), or in several steps using measurement model 

estimates of the parameters in Equations (4) and (4a) (see Ping 1998a). 

Factored Coefficients  Equation 1 can be factored to produce a coefficient of Z due to the 

interaction XZ (i.e., 

Y = β0 + β1X + (β2 + β3X)Z + ζY) (5 

(see Aiken & West 1991). Similarly Equation 1 can be re-factored to produce a coefficient of X due 

to the interaction XZ (i.e., (β1 + β3Z)X). These factored coefficients are instrumental in interpreting 

interactions in survey data. When β3 is significant, depending on the signs and magnitudes of β2 and 

β3, the (factored) coefficient of Z, (β2+ β3X), can be of one sign (e.g., positive) for X at one end of 

the range of X in a study, zero near the middle of the range of X, and another sign (e.g., negative) at 

the other end of the range of X in the study. 

The standard error of the factored coefficient of Z also varies over the range of X in a study. 

Determined by the square root of Var(β2+ β3X) and using expectation algebra, the standard error of 

the factored coefficient of Z is 

[Var(β2) + X2Var(β3) + 2XCov(β2,β3)]
1/2, (6 
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where Var(β) is the square of the standard error of β, and Cov indicates covariance (e.g., Jaccard, 

Turrisi & Wan, 1990). The standard error of the factored coefficient of X is similar. Thus, the 

factored coefficient of Z, for example, can be significant for some X in a study but nonsignificant for 

other values of X in the study. 

Second-Orders 

The possibilities for specifying a second-order by first-order interaction are numerous, but 

most of them are impractical. For example in Figure 1, specifications involving all possible products 

of individual indicators (e.g., Kenny & Judd, 1984) (e.g., for Z3, x1z3,1, x1z3,2, ... , x1z3,n, x2z3,1, x2z3,2, 

... , xmz3,n, where xj are the indicators of X, the first-order LV, and zi,k are the indicators of Zi, the 

second-order LV (see Figure 1) is rarely consistent enough to avoid spoiling structural model fit (see 

Jaccard and Wan, 1995 for evidence of this difficulty). 

Thus, we will explore specifications that reduce the number of second-order interaction 

indicators. For example Z, a second-order LV with three "indicators" could be respecified as a first-

order LV by replacing the "indicator" Z1 by the sum of its indicators, and doing the same for Z2 and 

Z3 (see Figure 1:1c). This respecification of a second-order LV has been reported (e.g., Dwyer & Oh, 

1987; Ping, 1999). XZi in Figure 1 could then be specified with the indicators xz1 = 

(x1+x2+...+xm)(z1,1+z1,2+...+z1,p), xz2 = (x1+x2+...+xm)(z2,1+z2,2+...+z2,q), and xz3 = 

(x1+x2+...+xm)(z3,1+z3,2+...+z3,m) (Specification 1), where the sums in the parentheses represent the 

result of summing variables in each case. These indicators are comparatively few in number (in this 

case three), they have Equation 4 and 4a loadings and measurement error variances, and their 

observed values, xzi = (x1+x2+...+xm)(zi,1+zi,2+...+zi,n) can be computed for each case in a data set. 

Alternatively, XZ in Figure 1 could be specified with a single indicator xz = 

(x1+x2+...+xm)(Σz1,i+Σz2,i+Σz3,i), where the sums in the parentheses represent the result of summing 
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variables in each case, and Σzj,i is the sum of the indicators of Zj (i.e., a sum of sums) (Specification 

2). This indicator has Equation 4 and 4a loadings and measurement error variances, and its observed 

values (i.e., (x1+x2+...+xm)(Σz1,i+Σz2,i+Σz3,i)) can be computed for each case in a data set. 

A variation of these approaches would be to specify Z in Figure 1 as a first-order LV by 

replacing Z1 by its (confirmatory) factor scores, and doing the same for Z2 and Z3 (see Jöreskog & 

Sörbom, 1996, and Kim & Mueller, 1978). The resulting XZ interaction would then have in this case 

three indicators, xzi = (x1+x2+...+xm)fi (i=1,3) (Specification 3), or a single indicator xz = 

(x1+x2+...+xm)(f1+f2+f3) (Specification 4), where fi is the factor score for Fi. These indicators are 

comparatively few in number, they  have Equation 4 and 4a loadings and measurement errors, and 

their observed values (i.e., (x1+x2+...+xm)fi or (x1+x2+...+xm) (f1+f2+f3)) can be computed in each 

case once factor scores are available. 

Reliability and Validity The reliability, XZ, of a second-order (or first-order by first-order) 

interaction, XZ, is approximately the product of the reliabilities of X and Z: 

 rXZ
2 +  X Z  

  XZ =  ───────── ,               (7 

 rXZ
2 + 1 

 

 

where  denotes reliability and rXZ
2 is the error-disattenuated correlation of X and Z (Bohrnstedt & 

Marwell, 1978). Thus, a second-order (or first-order) interaction composed of reliable LV's could be 

unreliable. 

The demonstration of the validity of a second-order interaction, XZ, is less tedious than for X 

or Z. XZ is content or face valid if X and Z are content valid and the specification of XZ includes all 

the indicators of X and Z. The construct (correlational) validity of any interaction is usually 

impossible to evaluate. In addition, the formula for the Average Variance Extracted (AVE) of an 
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interaction is unknown. Nevertheless, the experience-based cube-of-reliability rough approximation 

of AVE could be used to gauge the convergent validity of XZ. Discriminant validity could be gauged 

using the "correlations less than |.7|" criterion. 

 AN EXAMPLE 

For pedagogical purposes a real-world data set will be reanalyzed. A survey involving the 

Figure 2 model and the first-order LV's U, V and W, T the second-order LV, with "indicators" A, I 

and C, and the second-order by first-order interaction UxT, produced more than 200 usable 

responses.3 

Unidimensionality  

First, the internal consistency of T the second-order LV was established at the first-order 

level. Specifically, the internal consistency of the first-order "indicator" A, for example, was 

established by estimating a single construct measurement model (MM) for A (i.e., a measurement 

model containing only the indicators of A) and omitting the indicator with the largest sum of 

Modificaton Indices (MI's) without regard to sign (Ping, 1998b; see Ping, 2004). The single construct 

MM with the remaining indicators of A was then estimated, and the indicator with the resulting 

largest sum of MI's without regard to sign (S-MI's) was omitted. This process of omitting, re-

estimating, and then omitting the indicator with the resulting largest S-MI in each re-estimation was 

repeated until the MM's RMSEA (Steiger 1990, see Brown and Cudeck, 1993; Jöreskog, 1993) was 

.08 or less (.08 or less suggests adequate model-to-data fit). This process was repeated for I and C. 

Then, the internal consistency of T the second-order LV was verified using a MM that 

excluded all the model variables except T, its "indicators," and the observed indicators of these 

"indicators" specified unidimensionally (see Figure 2:2a). This MM was judged to fit the data 

(χ2/df/p-value = 110/51/0, GFI = .92, AGFI = .88, CFI = .97, RMSEA = .07) (GFI and AGFI may be 
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inadequate for fit assessment in larger models--see Anderson and Gerbing, 1984), and thus T was 

judged to be internally consistent. 

Next, the internal consistency of U, V and W was established using the S-MI procedure just 

used on A, I and C. Then, the external consistency of all the model variables, except the interaction 

UxT was established using a full MM for T, U, V and W with all LV's specified unidimensionally 

(χ2/df/p-value = 449/266/0, GFI = .86, AGFI = .83, CFI = .96, RMSEA = .05) (.05 or less suggests 

close model-to-data fit--see Brown and Cudeck, 1993). 

Reliability 

Then, the reliability of the LV's was gauged. Coefficient alpha was calculated for each first-

order variable (see Anderson and Gerbing, 1988), and these variables were judged to be reliable (U 

had a coefficient alpha of .943, and the other LV's had coefficient alpha's of .85 or above). The 

reliability of T (.709) was calculated using Equation 2 (with the "loadings," ''s, of A, I and C on T, 

and the "measurement errors," 's, of A, I and C) and it was judged to be reliable. 

Validity 

The first-order LV's were judged to be content or "face" valid. Using a full MM (excluding 

UxT), they were also judged to be construct valid. Next, using Equation 3, and full MM (excluding 

UxT) parameter estimates, the convergent validities of U, V and W were judged to be adequate (the 

AVE of U was .770 and the other AVE's were .5 or above). The convergent validity of T was low 

(AVE = .474) but sufficient for these pedagogical purposes. Then, using the (error-dissattenuated) 

correlations among T, U, V and W from the same MM, the discriminant validities of T, U, V and W 

were judged to be adequate.  

Discussion 
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Indicator weeding was required for A, I, C, U, V and W, and changes in content or "face" 

validity was a major concern.  

The consistency of T the second-order LV was established at the first-order level because T 

was not consist at the second-order level otherwise (i.e., T's MM with unidimensional "indicators" in 

the exploratory factor analysis sense, rather than consistent "indicators," did not fit the data). 

Pairs, trios, etc. of the first-order LV's were not examined for external consistency because 

the full MM for T, U, V and W fit the data. However, this MM produced significant MI's for the 

fixed loadings. Thus, there were LV's, in this case two LV's with three indicators, that were not 

"perfectly" externally consistent. Because the expected changes in the loadings if these significant 

loadings were freed were comparatively small (i.e., their unstandardized loadings on "alien" LV's 

were .36 or less), deleting the offending indicators was judged to materially impair the content or 

face validity of their LV (for one LV the indicators would be reduced from 4 to two), and the full 

MM model already fit the data with these externally inconsistent indicators, the offending indicators 

were not excised. Experience suggests that "perfect" external consistency is frequently impossible to 

attain in real-world data without severely affecting content or face validity, and sometimes producing 

just- or under-determined LV's.  While there is no hard-and-fast rule, a few fixed loadings with an 

expected change if they were freed less than about .4 in unidimansional LV's could probably be 

ignored in real-world data if the full MM already fits the data (i.e., the full MM is acceptably 

externally consistent). 

Respecification of T 

To investigate the respecification of T as a first-order LV, each "indicator" of T was summed 

then averaged, and a MM corresponding to Figure 2:2b was estimated. To gauge the equivalence of 
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this alternative specification of T to its second-order specification, its reproduced covariance matrix 

was compared to that produced by the second-order specification. However, this respecification of T 

substantially over-estimated the variance of T produced by second-order specification (see Table G 

portions (1) and (2)) (weighted averages of the indicators performed similarly), so a summed 

indicator specification of T was not pursued further. 

Next, each "indicator" of T was replaced by its factor score. These factor scores were 

produced in a MM corresponding to Figure 2 without the XZ interaction present, and with the Figure 

2:2a second-order specification of T. Specifically, they were computed in each case for the 

"indicator" A, for example, by averaging the factor score (regression) of A on u1, u2, ... , u5, a1, a2, ... , 

a4, i1, ... , i4, c1, ... , c4, v1, ... , v4, w1, ... , w4 (i.e., the factor score of A, fA, was (ωA,1x1+ωA,2x2+ ... 

+ωA,25x25)/ (ωA,1+ωA,2+ ... +ωA,25) where the ω's are the factor weights and the x's are the indicators 

u1, u2, ... , w4) (averages were used to produce the same metric as the indicators). For the "indicator" 

I, fI was (ωI,1x1+ωI,2x2+ ... +ωI,25x25)/( ωI,1+ωI,2+ ... +ωI,25), and the factor scores for the "indicator" C 

were computed similarly. The MM corresponding to Figure 2 without the XZ interaction, and with 

the Figure 2:2c factor-score specification of T (A= fA, etc. in Figure 2:2c) was then estimated, and 

the reproduced covariance matrix of this respecification of T was equivalent to that produced by the 

second-order specification of T (see Table G portions (1) and (3)). This respecification of T was also 

(trivially) unidimensional (i.e., it fit the data exactly). 

Centering  

At this point each indicator should have been mean centered by subtracting the indicator's 

average from its value in each case. Mean centering exogenous LV's is important to reduce 

collinearity between an interaction, XZ, and its constituent LV's, X and Z, and centering endogenous 

LV's is important to compensate for not estimating intercepts (see Jöreskog and Yang, 1996). 
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However, because factor scores were computed earlier, the indicators were mean centered before the 

factor scores were estimated. Parenthetically, because the factor scores were determined using 

indicators that had means of zero, the factor scores had means of zero and thus they were also mean 

centered. 

Interaction Specification 

Then, the Figure 2:2c first-orders-only MM (i.e., without UxT and with the first-order/factor-

scored T) was examined for external consistency (model-to-data fit) in order to use its parameters in 

Equation 2 and 2a for the specification of UxT. This MM was judged to fit the data (χ2/df = 168/98, 

GFI = .91, AGFI = .88, CFI = .96, RMSEA = .05). 

Next, UxT was specified using Specification 3 (ua = (u1+u2+...+u5)fA, etc.) and Equations 4 

and 4a with parameter estimates from the above first-orders-only MM. Then, the (full) measurement 

model corresponding to Figure 2:2c (with UxT) was estimated to verify the external consistency of 

the latent variables T, U, V, W and UxT. To accomplish this, starting values for the MM parameters, 

especially the covariances of the LV's, are sometimes required, and parameter estimates from the 

first-orders-only MM just estimated were used along with error-attenuated variance and covariance 

estimates for UxT. This measurement model was judged to fit the data (χ2/df = 186/111, GFI = .91, 

AGFI = .88, CFI = .96, RMSEA = .05).  

Reliability and Validity 

Then, the reliability of UxT was calculated using Equation 7 with T in its first-order/factor-

score specification, correlations from the (full) measurement model corresponding to Figure 2:2c 

(with UxT), and coefficient alphas in place of latent variable reliabilities, and UxT was judged to be 

reliable.4 

Next, using this same model, reliabilities and average extracted variances (Fornell & Larker, 



 18 

1981), the convergent validity UxT may have been low, but sufficient for these purposes.5 Then, 

using the (error-dissattenuated) correlations among T, U, V and W from the same MM and a 

"correlations with other LV's less than |.7| criterion," the discriminant validity of UxT was judged to 

be acceptable. 

Interaction Estimation 

Then, despite the low convergent validities of T and possibly of UxT,6 the Figure 2:2c 

structural model was specified. As with the (full) measurement model corresponding to Figure 2:2c 

just discussed, starting values for the structural model parameters were specified using a combination 

of the parameter estimates from the (full) measurement model corresponding to Figure 2:2c just 

discussed, plus structural coefficient estimates (i.e., the β's in Equation 1) and structural disturbance 

terms (e.g., ζ in Equation 1) from OLS regression (ζV and ζW are estimated by 1-RV
2 and 1-RW

2 

respectively). The results using LISREL, Maximum Likelihood and 2-step estimation7 are 

summarized in Table A.8 

For completeness three additional estimations are reported. Table B summarizes the results of 

a specification that was identical to the Table A specification except that direct estimation of the 

UxT interaction using LISREL 8's constraint equations was used (see Ping, 1998a for sample 

LISREL 8 direct estimation code). The results were trivially different from the 2 step estimates 

shown in Table A. 

Table D summarizes the results of T and U specified as before, but with UxT specified using 

the Kenny and Judd (1984) approach of using all possible unique products of the indicators of U and 

T specified as a first-order LV. This specification involved products of each of the 5 indicators of U 

with the 3 factor-scored indicators of T, for a total of 15 cross-product indicators, and the resulting 

measurement and structural models did not fit the data.9 Parenthetically, no difficulty was 
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encountered in estimating the structural model, and the results were approximately those shown in 

Tables A and B.  

Table C summarizes the results of U specified as before, but with T specified as a second-

order LV and UxT specified the Kenny and Judd (1984) approach of specifying UxT with all 

possible unique cross-products of the indicators of U and T. Because there were 5 indicators for U, 

and T had three first-order LV's each with four indicators, this produced 60 cross-product indicators 

for UxT. The resulting model also did not fit the data. Nevertheless, no difficulty was encountered in 

estimating this model, and the results were are also approximately those in Tables A and B. 

The interpretation of the Table A UxT interaction results is presented in Table H and its 

Footnotes a and f. 

 DISCUSSION 

The above example hints that a second-order LV could be adequately specified by replacing 

the second-order LV's "indicators" by their factor-scores. However, because factor scores are known 

to be approximate, simulations involving combinations of data conditions that are encountered in 

real-world surveys (e.g., reliability, coefficient size, correlations, sample size, etc.) would be required 

to demonstrate that factor scores (asymptotically) reproduce T. (Nevertheless, it is widely believed 

among applied social science researchers that factor scores can be used to adequately represent 

LV's.). Simulations would also be required to demonstrate that a first-order by second-order 

interaction specified using factor scores for T produces unbiased and consistent estimates (although 

this is likely because factor score indicators do not violate the assumptions underlying the Ping 1995 

technique any more or less than observed indicators). 

Kenny and Judd (1984) suggested constraining the variance of UxT, for example, to its 

Kendall and Stewart (1958) expectation algebra result of Var(T)Var(U)+Cov 2(T,U). This constraint 
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is reasonable because it is used to derive the UxT interaction loadings and measurement errors. 

However, its use in real-world data can produce measurement and structural models that do not 

converge. When this happens, the constraint is typically relaxed (i.e., Var(UxT) is freed). However, 

this was not necessary in the example (i.e., the measurement and structural models converged with 

the variance of UxT constrained to Var(T)Var(U)+Cov2(T,U)). Nevertheless, the actual procedure 

used was to estimate each model with Var(UxT) free to obtain convergence, then constrain 

Var(UxT) and reestimate to see if the model still converged. Parenthetically, the Table A and B 

results with Var(UxT) unconstrained were trivially different from the Table A and B results (see 

Table F). 

Factor scores for A, for example, were computed for each case using the factor weights for A, 

ωA,i, and the equation fA = ωA,1x1+ωA,2x2+ ... +ωA,25x25 , where the ω's are the factor weights and the 

x's are the indicators u1, u2, ... , w4. T had three "indicator" LVs (and thus three factor score 

equations, one for each "indicator" LV) and the model had twenty-five indicators (without the 

interaction). As a result, because writing the code in PRELIS, SPSS, SAS, etc. for the three factor 

scores in each case was tedious, three shortcuts might be attractive. First, just the indicators of A, for 

example (instead of all the model indicators) could have been used to compute its factor score and 

reduce the number of terms in fA . However, it is easy to show that the resulting factor-scores would 

not adequately reproduce the covariance matrix of T specified as a second-order. 

Second, the factor weights (ω's) could have been used "as is" (i.e., unaveraged). However, 

this would create difficulties later during interaction interpretation because the factor scores would 

not have the same metric as their indicators (i.e., LIKERT-scaled). 

Third, UxT might have been specified with a sum of indicators for A, I and C, instead of 

factor scores. This specification was estimated (see Table E), and it produced structural coefficient 
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estimates that were equivalent to the Tables A and B factor-scores results. Specifically, T was 

specified as a second-order LV and ut was specified with a single indicator, ut = 

(u1+u2+...+u5)(Σaj+Σij+Σcj) (i.e., Specification 2).10 However this result may have been 

circumstantial, and simulations involving combinations of data conditions that are encountered in 

real-world surveys are required to demonstrate that this indicator for a second-order interaction is 

unbiased and consistent (although this too is likely because this single indicator does not violate the 

assumptions underlying the Ping 1995 technique any more or less than any other observed 

indicators). 

An improved shortcut might have been to estimate a first-order by second-order interaction 

model such as UxT by specifying T as a second-order LV (e.g., Figure 2:2a) and specifying ut with 

sums of indicators (i.e., ut = [u1+u2+...+u5][Σaj+Σij+Σcj]) to reduce the estimation effort involved 

with factor-scores. Then if any of the Table E t-values of the structural coefficients involved in the 

moderation (i.e., UxT-V, U-V and T-V) were in a neighborhood of 2 (i.e.,  .10), the factor-score 

version of ut would be preferred. 
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Figure 1- (Abbreviated) Structural Model with First-Order by Second-Order Interaction, XZ a,b 

 

 
─────────────────────── 
a Z is a second-order LV with first-order "indicator" LV's, Z1, Z2 and Z3. W, X and Y are first-order LV's, and 

XZ is a second-order by first-order interaction. The circles show alternative specifications (e.g., Figure 1a 

shows Z3 with observed indicators, z3,1, z3,2, etc., while Figure 1c shows Z3 with a single summed indicator). 
a X, Z, W, and XZ are correlated, and indicator error terms are uncorrelated. 
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Figure 2- Pedagogical Example (Abbreviated) Structural Model with First-Order by Second-Order Interaction 

Ta 

 

 

 

 
 ─────────────────────── 
a T, U, and UxT were correlated, indicator error terms were uncorrelated, and the ζ's were uncorrelated. 
b The loadings of T on A, I and C are not shown, and the measurement errors (structural disturbances) of A, I 

and C are also not shown. 
c The ω's are the factor weights, and the x's are all the indicators in the model (except for UxT), u1, u2, ... , u5, 

a1, a2, ... , a4, i1, ... , i4, c1, ... , c4, v1, ... , v4, w1, ... , w4 . 
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Table A- Estimation Results for First-Order/Factor Scored T, Figure 2:2c (three indicator with factor scores) 

UxT and 2-Step Estimation (χ2/df = 189/112, GFI = .91, AGFI = .88, CFI = .96, RMSEA = .05) (t-values are 

shown in parentheses) 

 

        V          W            U          T          UxT 

                                                                                        

 

V         -.1625     .1897    -.3677 

     (-1.323)  (1.414)  (-2.860) 

W             -.1743         .1322     .1117 

                (-4.550)       (2.484)  (1.742) 

 

 

Table B- Estimation Results for First-Order/Factor Scored T, Figure 2:2c (three indicator with factor scores) 

UxT and Direct Estimation (χ2/df = 187/112, GFI = .91, AGFI = .88, CFI = .96, RMSEA = .05) (t-values are 

shown in parentheses) 

 

        V          W            U          T          UxT 

                                                                                        

 

V         -.1626     .1897    -.3674 

     (-1.327)  (1.413)  (-2.861) 

W             -.1743           .1321    .1118 

                (-4.550)       (2.488)  (1.741) 

 

 

Table C- Estimation Results for T as a Second-Order and UxT with 60 Kenny and Judd Indicators (χ2/df = 

28606/3593, GFI = .14, AGFI = .13, CFI = .29, RMSEA = .17) (t-values are shown in parentheses) 

 

        V          W            U          T          UxT 

                                                                                       

 

V          -.089     .228       -.275 

      (-1.30)  (1.68)     (-2.85) 

W             -.179           .155      .119 

                (-4.63)       (5.58)    (1.81) 

 

 

Table D- Estimation Results for First-Order/Factor Scored T and UxT with 15 Kenny and Judd Indicators 

(χ2/df = 3402/455, GFI = .44, AGFI = .39, CFI = .56, RMSEA = .17) (t-values are shown in parentheses) 

 

        V          W            U          T          UxT 

                                                                                     

 

V           -.067     .158      -.211 

       (-0.71)  (1.72)   (-2.32) 

W             -.175            .158     .075 

                (-4.56)         (3.60)   (1.71) 
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Table E- Estimation Results for T as a Second-Order, UxT as a Single Indicator with Summed Indicators 

Instead of Factor Scores, and 2-Step Estimation (χ2/df = 479/288, GFI = .86, AGFI = .83, CFI = .96, RMSEA 

= .05) (t-values are shown in parentheses) 

        V          W            U          T           UxT 

                                                                                        

 

V          -.1609     .1915    -.3817 

      (-1.257)  (1.328)  (-2.775) 

W             -.1739           .1328     .1107 

                (-4.537)        (2.415)  (1.617) 

 

 

Table F- Estimation Results from Table A Estimation with Var(UxT) Unconstrained (t-values are shown in 

parentheses) 

 

        V          W            U          T           UxT 

                                                                                       

 

V         -.1609     .1925     -.3680 

     (-1.295)  (1.364)  (-2.866) 

W             -.1741          .1322     .1153 

                (-4.548)       (2.447)  (1.702) 

 

 

Table G- Reproduced Covariance Matrices for Alternative Specifications of T 

 

(1) T as a Second-Order LV (see Figure 2a) 

 
  U   T  V      W 

 --------   --------   --------   -------- 

   U   0.51895    

   T   0.28361 0.40877   

   V   0.02618 0.04791 0.64251  

   W   0.09564 0.07442    -0.10336    0.19173 

 

 

(2) T as a Summed Indicator First-Order LV (see Figure 2b) 

 
             U          T          V          W 

      --------   --------   --------   -------- 

  U    0.51843 

  T    0.26490    0.50086 

  V    0.02614    0.05119    0.64177 

  W    0.09562    0.08351   -0.10335    0.19175 

 

(3) T as a Factor-Scored First-Order LV (see Figure 2c) 
 
             U          T          V          W 

      --------   --------   --------   -------- 

  U    0.51896 

  T    0.27560    0.40562 

  V    0.02618    0.04867    0.64238 

  W    0.09564    0.07493   -0.10335    0.19172 
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Table H- Moderated V Associations with T and U Due to the Table A UxT Interaction  
 

 

            T-V Association Moderated by Ua                 U-V Association Moderated by Tf      

                                             SE of      t-value                                              SE of     t-value 

                   Cen-        T           T           of T                      Cen-        U            U         of U      

        U        tered     Coef-    Coef-      Coef-          T        tered      Coef-     Coef-     Coef- 

     Levelb     Uc     ficientd  ficiente   ficient      Levelg     Th      ficienti   ficientj   ficient 

        1 -3.10 1.139 0.355 3.74        1.07 -2.10 0.609      0.238 2.56   

        2 -2.10 0.962 0.238  4.04 2 -1.17 0.267      0.142 1.88  

        3  -1.10 0.594 0.142  4.19 3 -0.17 -0.100      0.114 -0.88  

        4  -0.10 0.227 0.129  1.76        3.17 0.00 -0.163      0.123 -1.33 

      4.10  0.00 0.190 0.134 1.41 4 0.83 -0.468      0.197 -2.38 

        5 0.90 -0.141 0.215  -0.66        4.88 1.71 -0.791      0.298  -2.66  

 

      (1)          (2)          (3)          (4)          (5)          (6)        (7)          (8)           (9)       (10)     (Column 

        Number) 

 

                                      
a This portion of the table displays the unstandardized associations of T with V produced by the significant UxT 

interaction in Table A. In Columns 1-5 when the existing level of U was low in Column 1, small changes in T were 

positively and significantly associated with V (see Columns 3 and 5). At higher levels of U however, T was less 

strongly associated with V, and near the study average for U and higher, T was not associated with V. 
b U is determined by the observed variable (indicator) with a loading of 1 on U (i.e., the indicator that provides the 

metric for U). The value of this indicator of U ranged from 1 (= low U) to 5 in the study. 
c Column 1 minus the mean of U in the study, 4.10. 
d The factored (unstandardized) coefficient of T was (.189-.367U)T with U mean centered. E.g., when U = 1 the 

coefficient of T was (.189-.367*(1 - 4.10)  1.329. 
e The Standard Error of the T coefficient was: 
           ______________        ____________________________________         _____________________________________ 

         √ Var(βT+βUxTU)  = √ Var(βT) + U2Var(βUxT) + 2UCov(βT,βUxT)  = √ SE(βT)2 + U2SE(βUxT)2 + 2UCov(βT,βUxT) , 

 

where Var and Cov denote variance and covariance, SE is standard error, and β denotes unstandardized structural 

    coefficients from Table A. 
f This portion of the table displays the unstandardized associations of U and V moderated by T. When T was low in 

Column 6, U was positively associated with V (see Column 10). As T increased, Us association with V weakened and 

became non significant, then above the study average it strengthened again and was significant but negative (see 

columns 8 and 10). 
g T is determined by the indicator with a loading of 1 on T (i.e., the indicator that provides the metric for T). The factor-

scores for this indicator of T ranged from 1.07 (= low T) to 4.88 in the study.  
h Column 6 minus 3.17, the mean of T in the study. 
i The factored (unstandardized) coefficient of U was (0-.367T)U with T mean centered. E.g., when T = 1.07 the 

coefficient of U was -1.62-.367*(1.07-3.17)  .609. 
j The Standard Error of the U coefficient was: 

     ____________        ________________________________        ________________________________ 

   √ Var(βU+βUxTT)  = √ Var(βU) + T2Var(βUxT) + 2TCov(βU,βUxT)  = √ SE(βU)2 + T2SE(βUxT)2 + 2TCov(βU,βUxT) , 

 

where Var and Cov denote variance and covariance, SE is standard error, and β denotes unstandardized 

    structural coefficients from Table A. 
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ENDNOTES 

 

1. However, Ping 1997 reported a second-order LV with a reliability of .80. Although Gerbing, 

Hamilton & Freeman 1994 did not report second-order reliabilities, estimating them using Equation 

2 with Var(X) = 1, Var() = 1 - the reported coefficient alphas, and the reported 's, they may have 

been as high .90. 

 

2. I.e., each of the latent variables X and Z is independent of its measurement errors, the 

measurement errors are mutually independent, and the indicators and the measurement errors are 

multivariate normal. 

3. The variable names have been disguised and the study details have been omitted to skirt non-

pedagogical matters such as the theory behind the model, hypotheses, etc. 

4. The reliability of U was .943, and the reliability of T was .709. Because the correlation between T 

and U was .615, the reliability of UxT was .76 (= [.6152+.943*.709]/[.6152+1]). 

5. As previously noted, the formula for the average variance extracted (AVE) of an interaction is not 

known, and experience suggests that AVE is roughly the cube of reliability. Thus, the AVE of UxT 

is roughly.763 = .44. If the formula for an interaction's AVE turns out to be similar to the formula for 

its reliability, the AVE of UxT would be .53 (= [.6152+.770*.474]/[.6152+1]). 

6. Strictly speaking T (and possibly UxT) would be judged borderline unsuitable for a proper test of 

a theoretical model. However, impaired convergent validity does not affect the pedagogical purposes 

of this example. 

7. In the so called 2-step version of Ping's (1995) LV interaction specification, the structural model is 

estimated with fixed Equation 4 and 4a values. If the resulting structural model estimates of the 

measurement parameters for T and U are not similar to those from the (full) measurement model 

corresponding to Figure 2:2c just discussed (i.e., equal in the first two decimal places) the Equation 4 

and 4a loading and error variance are recomputed using the structural model parameter estimates, 

and the structural model is re-estimated. Experience with real world data suggests that with 

consistent LV's zero to one of these iterations are usually sufficient to produce exact estimates in 

real-world data (i.e., equal to direct estimation-- see Ping 1995). 

 

8. UxT specified with a single summed factor score indicator, ut = (u1+u2+...+u5)(fA+fI+fC) (i.e., 

Specification 4), and T specified with factor scores produced results similar to Table A. 

 

9. Again, six indicators seems to be about the maximum with real-world data-- see Anderson and 

Gerbing, 1984; Bagozzi and Heatherton, 1994; Gerbing and Anderson, 1993. Also see Jaccard and 

Wan, 1995 for evidence of this difficulty with Kenny and Judd indicators. 

 

10. UxT specified with three indicators, ua = [u1+u2+...+u5][Σaj], ui = [u1+u2+...+u5][Σij], and uc = 

[u1+u2+...+u5][Σcj] (i.e., Specification 1), and T specified as a second-order construct produced 

results similar to Table E. 
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 NOTES ON ESTIMATING CUBICS 

 AND OTHER "POWERED" LATENT VARIABLES 
 

(An earlier version of Ping 2007, Am. Mktng. Assoc. (Winter) Educators’ Conf. Proc.) (Revised Apr. 2007).  

 

 

 ABSTRACT 

 

There is little guidance for specifying and estimating cubics (e.g., X3 or XXX) in structural equation 

models. The paper explores these latent variables, and suggests a specification for them. A pedagogical 

example of their estimation is also provided. Along the way, the "factored coefficients" created by a significant 

cubic (e.g., the factored coefficient of X in the expression β1X + β2XZ + β3XXX = (β1 + β2X + β3XX)X is β1 + 

β2X + β3XX) are discussed, and standard errors of these factored coefficients are derived. The reliabilities of 

quadratics and cubics are also derived, an approach to interpretation of these "powered variables" is discussed, 

and a sequential procedure for testing hypothesized "satiation" or "diminishing returns" in theoretical model 

tests is suggested. 

 

 

Interactions in survey data such as XZ have received attention recently (see Ping 2006 for a summary). 

However, related non-linear or powered variables such as quadratics, XX and ZZ, and their cubic relatives, 

XXX and ZZZ, in 

Y = β0 + β1X + β2Z + β3XX + β4XZ  + β5ZZ + β6XXX + β7ZZZ + ζY , (1 

where β1 through β7 are unstandardized "regression" or structural coefficients (also termed associations 

or, occasionally, effects), β0 is an intercept, and ζY is the estimation or prediction error, also termed the 

structural disturbance term, have received comparatively little attention. Quadratics have been proposed and 

investigated in other social science literatures (e.g., Bandura 1966, Homans 1974, Howard 1989, Laroche and 

Howard 1980, Wheaton 1985, Yerkes and Dodson 1908). In addition, authors believe interactions and 

quadratics are more likely than their reported occurrence in published survey research suggests (e.g., Aiken and 

West 1991; Blalock 1965; Cohen 1968; Cohen and Cohen 1975, 1983; Darlington 1990; Friedrich 1982; 

Kenny 1985; Howard 1989; Jaccard, Turrisi and Wan 1990; Lubinski and Humphreys 1990; Neter, 

Wasserman and Kunter 1989; Pedhazur 1982).  

Cubics in survey data have received comparatively little theoretical attention. They also have yet to 

appear in published structural equation models, perhaps because, among other things, there is no guidance for 

estimating cubics. This paper sheds additional light on several powered linear latent variables (e.g., XX, XZ, 
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ZZ, XXX, and ZZZ in Equation 1), especially cubics. Specifically, it will discuss the estimation and 

interpretation of latent variable interactions, quadratics and cubics, and it will propose a specification for latent 

variable cubics. We begin with a discussion of non-linear variables (e.g., XX, XZ, ZZZ, etc. in Equation 1) 

which leads to a proposed specification of cubics involving latent variables and a pedagogical example that 

illustrates their estimation and interpretation. 

 NONLINEAR ASSOCIATIONS IN SURVEY MODELS 

To motivate the admittedly novel topic of cubics in theoretical model tests using survey data it is 

instructive to begin with a discussion of interactions and quadratics that lays the groundwork for cubics. There 

have been several proposals for specifying latent variable quadratics including (1) Kenny and Judd 1984; (2) 

Bollen 1995; (3) Jöreskog and Yang 1996; (4) Ping 1995; (5) Ping 1996a; (6) Ping 1996b; (7) Jaccard and 

Wan 1995; (8) Jöreskog 2000; (9) Wall and Amemiya 2001; (10) Mathieu, Tannenbaum and Salas 1992; (11) 

Algina and Moulder 2001; (12) Marsh, Wen and Hau 2004; (13) Klein and Moosbrugger 2000/Schermelleh-

Engle, Kein and Moosbrugger 1998/Klein and Muthén 2002; and (14) Moulder and Algina 2002.  

Several of these proposals have not been evaluated for possible bias and lack of efficiency (i.e., 

techniques 8 and 10).  

Most of these techniques are based on the Kenny and Judd product indicators (x1z1, x1z2, ... x1zm, x2z1, 

x2z2, ... x2zm, ... xnzm, where n and m are the number of indicators of X and Z respectively, or x1x1, x1x2, ... x1xn, 

x2x2, x2x3, ... x2xn, ... xnxn). However, for most theoretical model testing situations where reliability and validity 

are important, and where "interesting" models (i.e., models with more than 3 exogenous constructs, not 

including interactions or quadratics), over-determined latent variables (i.e., latent variables with 4 to 6 or more 

indicators), and real world survey data are the rule, specifying all the Kenny and Judd product indicators 

produces model-to-data fit problems. The resulting specification of XZ, for example, in a single construct 

measurement model will not fit the data, and the full measurement and the structural models containing XZ 

will usually exhibit unacceptable model-to-data fit) (techniques 1 and 5).  

Several proposals use subsets of the Kenny and Judd (1984) product indicators or indicator 

aggregation to avoid these inconsistency problems (techniques 3, 4, 5, 7, 9, 11, 12 and 14). Unfortunately, 
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weeding the Kenny and Judd product indicators raises questions about the face or content validity of the 

resulting interaction or quadratic (e.g., if all the indicators of X are not present in XX, for example, is XX still 

the "product of X and X"?) (techniques 3, 7, 9, 11, 12 and 14). In addition, using the formula for the reliability 

of XX is problematic for a weeded XX. The formula for the reliability of XX is a function of (unweeded) X, 

and thus it assumes XX is operationally (unweeded) X times (unweeded) X). Weeded Kenny and Judd product 

indicators also produce interpretation problems using factored coefficients (discussed below) because XX is no 

longer (unweeded) X times (unweeded) X operationally. Some of these proposals do not involve Maximum 

Likelihood estimation, or commercially available estimation software (techniques 2, 6 and 13). 

The following will rely on the Ping 1995 proposal for several reasons including that it has the fewest 

drawbacks. He proposed using a single indicator that is the product of sums of the first order variables' 

indicators. For example for X with indicators x1 and x2, and Z with the indicators z1 and z2 the single indicator 

of XZ would be xz = (x1+x2)(z1+z2). He further suggested that under the Kenny and Judd (1984) normality 

assumptions,1 the loading, λxz, and error variance, θεxz, for this single indicator are 

λxz = ΛXΛZ , (2 

and 

θεxz = ΛX
2Var(X)θZ + ΛZ

2Var(Z)θX + θXθZ , (2a 

where ΛX = λx1 + λx2, Var indicates error disattenuated variance, θX = Var(εx1) + Var(εx2), Λz = λz1 + λz2, θz = 

Var(εz1) + Var(εz2), λxz = ΛXΛZ, θεxz = ΛX
2Var(X)θZ + ΛZ

2Var(Z)θX + θXθZ , and λ and θ are loadings and 

measurement error variances. 

Using simulated data sets with data conditions that were representative of that encountered in surveys 

(i.e., four indicators per X and Z latent variable, X and Z loadings ranging from 1 to .6, sample sizes of 100 

and 300 cases, and linear latent variable reliabilities of .6 and .9), Ping's (1995) results suggested that the 

proposed single indicator for an interaction or quadratic (discussed later) produced unbiased and consistent 

coefficient estimates. 

                                                 
1 The Kenny and Judd normality assumptions were that each of the latent variables X and Z is independent of 

their measurement errors (εx1, εx2, εz1, and εz2), the measurement error are mutually independent, the indicators 

x1, x2, z1, and z2 , and the measurement errors (εx1, εx2, εz1, and εz2) are multivariate normal. 
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While this specification can be used in several ways, it is most often used in two estimation steps. In 

this two-step version of the Ping (1995) technique the measurement parameters in Equations 2 and 2a (i.e., λx1, 

λx2, λz1, λz2, θεx1, θεx2, θεz1, θεz2x1, Var(X), and Var(Z)) are estimated in a first-orders-only measurement model 

(e.g., a model that excludes XZ). Then, the single indicators of the interaction and quadratic latent variables are 

created as products of sums of the indicators of linear latent variables for each case in the data set. Next, using 

the first-orders-only measurement model parameter estimates the loadings and measurement error variances for 

the interaction indicator (λxz and θxz ) are computed using the equations above. Finally, specifying the 

calculated loadings and error variances λxz and θxz  for the product indicator as constants, the structural model 

is estimated. 

If the structural model estimates of the measurement parameters for X and Z (i.e., λx1, λx2, λz1, λz2, 

Var(εx1), Var(εx2), Var(εz1), Var(εz2), Var(X), and Var(Z)) are not similar to those from the measurement model 

(i.e., equal in the first two decimal places) the loadings and error variances of the product indicators can be 

recomputed using the structural model estimates of their measurement parameters. Our experience is that zero 

to two of these iterations are sufficient to produce exact estimates (i.e., equal to direct estimates-- see Ping 

1995). 

QUADRATICS AND CUBICS 

In some ways the graphs of (observed) quadratics and cubics are similar. A quadratic such as XX, for example, 

has a graph of XX versus X that is shaped like a portion of the capital letter U. This letter U opens upwards 

when β3 is positive, and downward when β3 is negative. In general the graph of a cubic such as XXX is shaped 

like a portion of a stylized capital letter N (i.e., with rounded vertices) when β6 is positive. This N is backward 

(again with rounded vertices) when β6 is negative. When the range of X is suitably restricted, the graph of a 

cubic can be a "more-V-like" quadratic (i.e., when one of the outside legs of the N is not present in the graph). 

Thus, in theory tests involving survey data where the range of X, for example, is frequently restricted (e.g., 

from 1 to 5), XX and XXX could have similarly shaped graphs (e.g., one side of a U or an N), and in effect the 

estimation issue would be which one (i.e., XX or XXX), if any, provides a better representation (in theory 

testing terms--e.g., is significant) of hypothesized "satiation" or "diminishing returns," for example. 
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Ping (1995) in effect proposed that a quadratic could be specified the same way as an interaction: as 

the product of the sum of indicators. Thus for xx = (x1+x2)(x1+x2) as the single indicator of XX, for example, 

the loading, λxx, and a measurement error variance, θεxx of xx is 

λxx = ΛXΛX , (3 

and 

θεxx = 4ΛX
2Var(X)θX + 2θX

2 , (3a 

where ΛX = Σλxi, λxi is the loading of xi on X, Var(X) is the error disattenuated (measurement model) variance 

of X, ΘX = ΣVar(εxi), and Var(εxi) is the measurement error variance of xi. The indicators xi are usually zero- or 

mean-centered by subtracting the mean of xi from xi in each case, and xx becomes 

xcxc = [Σ(xi
u - M(xi

u)] [Σ(xi
u - M(xi

u)] , 

where xi
u is an uncentered indicator, M denotes a mean, and Σ is a sum taken before any multiplication. 

Specifying XX with this indicator reduces the high correlation or nonessential ill-conditioning (Marquardt, 

1980; see Aiken and West, 1991) of (mean centered) X and XX that produces inefficient or unstable structural 

coefficient estimates that vary widely across studies. 

Using simulated data sets with data conditions that were again representative of those encountered in 

surveys, Ping's (1995) results suggested that the proposed single indicator for a quadratic produced unbiased 

and consistent coefficient estimates for a latent variable quadratics. 

As with an interaction, this approach could be used in two ways, but the two step procedure described 

earlier is the least tedious. 

A cubic might be specified in a manner similar to a quadratic, as the product of the sum of indicators 

such as xxx = (Σxi)3. However, mean centering xi does not reduce the high correlation between X and XXX 

(Dunlap and Kemery, 1988 Marquardt, 1980; see Aiken and West, 1991), and inefficient structural coefficient 

estimates usually obtain. An alternative specification that avoids this difficulty is the indicator  

xc(xx)c = [Σxi
u - M(Σxi

u)][(Σxi
u)(Σxi

u) - M((Σxi
u)(Σxi

u))] ,             (3, 3c, 3b 

where Σxi
u is the sum of uncentered xi's. The indicator xc(xx)c is thus the product of mean-centered xi's and 

mean-centered xixj's, and thus xc(xx)c could be used as a single indicator of Xc(XuXu)c (i.e., with xc(xx)c = 
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λXc(XuXu)cXc(XuXu)c + εXc(XuXu)c). 

The loading and error variance of xc(xx)c is derived next. Under the above Kenny and Judd (1984) 

assumptions the variance of the product of x = (Σxi) = [Σ(λxiX + εxi)] and w = (Σwi) = [Σ(λwjW + εwj) (where λwj 

and εwj are the loading and measurement error, respectively, of wj on its latent variable W, and j = 1 to m, 

where m is the number if indicators of W), is  

Var(xw) = (ΛXΛW)2Var(XW) + ΛX
2Var(X)ΘW + ΛW

2Var(W)ΘX + ΘXΘW ,                          (4a 

(e.g., Ping 1995) where ΛW = Σλwj, λwj is the loading of wj on W, Var(XW) is the error disattenuated variance 

of XW, ΘW = Σθεwj, Var(W) is the error disattenuated variance of W, and θεwj is the measurement error 

variance of wj. This would provide a specification of XW using the indicator xw with the calculated loading 

ΛXW = ΛXΛW and the calculated measurement error variance ΘXW
 = ΛX

2Var(X)ΘW + ΛW
2Var(W)ΘX + ΘXΘW

 , 

if estimates of these parameters are available (e.g., Ping, 1995). 

To provide estimates of the parameters involving a specific W = (XuXu)c, 

  Var(W) = Var[(XuXu)c] = 4E2(Xu)Var(Xu) + 2Var2(Xu) 

(Bohrnstedt and Goldberger, 1969), where E2(Xu) denotes the square of the mean of Xu, and Var2(Xu) is the 

square of the variance of Xu (Xu is uncentered and thus has a non-zero mean). Since first moments are 

unaffected by measurement error, E(Xu) = E(Σxi
u), and Var(Xu) = Var(X). Thus, for W = (XuXu)c , Var(W) in 

Equation 4a is a function of the mean of Σxi
u and the variance of X: 

 Var(W) = 4E2(Σxi
u)Var(X) + 2Var2(X) ,                      (4b 

where E(Σxi
u) is available from SAS, SPSS, etc. and Var(X) is available from the measurement model for X. 

For (xx)c, 

(xx)c = (Σxi
u)(Σxi

u) - M((Σxi
u)(Σxi

u)) 

  

 = [(Σλxiu)Xu + Σεxiu][(Σλxiu)Xu + Σεxiu] - M((Σxi
u)(Σxi

u))  

 

 = (λXuXu + εXu)(λXuXu + εXu) - M((Σxi
u)(Σxi

u)) 

  

 = λXu
2XuXu + 2λXuXuεXu + εXuεXu - M((Σxi

u)(Σxi
u)),  

 

where λXu = Σλxiu and εXu = Σεxiu, and with the usual assumptions that Xu is independent of measurement errors, 

measurement errors have zero expectations, and measurement errors are independent, and thus  
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 Var((xx)c) = Var(λXu
2XuXu + 2λXuXuεXu + εXuεXu - M((Σxi

u)(Σxi
u))) 

 

= Var(λXu
2XuXu + 2λXuXuεXu + εXuεXu) 

 

= Var(λXu
2XuXu) + Var(2λXuXuεXu) + Var(εXuεXu) + 2Cov(λXu

2XuXu,2λXuXuεXu)  

+ 2Cov(λXu
2XuXu, εXuεXu) + 2Cov(2λXuXuεXu,εXuεXu) 

 

= (λXu
2)2Var(XuXu) + 4λXu

2Var(XuεXu) + Var(εXuεXu) 

 

= (λXu
2)2Var(XuXu) + 4λXu

2[E2(Xu)Var(εXu) + Var(Xu)Var(εXu)] + 2Var2(εXu) , 

 

because the covariances involving measurement errors are zero, and the expansions of Var(XuεXu) and 

Var(εXuεXu) contain zero E(εXu) terms. 

As a result, in Equation 4a for W = XuXu 

ΛW = λXu
2 = (Σλxi)2               (4c 

and 

ΘW = 4λXu
2[E2(Xu)Var(εXu) + Var(Xu)Var(εXu)] + 2Var2(εXu) 

      = 4(Σλxiu)2[E2(Xu)Var(Σεxiu) + Var(Xu)Var(Σεxiu)] + 2Var2(Σεxiu) . 

Since (Σλxiu) = (Σλxi), E(Xu) = E(Σxi
u), Var(Σεxiu) = Var(Σεxi) = ΣVar(εxi), and Var(Xu) = Var(X),  

ΘW = 4(Σλxi)2[E2(Σxi
u)ΣVar(εxi) + Var(X)ΣVar(εxi)] + 2(ΣVar(εxi))2                 (4d 

and the parameters in Equation 4a are all parameters involving X. Specifically, the loading of XW, ΛXW, is 

ΛXΛW and the measurement error variance of XW, ΘXW, is ΛX
2Var(X)ΘW + ΛW

2Var(W)ΘX + ΘXΘW
 , where 

ΛX = Σλxi, i = 1 to n and n is the number of indicators of X, λxi are the loadings of λxi on X, ΛW = (Σλxi)2, 

Var(X) is (error disattenuated) variance available in the measurement model for X, ΘW = 4(Σλxi)2[E2(Σxi
u)ΘX + 

Var(X)ΘX] + 2ΘX
2, E2(Σxi

u) is the square of the mean of the sum of the uncentered xi (available from SAS, 

SPSS, etc.), ΘX = ΣVar(εxi), Var(εxi) are the measurement error variances of xi, ΘX
2 is the square of ΘX, and 

Var(W) = 4E2(Σxi
u)Var(X) + 2Var2(X).2 

                                                 
2 Using Equation 4a, this simplifies to the loading, ΛXXX, of the cubic XXX   

 

ΛXXX  = (ΛX )3,                  (4e 

 

and the error variance ΘXW of the cubic XXX is  

 

ΘXW = ΛX
2Var(X)ΘW + ΛW

2Var(W)ΘX + ΘXΘW . 
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 Significant higher orders such as XX, XZ and XXX create factor coefficients of X, for example. We 

discuss these next. 

FACTORED COEFFICIENTS AND THEIR STANDARD ERRORS 

Equation 1 can be factored to produce a coefficient of Z due to the interaction XZ, i.e., 

Y = β1X + (β2+ β4X)Z  + β3XX + β5ZZ + β6XXX + β7ZZZ  + ζY . (5 

Similarly Equation 1 can be refactored to produce a coefficient of X due to the interaction XZ (i.e., [β1 + β4Z]  

in [β1 + β4Z]X). These factored coefficients are important to understanding interactions in survey data, and 

later they will help shed more light on cubics. When the XZ interaction in Equation 1 is significant (i.e., β4 is 

                                                                                                                                                             
 

Substituting for ΘW and Var(W) using Equations 4b and 4d respectively and simplifying 

 

ΘXW = ΛX
2Var(X)[4(Σλxi)2[E2(Σxi

u)Var(Σεxi) + Var(X)Var(Σεxi)] + 2Var2(Σεxi)] 

  

+ ΛW
2 [4E2(Σxi

u)Var(X) + 2Var2(X)]ΘX  

 

+ ΘX[4(Σλxi)2[E2(Σxi
u)Var(Σεxi) + Var(X)Var(Σεxi)]  + 2Var2(Σεxi)]  

 

        = ΛX
2Var(X)[4(Σλxi)2E2(Σxi

u)Var(Σεxi) + 4(Σλxi)2Var(X)Var(Σεxi) + 2Var2(Σεxi)] 

 

+ ΛW
2 4E2(Σxi

u)Var(X) ΘX + ΛW
22Var2(X)ΘX 

 

+ ΘX4(Σλxi)2E2(Σxi
u)Var(Σεxi) + 4(Σλxi)2Var(X)Var(Σεxi) ΘX + 2Var2(Σεxi) ΘX 

 

        = ΛX
2Var(X)4(Σλxi)2E2(Σxi

u)Var(Σεxi) + ΛX
2Var(X)4(Σλxi)2Var(X)Var(Σεxi)  

+ ΛX
2Var(X)2Var2(Σεxi) 

 

+ ΛW
2 4E2(Σxi

u)Var(X)ΘX + ΛW
22Var2(X)ΘX 

 

+ ΘX4(Σλxi)2E2(Σxi
u)Var(Σεxi) + 4(Σλxi)2Var(X)Var(Σεxi)ΘX + 2Var2(Σεxi)ΘX 

 

        = 4ΛX
4Var(X)ΘXE2(Σxi

u) + 4ΛX 4Var(X)2ΘX + 2ΛX
2Var(X)ΘX

2 

 

+ 4ΛX
4Var(X)ΘXE2(Σxi

u) + 2ΛX
4Var2(X)ΘX 

 

+ 4ΛX
2ΘX

2E2(Σxi
u)      + 4ΛX

2Var(X)ΘX
2 + 2ΘX 3  

 

        = 8ΛX
4Var(X)ΘXE2(Σxi

u)  + 6ΛX
4Var(X)2ΘX  + 6ΛX

2Var(X)ΘX
2 

 
+ 4ΛX

2ΘX
2E2(Σxi

u) + 2ΘX
3 ,               (4f 

 

which are available in a "first-orders only" measurement model containing X, and for unidimensional first-
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significant) the factored coefficient of Z, for example, in Equation 5 is not constant over the range of X in the 

study. Depending on the signs and magnitudes of β2 and β4, the (factored) coefficient of Z, (β2+ β4X), can be 

positive for X at one end of the range of X in the study, zero near the middle of the range of X, and negative at 

the other end of the range of X in the study. 

The standard error of the factored coefficient of Z also varies over the range of X in the study. 

Determined by the square root of Var(β2+ β4X), where Var indicates variance, the standard error of the factored 

coefficient of Z is 

                    [Var(β2) + X2Var(β4) + 2XCov(β2,β4)]1/2, (6 

where Cov indicates covariance (which is available as an output option in structural equation packages such as 

LISREL, EQS, etc.) and the exponents 2 and 1/2 indicate the square and the square root respectively (e.g., 

Jaccard, Turrisi and Wan 1990). In different words, the standard error of the factored coefficient of Z, (β2+ 

β4X), is a function of the standard errors/variances of β2, β4 and the value of X at which the coefficient is 

evaluated. Thus the factored coefficient of Z can not only vary with the values of X in the study, but it can also 

be significant for some X in the study but nonsignificant for other values of X in the study. 

Other factored coefficients are obviously possible. For example Equation 1 could be refactored to 

produce a factored coefficient of Z due to the quadratic ZZ (i.e., [β2 + β5Z] in [β2 + β5Z]Z), and a factored 

coefficient of X due to the quadratic XX (i.e., [β1 + β3X] in [β1 + β3X]X). The factored coefficient of Z due to 

ZZ and ZZZ is [(β2 + (β5+ β7Z)Z] in [(β2 + (β5+ β7Z)Z]Z, and the factored coefficient of X due to XX and XXX 

is [(β1 + (β3 + β6X)X)] in [(β1 + (β3 + β6X)X)]X.  Additional factorizations are also possible. For example the 

factored coefficient of Z in Equation 1 is shown in 

                      [(β2 + β4X + (β5+ β7Z)Z)]Z, (7 

and the factored coefficient of X is shown in [(β1 + β4Z + (β3 + β6X)X)]X In addition, each of these factored 

coefficients has a nonconstant standard error that is a function of the (constant) standard errors of the 

coefficients that comprise it (i.e., the β's) and values of the variables (e.g., X, Z, etc.) that also comprise it. For 

example the standard error of the Equation 7 factored coefficient of Z, (β2 + β4X + (β5+ β7Z)Z), is  

                                                                                                                                                             
order LV's, can be reestimated using the structural model (i.e., using "2-steps, see Ping 1995). 
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[Var(β2 + β4X + (β5+ β7Z)Z)]1/2 = [Var(β2 + β4X + β5Z+ β7ZZ)]1/2 

                = [Var(β2) + Var(β4X + β5Z+ β7ZZ) + 2Cov(β2,β4X + β5Z+ β7ZZ)]1/2 

          = [Var(β2) + X2Var(β4) + Var(β5Z+ β7ZZ) + 2Cov(β4X,β5Z+ β7ZZ) 

+ 2XCov(β2,β4) + 2ZCov(β2,β5) + 2ZZCov(β2,β7)]1/2 

          = [Var(β2) + X2Var(β4) + Z2Var(β5) + (ZZ)2Var(β7) + 2ZZZCov(β5,β7) 

+ 2XZCov(β4,β5) + 2XZZCov(β4,β7) + 2XCov(β2,β4) 

+ 2ZCov(β2,β5) + 2ZZCov(β2,β7)]1/2 , (8 

where the exponent 1/2 indicates the square root. Thus the standard error of this factored coefficient of Z, (β2 + 

β4X + (β5+ β7Z)Z), varies with X and Z, and the factored coefficient of Z could be negative and significant for 

some combination of X's and Z's, it could be nonsignificant for other combinations of X's and Z's, and the 

coefficient of Z could be positive and significant for still other combinations of X's and Z's in the study. 

INTERPRETATIONS  

While Equation 1 may appear to be more complicated than a more traditional survey data model that ignores 

non-linear or powered terms, its interpretation is simplified by the use of factored coefficients. We will 

illustrate this by interpreting an interaction, a quadratic and two factored coefficients involving a cubic. 

Interactions Suppose in a study that only X, Z and the interaction XZ were significant in Equation 1 (i.e., 

β3, β5, β6 and β7 were nonsignificant). In addition, assume β2 in the resulting factored coefficient of Z, (β2 + 

β4X), was -.191 and β4 was .142. Table B (from the pedagogical example, discussed later) shows the factored 

coefficient of Z at several different levels of X, where X is the latent variable A and Z is the latent variable I, 

and (β2 + β4X)Z = (-.191+.142A)I. When A was low in this study, for example equal to 1, the coefficient of the 

variable I was -.191+.142*(1 - 2.54)  -.411 (A had a mean of 2.54, and it was mean centered) (see Column 2 

of Table B) (the Table B calculation of Column 3 involved β2 and β4 with more than 3 significant decimal 

digits). When A was higher, for example A = 2.54 the coefficient of the variable I was -.191+.142*(2.54 - 

2.54) = 0, and when A was 5 the coefficient of the variable I was -.191+.142*(5 - 2.54) = .1583 (again the 

table value used β2 and β4 with more than 3 significant decimal digits). A summary statement for the variable 

coefficient results for the I-Y association shown in the left hand portion of Table B would be that when A was 
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low in the study the variable I was negatively associated with Y. However, for A above study average the 

variable I was positively associated with Y. 

In addition, because the standard error of the factored coefficient of I also varied with A, the variable I 

was significantly associated with Y for A's at the low end of the range of A's in the study. However, the 

variable I was nonsignificantly associated with Y for A's above the study average. Overall, when A was low in 

the study, the variable I was significantly and negatively associated with Y. However, for A above study 

average the variable I was not associated with Y. 

Because β4 was significant, Equation 1 could be refactored to produce a factored coefficient of X, (β1 + 

β4Z). The interpretation of the factored coefficient (β1 + β4I )A is also shown in Table B. To summarize this 

portion of Table B, when the variable I was low in the study, the A-Y association was not significant. 

However, for I at or above the study average the A-Y association was positive and significant. 

Quadratics Turning a quadratic, in a different study suppose in Equation 1 that only Z and ZZ were 

significant (i.e., β1, β3, β4, β6 and β7 are nonsignificant). In addition assume β2 in the resulting factored 

coefficient of Z, (β2 + β5Z), was -.191 and β5 was -.092. Table C (also from the pedagogical example) shows 

the factored coefficient of Z at several different levels of Z, where Z is the latent variable I, and (β2 + β5Z)Z = (-

.191 -.092I)I. When the level of I was high in the study (e.g., I = 5) the coefficient of I was (-.191 - .092(5 - 

3.8))  -.303 (the variable I had a mean of 3.8, and it was mean centered) (see Column 3 of Table C-- the 

calculation of Column 3 involved β2 and β4 with more than 3 significant decimal digits). Thus when the level 

of I was 5 in the study small changes in that level of I were negatively associated with Y. However when I was 

lower in the study, small changes in I were less strongly associated with Y, and when the level of I was below 2 

in the study small changes in the variable I were positively associated with Y. 

  Because the standard error of the factored coefficient of I also varied with I, the variable I was 

significant for I's at the high end of the range of I's, and I was nonsignificant for I's below the study average 

(see Column 5 of Table C). 

CUBICS  

Turning to cubics, in a different study suppose in Equation 1 that only X and XXX were significant (i.e., β2, β3, 
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β4, β5 and β7 are nonsignificant). In addition assume β1 in the resulting factored coefficient of X, (β1 + β6XX)X, 

was .191 and β6 was .015. Table D (from the pedagogical example) shows the factored coefficient of X at 

several different levels of XX, where X is the latent variable A, and (β2 + β6XX)X = (.191+.015AA)A. When 

the level of A was low in the study (e.g., I = 1) the coefficient of A was (.191 + .015(5 - 2.54)2)  .229 (A had 

a mean of 2.54, and it was mean centered) (see Column 4 of Table C-- the calculation of Column 4 involved β2 

and β6 with more than 3 significant decimal digits). Thus when the level of A was 1 in the study small changes 

in that level of A were positively associated with Y. However when the level of A increased in the study, the 

association between A and Y declined, then for A above the study average it increased again. 

  Because the standard error of the factored coefficient of A also varied slightly with A, the variable A 

was more significant at the extremes of the range of A in the study. 

COMBINATIONS 

 Finally, suppose X, XZ and the cubic XXX were significant in a study. Further suppose β1, β4 and β6 

were observed to be the same as they were in the earlier studies, so that the factored coefficient of X was 

(.191+.142Z+.015XX)X. Table E (from the example) provides a slightly different tabulation for the factored 

coefficient of X at several different levels of Z and XX, where X is the latent variable A, and Z is the latent 

variable I. To interpret the factored coefficient of X = I, (β1 + β4I + β6AA), when I and A are low in the study 

(e.g., = 1) the factored coefficient of A is (.191+.142*I+.015AA) = (.191+.142*(1-3.8)+.015*(1-2.54)2  -.173 

(I had a mean of 3.8 and A had a mean of 2.54, and both were mean centered) (see Column 1 row 1 of Table 

E-- the calculation involved β's that had more than 3 significant decimal digits). Thus when I and A were low 

in the study, (small) changes in A were negatively (but nonsignificantly) associated with Y (see Column 1 row 

3). As the Column 1 level of I increased in the study, A's association with Y weakened, until between I equal 2 

and 3 it turned positive, and it became significant for values of I just below the study average of I. For higher 

values of A in Columns 2 through 6 this pattern of nonsignificance for lower values of I, and significance for 

higher values of I was repeated. 

The standard error of the factored coefficient is determined by its variance which can be derived by 

inspection from Equation 8: 
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[Var(β1 + β4Z + β6XX)]1/2 = [Var(β1 + β4Z + β6XX)]1/2 

  = [Var(β1) + Var(β4Z + β6XX) + 2Cov(β1,β4Z + β6XX)]1/2 

  = [Var(β1) + Z2Var(β4) + XX2Var(β6) + 2Z*XX*Cov(β4,β6) 

+ 2ZCov(β1,β4) + 2XXCov(β1,β6)]1/2 

where the exponent 1/2 indicates the square root. Thus the standard error of this factored coefficient for X 

varies with the levels of Z and X, and X was negative and nonsignificant for some combination of Z's and X's, 

and X was be positive and significant for other combinations of X's and Z's in the study. 

 AN EXAMPLE 

For pedagogical purposes a real-world data set will be reanalyzed.3 The structural model 

Y = b1S + b2A + b3I + b4C + b5AI + b6II + b7SS + b8AA + ζ (9 

was tested in response to hypotheses that postulated that S, A, I and C were associated with Y; that I moderated 

the A-Y association, and that there were "diminishing returns-like" behavior in S, A and I (e.g., as S increased, 

it's association with, or its "effect" on, Y diminished) (see Howard (1989); Jaccard, Turrisi and Wan (1990); 

and Kenny and Judd (1984) for accessible discussions and examples of quadratics). S, A, I, C and Y were 

operationalized as latent variables with multiple indicators measured with Likert scales. 

Quadratics in S, A and I were specified in Equation 9 because the hypotheses did not stipulate the form 

of the "diminishing returns-like" relationships between Y, and S, A and I, and quadratics are more familiar 

(and perhaps more parsimonious) that cubics. In addition, cubics are difficult to jointly estimate with their 

related quadratics in real-world data because of nonessential ill-conditioning in X, XX and XXX (high 

intercorrelations) (Dunlap and Kemery, 1988 Marquardt, 1980; see Aiken and West, 1991) that can usually be 

attenuated only in pairs of X, XX and XXX (e.g., X and XX, X and XXX, XX and XXX). 

Before specifying the nonlinear variables (i.e., AI, II, SS, and AA), the consistency, reliability and 

validity of the first-order latent variables (i.e., S, A, I, C and Y) was verified using LISREL 8 and Maximum 

Likelihood (ML) estimation. Consistency was attained for the first-order latent variables by estimating a single 

                                                 
3 The variable names have been disguised to skirt non pedagogical issues such as the theory behind the 

model, etc. 
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construct measurement model for S, for example, and omitting the item with the largest sum of first derivatives 

without regard to sign.4 The single construct measurement model with the remaining indicators of S was then 

reestimated, and the indicator with the resulting largest sum of first derivatives without regard to sign was 

omitted. This process of omitting, reestimating, and then omitting the indicator with the resulting largest sum 

of first derivatives without regard to sign in each reestimation was repeated until the p-value for χ2 in the single 

construct measurement model for the remaining indicators of S became (just) non zero. This process was 

repeated for the other first-order latent variables using the EXCEL template "For "weeding" a measure so it 

"fits the data"..." shown on the previous web page (Ping 2006a), and the resulting measures were judged to 

have acceptable internal consistency. These first-orders also were judged to be externally consistent (e.g., 

external consistency was judged to be adequate for these purposes using the model-to-data fit of the 

measurement model containing S, A, I, C and Y: χ2/df/p-value/GFI/AGFI/CFI/RMSEA = 

644/199/0/.894/.861/.950/.070). (Experience suggests that in real-world data the first derivative approach 

typically produces internally consistent latent variables that are also externally consistent.) They were also 

judged to be reliable (ρS = .95, ρA = .91, ρI = .90, ρC = .89 and ρY = .87, where ρ denotes reliability) and valid.5 

To specify the non-linear variable (i.e., AI, II, SS, and AA), single indicators and Equations2, 2a, 3 

and 3a were used. First, the indicators of all the first-order latent variables were mean centered to reduce the 

nonessential ill-conditioning in A, for example, and its related second-order variables (i.e., AI, and AA). Then 

the mean centered indicators of A were summed and multiplied by the mean centered and summed indicators 

                                                 
4 Omitting an item must be done with concern that the omitted item does not degrade content or face 

validity. 

5 Authors disagree on what comprises an adequate set of validity criteria (e.g., Bollen 1989, Campbell 1960, 

DeVellis 1991, Heeler and Ray 1972, Nunnally 1978, Peter 1981). Nevertheless, a minimal demonstration of 

validity might include content or face validity (how well a latent variable's indicators tap its conceptual 

definition), construct validity (its correlations with other latent variables are theoretically sound), convergent 

validity (e.g., its average extracted variance (Fornell and Larker 1981) is greater than .5), and discriminant 

validity (e.g., its correlations with other measures are less than .7) (e.g., Bollen 1989, DeVellis 1991, Fornell 

and Larker 1981, Nunnally 1978). The validity of the study measures was qualitatively assessed considering 

their reliability and their performance over this minimal set of validity criteria. 
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of I in each case (i.e., to form (a1+a2+... )(i1+i2+...)). Similarly, the single indicators of II, SS and AA were 

formed in a similar manner in each case. 

Then, the consistency, reliability and validity of these second-orders were gauged. The second-orders 

were judged to be trivially internally consistent, and to judge their external consistency, the Equation 9 

measurement model was estimated using LISREL 8 and Maximum Likelihood estimation by fixing the 

loadings and measurement error variances for the single indicators of AI, II, SS and AA at their Equations 2, 

2a, 3 and 3a computed values. Because the resulting measurement model was judged to fit the data (χ2/df/p-

value/GFI/AGFI/CFI/RMSEA = 795/267/0/.886/.852/.939/.061), the second-orders were judged to be 

externally consistent. 

The reliability of an interaction XZ, ρXZ , involving mean centered X and Z is  

Corr 2X,Z + ρXρZ 

ρXZ =  ———————                (9a 

  Corr 2
X,Z + 1 

(Bohrnstedt and Marwell 1978, see Busemeyer and Jones 1983), where Corr 2
X,Z is the square of the correlation 

between X and Z, and ρX and ρZ are the reliabilities of X and Z.  

Under the usual assumptions for a mean centered latent variable X,6 the reliability of the quadratic XX, 

ρXX , is  

 Var(XTXT) 

ρXX =  ——————                (10 

  Var(XX) 

 

2Var2(XT) 

      =  —————  

2Var2(X) 

 

      =  (ρX)2 

(Kendall and Stewart, 1958), where (ρX)2 is the square of the reliability of X, since XX is composed of true-

score variance, Var(XTXT), and error variance, and Var(XT) = ρXVar(X). 

                                                 
6 For normally distributed X = XT + eX , where XT denotes the true-score and eX is measurement error, the 

expectation of the measurement error is assumed to be zero, and X and XT are independent of the measurement 

error. 
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Using these results, the second-order latent variables were judged to be reliable (ρAI = .83, ρII = .81, ρSS 

= .87, and ρAA = .84) and valid (e.g., their AVE's were above .5).7 

Next the measurement model for a reduced Equation 9 that excluded AI, II, SS and AA that was used 

to gauge the external consistency of the first-order latent variables was examined. Using its loadings and 

measurement error estimates for S, A, I, Equations 2, 2a, 3 and 3a were used to calculate the loadings and 

measurement error variances for AI, II, SS and AA. 

Then the Equation 9 measurement model was estimated using LISREL and Maximum Likelihood 

estimation by fixing the loadings and measurement error variances for AI, II, SS and AA at their Equations 2, 

2a, 3 and 3a computed values. This measurement model was judged to fit the data, suggesting AI, II, SS and 

AA were externally consistent. (They were trivially internally consistent, and experience suggests that for 

consistent first order latent variables, their interactions and quadratics specified using the Ping 1995 approach 

will be externally consistent in real world data.) The resulting loadings and measurement error variances for S, 

A, I, C and Y in the structural model were judged sufficiently similar to those from the measurement model for 

S, A, I, C and Y, and that a second measurement model estimation was not necessary. 

Then the Equation 9 structural model was estimated using LISREL and Maximum Likelihood 

estimation. This structural model was judged to fit the data (χ2/df/p-value/GFI/AGFI/CFI/RMSEA = 

794/267/0/.884/.850/.940/.064). The resulting loadings and measurement error variances for S, A, I, C and Y 

in the structural model also were judged sufficiently similar to those from the measurement model for S, A, I, C 

and Y, and that a second structural model estimation was not necessary. 

The results suggested that AI and II were significant in Equation 9, but they also suggested that SS and 

AA were not significant. 

CUBICS IN S AND A 

Because the exact mathematical form of the hypothesized "diminishing returns-like" association between Y, 

                                                 
7 AI is content or face valid if A and I are content valid and the specification of AI includes all the indicators of 

A and I. The formula for the Average Variance Extracted (AVE) of a quadratic is 

Σ(λxiλxj)2Var(XX)/[Σ(λxiλxj)2Var(XX) + ΣVar(εxx)], where Σ(λxiλxj)2 is the sum of squares of λxiλxj, i = 1 to n, j = 

1 to n, i can equal j, n is the number of indicators of X, and Var(XX) is the error dissattenuated variance of XX 

(available in the structural model) (Fornell and Larker 1981) (see Equations 2 and 2a). However, the construct 
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and S and A were not hypothesized, the nonsignificant SS and AA were replaced in the Equation 9 model with 

Sc(SS)c and Ac(AA)c to produce the structural model,  

Y = b1S + b2A + b3I + b4C + b5AI + b6II + b9SSS + b10AAA + ζ (9a, 11 

The consistency, reliability and validity of the cubics were gauged next.  

The latent variable Sc(SS)c was judged to be trivially internally consistent, but to judge its external 

consistency, several steps were required. To specify Sc(SS)c in the Equation 11 measurement model, the 

product indicator sc(ss)c = [Σsj
u - M(Σsj

u)][(Σsj
u)(Σsj

u) - M((Σsj
u)(Σsj

u))] was computed in each case, where sj
u 

are the uncentered indicators of S, and M denotes a mean. Specifically, using the results from the measurement 

model that was used to gauge the external consistency of S, A, I, C and Y, and Equations 4e and 4f, the loading 

and measurement error variance of Sc(SS)c was computed. Similarly, the loading and measurement error 

variance of Ac(AA)c was computed. Then, the Equation 11 measurement model was estimated using LISREL 8 

and Maximum Likelihood estimation by fixing the loadings and measurement error variances for the single 

indicators of AI and II at their previous values, and the loadings and measurement error variances for Sc(SS)c, 

and Ac(AA)c at their computed values using the cubic EXCEL template shown on the previous web page. The 

resulting loadings and measurement error variances for S, A, I, C and Y in the structural model were judged 

sufficiently similar to those from the measurement model for S, A, I, C and Y, and that a second measurement 

model estimation was not necessary. Because the resulting measurement model fit the data Sc(SS)c, and 

Ac(AA)c were judged to be externally consistent. (Experience suggests that in real world data this cubic 

specification is externally consistent.) 

The reliability of Sc(SS)c is 

   Corr 2(Sc,(SS)c) + ρScρ(SS)c 

ρSc(SS)c =  ———————————— ,             (12 

      Corr 2(Sc,(SS)c) + 1 

(see Equation 9a) where ρ denotes reliability and Corr 2(Sc,(SS)c) is the square of the correlation between Sc 

and (SS)c (Bohrnstedt and Marwell 1978). However, estimates of Corr(Sc,(SS)c) were difficult to obtain 

because Sc and (SS)c were nonessentially ill-conditioned (highly correlated) and their measurement model 

                                                                                                                                                             
(correlational) validity of a second-order is usually impossible to judge. 
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produced correlations greater than one. Nevertheless, assuming Corr2(Sc,(SS)c) is 1, and substituting the 

reliability of Sc (= ρS) and the reliability of (SS)c = SuSu - M(SuSu) into Equation 12, 

μ2ρSu + μ2ρSu + 2μ2Corr(Su,Su) + Corr 2(Su,Su) + ρSuρSu 

ρ(SS)c =  ————————————————————— , 

   μ2 + μ2 + 2μ2Corr(Su,Su) + Corr 2(Su,Su) + 1 

2μ2ρSu + 2μ2 + 1 + ρSuρSu 

      =  ——————————              (12a 

   4μ2 + 2 

2μ2ρS + 2μ2 + 1 + ρS
2 

      =  ——————————              (12b 

   4μ2 + 2 

(Bohrnstedt and Marwell 1978) (μ = M(Σij)/SD(S), where M denotes mean and SD denotes standard 

deviation), produced a rough estimate of the reliability of Sc,(SS)c (ρSc(SS)c ≈ .81). Another reliability estimate 

for Sc,(SS)c was available from its squared multiple correlation in the Equation 11 measurement model (and the 

Equation 11 structural models, estimated later) (ρSc(SS)c ≈ .80).8 Using these roughly similar results, Sc,(SS)c 

was judged to be reliable, and it was judged to be valid.9 Using similar estimates, Ac,(AA)c was judged to be 

reliable and valid. 

 The results of the Maximum Likelihood estimation using LISREL are shown in Table A. In summary, 

the first-order variables were associated with Y as hypothesized, except for S. In addition, I moderated the A-Y 

association, and the Y associations with S, A and I were "diminishing returns-like." 

Because of the significant non-linear terms the coefficients of S, A and I should be interpreted using 

factored coefficients. The interpretation for the factored coefficient for A ((b2+b5I+b10AA)A) is shown in Table 

                                                 
8 The squared multiple correlation of Sc,(SS)c is equivalent to Werts, Linn and Jöreskog's (1974) proposed 

formula for computing latent variable reliability, (Σλxi)2Var(X)/[(Σλxi)2Var(X) + Var(Σεxi)]. Experience 

suggests that for second-order latent variables it is practically equivalent to Bohrnstedt and Marwell (1978) 

calculated results for unstandardized X in real-world data. 
 
9 Sc,(SS)c is content or face valid if S is content valid and the specification of Sc,(SS)c includes all the 

indicators of S. The formula for the Average Variance Extracted (AVE) of a cubic in the proposed 

specification is Σ(λxi
2λxj)2Var(XW)/[Σ(λxi

2λxj)2Var(XW) + ΘXW] (Fornell and Larker 1981) (see Equations 4a 

through 4d), where Σ(λxi
2λxj)2 is the sum of the squares of λxi

2λxj, i = 1 to n, j = 1 to n, j ≥ i, Var(XW) is the 

error dissattenuated variance of XW (available in the structural model) and n is the number of indicators of X. 

However, the construct (correlational) validity of a third-order is usually impossible to evaluate. 
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E and has already been discussed. The interpretation of the factored coefficient for I is similar (not shown). It 

turns out that S does not have a factored coefficient in the population because the coefficient of S is NS (i.e., 

the factored coefficient is (0+b9SS)S = b9SSS). Thus SSS cab be interpreted using more familiar techniques 

such as a graph of Y (= SSS) versus S (see Table F). 

Since the Y associations with S A and I were hypothesized to exhibit "diminishing returns-like" 

behavior, graphs of Y versus S, Y versus A, and Y versus I may be useful in order to verify this hypothesized 

behavior (see Table F and G). 

 COMMENTS 

While it is reasonable to expect the Equation 4 and 4a specification of a cubic to be acceptably 

unbiased and consistent, such a demonstration is beyond the scope of this paper. (However, a simulated data 

set generated with the Equation 9 structural model parameters and the psychometrics of S, A, I, C, AI, II, SS 

and AA produced results that were practically equivalent to those shown in Table A. This hints that the 

specification may be trustworthy.)  

As mentioned earlier, quadratics and cubics are difficult to estimate together. Centering the first-order 

variables (e.g., X and Z) reduces the collinearity between X, for example, and XX. However, it does not reduce 

the collinearity between XX and XXX. In the above example, the error-free correlation between SS and SSS, 

for example, was almost 1, and estimation was impossible without using LISREL's Ridge Option, and 

attendant inflated structural coefficient estimates and standard errors. Such estimates are inconsistent (i.e., they 

are likely to be very different in the next study), and thus of little use in theory testing. While there are several 

ways to center XX to reduce the collinearity between XX and XXX, they invariably increase the collinearity 

between X and XX, which again produces inconsistent estimates. Thus, we may never know if quadratics and 

cubics can actually occur together in (real world) survey data. 

Some authors believe interactions and quadratics are more likely than their reported occurrence in 

published survey research suggests. Our experience and the above example hint that quadratics and cubics may 

be even more common that interactions in survey data (e.g., Howard 1989) (also see McClelland and Judd 

1993 for evidence that suggests that interactions in survey data should not be common). 
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CONCLUSION 

The purpose of the paper was to suggest a specification for a latent variable cubic. A pedagogical 

example was also provided that illustrated its estimation and interpretation. The reliability and standard error of 

a cubic was derived, and as a separate matter, the pedagogical example contained a suggested sequential 

procedure for testing hypothesized satiation or diminishing returns in a first-order latent variable (e.g., the 

latent variables S and A). 

While the suggested specification of a latent variable cubic is a small step forward, more work remains 

to be done to demonstrate that this specification is acceptably unbiased and consistent. Specifically, because 

the suggested specification used the Kenny and Judd (1984) normality assumptions, and the pedagogical 

example used maximum likelihood estimation, the suggested specification should be formally investigated with 

the nonnormal data and small sample sizes typical of substantive theoretical model testing, and with low 

reliabilities and small cubic coefficient sizes (e.g., Ping 1995). These investigations were beyond the 

exploratory purposes of this paper.  
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Table A- Equation 9a Estimation Resultsa 

 

Y = -.061S + .191A  -  .191I   +  .066C + .142AI  -  .092II  -  0.020SSS + 0.015AAA + ζ (= .346) 

       (0.063)   (0.048)   (0.060)    (0.021)   (0.058)    (0.045)      (0.005)         (0.004)         (0.037)    (SE) 

        -0.97        3.95      -3.17        3.12       2.43        -2.03         -3.91               3.37             9.32     t-value 

 

χ2 = 806 GFIb = .88 CFIc = .940 

df = 267 AGFIb = .85 RMSEAd = .067 R2 for Y = .216 

 

 
─────────────────────── 
a Using LISREL and Maximum Likelihood. 
b Shown for completeness only-- GFI and AGFI may be inadequate for fit assessment in larger models (see 

Anderson and Gerbing 1984). 
c .90 or higher indicates acceptable fit (see McClelland and Judd 1993). 
d .05 suggests close fit, .051-.08 suggests acceptable fit (Brown and Cudeck 1993, Jöreskog 1993). 



 
Table B- Variable Y Associations with A and I Due to the AI Interaction in Table A 

 

         I-Y Association Moderated by Aa               A-Y Association Moderated by If     

                                              SE of      t-value                                              SE of     t-value 

                   Cen-          I            I           of I                      Cen-         A            A         of A      

       A          tered     Coef-     Coef-      Coef-          I        tered       Coef-     Coef-     Coef- 

     Levelb      Ac        ficientd   ficiente    ficient      Levelg     Ih         ficienti   ficientj   ficient 

        1 -1.54 -0.411 0.102 -4.05 1 -2.8 -0.208      0.169 -1.23   

        2 -0.54 -0.269 0.064  -4.18 2 -1.8 -0.065      0.114 -0.57  

      2.542  0  -0.192 0.060  -3.17 3 -0.8 0.077      0.066 1.18  

        3  0.46 -0.126 0.069  -1.81 3.8k 0 0.192      0.048  3.96 

        4  1.46 0.017 0.111  0.15 4 0.2 0.220      0.050 4.36 

        5 2.46 0.160 0.164  0.97 5 1.2 0.363      0.088  4.14  

 

      (1)          (2)          (3)          (4)          (5)          (6)        (7)          (8)           (9)       (10)     (Column 

        Number) 

                                      
a The table displays the unstandardized associations of A and I with Y produced by the significant AI 

interaction in Table A (see Footnotes d and i). In Columns 1-5 when the existing level of A was low in 

Column 1, (small) changes in I were negatively associated with Y (see Columns 3 and 5). At higher levels of 

A however, I was less strongly associated with Y, until above the study average for A, the association was 

nonsignificant (see Column 5). For higher levels of A, I was negatively but nonsignificantly associated with 

Y. 
b A is determined by the observed variable (indicator) with the loading of 1 on A (i.e., the indicator that 

provides the metric for A). The value of this indicator of A ranged from 1 (= low A) to 5 in the study. 
c Column 1 minus 2.54. 
d  The factored (unstandardized) coefficient of I was (-.191+.142A)I with A mean centered. E.g., when A = 1 

the coefficient of I was -.191+.142*(1 - 2.54)  -.411. 
e  The Standard Error of the A coefficient was: 

     ___________        ______________________________       ______________________________ 
    Var(βI+βAIA)  =  Var(βI) + A2Var(βAI) + 2ACov(βI,βAI)  =  SE(βI)2 + A2SE(βAI)2 + 2ACov(βI,βAI) , 
 

   where Var and Cov denote variance and covariance, SE is the standard error, and β denotes unstandardized 

   structural coefficients from Table A. 
f This portion of the table displays the unstandardized associations of A and Y moderated by I. When I was 

low in Column 6, the A association with Y was not significant (see Column 10). However, as I increased, A's 

association with Y strengthened, until at the study average it was positively associated with Y (see columns 8 

and 10). 
g I is determined by the observed variable (indicator) with the loading of 1 on I (i.e., the indicator that provides 

the metric for I). The value of this indicator of I ranged from 1 (= low Z) to 5 in the study.  
h Column 6 minus 3.8. 
i The factored (unstandardized) coefficient of A was (.191+.142I)A with I mean centered. E.g., when I = 1 the 

coefficient of A was .191+.142*(1-3.8)  -.208. 
j  The Standard Error of the A coefficient is 

     ____________    ______________________________       _____________________________ 
    Var(βA+βAII)  =  Var(βA) + I2Var(βAI) + 2ICov(βA,βAI)  =  SE(βA)2 + I2SE(βAI)2 + 2ICov(βA,βAI) , 
 

   where Var and Cov denote variance and covariance, SE is the standard error, and β denotes unstandardized 

   structural coefficients from Table A. 
k  Mean value in the study. 



 
Table C- Variable Y Associations with I Due to the II Quadratic in Table A 

 

          I-Y Association Moderated by Ia          

                                              SE of       t-value 

                  Cen-        I              I             of I          

        I         tered    Coef-      Coef-         Coef-   

     Levelb      Ic       ficientd   ficiente      ficient   

 1 -2.8 0.067 0.110 0.61  

 2 -1.8 -0.025 0.073  -0.34 

 3 -0.8 -0.118 0.053 -2.23 

      3.8f  0 -0.192 0.060  -3.17 

 4  0.2  -0.210 0.065  -3.21 

 5 1.2 -0.303 0.099  -3.04 

 

      (1)          (2)          (3)          (4)          (5)         (Column Number) 

 

                                      
a The table displays the unstandardized associations of I with Y produced by the significant quadratic II shown 

in Table A (see Footnote d). When the existing level of I was low in Column 1, small changes in I were not 

associated with Y (see Column 2). As the Column 1 level of I increased in the study however, I's association 

with Y strengthened (i.e., became larger in Column 2), and small changes in I were significantly associated 

with Y when the level of I was at or above 3 (see Column 4).  
b I is determined by the observed variable (indicator) with the loading of 1 on I (i.e., the indicator that provides 

the metric for I). The value of this indicator of I ranged from 1 (= low I) to 5 in the study.  
c Column 1 minus 3.8. 
d The factored (unstandardized) coefficient of I was (-.191-.092I)I with I mean centered. E.g., when I = 1 the 

coefficient of I was -.191 -.092*(1-3.8) = .067. 
e The Standard Error of the I coefficient was: 

      _________       _____________________________        ___________________________ 
    Var(βI+βII)  =  Var(βI)+I2*Var(βII)+2*I*Cov(βI,βII)   =  SE(βI)2 + I2SE(βII)2 + 2ICov(βI,βII) , 
 

where Var and Cov denote variance and covariance, SE is the standard error, and β denotes unstandardized 

structural coefficients from Table A. 
f The mean of I in the study. 



 
Table D- Variable Y Associations with A Due to the AAA Cubic in Table A  

 

   A-Y Association Moderated by the Level of Aa   

             Cen-      Cen-                      SE of       t-value 

             tered      tered          A           A           of A 

   A          A         AA        Coef-      Coef-       Coef- 

 Levelb  Valuec  Valued     ficient e   ficientf     ficient 

    1 -1.54 2.37 0.229 0.047 4.90 

    2 -0.54 0.29  0.196 0.048  4.08   

  2.54g     0 0 0.192 0.048 3.96 

    3 0.46 0.21  0.195 0.048  4.05 

    4  1.46 2.13 0.225 0.047 4.81 

    5         2.46 6.05  0.286 0.049  5.84 

 

(1)  (2) (3)   (4)     (5)          (6)      (Column Number) 

 

 

                                      
a The table displays the unstandardized association of A with Y produced by the significant cubic AAA in 

Table A (see Footnote f). When the existing level of A was low in Column 1, small changes in the level of 

A were positively associated with in Y (see Column 4). As the Column 1 level of A increased in the study, 

A's association with Y weakened slightly (i.e., became smaller in Column 4), and it's significance declined. 

However, for A above the study average its association with Y increased again and significance increased 

(see Column 6).  
b A is determined by the observed variable (indicator) with the loading of 1 on A (i.e., the indicator that 

provides the metric for A). This indicator of A ranged from 1 (= low A) to 5 in the study. 
c Column 1 minus 2.54. 
d Equals the square of Column 2. 
e The factored (unstandardized) coefficient of A was (.191+.015AA) with A mean centered. E.g., when A = 1 

the coefficient of A is .191 + .015*2.37  .229. 
f The Standard Error of the A coefficient is: 

   ______________        ___________________________________ 
 Var(βA+βAAAAA)  =  Var(βA)+AA2Var(βAAA)+2AACov(βA,βAAA) 
                                       ___________________________________ 

     =  SE(βA)2 + AA2SE(βAA)2 + 2AACov(βA,βAA) , 
 

where Var and Cov denote variance (= SE2) and covariance, and β denotes the unstandardized structural 

coefficients shown in Footnote e. 
g The mean of X in the study. 



 
Table E- Variable Y Associations with A Due to the AI Interaction and the AAA Cubic in Table A  

 
                            A-Y Association Moderated by the Level of I and AAa                    
 

I     
 
Centrd 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

Levelb 
 

    Ic     
 

                     A Coefficientd                                       
 

 
 

1 
 

-2.8 
 

-0.173 
 

-0.204 
 

-0.208 
 

-0.204 
 

-0.173 
 

-0.111 
 

 
 

 
 

 
 

0.166 
 

0.168 
 

0.169 
 

0.168 
 

0.166 
 

0.162 
 
SEe 

 
 
 

 
 

-1.04 
 

-1.21 
 

-1.23 
 

-1.21 
 

-1.04 
 

-0.68 
 
t-value 

 
2 

 
-1.8 

 
-0.030 

 
-0.061 

 
-0.065 

 
-0.061 

 
-0.030 

 
0.032 

 
 

 
 
 

 
 

0.111 
 

0.113 
 

0.114 
 

0.113 
 

0.111 
 

0.107 
 
SEe 

 
 
 

 
 

-0.27 
 

-0.54 
 

-0.57 
 

-0.54 
 

-0.27 
 

0.30 
 
t-value 

 
3 

 
-0.8 

 
0.112 

 
0.081 

 
0.077 

 
0.081 

 
0.112 

 
0.175 

 
 

 
 
 

 
 

0.062 
 

0.065 
 

0.066 
 

0.065 
 

0.062 
 

0.061 
 
SEe 

 
 
 

 
 

1.80 
 

1.25 
 

1.18 
 

1.25 
 

1.80 
 

2.88 
 
t-value 

 
3.8 

 
0 

 
0.227 

 
0.195 

 
0.192 

 
0.195 

 
0.227 

 
0.289 

 
 

 
 
 

 
 

0.047 
 

0.048 
 

0.048 
 

0.048 
 

0.047 
 

0.049 
 
SEe 

 
 
 

 
 

4.86 
 

4.06 
 

3.96 
 

4.06 
 

4.86 
 

5.87 
 
t-value 

 
4 

 
0.2 

 
0.255 

 
0.224 

 
0.220 

 
0.224 

 
0.255 

 
0.318 

 
 

 
 
 

 
 

0.049 
 

0.050 
 

0.050 
 

0.050 
 

0.049 
 

0.053 
 
SEe 

 
 
 

 
 

5.17 
 

4.46 
 

4.36 
 

4.46 
 

5.17 
 

6.01 
 
t-value 

 
5 

 
1.2 

 
0.398 

 
0.367 

 
0.363 

 
0.367 

 
0.398 

 
0.460 

 
 

 
 
 

 
 

0.089 
 

0.088 
 

0.088 
 

0.088 
 

0.089 
 

0.094 
 
SEe 

 
 
 

 
 

4.48 
 

4.18 
 

4.14 
 

4.18 
 

4.48 
 

4.91 
 
t-value 

 
 
 

 
 

2.25 
 

0.25 
 

0 
 

0.25 
 

2.25 
 

6.25 
 
Centrd AAf 

 
 
 

 
 

-1.5 
 

-0.5 
 

0 
 

0.5 
 

1.5 
 

2.5 
 
Centrd Ag 

 
 
 

 
 

1 
 

2 
 

2.54 
 

3 
 

4 
 

5 
 
A Level 

 

(1) (2) (3) (4) (5) (6)      (Column Number) 

                                      
a The table displays the unstandardized associations of A with Y produced by the significant interaction AI and cubic 

AAA in Table A (see Footnote d). When the existing levels of I and A were low in Column 1, row 1, small changes in 

the level of A were negatively but nonsignificantly associated with in Y. As the Column 1 level of I increased in the 

study, A's association with Y weakened then turned positive and became significant at and above the study average of 

I. This pattern was more or less consistent for existing levels of A in Columns 2 through 6. (Thus the cubic contributed 

little) 
b I is determined by the observed variable (indicator) with the loading of 1 on I (i.e., the indicator that provides the 

metric for I). This indicator of I ranged from 1 (= low I) to 5 in the study. 
c Rows minus 3.8. 
d The factored (unstandardized) coefficient of A was (.191+.142I+.015AA) (see Table A) with A mean centered. E.g., 

when I = 1 and A = 1 the coefficient of A was .191 + .142*(1-3.8) + .015*(1-2.54)2  -.173. 
e The Standard Error of the A coefficient is: 

   _________________        _______________________________________________________________________ 
 Var(βI+βAII+βAAAAA) = Var(βI)+I2Var(βAI)+AA2Var(βAAA)+2IAACov(βAI,βAAA)+2ICov(βI,βAI)+2AACov(βI,βAAA) 

          ___________________________________________________________________________ 
                           ____________________________________________________________________________ 

     =  SE(βI)2+I2SE(βAI)2+AA2SE(βAA)2+2IAACov(βAI,βAAA)+2ICov(βI,βAI)+2AACov(βI,βAAA)) , 
 

where Var and Cov denote variance (= SE2) and covariance respectively, and β denotes the unstandardized structural 

coefficients shown in Footnote d. 
f Equals the square of the values in the row below. 
g Column values minus 2.54. 



 
Table F- The Observed Relationship Between Y and S (Y = b9SSS) in Equation 9aa (Note: to view the 

complete graph zoom to 150%) 

 

 
 

    Y at Selected Levels of S     
 

S    
 

Centrd 
 

Y =  
 

Level 
 

    S     
 

b9SSSb 
 

1 
 

-3.16 
 

0.64 
 

2 
 

-2.16 
 

0.21 
 

3 
 

-1.16 
 

0.03 
 

4 
 

-0.16 
 

0 
 

5 
 

0.84 
 

-0.01 

 

 

 

 

 

 

 

 

                                      
a The table and graph display (predicted) Y = b9SSS at selected values of S in the study (with the other 

variables held constant). As suggested by the graph, as S increased from 1 to 5 in the study (with the other 

variables held constant), Y was likely to decrease at a declining rate, with a "scree point" at S = 3. From that 

point on Y was likely to change little as S increased. Thus S's association with Y exhibited "diminishing 

returns" to S, or satiation in Y.  
b Using centered S and centered Y. This illustrates a difficulty with the required use of centered data. Y 

actually ranged from 1 to 5 in the study, and did not assume values below 1. Nevertheless, the shape of the 

graph is correct, and thus the interpretation in Footnote a is also correct. 
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Table G- The Observed Relationships Between Y and I and A in Equation 9aa (Note: to view the complete 

graphs zoom to 150%) 

 

 

 
 

(a) Y at Selected Levels of Ib 
 

I    
 

Centrd 
 

Y = b3I  
Level 

 
      I     

 
 + b6II   

1 
 

-2.8 
 

-0.19 
 

2 
 

-1.8 
 

0.05 
 

3 
 

-0.8 
 

0.09 
 

4 
 

0.2 
 

-0.04 
 

5 
 

1.2 
 

-0.36 

 

 

 

 

 

 

 
 

(b) Y at Selected Levels of Ac 
 

A    
 

Centrd 
 

Y =   
 

Level 
 

     A    
 

b10AAA 
 

1 
 

-1.54 
 

-0.35 
 

2 
 

-0.54 
 

-0.11 
 

3 
 

0.46 
 

0.09 
 

4 
 

1.46 
 

0.33 
 

5 
 

2.46 
 

0.7 

 

 

 

                                      
a The tables and graphs display (predicted) Y at selected values of I and A in the study (with the other 

variables held constant). 
b Using centered I and centered Y. As suggested by the graph, as the variable I increased from 1 to 5 in the 

study (with the other variables held constant), Y was likely to increase at a declining rate, with maximum at I 

= 3. From that point on Y was likely to decrease as the variable I increased. Thus I was associated with Y as 

hypothesized, and it exhibited "diminishing returns" to S, or satiation in Y at lower I. However at higher 

levels of I, increasing the variable I increased or amplified Y. 
c Using centered A and centered Y. As suggested by the graph, as the variable A increased from 1 to 5 in the 

study (with the other variables held constant), Y was likely to increase at a slightly declining rate. However, 

at approximately A = 3, further increases in A were likely to increase Y at a slightly increasing rate. Thus A 

was associated with Y as hypothesized, and it exhibited "diminishing returns" to A, or satiation in Y at lower 

I. However at higher levels of A, the association between Y and A changed slightly, requiring further 

explanation. 
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ESTIMATING LATENT VARIABLE INTERACTIONS AND QUADRATICS: 

EXAMPLES, SUGGESTIONS AND NEEDED RESEARCH 

 

(Note: most of the revisions are in parentheses) 

 

 

ABSTRACT 

 

 Because there is little guidance for substantive researchers in the estimation of latent variable 

interactions and quadratics in theory tests, the paper provides several examples of their estimation using 

EQS and LISREL 8. After summarizing the available structural equation techniques for estimating these 

latent variables, procedures for their use are suggested including procedures for obtaining convergence 

and proper estimates. Examples of several techniques for the direct and indirect estimation of these latent 

variables using EQS and LISREL are provided. The paper concludes with suggestions for future research 

in this area. 

 

 

INTRODUCTION 

 In studies reported in the social science literature that involve categorical independent variables 

(ANOVA studies), interactions (e.g., XZ in Y = b0 + b1X + b2Z + b3XZ + b4XX) and quadratics (XX in 

the equation just mentioned) are routinely investigated to help interpret significant first-order (main) 

effects. Interaction and quadratic variables are also investigated in studies involving continuous variables 

and regression, although not routinely, and not to aid interpretation as they are in ANOVA studies. 

Typically, continuous interactions and quadratics are investigated in response to theory that proposes 

their existence. 

 However, researchers in the social sciences have called for the investigation of interaction and 

quadratic variables to improve interpretation in models that involve continuous variables (Aiken & West, 

1991; Blalock, 1965; Cohen, 1968; Cohen & Cohen, 1975, 1983; Howard, 1989; Jaccard, Turrisi & Wan, 

1990; Kenny, 1985). Their argument is that failing to consider the presence of interactions and quadratics 

in the population model increases the risk of false negative research findings, and positive research 

findings that are conditional in the population equation. To explain, in a model such as Y = b0 + b1X + 

b2Z + b3XZ, the coefficient of Z is given by Y = b0 + b1X + (b2 + b3X)Z. The significance of this 

coefficient could be very different from the significance of the Z coefficient in the same model specified 

without the XZ interaction (i.e., Y = b0' + b1'X + b2'Z ). Specifically, b2' could be nonsignificant while b2 

+ b3X could be significant over part(s) of the range of X. Failing to specify this significant interaction 
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would lead to a false disconfirmation of the Z-Y association. Alternatively b2' could be significant while 

b2 + b3X could be nonsignificant over part of the range of X. Failing to specify this significant interaction 

could produce a misleading picture of the contingent Z-Y association. The implications for failing to 

specify a population quadratic are similar. 

 Fortunately there has been considerable progress in the estimation of interactions and quadratics 

using structural equation analysis recently. Several specification techniques have been proposed (see 

Hayduk, 1987; Kenny & Judd, 1984; Ping, 1995, 1996; Wong & Long, 1987), and LISREL 8 has become 

commercially available. Along with subgroup analysis (Jöreskog, 1971a), these alternatives offer 

substantive researchers considerable power and flexibility in estimating latent variable interaction and 

quadratic effects in structural equation models. After briefly summarizing these alternatives, an 

illustration of the use of several of them using field survey data, EQS, and LISREL 8 is provided. The 

paper concludes with suggested procedures for the use of several techniques, and a discussion of topics 

for further research in this area. 

LATENT VARIABLE INTERACTION AND QUADRATIC SPECIFICATION AND ESTIMATION 

 Estimation techniques for interaction and quadratic latent variables in structural equation models 

can be classified into direct and indirect approaches. Direct estimation approaches produce structural 

coefficient estimates without introducing additional convenience variables to the model. Examples 

include multiple indicator specification (Kenny & Judd, 1984) (see Jaccard & Wan, 1990; Jöreskog 

&Yang, forthcoming) and single-indicator specification (see Ping, 1995). These specifications can be 

estimated directly with COSAN, LISREL 8, and similar software that accommodates nonlinear constraint 

equations.1 

 With indirect estimation approaches structural coefficient estimates may or may not be available, 

and convenience variables or several estimation steps are required. Examples include subgroup analysis 

(Jöreskog,1971a), convenience-variable techniques (Hayduk, 1987; Wong & Long, 1987), indirect 

multiple indicator specification (Ping, 1996), and indirect single-indicator specification (Ping, 1995). 

                                                           
1 COSAN is available from SAS, Inc. Other software that will directly estimate latent variable 

interactions and quadratics includes LINCS (distributed by APTEC Systems), RAMONA (distributed by 

Michael W. Browne, Ohio State University), MECOSA (distributed by SLI-AG, Frauenfeld 

Switzerland). 
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These techniques can be used with EQS and the other structural equation software packages mentioned 

above. 

Direct Estimation 

 Kenny and Judd (1984) proposed that latent variable interactions and quadratics could be 

specified adequately using all unique products of the indicators of their constituent linear latent variable. 

For the linear latent variables X and Z with indicators x1, x2, z1, z2, and z3, respectively, the latent 

variable interaction XZ can be specified with the product-indicators x1z1, x1z2, x1z3, x2z1, x2z2, and x2z3. 

X*X can be specified with the product-indicators x1x1, x1x2, and x2x2. Under the Kenny and Judd 

normality assumptions,2 the variance of the product-indicator x1z1, for example, is given by 

  Var(x1z1) = Var[(x1X + x1)(z1Z + z1)] 

      = x1
2z1

2Var(XZ) + x1
2Var(X)Var(z1) 

    + z1
2Var(Z)Var(x1) + Var(x1)Var(z1) , (1) 

where x1 and z1 are the loadings of the indicators x1 and z1 on the latent variables X and Z; x1 and z1 are 

the error terms for x1 and z1; Var(a) is the variance of a; and Cov(X,Z) is the covariance of X and Z. The 

variance of XZ is given by 

  Var(XZ) = Var(X)Var(Z) + Cov(X,Z)2 (1a) 

(Kendall & Stuart, 1958). 

 In the quadratic case the variance of the product-indicator x1x1 is given by 

  Var(x1x1) = Var[(x1X + x1)2] 

      = Var[x1
2X2 + 2x1

2x1 + x1
2] 

      = x1
2x1

2Var(X2) + 4x1
2Var(X)Var(x1) + 2Var(x1)2 . (2) 

The variance of XX is given by 

  Var(XX) = 2Var(X)2 (2a) 

using the equation (1a) result. 

 Kenny and Judd (1984) provided examples of a COSAN implementation of their technique, and 

examples of a LISREL 8 implementation of their technique are provided in Jaccard and Wan (1995) and 

                                                           
2 The Kenny and Judd normality assumptions were that each of the latent variables X and Z is 

independent of the errors (εx1, εx2, εz1, and εz2), the error terms are mutually independent, the indicators 

x1, x2, z1, and z2 are multivariate normal, and the errors (εx1, εx2, εz1, and εz2) are multivariate normal. 
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Jöreskog and Yang (forthcoming). The implementation procedure involves centering the indicators for X, 

Z and Y;3 4 adding the product-indicators for XZ and/or XX to each case; specifying XZ and/or XX in the 

structural model with the appropriate product-indicators, constraining the loadings and error variances of 

these product-indicators to equal their equation (1) and (2) forms, constraining the variance of XZ and 

XX to their equation (1a) and (2a) forms, and subsequently estimating this model with COSAN, LISREL 

8, or other software that accommodates nonlinear constraints. The loading of the product-indicator x1z1 

for instance, would be constrained to equal x1z1 in equation (1), and the error variance of x1z1 would be 

constrained to equal x1
2Var(X)Var(z1) + z1

2Var(Z)Var(x1) + Var(x1)Var(z1) also in equation (1). 

Similarly the loading of x1x1 for example, would be constrained to equal x1x1 in equation (2), and the 

error variance of x1x1 would be constrained to equal 4x1
2Var(X)Var(x1) + 2Var(x1)2 also in equation (2). 

 This technique is powerful because it models several interaction and/or quadratic latent variables 

and provides coefficient estimates for these variables, but it has been infrequently used in the substantive 

literatures. This may have been because it is not widely known, and can be difficult to use (Aiken & 

West, 1991; see Jaccard & Wan, 1995; Jöreskog & Yang, forthcoming). Coding the constraint equations 

for the product-indicators in COSAN can be a daunting task. LISREL 8 provides a nonlinear constraint 

capability that is different from that available in COSAN, and the constraint coding effort is reduced. 

However, this task can still become tedious for larger models (Jöreskog & Yang, forthcoming; Ping, 

1995). In addition for larger models, the size of the covariance matrix created by the addition of product-

indicators, and the number of additional variables implied by the constraint equations, can create model 

convergence and other model estimation problems. 

                                                           
3 Centering an indicator involves subtracting the mean of the indicator from each case value. As a result 

the indicator has a mean of zero (see Aiken & West, 1991; Bollen, 1989:13; Jaccard, Turrisi & Wan, 

1990:28; Kenny & Judd, 1984). While this is a standard assumption in structural equation modeling for 

variables with an arbitrary zero point such as Likert-scaled and other rating-scaled variables (see Bollen, 

1989), mean or zero centering has been the subject of much confusion over the interpretation of centered 

variables. Aiken and West (1991) present a compelling and exhaustive argument for the efficacy of 

centering. 

4 Centering the indicators of the dependent variable Y is optional and has no effect on the structural 

coefficient estimates. However it is recommended and used throughout this presentation to produce 

coefficient estimates that are equivalent to those produced when an intercept is specified (see Footnote 

12). 
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 As an alternative to the Kenny and Judd (1984) product-indicator specification, single-indicator 

specification has been proposed (Ping, 1995). The product-indicators of XZ and XX are replaced by 

single-indicators x:z = [(x1 + x2)/2][z1 + z2 + z3)/3] for XZ and x:x = [(x1+x2)/2][(x1+x2)/2] for XX. The 

loadings and error variances for these single-indicators are similar in appearance to equations (1) and (2): 

  Var(x:z) =  Var{[(x1+x2)/2][(z1+z2+z3)/3]  

     = Var{(x1+x2)/2}Var{(z1+z2+z3)/3} + Cov{(x1+x2)/2,(z1+z2+z3)/3}2 

     = [X
2Var(X)+X][Z

2Var(Z)+Z] + [XZCov(X,Z)]2 

     = X
2Z

2[Var(X)Var(Z)+Cov(X,Z)2] + X
2Var(X)Z 

    + Z
2Var(Z)X + XZ 

     = X
2Z

2Var(XZ) + X
2Var(X)Z + Z

2Var(Z)X + XZ (3) 

where X = (x1 + x2)/2, X = (Var(x1) + Var(x2))/22, Z = (z1 + z2 + z3)/3, Z = (Var(z1) + Var(z2) + 

Var(z3))/32. 

 Similarly 

  Var(x:x) = Var{[(x1+x2)/2][(x1+x2)/2]}  

     = 2Var{(x1 + x2)/2}2 

     = 2Var[(x1X+x1)+(x2X+x2)]2/24 

     = 2[Var((x1+x2)X)+Var(x1)+Var(x2)]2/24 

     = 2[Var(XX) + X]2/24 

     = X
4Var(X2) + 4X

2Var(X)X + 2X
2 . (4) 

These results extend to latent variables with an arbitrary number of indicators.5 

 Estimation using single-indicator specification also involves centering the indicators for X, Z and 

Y; adding the single-indicators x:z and/or x:x to each case; specifying XZ and/or XX in the structural 

model using the single-indicators x:z and/or x:x, constraining the loadings and error variances of these 

single-indicators to equal their equation (3) and (4) forms, and constraining the variance of XZ and/or 

XX to their equation (1a) and (2a) forms; and subsequently estimating this structural model using 

COSAN, LISREL 8, or similar software that provides a nonlinear constraint capability. The loading of 

                                                           
5 By induction, for an arbitrary latent variable X, ΓX = (λx1 + λx2 +...+  λzm)/m and X = (Var(εx1) + 

Var(εx2) +...+ Var(εxm))/m2, where m is the number of indicators of X, and equations (3), and (4) apply to 

X and Z with an arbitrary number of indicators. 
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the single-indicator x:z for instance, would be constrained to equal XZ in equation (3), and the error 

variance of x:z would be constrained to equal X
2Var(X)Z + Z

2Var(Z)X + XZ also in equation (3). 

Similarly the loading of x:x for example, would be constrained to equal XX in equation (4), and the 

error variance of x:x would be constrained to equal 4X
2Var(X)X + 2X

2 also in equation (4). An 

example using this technique is provided later in the paper. 

 Single-indicator specification appears to be equivalent to the Kenny and Judd (1984) 

specification (Ping, 1995); it has the power of the Kenny and Judd (1984) technique because it can model 

several interaction and/or quadratic variables and provide coefficient estimates for these variables. In 

addition it requires less specification effort than the Kenny and Judd (1984) approach, and produces an 

input covariance matrix with fewer elements.6 However it is new and has yet to appear in the substantive 

literatures. 

Indirect Estimation 

Subgroup Analysis Subgroup analysis (Jöreskog, 1971a) generally involves splitting the sample and 

assessing differences in model fit when the model is restricted to the resulting groups of cases. The 

procedure involves dividing a sample into subgroups of cases based on different levels (e.g., low and 

high) of a suspected interaction X. Constraining the model coefficients to be equal between subgroups  

for the model estimated in each subgroup, the coefficients of the linear-terms-only model (e.g., the model 

without any interaction or quadratic latent variables present) are then estimated for this model using each 

of the resulting subgroups and structural equation analysis. The result is a  2 statistic for the model’s fit 

across the two subgroups with this coefficient equality constraint across the subgroups. Relaxing this 

equality constraint, the model is re-estimated, and the resulting 2 statistic is compared with that from 

the first estimation. A significant difference between the 2 statistics for these two nested models 

suggests that there is at least one coefficient difference between the two groups. The coefficients from 

the second estimation are then tested for significant differences between the groups using a coefficient 

difference test (see for instance Jaccard, Turissi & Wan, 1990:49). A significant coefficient difference 

                                                           
6 Each additional product-indicator adds an input variable, and a row and column, to the sample 

covariance matrix. Adding product-indicators can become statistically detrimental in that each additional 

product-indicator places additional demands on the sample covariance matrix: the number of resulting 

variables can become too large to yield a reasonably stable matrix (Jaccard & Wan, 1995). 
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between the Z coefficients suggests an interaction between that variable and X, the variable used to 

create the subgroups. A significant coefficient difference between the X coefficients suggests the 

presence of a quadratic. 

 This technique is popular in the substantive literatures, and is a preferred technique in some 

situations. Jaccard, Turissi and Wan (1990) state that subgroup analysis may be appropriate when the 

model could be structurally different for different subgroups of subjects. They also point out that an 

interaction need not be of the form "X times Z" (interaction forms include X/Z, and the possibilities are 

infinite (Jaccard, Turissi & Wan, 1990) (see Hanushek & Jackson, 1977)), and that three group analysis 

may be more appropriate in these cases. Sharma, Durand and Gur-Arie (1981) recommend subgroup 

analysis to detect what they term a homologizer: a variable W, for example, that affects the strength of an 

association between two variables, X and Y, yet is not related to either X or Y. However, subgroup 

analysis is criticized in the regression literature for its reduction of statistical power and increased 

likelihood of Type II error (Cohen & Cohen, 1983; Jaccard, Turissi & Wan, 1990) (see also Bagozzi, 

1992). In addition, coefficient estimates for significant interactions or quadratics are not available in 

subgroup analysis, and interpretation of a significant interaction or quadratic is problematic. Sample size 

requirements also limit the utility of subgroup analysis. Samples of 100 cases per subgroup are 

considered by many to be the minimum sample size, and 200 cases per group are usually recommended 

(Boomsma, 1983) (see Gerbing & Anderson (1985) for an alternative view). 

Convenience Variables  Hayduk (1987) and Long and Wong (1987) suggested an approach involving the 

addition of convenience variables to the structural model in order to accomplish the estimation of an 

interaction or quadratic effect. Hayduk (1987) for instance, suggested specifying the loading of x1z1 on 

XZ by creating an intervening latent variable between XZ and x1z1 that has an error of zero. The indirect 

effect of XZ on x1z1 via this variable could then be used to specify the loading of x1z1 on XZ. The error 

term for x1z1 is handled similarly. 

 These convenience variable approaches are powerful because they can specify multiple 

interaction and quadratic variables, and provide coefficient estimates for interactions and quadratics. 

However the effort required to specify a model using these techniques can be considerable (see Hayduk, 

1987:Chapter 7). Perhaps as a result they are infrequently used in the substantive literatures. 

Two-Step Approaches  Two-step estimation techniques involve calculating the loadings and error 
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variance  for the (product- or single-) indicator(s) of XZ using measurement model parameter estimates, 

then fixing these loadings and error variances at their calculated values in the structural model. 

 Estimates of the parameters comprising the loadings and error variances of the indicator(s) of 

latent variable interactions and quadratics are available in a linear-terms-only measurement model 

corresponding to the structural model of interest (i.e., a measurement model that includes the linear latent 

variables but excludes the interactions and quadratics). With sufficient unidimensionality, that is the 

indicators of each construct have only one underlying construct each (Aaker & Bagozzi, 1979; Anderson 

& Gerbing, 1988; Burt, 1973; Hattie, 1985; Jöreskog, 1970, 1971b; McDonald, 1981), these 

measurement model parameter estimates change trivially, if at all, between the measurement model and 

alternative structural models (Anderson & Gerbing, 1988). As a result, instead of specifying the loadings 

and error variances for the indicators of XZ or XX as variables in the structural model, they can be 

calculated using parameter estimates from the linear-terms-only measurement model (i.e., involving only 

X, Z and Y), and specified as constants in the structural model if X and Z are each sufficiently 

unidimensional. This is possible because the unidimensionality of X and Z permits the omission of the 

XZ and XX latent variables from the linear-terms-only measurement model: because X and Z are each 

unidimensional, their indicator loadings and error variances are unaffected by the presence or absence of 

other latent variables in a measurement or structural model, in particular XZ and XX. 

 To use this technique X, Z and Y are unidimensionalized,7 X, Z and Y are centered, and the 

(product- or single-) indicator(s) for XZ and/or XX are added to each case as before. Then the equation 

(1), (1a), (2), (2a), (3) and/or (4) parameters (i.e., x1, x2, z1, z2, z3, Var(x1), Var(x2), Var(z1), Var(z2), 

Var(z3), Var(X), Var(Z), and Cov(X,Z)) are estimated in a linear-terms-only measurement model (e.g., 

one that excludes XX and XZ). Then the loadings and error variances for the indicators of XZ and/or 

XX, plus the variances of XZ and/or XX are calculated by substituting these measurement model 

parameter estimates into the appropriate versions of equations (1) through (4).8 Finally, using a structural 
                                                           
7 Procedures for obtaining unidimensionality are suggested in Anderson and Gerbing (1982:454), 

Gerbing and Anderson (1988), and Jöreskog (1993:313). 

8 Ping (1996) showed that in general the loading of a product-indicator xz is given by λxλz and the error 

variance is given by  Kλx
2Var(X)Var( εz) + Kλz

2Var(Z)Var( εx) + KVar( x)Var( z) (K=2 if x=z, K=1 

otherwise). For the single-indicator technique Γ and  in this equation are replaced by  and  defined at 

equation (3). 
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model in which these calculated loadings and error variances for the indicators of XZ and/or XX, plus the 

variance of XZ and/or XX, are specified as constants (i.e., fixed rather than free), the structural model is 

estimated using EQS or LISREL.9 An example of this technique is provided in the next section. 

 If the structural model estimates of the linear latent variable measurement parameters (e.g., x1, 

x2, z1, z2, z3, Var(x1), Var(x2), Var(z1), Var(z2), Var(z3), Var(X), Var(Z), and Cov(X,Z)) are not 

similar to the linear-terms-only measurement model estimates (i.e., equal in the first two decimal places) 

and the calculated values fixed in the specification of XZ and/or XX in the structural model therefore, do 

not adequately reflect the structural model measurement parameter values, the equations (1) and (1a), (2) 

and (2a), (3) or (4) values can be re-computed using the structural model estimates of these measurement 

parameters. The structural model can then be re-estimated with these updated fixed values. Zero to two of 

these re-estimations are usually sufficient to produce consecutive structural models with the desired 

trivial difference in measurement parameters and coefficient estimates that are equivalent to direct 

LISREL 8 or COSAN estimates. 

 Two-step techniques appear to be equivalent to direct estimation (Ping, 1995; 1996). They have 

the power of the Kenny and Judd (1984) technique because they can model several interaction and/or 

quadratic variables and provide coefficient estimates for these variables. In addition they require less 

specification effort than the direct approaches, and with a single-indicator produce a sample covariance 

matrix with fewer elements than the Kenny and Judd (1984) approach. However, two-step techniques are 

also new. 

EXAMPLES 

 In the Marketing literature Ping (1993) reported that relationship neglect (reduced physical 

contact) (NEG) in a buyer-seller relationship (i.e., an economic plus social exchange relationship) had 

antecedents that included overall relationship satisfaction (SAT), alternative attractiveness (ALT), and 

relationship investment (INV) (see also Rusbult, Zembrodt & Gunn, 1982). However an hypothesized 

switching cost (SCT) association with NEG was not significant. 

                                                           
9 LISREL 8 is available for microcomputers only, and according to individuals at SSI and SPSS when 

this paper was written (December, 1995), there are no plans to release a mainframe version of LISREL 8 

in the near future. As a result mainframe LISREL 7 is likely to remain in use. The two-step technique can 

also be used with LISREL 8 in problem situations (see page 14). 
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 Recalling the previous remarks concerning the role of population interactions or quadratics in 

disconfirmed theory test results, the nonsignificant SCT-NEG effect may have been due to an unmodeled 

interaction or quadratic present in the population model. Because a quadratic SCT- NEG effect and 

several SCT interaction effects were plausible, the SCT*SCT quadratic, and the SCT interactions with 

the other antecedents were estimated using direct estimation, a single-indicator per interaction or 

quadratic latent variable, and the following structural model, 

    NEG = 1SAT + 2ALT + 3INV + 4SCT + 5SAT*SCT + 6ALT*SCT + 7INV*SCT + 8SCT*SCT + .

 (5 

The LISREL 8 program code for this specification is shown in Figure 1, and the results are shown in 

Table1. 

 The interactions of SCT with SAT and INV were significant when all the interactions and the 

quadratic latent variable involving SCT were jointly specified (see Table1). When these interactions and 

the quadratic were estimated singly, however, only the INV*SCT interaction was significant. The results 

for equation (5) re-specified with only the significant INV*SCT interaction, i.e., 

  NEG = 1SAT + 2ALT + 3INV + 4SCT + 7INV*SCT +  , (6 

are shown in Table 2, and the EQS program code for this specification is shown in Figure 2. The 

significance of the INV*SCT interaction effect on NEG is shown in Table 3. 

Discussion 

 The LISREL 8 coefficient estimates for equation (5) shown in Table1 were produced following 

the direct estimation procedure described above. Each indicator for SAT, for instance, was centered by 

subtracting the indicator’s average from its value in each case. The values for the single-indicators of the 

four interactions and the quadratic were added to each case. The single-indicator value for SAT*INV for 

instance, was computed in each case using sat:neg = [(sa2 + sa4 + sa5 + sa6 + sa7)/5][(in1 + in3 + in4 + 

in5)/4]. Next the structural model was specified using PAR variables (Jöreskog & Sörbom, 1993:14), 

constraint equations (Jöreskog & Sörbom, 1993:11) for the loadings, errors, and variances for the 

interactions and the quadratic, and latent variable metrics assigned using unit variances for the exogenous 

variables (see Figure 1 and Jöreskog & Sörbom, 1993:7); and the structural model was estimated using 

maximum likelihood. The use of PAR variables in this manner is sensitive to the sequence and location 

of the PAR and constraint (CO) statements in the program. In general PAR’s should not be used 
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recursively (Jöreskog & Sörbom, 1993). In this application they should appear at the end of the program, 

just before the output (OU) card. In addition the PAR variables and the variables constrained in the CO 

statements (e.g., lx(18,5) in Figure 1) should be defined in their natural numerical order (e.g., PAR(1), 

PAR(2), etc., not PAR(2), PAR(1); lx(18,5), lx(19,6), etc. not vice versa), and a PAR variable should be 

used in a CO statement as soon as possible after it is defined (see Figure 1). 

 The EQS estimates for equation (6) shown in Table 2 were produced using the procedure for 

two-step estimation described above. SAT, ALT, INV, SCT and NEG were unidimensionalized. In this 

application unidimensionality was conceptualized as: the indicators of each construct have only one 

underlying construct each. While there have been many proposals for developing unidimensional 

constructs (see Footnote 7), for this example unidimensionality was established as follows. 

Unidimensionality was operationalized as i) for each construct the 2 p-value resulting from the single 

construct measurement model (see Jöreskog, 1993) for each construct is .01 or greater; and ii) for the 

linear-terms-only measurement model (i.e., containing only the linear constructs) not rejecting H0: The 

root mean square error of approximation < .05 (i.e., its p-value > .05), and a comparative fit index of .95 

or larger. The measurement model for SAT, for instance, was estimated using all of its items, then re-

estimated until a target 2 p-value .01 or greater was attained by serially deleting items that did not 

appear to degrade content validity (not reported). This is obviously an area where judgement was 

required, and considerable care was taken to avoid sacrificing content validity for low 2. Because 

several itemizations for each construct were acceptable under criteria (i), judges were used to evaluate 

the content validity of each of these itemizations and select the final itemization for each construct. A 

linear-terms-only measurement model involving the final itemization for each construct suggested the 

constructs were unidimensional using the step (ii) criteria (see Table 4). 

 Next the indicators for SAT, ALT, INV, SCT and NEG were centered, and the single-indicator 

inv:sct = [(in1 + in3 + in4 + in5)/4][(sc2 + sc3 + sc4 + sc5)/4] was added to each case. Using the linear-

terms-only measurement model parameter estimates (see Table 4) the loading and error variance of 

inv:sct plus the variance of INV:SCT were calculated using equations (3) and (1a). The structural model 

then was specified with the loading of inv:sct and its error variance fixed at the values calculated with 

equation (3), and the variance of INV*SCT fixed at the equation (1a) value. Specifically, the loading of 

inv:sct was fixed at INVSCT = .9280, the error variance of inv:sct was fixed at X
2Var(X)Z + 
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Z
2Var(Z)X + XZ = . 0573, and the variance of INV*SCT was fixed at Var(INV)Var(SCT) + 

Cov(INV,SCT)2 = .7532 (see Figure 2). Finally the structural model was estimated using maximum 

likelihood estimation and EQS. 

Indicator Nonnormality  While the measurement parameter, structural disturbance, and coefficient 

estimates (e.g., ’s, ’s, ’s, ’s, ’s, and ’s) produced by maximum likelihood are robust to departures 

from normality (Anderson & Amemiya, 1985, 1986; Bollen, 1989; Boomsma, 1983; Browne, 1987; 

Harlow, 1985; Jöreskog & Sörbom, 1989; Sharma, Durvasula & Dillon, 1989; Tanaka, 1984), the model 

fit and significance statistics (i.e., 2 and standard errors) may not be (Bentler, 1989; Bollen, 1989; 

Jöreskog & Sörbom, 1989) (see Jaccard & Wan (1995) for evidence to the contrary). Because product- 

and single-indicators are per se nonnormal, and model fit and significance statistics from the maximum 

likelihood-robust estimator (Satorra & Bentler, 1988) appear to be less sensitive to departures from 

normality (see Hu, Bentler & Kano, 1992), maximum likelihood-robust estimates were added to the 

Table 2 results.10 However, comparing the standard error and 2 estimates for maximum likelihood and 

maximum likelihood-robust, they were generally similar. The limited evidence to date (Jaccard & Wan, 

1995; Ping, 1995) suggests that for most practical purposes (Jöreskog & Yang, forthcoming) model fit 

and significance statistics from maximum likelihood estimation may be sufficiently robust to the addition 

of a few product-indicators that involve linear indicators that are normal. However, the robustness of 

these statistics from this estimator to the addition of many product-indicators (i.e., over four) or product-

indicators comprised of nonnormal linear indicators typical of survey data is unknown. 

Re-estimation  Comparing the Table 2 and 4 measurement parameter estimates, they are similar. Had 

they been dissimilar (i.e., different in the second decimal place) the re-estimation process could have 

been used. Using the re-estimation technique, the requirement for strict unidimensionality in the linear 

latent variables can be relaxed somewhat, although the practical limits of how different the measurement 

parameters can be between the linear-terms-only measurement model and the structural model in order to 

produce stable measurement and structural coefficient estimates is unknown. 

Interpreting INV*SCT  Table 3 provides information regarding the contingent nature of the SCT 

                                                           
10 Asymptotic Distribution Free estimates (WLS and DWLS methods in LISREL and the AGLS method 

in EQS) appear to be inappropriate for small samples (i.e., fewer than 400 cases) (Aiken & West, 1991; 

Hu, Bentler & Kano, 1992; Jaccard & Wan, 1995) (see also Jöreskog & Yang, forthcoming). 
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relationship with NEG (and the INV relationship with NEG). The significance of the SCT coefficient 

(i.e., .013-.111INV) varies with INV: the size of the coefficient and its standard error depend on the level 

of INV. In addition the standard error of the coefficient of SCT involves the variance and covariance of 

the INV and SCT*INV coefficients. Table 3 also demonstrates the effect of an interaction. When INV is 

at its study average, the SCT coefficient was small and nonsignificant. For smaller values of INV it was 

positive and approached significance. As this example suggests had the interaction been significant at 

both ends of the range of INV, offering plausible explanations for disordinal interactions can be 

challenging (see Aiken & West, 1991).11 

Intercepts  In realistic social science research situations with centered indicators, the omission of an 

intercept term in a structural equation with an interaction or quadratic biases the resulting coefficients 

slightly (see Jöreskog & Yang, forthcoming).12 In these situations this bias is typically in the third or 

fourth decimal place. For instance the Table 2 results with an intercept were 

 NEG = .043 - .363SAT + .163ALT - .173INV - .013SCT - .116INV*SCT.13 

   t = 1.06    -4.68             2.69          -2.41           .25              -2.26 

 

As a result unless mean structures are of interest it is usually unnecessary to estimate intercepts with 

latent variable interactions and quadratics, and the Table 3 results used the Table 2 coefficient and 

standard error estimates, which assumed a zero intercept. 

                                                           
11 An XZ interaction can be ordinal or disordinal (Lubin, 1961) . For an ordinal interaction the Z-Y 

association becomes weaker over the range of the interacting variable X. A disordinal interaction, 

however, is characterized by the Z-Y association changing signs over the range of the interacting variable 

X. 

12 As Jöreskog and Yang (forthcoming) point out, a structural equation containing an interaction should 

in general be specified with an intercept term to avoid interpretational difficulties. Neglecting to do so 

biases structural coefficients and their standard errors, and produces an interaction coefficient that 

represents a centered interaction, which may be difficult to interpret. However, the specification of an 

intercept along with interactions and quadratics can create estimation difficulties, and limit the 

accessability of estimators that are less sensitive to departures from normality. Because no-intercept bias 

is substantially reduced in realistic social science research situations by centering the indicators of the 

independent and dependent latent variables, this presentation centers all indicators and reports estimation 

results that typically omit the specification of intercepts. 

13 These estimates were produced by adding METHOD=MOMENT to the /SPECIFICATIONS section of 

Figure 2, and adding a *V999 variable to the equation for F5. 
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 However, for structural coefficients in a neighborhood of twice their maximum likelihood 

standard error (e.g., between |t| = 1.85 and 2.15), intercept-influenced coefficients probably should be 

estimated to avoid Type I and II errors. Because modeling intercepts can produce model identification, 

convergence and improper solution problems (see Bentler, 1989), and adding interactions and quadratics 

frequently aggravate these problems, an intercept model containing interactions and quadratics should be 

estimated in two steps. First the interaction and quadratic model should be estimated as described above 

(i.e., without an intercept). Then the model should be reestimated with the intercept(s) specified, using 

starting values from the no-intercept model and OLS regression estimates of the intercept(s). If 

estimation problems are encountered in the second step, one or more structural coefficients for linear 

latent variables not involved in the interactions and quadratics could be fixed at their no-intercept values 

to obtain starting values for the other structural coefficients and the intercept. For larger models, 

however, it may be impossible to estimate an intercept model with interactions, quadratics, and centered 

linear latent variables. For unknown reasons the equation (5) model with an intercept would not converge 

using any of the techniques discussed above. OLS regression results for equation (5) with an intercept 

and those for regression-through-the-origin (which is equivalent to the equation (5) model) were 

   NEG = .048 - .290SAT + .137ALT - .170INV - .004SCT + .158SAT*SCT - .004ALT*SCT - .133INV*SCT -.022SCT*SCT 

and 

     NEG = - .299SAT + .137ALT - .168INV - .001SCT + .160SAT*SCT - .002ALT*SCT - .132INV*SCT +.005SCT*SCT . 

Comparing these coefficient estimates suggests that any intercept bias in the Figure 1 results may be 

small. 

Alternatives  In the first example two-step estimation with single-indicators could have been used instead 

of direct estimation. The estimation procedure would have been the same as in the second example 

except that the computed starting values for the loadings and error variances of the interactions and the 

quadratic (plus their variances if the diagonal ’s had not equaled 1) would have been fixed. Both direct 

and two-step estimation using single-indicators are useful for probing for the existence of interactions or 

quadratics because they are relatively easy to specify, and they both produce sample covariance matrices 

with fewer elements than the Kenny and Judd (1984) approach. The single-indicator direct approach 

works well in LISREL 8 for smaller models, but because the PAR’s are used recursively, larger models 

can misbehave. For instance the standard errors and significance for several interaction loadings and 
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errors did not print in the first example. Eliminating the single-indicator PAR’s by replacing them with 

their expanded equivalents does not usually execute in larger models such as the first example. 

 Similarly the second example could have used product-indicators with either direct or indirect 

estimation. Specification effort would have been higher than for a single-indicator if the full set of 

product-indicators were used for each nonlinear latent variable (to avoid concerns about their content 

validity-- discussed later). For the calculations involved in fixed and/or starting values for product- or 

single-indicators an Excel or Lotus spreadsheet is useful. An Excel spreadsheet was used for starting 

values in both examples, and for the fixed single-indicator loading and error variance, plus the fixed 

variance of INV*SCT, in the second example (see Table 5). The linear-terms-only measurement model 

loadings, error variances, and variances and covariances for the linear latent variables involved in the 

interactions and quadratic (e.g., SAT, ALT, INV, and SCT) (see Table 4) were keyed into the 

spreadsheet, and the product-indicators’ loadings and error variances, plus the interaction and quadratic 

variances, were calculated using equations (1) through (4). 

CONVERGENCE AND PROPER ESTIMATES 

 These techniques can produce their share of convergence and improper solution headaches. As 

with any structural equation model solution, the output should be examined for negative squared multiple 

correlations, linearly dependent parameter estimates, parameter estimates constrained at zero, etc. When 

convergence or improper solution difficulties are encountered using the techniques discussed above, the 

first step should be to verify that the indicators of the linear latent variables were centered. 

 User-specified starting values for the latent variable variances and covariances, the structural 

coefficients (i.e., the ’s and ’s), and the variances of the structural disturbances (i.e., Var()’s) are 

frequently required. Error-attenuated variance and covariance estimates from SAS or SPSS, and OLS 

regression coefficient estimates are frequently sufficient to solve convergence and improper solution 

problems. The estimated disturbance term variance for Y, for instance, can be calculated using Var() = 

Var(Y)(1-R2), where Var(Y) is the error-attenuated variance of Y (e.g., from SAS or SPSS) and R2 is the 

OLS regression estimate of the explained variance for Y regressed on the summated linear (e.g., 

(x1+x2)/2), interaction, and quadratic variables (e.g., [(x1+x2)/2][(z1+z2+z3)/3]) involved in the structural 

equation model. 

 Occasionally disattenuated variance and covariance estimates are required. The adjusted variance 
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and covariance estimates for the independent variables can be calculated using attenuated variances and 

covariances (i.e., SAS or SPSS estimates), linear-terms-only measurement model estimates, and the 

calculations shown in the Appendix. As an alternative a measurement model involving all the latent 

variables in the structural model of interest (e.g., X, Z, Y, XZ, and XX) should also provide useful 

disattenuated variance and covariance estimates. 

 If problems persist, constraining the variance of the structural disturbance terms (i.e.,  in 

equations 5 or 6) to more than 10% of the variance of their respective endogenous variables may be 

effective (few models in the social sciences explain 90% of the variance of an endogenous variable). This 

would be accomplished in the first example by constraining PSI(1), and in the second example by 

constraining d1. 

 In addition, scaling the exogenous variables by setting their variance to 1 (see Jöreskog & 

Sörbom, 1993:7) is sometimes useful. This approach was used in the first example: the loadings of SAT, 

ALT, INV, and SCT were all freed, and their variances plus the variances of the interactions and the 

quadratic were fixed at 1 (see Figure 1). 

 The equation (1a) and (2a) constraints on the variances of the interactions and quadratics could 

also be relaxed in problem situations. This would be accomplished in the first example by deleting the 

constraint equations for the variances of the interactions and quadratic. In the second example the fixed 

variances for the interaction would be freed by adding a *. The resulting interaction or quadratic 

coefficient estimates are typically attenuated and closer to their OLS regression estimates. 

 In addition fixing some of the covariances among the exogenous variables at zero is occasionally 

necessary. In particular zeroing the covariances between the linear latent variables (e.g., X and Z) and the 

interactions/quadratics (e.g., XZ), and/or zeroing the covariances among the interactions/quadratics (e.g., 

between XZ and XX) may be required. This was done in the first example to compensate for the multi-

collinearity among the interactions and the quadratic. 

 If problems continue to persist, the model may not be identified. Otherwise identified models can 

become nonidentified with the specification of correlated errors or nonrecursive relationships (see Berry, 

1984). More often with interactions and quadratics, otherwise identified models can be empirically 

underidentified, or weakly identified (see Hayduk, 1987). Berry (1984), Bollen (1989:251), and Hayduk 

(1987:139) provide accessible discussions of the sources of lack of identification and identification 
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checking. 

NEEDED RESEARCH 

 Although the above techniques provide considerable improvement over regression coefficient 

estimates for theory tests involving unobserved interaction and quadratic variables, additional work is 

needed on the specification, estimation, and interpretation of these variables using structural equation 

analysis. The following is an incomplete enumeration of areas where additional research on these matters 

might be useful, in no particular order of importance. 

Specification 

 The number of product-indicators in a model with interactions and quadratics involving over-

identified constituent latent variables can become large. Equation (5) for instance would have required 62 

product-indicators. As mentioned earlier, specifying many product-indicators can add to execution times, 

convergence, and improper solution problems. However, a reduced number of product-indicators may 

adequately specify a latent variable interaction or quadratic. Jaccard and Wan (1995), for instance, used a 

subset of four product-indicators. 

 It could be argued, however, that concern for the content validity of a latent variable interaction 

or quadratic requires the use of all its product-indicators. All of the indicators of the interaction and 

quadratic latent variables were used in the examples presented above because it was not clear which 

product-indicators could have been safely dropped without impairing the content validity of interactions 

and the quadratic. As a result, it would be useful to know the conditions under which product-indicators 

could safely be dropped without impairing the content validity of the resulting interaction or quadratic 

latent variable, or to have guidelines for this endeavor. 

 In an investigation of the detection spurious interactions in regression, Lubinski and Humphreys 

(1990) noted that interactions and quadratics are correlated. As the correlation between X and Z for 

instance approaches 1, the correlation between XX (or ZZ) and XZ also approaches 1. As a result, they 

argued a population quadratic can be mistaken for an interaction in regression. Consequently they 

proposed that quadratic combinations of the linear latent variables comprising a latent variable 

interaction should be entered in the regression model along with the interaction of interest. 

 It is plausible that these results may extend to structural equation analysis. In the first example 

the quadratic was included because it was a second-order latent variable involving switching cost. 
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Lubinski and Humphreys’ (1990) results suggest that it should have been included also because a 

significant INV*SCT interaction could be induced by significant SCT*SCT or INV*INV quadratics in 

the population equation. Consequently it would be helpful to know if latent variable interactions and 

quadratics can be mistaken for each other in structural equation analysis, and if so, what remediation 

steps would be appropriate. 

 Kenny and Judd (1984) proposed that, under their normality assumptions, the variances of latent 

variable interactions and quadratics should be constrained to their respective equation (1a) and (2a) 

forms, which are based on Kendall and Stuart’s (1958) results. Kendall and Stuart also showed under 

these conditions that interactions and quadratics are associated with each other and linear latent variables 

in a predictable manner (e.g., Cov(XZ,XX) = 2Var(x)Cov(X,Z), Cov(XZ,X) = 0, etc.). However these 

constraints were not specified in Kenny and Judd (1984), and they have not been specified subsequently 

(see Jaccard & Wan, 1995; Jöreskog & Yang, forthcoming; Ping, 1995; 1996). For instance in the first 

example, the covariances of the interactions with each other and the quadratic were not constrained, nor 

were their covariances with the linear latent variables constrained. While Jaccard and Wan’s (1995) 

results suggest that the omission of Cov(XZ,*) constraints, where *  is a linear latent variable, may not 

materially affect interaction coefficients, their study may not have been designed to investigate this 

matter. As a result, it would be interesting to know what effect, if any, the omission of Cov(XZ,*) 

constraints, and Cov(XZ,**) constraints (when an interaction and a quadratic, and/or multiple 

interactions and/or quadratics are jointly specified) has on the resulting interaction and quadratic 

coefficients. 

 It is not obvious how a nonrecursive latent variable interaction or quadratic should be estimated. 

A nonrecursive interaction or quadratic specification may be appropriate when a hypothesized feedback 

relationship is not linear in one or both directions. This situation is plausible in the examples presented 

above. It could be argued that investment in a relationship should reduce relationship neglect, and neglect 

should also reduce investment. Assuming the neglect-investment relationship would still be moderated by 

switching cost (see Table 3) in a nonrecursive specification of this relationship, and recalling the 

requirements for identification and instrumental variables that are not correlated with their indirect 

endogenous variables in these specifications (see Berry, 1984), it would be useful to know how to specify 

this relationship in a structural equation model using a minimum of additional nonrecursive paths and 
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instrumental variables. 

 It would also be helpful to have some guidance regarding the estimation of mixed formative and 

reflexive models involving interactions and quadratics. While adequate techniques such as PLS 

(Lohmöller, 1981) exist for estimating these models (see Fornell & Bookstein, 1982), substantive 

researchers frequently use OLS regression when their structural model contains a mixture of formative 

and reflexive variables (see for instance Heide & John, 1990) (however, see Bristor, 1993). As a result at 

least some of the structural coefficient estimates are biased and inefficient (Bohrnstedt & Carter, 1971). 

Hence it would be useful to know how to specify formative interactions and quadratics, and mixed 

formative-reflexive interactions. 

Estimation 

 A hierarchical procedure for sequentially adding interactions and quadratics to a model such as 

that used in ANOVA or hierarchical regression analysis would also be useful to avoid interaction or 

quadratic latent variables that are significant but explain little additional variance and are therefore of 

little substantive value. The second example is a case in point. An equation (6) model that excluded the 

INV*SCT interaction, explained 35.6 percent of the variance of NEG (not reported). This is slightly 

more than one percentage point less than the multiple squared correlation for NEG shown in Table 2 with 

INV*SCT specified, which would be nonsignificant in a hierarchical regression analysis. 

 Research design could affect the detection of a latent variable interaction or quadratic. In an 

exploration of the difficulties of detecting interactions using survey data and regression, McClelland and 

Judd (1993) showed that because field studies are similar to an experiment with unequal cell sizes, field 

studies are generally less efficient than experiments in detecting interactions (see also Stone-Romero, 

Alliger and Aguinis, 1994). They concluded an optimal experimental design for detecting interactions 

exhibits an independent variable distribution that is polar (i.e., has many cases containing extreme 

independent variable values) and balanced (i.e., has equal cell sizes). The most efficient of these 

distributions McClelland and Judd (1993) characterized as a “four-cornered” data distribution (which 

has, for two independent variables with more than two levels, a three-dimensional frequency distribution 

that looks like the four legs on an upside-down kitchen table), and an “X-model” (which has, for two 

independent variables with more than two levels, a three-dimensional frequency distribution that 

resembles a bas-relief X anchored on the four polar cells). 
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 Because field studies in the social sciences typically produce censored mound-shaped 

distributions for independent variables instead of uniform (balanced), four-cornered, or X distributions, 

they are not usually as efficient as experiments in detecting interactions. Comparing an experiment with 

two independent variables and a four-cornered data distribution to the equivalent mound-shaped field 

study distribution, McClelland and Judd (1993) argued that the field study would produce a data 

distribution that is 90% to 94% less efficient in detecting interactions as the four-cornered distribution. 

 Since it is plausible that their results extend to structural equation analysis, it would be helpful to 

have guidelines for non-experimental research designs that would produce a high likelihood of detecting 

an hypothesized population interaction or quadratic. For instance McClelland and Judd (1993) suggested 

over-sampling the extremes or poles of the scales in such studies. Based on their results, a stratified 

sample that produces a uniform distribution for two independent variables increases the efficiency of 

detecting an interaction between these two variables using regression by a factor of between 2.5 and 4. A 

field study that samples only the poles, such as Dwyer and Oh’s (1987) study of output sector 

munificence effects in marketing channels, improves the efficiency of interaction detection using 

regression by 1250% to 1666% (although they did not test for interactions). 

 It would also be useful to have suggestions regarding analytical technique refinements that would 

increase the likelihood of detecting an hypothesized population interaction or quadratic using a field-

survey design. Possibilities might include a case-weighting approach that emphasizes the polar cases in a 

set of responses, so that a more-nearly uniform or polar distribution would be produced. 

 There may be other data-related factors that affect the detection of interactions and quadratics in 

structural equation analysis. For instance, correlated (systematic) error between the independent and 

dependent variables attenuates the observed coefficient sizes of interactions in regression (Evans, 1985). 

In the examples presented above it was assumed that the effects of these errors were adequately modeled 

with uncorrelated indicator error terms. While the techniques discussed earlier can be extended to models 

involving correlated errors for the linear latent variables (see Ping, 1995; 1996), it would be helpful to 

have guidance for any implications this has for correlations among the error terms for product-indicators. 

Interpretation  

 As mentioned earlier, product- and single-indicators are not normal even of their constituent 

variables are normal. However the evidence to date (Jaccard & Wan, 1995; Kenny & Judd, 1984; Ping, 
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1995; 1996), including the results presented in the second example, suggest the addition of a few of these 

indicators does not materially bias standard errors or the chi squared statistic of the resulting structural 

model using maximum likelihood. As a result, it would be useful to know the limits of these results. This 

may be important to substantive researchers because, when compared to maximum likelihood, estimators 

that are less dependent on distributional assumptions are practically unknown to them. While studies 

involving Monte Carlo analyses with realistic research situations would be valuable (see for instance 

Jaccard & Wan, 1995), it would be interesting to see results derived from bootstrap techniques (however, 

see Bollen & Stine, 1993). 

 The techniques discussed in this paper and elsewhere (e.g., Aiken & West, 1991; Jaccard, Turissi 

& Wan, 1990) have been applied exclusively to exogenous variable interactions and quadratics. While 

these techniques may extend with little or no modification to endogenous interactions and quadratics, it is 

not clear what a dependent interaction represents. Such a situation could arise in the examples presented 

above. It is plausible that satisfaction is an antecedent of both investment and switching cost: as overall 

relationship satisfaction increases, investments in the relationship should increase, and the perception of 

the difficulty (cost) of switching relationships should also increase. However, if INV and SCT still 

combine (interact) in their relationship with NEG with a SAT antecedent, it is not clear how to 

conceptualize or interpret the SAT-to-NEG via INV, SCT and INV*SCT relationship. 

 While model fit assessment is a controversial area (see Bollen & Long, 1993), guidelines for 

model fit when interactions and quadratics are specified would be useful. It has been my experience with 

field survey data and simulated data closely mimicking field survey data that as the number of specified 

product-indicators for a significant interaction or quadratic increases, some model fit indices suggest 

model-data fit is improved while others suggest the opposite. The addition of a single-indicator for a 

significant interaction or quadratic also appears to produce conflicting model-to-data fit results, even 

when compared to a misspecified model that excludes a population interaction or quadratic. 

 It may also be helpful to revisit the reporting and interpretation of interactions and quadratics 

from a theory testing perspective. While Aiken and West (1991) provide an accessible treatment of this 

topic for interactions, there is no equivalent treatment of quadratics. In addition, the fact that the SCT 

effect on NEG for instance depends on the range and mean of INV, and each of these statistics has a 

confidence interval, suggests that the Table 3 presentation may be simplistic for conclusions regarding a 
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theory test. It could be argued that in other contexts the significant disordinal interaction may be ordinal, 

and the SCT effect could be positive or negative over the range of INV. To explain, in a different study 

the range of the interacting variable INV could be different, the sample could produce a different mean 

for INV, and the observed interaction could be ordinal and positive, ordinal and negative, or disordinal 

and both. Hence the most that might be concluded from the second example is there is an interaction 

between INV and SCT in their association with NEG, and the SCT-NEG effect could be positive, 

negative or both over the range of INV. 

 Standardized structural coefficients are used in some disciplines (e.g., Marketing) to compare the 

relative impact of latent variables with significant coefficients. However, standardized regression 

coefficients for interactions and quadratics are not invariant to centering (see Aiken & West 1991), and 

comparisons among standardized coefficients in models involving interactions and quadratics that also 

involve centered linear variables may be misleading. Friedrich (1982) proposed using Z-scores to 

produce standardized coefficients in regression involving interactions (see Aiken & West, 1991), and it 

would be useful to have equivalent results for interaction and quadratic latent variables. 

 Finally, it may be helpful to revisit the interpretation of an interaction when the coefficient for 

the linear variable is nonsignificant. The current practice is to interpret the first derivative of the 

combination of the nonsignificant linear variable coefficient and the significant interaction variable as 

shown in Table 3 (Aiken & West, 1991; Jaccard, Turissi & Wan, 1990). It could be argued, however, that 

since the linear variable coefficient is nonsignificant, only the contribution of the interaction variable 

should be interpreted. For instance in Table 3, the first derivative (.013-.111INV) was interpreted. 

However, since the constant term in this first derivative is nonsignificant, should only the expression -

.111INV*SCT be interpreted? In the Table 3 case the SCT coefficient would have been significant at 

lower and higher values of INV (not reported) and the conclusions would not be the same as that 

suggested by the Table 3 results. 

 There may be other matters as well. For instance, noninterval data analyzed as interval data 

produces biased estimates (Jöreskog & Sörbom, 1989) and the situation may or may not be aggravated by 

the specification of interactions and quadratics comprised of ordinal latent variables. In addition, the 

limits of departures from unidimensionality for the re-estimation technique to work in two-step 

estimation are not known. In summary it is likely there are useful additions to what is known in this 
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emerging area. 
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Table1- STRUCTURAL MODEL RESULTS FOR THE SINGLE-INDICATOR SPECIFICATION AND LISREL8 
 

Structural Equation Analysis Estimates: 

 

          Variance 

  Parameter  Estimatea Parameter  Estimatea  Parameter      Estimatea t-value 

 s1  0.559  s1   0.166 SAT  1.000 

 s2  0.625  s2   0.130 ALT  1.000 

 s3  0.699  s3   0.110 INV  1.000   

 s4  0.620  s4   0.119 SCT  1.000 

 s5  0.663  s5   0.101 SAT:SCT  1.000 

  a1  0.843  a1   0.272  ALT:SCT   1.000   

  a2  0.818  a2   0.249  INV:SCT   1.000   

  a3  0.910  a3   0.077  SCT:SCT  1.000  

  a4  0.713  a4   0.244  SAT,ALT  -0.550* 

  i1  0.683  i1   0.454  SAT,INV  0.347* 

  i2  0.752  i2   0.120  SAT,SCT  0.257*  

  i3  0.766  i3   0.089  ALT,INV  -0.278* 

  i4  0.750  i4   0.124  ALT,SCT  -0.398* 

  sc1  0.884  sc1    0.292  INV,SCT   0.532* 

  sc2  0.962  sc2    0.209  NEG   0.319* 

  sc3  0.947  sc3    0.175  NEG,SAT   -0.241 -4.394 

 sc4  0.979  sc4    0.210  NEG,ALT    0.132  2.398 

 sat:sct  0.597  sat:sct  0.046  NEG,INV  -0.138 -2.601 

 alt:sct  0.774  alt:sct  0.087  NEG,SCT  -0.018 -0.341 

 inv:sct  0.696  inv:sct  0.076  NEG,SAT:SCT  0.120  2.762 

 sct:sct  0.889  sct:sct  0.203  NEG,ALT:SCT  0.001  0.024 

  n1  0.691  n1   0.188   NEG,INV:SCT -0.118 -2.684 

  n2  0.717  n2   0.107   NEG,SCT:SCT -0.022 -0.482 

  n3  0.865  n3   0.063    

  n4  1.000  n4   0.141    

               

 Fit Indices: 

 Chi-Square Statistic Value                                                   681 

 Chi-Square Degrees of Freedom                                          269 

 p-Value of Chi-Square Value                                              .000 

  GFI          .803 

 AGFI          .762 

  Comparative Fit Index                                                         .910 

 Standardized RMS Residual                                                 .088 

 RMSEA                                                                                .083  

 p-value for RMSEA < 0.05                                                  .413E-06 

 

OLS Regression Estimates: 

 

Dependent  Independent    b Coef-                      F-value 

   Variable      Variableb       ficient       p-value     and (p)        R2 

     NEG           SAT  -.290 .0001   5.45 (.000)  .367 

                        ALT  .137 .006 

                        INV  -.170 .002 

                        SWC  .004 .915 

                    SAT*SCT  .158 .014 

                    ALT*SCT -.004 .941 

                    INV*SCT -.133 .021 

                    SCT*SCT -.022 .646 

            Constant  .048        .311 

__________________ 
a Maximum likelihood. 
b The independent and dependent variables were averaged and centered. 
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 * t-value > 2.  



 28 

Table2- STRUCTURAL MODEL RESULTS FOR THE SINGLE-INDICATOR SPECIFICATION AND EQS 
 

Structural Equation Analysis Estimates: 

 

                                                     Variance                                                  t-value           

  Parameter  Estimatea Parameter  Estimatea  Parameter      Estimatea    ML   ML-Robust 

 s1  0.792  s1   0.167 SAT  0.518 

 s2  0.886  s2   0.130 ALT  0.849 

 s3  1.000  s3   0.109 INV  0.608   

 s4  0.879  s4   0.119 SCT  0.969 

 s5  0.940  s5   0.102 INV:SCT   0.753   

  a1  0.926  a1   0.271  SAT,ALT  -0.371* 

  a2  0.904  a2    0.249 SAT,INV  0.197* 

  a3  1.000  a3    0.077 SAT,SCT  0.188* 

  a4  0.783  a4    0.244 SAT,INV:SCT  0.055  

  i1  0.893  i1   0.452  ALT,INV  -0.203* 

  i2  0.986  i2   0.120  ALT,SCT  -0.366*  

  i3  1.000  i3   0.089  ALT,INV:SCT -0.056  

  i4  0.978  i4   0.124  INV,SCT   0.411*  

  sc1  0.902  sc1   0.293  INV,INV:SCT  -0.171* 

  sc2  0.981  sc2   0.211  SCT,INV:SCT -0.020  

  sc3  0.967  sc3   0.174  NEG   0.327* 

 sc4  1.000  sc4   0.208  NEG,SAT   -0.363 -4.671 -3.622 

 inv:sct  0.928  inv:sct  0.057  NEG,ALT    0.163  2.697 -2.640 

  n1  0.695  n1   0.189   NEG,INV  -0.172 -2.367 -2.092 

  n1  0.695  n1   0.189   NEG,SCT   0.013  0.245  0.224 

  n3  0.872  n3   0.063   NEG,INV:SCT -0.111 -2.094 -2.403 

  n4  1.000  n4   0.141    

               

 Fit Indices:                 ML  ML-Robust 

 Chi-Square Statistic Value                                                   321        276 

 Chi-Square Degrees of Freedom                                          196 

 p-Value of Chi-Square Value                                               .000 

  GFI           .882  

 AGFI           .848 

  Comparative Fit Index                                                         .971        .972  

 Standardized RMS Residual                                                 .045 

 RMSEA                                                                                .053  

 p-value for RMSEA < 0.05                                                  .268 

 

 Squared Multiple Correlation for NEG = .372 

 

OLS Regression Estimates: 

 

Dependent  Independent    b Coef-                      F-value 

   Variable      Variableb       ficient       p-value     and (p)        R2 

     NEG           SAT  -.318 .0002   2.68 (.000)  .344 

                        ALT  .155 .001 

                        INV  -.157 .005 

                        SWC  .021 .623 

                    INV*SCT -.100 .031 

            Constant .042        .284 

__________________ 
a Maximum likelihood. 
b The independent and dependent variables were averaged and centered. 

 * t-value > 2.  
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                         Table 3- INV-SCT INTERACTION SIGNIFICANCE                                 

 

 

               SCT-NEG Assoc.                           INV-NEG Assoc.                 

              SCT       SE of                                INV        SE of                 

  INV     Coef-   SCT Coef-     t-       SCT    Coef-    INV Coef-   t-      

 Valuea  ficient b   ficientc       value  Valued ficiente    ficientf     value    

                                                             1   0.07        0.11        0.66     

    2 0.21       0.11          1.83 2 -0.03        0.07       -0.42     

    3 0.10       0.07          1.38 3 -0.14        0.06       -2.08     

  3.80g  0.01       0.05          0.24     3.25g -0.17        0.07       -2.36    

    4 -0.00       0.05         -0.15      4  -0.25        0.09       -2.70     

    5 -0.11       0.07         -1.51 5 -0.36        0.13       -2.68   

 
__________________ 

 a The values ranged from 2 (=low) to 5 in the study.  

 b The coefficient of SCT is given by (.013-.111INV)SCT with INV centered.  

 c The Standard Error of the SCT coefficient is given by 

     ___________________ 

   √Var(bSCT+bINV*SCTINV) 

              _____________________________________________  

         = √ (Var(bSCT)+INV2Var(bINV*SCT)+2INVCov(bSCT,bINV*SCT) 
d The values ranged from 1 (=low) to 5 in the study. 
e The coefficient of INV is given by (-.172-.111SCT)INV with SCT centered. 
f The Standard Error of the INV coefficient is given by 

     ___________________ 

   √Var(bINV+bINV*SCTSCT) 

              _____________________________________________ 

         = √Var(bINV)+SCT2Var(bINV*SCT)+2SCTCov(bINV,bINV*SCT) 
g Mean value. 
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         Table 4- LINEAR-TERMS-ONLY MEASUREMENT MODEL RESULTS          
 

        Variance 

  Parameter  Estimatea Parameter  Estimatea  Parameter      Estimatea 

 s1  0.792  s1   0.167   SAT  0.517  

 s2  0.886   s2   0.130   ALT  0.849   

 s3  1.000  s3   0.109  INV  0.602   

 s4  0.879  s4    0.119   SCT  0.968   

 s5  0.940  s5   0.102   NEG  0.520   

  a1  0.926  a1   0.271  SAT,ALT  -0.371*   

  a2  0.904  a2   0.249   SAT,INV  0.199*   

  a3  1.000  a3   0.077   SAT,SCT  0.188*   

  a4  0.783  a4    0.244   SAT,NEG  -0.286*   

  i1  0.891  i1   0.454   ALT,INV  -0.205* 

  i2  0.986  i2   0.120   ALT,SCT  -0.366* 

  i3  1.000  i3   0.089   ALT,NEG  0.309* 

  i4  0.978  i4   0.124   INV,SCT   0.411* 

  sc1  0.902  sc1   0.293   INV,NEG   -0.118* 

  sc2  0.982  sc2   0.210   SCT,NEG  -0.184* 

  sc3  0.967  sc3   0.175   

 sc4  1.000  sc4   0.209   

  n1  0.694  n1    0.190    

  n1  0.730  n1   0.107  

 n3   0.872  n3   0.063  

 n4   1.000  n4   0.141  

 

 

 Fit Indices: 

 Chi-Square Statistic Value                                                   305 

 Chi-Square Degrees of Freedom                                          179 

 p-Value of Chi-Square Value                                               .000 

  GFI           .883  

 AGFI           .850 

  Comparative Fit Index                                                         .970 

 Standardized RMS Residual                                                 .045 

 RMSEA                                                                                .056  

 p-value for RMSEA < 0.05                                                  .153 

 
___________________________ 

a Maximum likelihood. 

 * t-value > 2.  
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Table 5- SPREADSHEET FOR THE SINGLE-INDICATOR LOADINGS AND ERRORS 
 

 

  A   B C   D E                F  G 

 

1    EXCEL spreadsheet to calculate interaction and quadratic fixed and starting values 

2     using linear terms only measurement model values (see Table 4) 

3 

4    Unstandardized Linear-Terms-Only Measurement Model Values: 

5    Lambda:       Sum 

6    SAT 0.7923 0.88286 1 0.87807 0.93786 0.898218    (=SUM(B6:F6)/5) 

7    ALT 0.92619 0.90489 1 0.78421  0.9038225  (=SUM(B7:E7)/4) 

8    INV 0.8907 0.9848 1 0.97772  0.963305    (=SUM(B8:E8)/4) 

9    SCT 0.90298 0.98275 0.96771 1  0.96336      (=SUM(B9:E9)/4) 

10  Theta:         Sum        

11  SAT 0.16612 0.13209 0.10738 0.11977 0.10302 0.025135    (=SUM(B11:F11)/5^2) 

12  ALT 0.27292 0.24845 0.0784 0.24354  0.052707    (=SUM(B12:E12)/4^2) 

13  INV 0.45457 0.12132 0.08869 0.12417  0.049297    (=SUM(B13:E13)/4^2) 

14  SCT 0.29309 0.21006 0.17531 0.2094  0.055491    (=SUM(B14:E14)/4^2) 

15  Phi: 

16    SAT     ALT  INV SCT   

17  SAT  0.51985      

18  ALT -0.37181  0.8487     

19  INV  0.19978 -0.20527 0.603    

20  SCT  0.18902 -0.36652 0.41129 0.96864   

Calculated Interaction and Quadratic Values: 

     Lambda    

sat:sct 0.865307292 (=+G6*G9) 

alt:sct 0.870706444 (=+G7*G9)   

inv:sct 0.928009505 (=+G8*G9)   

sct:sct 0.92806249 (=+G9^2) 

   Theta  

sat:sct   0.233968111 (=+G6^2*B17*G14+G9^2*E20*G11+G11*G14) 

alt:sct    0.16890411 (=+G7^2*B18*G14+G9^2*E20*G12+G12*G14) 

inv:sct   0.262181552 (=+G8^2*B19*G14+G9^2*E20*G13+G13*G14) 

sct:sct   0.896686172 (=+4*G9^2*E20*G14+2*G14^2) 

    Phi 

sat:sct   0.539276064 (=+B17*E20+B20^2) 

alt:sct    0.956421678 (=+C18*E20+C20^2)  

inv:sc    0.753249384 (=+D19*E20+D20^2)  

sct:sct   1.876526899 (=+E20^2)  
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Figure 1- Single-Indicator LISREL8 Specification Code 
 
NEGLECT with nonlinears (Full Structural Model) 

DA NI=53 NO=222 

LA 

 sa1 sa2 sa3 sa4 sa5 sa6 sa7 al1 al2 al3 al4 al5 al6 

 in1 in2 in3 in4 in5 in6 sc1 sc2 sc3 sc4 sc5 

 ne1 ne2 ne3 ne4 ne5 ne6 ne7 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

 ssc x12 x13 asc x14 isc scsc x15 x16 x17 x18 x19 

RA FI=d:\lisrel8w\neg\neg1.dat FO 

(f9.6,7f10.6/f9.6,7f10.6/f9.6,7f10.6/f9.0,6f10.0,f10.4/f9.4,7f10.4/f9.4,7f10.6/f9.6,4f10.6) 

SE 

 ne2 ne5 ne6 ne7 

 sa2 sa4 sa5 sa6 sa7 al2 al3 al4 al5 in1 in3 in4 in5 sc2 sc3 sc4 sc5 

 ssc asc isc scsc 

/ 

MO NY=4 NX=21 ne=1 nk=8 ap=8 

LE 

NEG 

LK 

SAT ALT INV SWC 

SSC ASC ISC SCSC 

pa ly 

* 

1 

1 

1 

0 

ma ly 

* 

 .69415 

 .73074 

 .87250 

1.00000 

pa te 

* 

1 1 1 1 

ma te 

* 

 .19060 .10722 .06301 .14102 

pa lx 

* 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 
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Figure 1- Single-Indicator LISREL8 Specification Code (Continued) 
 

ma lx 

* 

 .57047  0    0    0    0    0     0    0 

 .63797  0    0    0    0    0     0    0 

 .71961  0    0    0    0    0     0    0 

 .63319  0    0    0    0    0     0    0 

 .67682  0    0    0    0    0     0    0 

    0 .85382  0    0    0    0     0    0 

    0 .83309  0    0    0    0     0    0 

    0 .92148  0    0    0    0     0    0 

    0 .72202  0    0    0    0     0    0 

    0    0 .69181  0    0    0     0    0 

    0    0 .76535  0    0    0     0    0 

    0    0 .77603  0    0    0     0    0 

    0    0 .75915  0    0    0     0    0 

    0    0    0 .88871  0    0     0    0 

    0    0    0 .96722  0    0     0    0 

    0    0    0 .95239  0    0     0    0 

    0    0    0 .98422  0    0     0    0 

    0    0    0    0 .61402  0     0    0 

    0    0    0    0    0 .79433   0    0 

    0    0    0    0    0    0  .70928  0 

    0    0    0    0    0    0     0 .89896 

pa td 

* 

21*1 

ma td 

* 

 .16702 .13028 .10938 .11966 .10219 

 .27195 .24934 .07797 .24416 

 .45436 .12037 .08948 .12429 

 .29309 .21006 .17536 .20934 

 .04726 .03345 .05733 .20569 

pa ga 

* 

!sa al in sc ssc asc isc scsc 

  1  1  1  1  1   1   1   1 !ne 

pa ph 

* 

  0 !sa 

  1  0 !al 

  1  1  0 !in 

  1  1  1  0 !sc 

  0  0  0  0  0 !ssc 

  0  0  0  0  0   0 !asc 

  0  0  0  0  0   0   0 !isc 

  0  0  0  0  0   0   0   0 !scsc 

!sa al in sc ssc asc isc scsc 

ma ph 

* 

  1 !sa 

-.55972    1 !al 

 .35660 -.28679   1 !in 

 .26639 -.40420 .53819 1 !sc 

   0       0      0    0  1 !ssc 

   0       0      0    0  0   1 !asc 

   0       0      0    0  0   0   1 !isc 

   0       0      0    0  0   0   0   1 !scsc 

! sa      al     in   sc ssc asc isc scsc 
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Figure 1- Single-Indicator LISREL8 Specification Code (Continued) 
 

!par(1)=lsat, par(2)=lsct, par(3)=lalt, par(4)=linv 

co par(1)=.2*lx(1,1)+.2*lx(2,1)+.2*lx(3,1)+.2*lx(4,1)+.2*lx(5,1) 

co par(2)=.25*lx(14,4)+.25*lx(15,4)+.25*lx(16,4)+.25*lx(17,4) 

co lx(18,5)=par(1)*par(2) 

co par(3)=.25*lx(6,2)+.25*lx(7,2)+.25*lx(8,2)+.25*lx(9,2) 

co lx(19,6)=par(3)*par(2) 

co par(4)=.25*lx(10,3)+.25*lx(11,3)+.25*lx(12,3)+.25*lx(13,3) 

co lx(20,7)=par(4)*par(2) 

co lx(21,8)=par(2)*par(2) 

!par(1)=lsat, par(2)=lsct, par(3)=lalt, par(4)=linv 

!par(5)=tsat, par(6)=tsct, par(7)=talt, par(8)=tinv 

co par(5)=.04*td(1,1)+.04*td(2,2)+.04*td(3,3)+.04*td(4,4)+.04*td(5,5) 

co par(6)=.0625*td(14,14)+.0625*td(15,15)+.0625*td(16,16)+.0625*td(17,17) 

!                psat*tsct*lsat^2   +  psct*tsat*lsct^2     + tsat*tsct 

co td(18,18)=ph(1,1)*par(6)*par(1)^2+ph(4,4)*par(5)*par(2)^2+par(5)*par(6) 

!                4psct*tsct*lsct^2    + 2*tsct*tsct 

co par(7)=.0625*td(6,6)+.0625*td(7,7)+.0625*td(8,8)+.0625*td(9,9) 
!                palt*tsct*lalt^2   +  psct*talt*lsct^2     + talt*tsct 

co td(19,19)=ph(2,2)*par(6)*par(3)^2+ph(4,4)*par(7)*par(2)^2+par(7)*par(6) 

co par(8)=.0625*td(10,10)+.0625*td(11,11)+.0625*td(12,12)+.0625*td(13,13) 

!                pinv*tsct*linv^2   +  psct*tinv*lsct^2     + tinv*tsct 

co td(20,20)=ph(3,3)*par(6)*par(4)^2+ph(4,4)*par(8)*par(2)^2+par(8)*par(6) 

co td(21,21)=4*ph(4,4)*par(6)*par(2)^2+2*par(6)^2      

OU xm nd=5 it=100 ad=off 
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Figure 2- Single-Indicator EQS Specification Code 
 
/TITLE=NEGLECT with INV*SCT only (Structural Model); 

/SPECIFICATIONS 

 VARIABLES = 53; ME = ml,robust; 

 cases=222;MA = raw;  

 FO='(f9.6,7f10.6/f9.6,7f10.6/f9.6,7f10.6/ 

      f9.0,6f10.0,f10.4/f9.4,7f10.4/ 

      f9.4,7f10.6/f9.6,4f10.6)'; 

 DATA='c:\eqswin\neg\neg1.dat'; 

/labels 

 v2=sa2;v4=sa4;v5=sa5;v6=sa6;v7=sa7;v9=al2;v10=al3;v11=al4;v12=al5; 

 v14=in1;v16=in3;v17=in4;v18=in5;v21=sc2;v22=sc3;v23=sc4;v24=sc5; 

 v26=ne2;v29=ne5;v30=ne6;v31=ne7;v42=ssc;v45=asc;v47=isc;v48=scsc; 

/EQUATIONS 

 V2 =  .9*f1            + e1; 

 V4 =  .9*f1            + e2; 

 v5 =  1.0f1            + e3; 

 v6 =  .9*f1            + e4; 

 v7 =  .9*f1            + e5; 

 v9 =    .9*f2          + e6; 

 v10 =   .9*f2          + e7; 

 v11 =   1.0f2          + e8; 

 v12 =   .9*f2          + e9; 

 v14 =     .9*f3        + e10; 

 v16 =     .9*f3        + e11; 

 v17 =     1.0f3        + e12; 

 v18 =     .9*f3        + e13; 

 v21 =       .9*f4      + e14; 

 v22 =       .9*f4      + e15; 

 v23 =       .9*f4      + e16; 

 v24 =       1.0f4      + e17; 

 v26 =         .9*f5    + e18; 

 v29 =         .9*f5    + e19; 

 v30 =         .9*f5    + e20; 

 v31 =         1.0f5    + e21; 

!v42 =   0.865307292f6 + e22; 

!v45 =   0.870706444f7 + e23; 

 v47 =   0.928009505f8 + e24; 

!v48 =   0.928062490f9 + e25; 

 f5 = -.29*f1 + .13*f2 + -.17*f3 + -.004*f4 + -.13*f8 + d1; 

/VARIANCES 

 F1 = .51985*; 

 f2 = .8487*; 

 f3 = .603*; 

 f4 = .96864*; 

!f5 = 

!F6 = 0.539276064*; 

!F7 = 0.956421678*; 

 F8 = 0.753249384; 

!F8 = 0.753249384*; 

!F9 = 1.876526899*; 

 e1 to e21 = .1*; 

!e22 = 0.047264018; 

!e23 = 0.033451716; 

 e24 = 0.057338752; 

!e25 = 0.205695870; 

 d1 = .5*; 
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Figure 2- Single-Indicator EQS Specification Code (Continued) 
 
/COVARIANCE 

 f1,f2 = -.37*; 

 f1,f3 = .19*; 

 f1,f4 = .18*; 

 f2,f3 = -.20*; 

 f2,f4 = -.36*; 

 f3,f4 = .41*; 

 f1,f8 = *;f2,f8 = *;f3,f8 = *;f4,f8 = *; 

/print 

 dig=5; 

/END 
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Appendix- Calculated Interaction and Quadratic Variances and Covariances 

 

 The following presents the corrections for unadjusted variances and covariances (e.g., SAS or SPSS values) 

involving interactions and quadratics. 

 An estimate of the variance of the latent variable X using the variance of the observed variable X = (x1 + 

x2)/2, where x1 and x2 are the observed indicators of X (i.e., x1 = X1X + X1 and x2 = X2X + X2), x1 and x2 are 

independent of X1 and X2, X1 and X2 are independent of each other, and x1 and x2 are multivariate normal with zero 

means, is given by the following. Let a = (a1 + a2)/2. Then 

 Var(X) = Var[(x1 + x2)/2] 

    = Var[XX + (X1 + X2)/2] 

    = X
2Var(X) + [Var(X1) + Var(X2)]/22 

    = X
2Var(X) + X,          (i) 

where Var(a) is the variance of a, Var(X) is the observed variance of X, and X = [Var(X1) + Var(X2)]/22. As a 

result, an estimate of Var(X) is given by 

  Var(X) = (Var(X) - X)/X
2. 

 For Cov(XZ), where Cov(a,b) is the covariance of a and b, 

  Cov(X,Z) = Cov[(x1 + x2)/2, (z1 + z2)/2] 

       = [Cov(X1X+X1,Z1Z+Z1) + Cov(X1X+X1,Z2Z+Z2) 

    + Cov(X2X+X2,Z1Z+Z1) + Cov(X2X+X2,Z2Z+Z2)]/22 

       = Cov(X,Z)XZ ,        (ii) 

and an estimate of Cov(XZ) is given by 

  Cov(X,Z) = Cov(X,Z)/XZ , 

where Z = (z1 + z2)/2. 

 Off-diagonal terms comprised of an interaction and a linear variable that does not appear in the interaction 

such as Cov(V,WX) are estimated as follows: 

  Cov(V,WX) = Cov(VV + EV,[WW + EW][XX + EX]) , 

where Ea = (a1 + a2)/2. Hence 

  Cov(V,WX) = Cov(V,WX)VWX , 

and 

  Cov(V,WX) = Cov(V,WX)/VWX. 

 The covariance of two interactions with no common linear variables is given by 

  Cov(VW,XZ) = Cov(V,X)Cov(W,Z) + Cov(V,Z)Cov(W,X) ,     (iii) 

(Kendall & Stewart, 1958), and 

  Cov(VW,XZ) = Cov(V,X)VXCov(W,Z)WZ 

    + Cov(V,Z)VZCov(W,X)WX 

    = Cov(VW,XZ)VWXZ , 

by equality ii. An estimate of Cov(VW,XZ) is therefore given by 

  Cov(VW,XZ) = Cov(VW,XZ)/VWXZ.       (iv) 

 By equality iv the covariance of two quadratics such as Cov(XX,ZZ) is 

  Cov(XX,ZZ) = Cov(XX,ZZ)/X
2Z

2. 

 For the variance of an interaction 

  Var(XZ) = Cov(XZ,XZ) 

      = Var(X)Var(Z) + Cov(X,Z)2 , 

using equality iii. Hence 

  Var(XZ) = [X
2Var(X) + X][Z

2Var(Z) + Z] + [Cov(X,Z)XZ]2 

      = Cov(XZ,XZ)XZXZ + Var(X)X
2Z 

    + Var(Z)Z
2X + XZ , 

using i and ii, and 

  Var(XZ) = (Var(XZ) - Var(X)X
2Z - Var(Z)Z

2X - XZ)/X
2Z

2 
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      = (Var(XZ) - ZVar(X) - XVar(Z) + XZ)/X
2Z

2. 

 The corrected estimate of a quadratic such as Var(XX) is similar: 

  Var(XX) = 2Var(X)2 

                        = 2[X
2Var(X) + X]2 

      = Var(XX)X
4 + 4Var(X)X

2X +2X
2 , 

by equality iii, and 

  Var(XX) = (Var(XX) - 4Var(X)X
2X - 2X

2)/X
4 

      = (Var(XX) - 4Var(X)X + 2X
2)/X

4. 

 For the covariance of a quadratic and an interaction that has a common linear variable such as 

Cov(XX,XZ), 

  Cov(XX,XZ) = 2Var(X)Cov(X,Z) 

             = 2[X
2Var(X) + X]Cov(X,Z)XZ 

             = Cov(XX,XZ)X
2XZ + 2Cov(X,Z)XZX , 

by equalities ii and iii, and 

  Cov(XX,XZ) = (Cov(XX,XZ) - 2Cov(X,Z)XZX)/X
3Z 

      = (Cov(XX,XZ) - 2Cov(X,Z)X)/X
3Z. 

 For a combination of interactions with a common linear variable such as Cov(VW,VZ) 

  Cov(VW,VZ) = Var(V)Cov(W,Z) + Cov(V,Z)Cov(W,V) 

              = [V
2Var(V) + V]Cov(W,Z)WZ 

     + Cov(V,Z)VZCov(W,Z)WV 

              = Cov(VW,VZ)V
2WZ + Cov(W,Z)WZV 

by equalities ii and iii, and 

  Cov(VW,VZ) = (Cov(VW,VZ) - Cov(W,Z)V)/V
2WZ. 

 By induction these estimates can be generalized to latent variables with an arbitrary number of indicators, 

e.g., V = (v1 + v2 +...+ vp)/p, where vi are the observed indicators of  V (i.e., vi = viV + vi). V is given by V = 

[Var(v1) + Var(v2) +...+ Var(vp)]/p2.  
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 ABSTRACT 

 

Because estimating interactions involving unobserved or latent variables in survey data has 

been difficult for substantive researchers (Aiken and West 1991), the paper proposes pseudo latent 

variable regression-- an Ordinary Least Squares Regression approach that uses reliabilities to adjust 

the regression input covariance matrix. Using simulated  data, the proposed approach performed 

adequately. A pedagogical example is provided to illustrate the use of the proposed technique. 

 

 

Unobserved or latent variable interactions, for example XZ in 

Y = b1X + b2Z + b3XZ + ζ,  (1 

where X, Z, XZ, and Y each have multiple indicators measured with error, have been difficult for 

substantive researchers to estimate (Aiken and West 1991). For example, Podsakoff, Todor, Grover 

and Huber (1984) examined 576 interactions involving moderators of leadership behaviors (i.e., 

interactions) using ordinary least squares (OLS) regression and survey data, and found 72 were 

significant, an incidence rate only slightly above that of chance. Later, McClelland and Judd (1993) 

demonstrated that interactions are inherently difficult to detect in survey data, and they suggested that 

experiments should be used instead. 

Bohrnstedt and his colleagues (Bohrnstedt and Goldberger 1969, Bohrnstedt and Marwell 

1978), among others, shed additional light on these difficulties when OLS regression is used. They 

demonstrated that regression is unreliable for estimating interaction coefficients when the 

interaction's constituent variables (e.g., X and Z in Equation 1) are measured with error: The resulting 

regression coefficients are biased (i.e., regression coefficient averages across many data sets do not 

approximate the population value) and inefficient (i.e., coefficient estimates vary widely across data 

sets from the same population). 

Fortunately, other techniques for estimating interactions when there are errors in the 

constituent variables have been proposed (e.g., Cohen and Cohen 1975; Bohrnstedt and Marwell 

1978; Feucht 1989; Fuller and Hidiroglu 1978; Hayduk 1987; Heise 1986; Kenny and Judd 1984; 

Ping 1995, 1996a, 1996b; Wong and Long 1987). Unfortunately, these techniques are difficult to use 

for reasons that include being limited to single indicator latent variables, the technique is 

inaccessable, it is tedious, or it requires structural equation analysis. 

This paper proposes an accessible technique for jointly estimating several multiple indicator 

latent variable interactions using OLS regression software available in popular statistics software 

such as SAS and SPSS. The proposed technique, which we will term pseudo latent variable 

regression, uses sample based reliabilities to adjust the covariance matrix that is used in OLS 

regression. Thus, it could be used as an alternative to a structural model in structural equation 

analysis when estimating latent variable interactions. The technique may also be used for interactions 

involving formative latent variables (i.e., unobserved variables defined by their items rather than 



their items being observed instances of unobserved variables-- see Fornell and Bookstein 1982). In 

addition, the technique allows the joint investigation of multiple (or all possible) interactions, to 

either aid in the interpretation of significant effects as is routinely done in ANOVA studies, or to 

probe hypothesized but nonsignificant associations (i.e., to determine if the nonsiginificant 

associations are conditionally significant, or significant in subsets of the data). 

The paper begins with a brief review of latent variable regression (Ping 1996b), upon which 

pseudo latent variable regression is based. Then it proposes substituting sample based reliabilities for 

latent variable regressions requirement for measurement model parameter estimates. Next, using 

simulated data sets, the paper evaluates the performance of this proposed substitution. It concludes 

with a pedagogical example illustrating the proposed technique. 

 LATENT VARIABLE REGRESSION 

To estimate interactions involving unobserved or latent variables with multiple indicators 

Ping (1996b) suggested using an input covariance matrix, which is adjusted for measurement error 

using structural equation analysis parameter estimates, and OLS regression. Using simulated data the 

proposed technique, latent variable regression, performed adequately by producing unbiased 

regression coefficients under various conditions. The technique uses the sample covariance matrix 

(e.g., available from SAS, SPSS, etc.), which is adjusted for measurement error, as input to OLS 

regression. The adjustments to the sample covariance matrix involve loadings and measurement 

errors from structural equation analysis (i.e., λxi and εxi respectively in xi = λxiX + εxi, where λxi is the 

loading or path coefficient between xi and X, and εxi is the measurement error of xi). For example, for 

latent variables X, Z, XZ, and Y meeting the Kenny and Judd (1984) normality assumptions (i.e., 

indicators are multivariate normal with zero means and independent of their measurement errors, and 

measurement errors are independent of each other), a  measurement model for X, Z and Y is 

estimated (i.e., a structural equation analysis model in which X, Z and Y are specified with their 

indicators, and X, Z and Y are specified as intercorrelated). Then the error-adjusted variance, Var(X), 

for X (= x1+x2+...+xn) is estimated as follows: 

Var(X) = Var(λx1x1 + εx1 + λx2x2 + εx2 + ... + λxnxn + εxn) 

= ΛX 2 Var(X) + θX 

and   Var(X) = [Var(X)-θX]/[ΛX 2], (2 

where Var(X) is the sample variance of X (available from SAS, SPSS, etc.), θx is the sum of the 

measurement errors (= Var[εx1] +...+ Var[εxn]) provided by the measurement model, and ΛX is the 

sum of the loadings (= λx1 +...+ λxn) from that measurement model. The  error-adjusted variances of Z 

and Y are computed in a similar manner. 

The error-adjusted covariance of X and Z is estimated using 

Cov(X,Z) = Cov(X,Z)/[ΛXΛZ], (3 

where Cov(X,Z) is the attenuated covariance of X and Z (=z1+...+zm). The covariances of Y with X, 

and Z are estimated similarly. 

The adjusted covariance of XZ with Y is estimated using 

Cov(XZ,Y) = Cov(XZ,Y)/[ΛXΛZΛY]. (4 

The covariances of XZ with X and Z are estimated similarly. 

Finally, the adjusted variance of XZ is estimated using 

Var(XZ) = (Var(XZ) - ΛX 2Var(X)θZ - ΛZ 2Var(Z)θX - θXθZ)/[ΛX 2ΛZ 2] . (5 

The adjustments for more than one interaction are shown in Ping (1996b).  

 PSEUDO LATENT VARIABLE REGRESSION 

As an alternative to using measurement model parameter estimates, we propose using sample 

based reliabilities to estimate the loadings (e.g., ΛX) and measurement errors (e.g., θX) in the 



adjustment equations for latent variable regression (e.g., equations 2-5). Werts, Linn and Jöreskog 

(1974) suggested the latent variable reliability (ρ) of a measure of the unidimensional latent variable 

X (i.e., the measure has only one underlying latent variable) is  

ρX = ΛX 2Var(X)/[ΛX 2Var(X) + θX] . (6 

Using the definition of reliability, θX can be estimated by 

θX = Var(X)(1 - ρX) . (7 

Authors defin the reliability of a unidimensional indicator as the square of the loading 

between the indicator and its latent variable (e.g., Bollen, 1989). Thus, the square root of ρ could be 

used to estimate Λ (Kenny, 1979), and 

ΛX = ρX 
1/2 . (8 

Anderson and Gerbing (1988) pointed out that for unidimensional constructs there is little 

practical difference between coefficient alpha (α) and ρ. Thus for unidimensional constructs an 

estimate of θX is 

θX  Var(X)(1 - αX) , (9 

and for reliable X an estimate of ΛX is 

ΛX = αX 1/2 . (10 

Thus for unidimensional latent variables, the adjustment equations used in latent variable 

regression (e.g., equations 2-5) could utilize the equations 9 and 10 estimates of loadings and 

measurement errors. In the balance of this section the paper evaluates the performance of this 

suggestion using simulated data. 

Simulated Data Sets 

Table 1, which shows the results of recovering known population structural coefficients (i.e., 

bs in Y = b0 + b1X + b2Z + b3XZ + b4W + ζY) with reliabilities of .7 and .9, structural coefficient size 

corresponding to R2 's of .10 and .50, and sample sizes of 100 and 300 cases (see Appendix A for 

details), suggests that the suggested technique performed adequately. Table 1 also shows structural 

equation analysis estimation results for comparison. The pseudo latent variable regression coefficient 

averages (Column 4 in Table 1) were within a few points of the population values, and thus the 

biases were small. This suggests the suggested technique is unbiased. In addition, the variations of 

these coefficients around the population values (RMSEs in Table 1) were comparatively small (and 

equivalent to those from structural equation analysis). This suggests the proposed technique is at 

leaset as efficient as structural equation analysis. 

Table 2 shows the performance of the latent variable regression standard error term proposed 

by Ping (2001) when used with pseudo latent variable regression. These results also suggest the 

proposed technique performed adequately. The average standard errors for pseudo latent variable 

regression (Column 4 in Table 2) were within a few points of the Root Mean Standard Errors of the 

coefficients, and as a result the biases were comparatively small (and also equivalent to those from 

structural equation analysis). This suggests the standard error term is unbiased in this application. 

 AN EXAMPLE 

For pedagogical purposes we will reanalyze data reported in Ping (1993). There exiting (E) in 

interfirm economic and social exchange relationships between firms was argued to be associated 

with relationship satisfaction (S), alternative relationship attractiveness (A), investment in the 

relationship (I), and the cost to switch to an alternative relationship (C). To illustrate the use of 

pseudo latent variable regression we will investigate several of the nonsignificant associations 

reported in Ping (1993) by adding SxA and AxI interactions to the model 

E = b1S + b2A + b3I + b4C + ζ, (11 

and estimating the model 



E = b1'S + b2'A + b3'I + b4'C + b5SxA + b6AxI + ζ (11' 

(adding interactions changes the equation 11 regression coefficients-- see Aiken and West 1991). 

First the unidimensionality of the measures for S, A, I, C, and E was assessed. Next the 

indicators for S, A, I, C, and E were zero centered. This was accomplished by subtracting the mean 

of an indicator from each case value of that indicator. Zero centering produces indicators with means 

of zero, which was assumed in deriving equations 2-5. It also reduces the otherwise high collinearity 

of an interaction (e.g., SxA) with its constituent variables (e.g., S and A). After zero centering, the 

indicators for each latent variable were summed to form the variables S, A, I, C, and E, then these 

variables were added to the data set. For emphasis, the indicators were summed, not averaged 

(averaging the indicators changes equations 2-5, and 7-10). Then the SxA and AxI interactions were 

formed by computing the products of S with A and A with I, and adding the results to each case in 

the data set. Next the sample (unadjusted) covariance matrix of S, A, I, C, E, SxA and AxI was 

obtained using SPSS (see Table 3). 

Then, the coefficient alpha reliabilities for S, A, I, C, and E were produced by SPSS (see 

Table 3), and the sample covariance matrix was adjusted using EXCEL and equations 2-5 with Λ = 

n(α) and Λ 
2 = nα, where  is the latent variable S, A, I, C, or E, and n is the number of indicators 

of  (n is required to make Λ and Λ 
2 commensurate with Var()). Next the resulting adjusted 

covariance matrix (see Table 4) was used as input to OLS regression in SPSS, and this produced the 

pseudo latent variable regression results shown in Table 4. 

The coefficient standard errors (SEs) for the pseudo latent variable regression coefficients 

were then computed as follows. The Table 3 unadjusted covariance matrix was used to obtain 

unadjusted regression coefficient SEs and the unadjusted regression standard error of the estimate 

(SEE) (SEE = Σ[yi - i]2, where yi and i. are observed and estimated ys respectively). To obtain an 

unadjusted regression SEE commensurate with that from latent variable regression, the unadjusted 

regression SEE was divided by the number of indicators of E (7). The adjusted pseudo latent variable 

regression SEs were then calculated by multiplying each unadjusted regression coefficient SE by 

the ratio of the unadjusted regression SEE to the pseudo latent variable regression SEE. This 

procedure was suggested in Ping (2001) for Latent Variable Regression, and it is similar to the 

procedure used in two stage least squares to produce correct coefficient SEs for the two stage least 

squares coefficient estimates. 

The results are shown in Table 4, along with unadjusted regression results and structural 

equation estimates for comparison. Because the reliabilities of the variables were high (see Table 4), 

the unadjusted regression coefficient estimates were similar to those from pseudo latent variable 

regression and the structural equation analysis. However, with lower reliabilities the unadjusted 

regression coefficient estimates quickly diverge from the  pseudo latent variable regression and the 

structural equation analysis estimates (not shown). 

The SxA interaction can be interpreted as follows. Table 5 shows the contingent A 

association resulting from the significant SxA interaction. At the Table 5 average value of S in the 

study, which b3 in equation 11 represents, the A-E association was significant. However when S was 

very high, the A-E association was nonsignificant. As S decreased, this association became stronger, 

and for lower levels of S it was significant. A substantive interpretation would be that when 

satisfaction was high, changes in alternative attractiveness had no association with exiting, as 

Rusbult and Buunk (1993) predicted, but as satisfaction decreased this association was significant 

and positive. As an aside, this illustrates the importance of post-hoc probing of significant 

associations for interactions. Although the unmoderated A-E association was significant, for very 

high values of S the association was nonsignificant.  



The latent variable A also moderated the S-E association and it could also be interpreted. As 

shown in Table 5, when A was lower the S-E association was significant and negative, and as it 

increased the S-E association became stronger. Thus the S-E association is contingent on the level of 

A, and at lower values of A S has a weaker association with E than at higher values of A. A 

substantive interpretation would be that with low alternative attractiveness satisfaction has a weaker 

association with exiting that when alternative attractiveness is higher. 

 DISCUSSION 

Several observations may be of interest. As the Table 5 survey data results suggest, pseudo 

latent variable regression can produce results that are interpretationally equivalent to structural 

equation analysis (i.e., they provide coefficient estimates with equivalent interpretations of 

significance). However, interpretational equivalence may not always hold for an association with a 

significance close to |t| = 2 (i.e., one technique may suggest the association is significant while the 

other may suggest it is nonsignificant), or when Maximum Likelihood (ML) estimates are produced 

by structural equation analysis (instead of GLS estimates). Remedies include bootstrapping the 

covariance matrix of the items and X, Z, XZ, and Y to lessen the effects of sampling variation and 

clarify the interpretation of an association with a t-value close to 2. Bootstrapping a covariance 

matrix is accomplished by averaging the covariance matrices that result from taking a large number 

of subsamples of the cases (e.g., several hundred subsamples each with 10-20% of the cases 

randomly deleted) (see Bentler 1989:76, and Jöreskog and Sörbom 1996:173,185). 

To obtain ML estimates for pseudo latent variable regression, a LISREL, EQS, AMOS, etc. 

structural model with single summed indicators for X, Z, XZ, and Y (= Σxi, Σzi, (Σxi)(Σzi), and Σyi, 

respectively), and loadings and errors fixed at the equations 9 and 10 values could be used. The 

reliability of XZ is ρXZ = (rXZ
2 + ρXρZ)/(rXZ

2 + 1), where ρ denotes reliability and rXZ
2 is the 

correlation of X and Z.  



In addition, interpretational equivalence may decline with reliabilities below .7. We briefly 

investigated reliabilities of .6 and .5 (not reported), and the pseudo latent variable regression results 

appeared to diverge from those using structural equation analysis as reliability declined. Specifically, 

they became increasingly more biased than the structural equation analysis results, especially in 

samples of 100 cases. Thus pseudo latent variable regression should be used with caution in 

preliminary research, pilot tests, etc. where measures may can have reliabilities below .7. Similarly, 

we briefly investigated sample sizes below 100 (not reported). Again, pseudo latent variable 

regression results appeared to diverge from those of structural equation analysis as sample size 

declined, with  pseudo latent variable regression becoming increasingly more biased as sample size 

declined. Thus pseudo latent variable regression results should also be interpreted with caution if the 

sample size is below 100. 

Finally, the Tables 1 and 2 results for the coefficients of X, Z and W suggest that pseudo 

latent variable regression might be used to estimate equation 11 (i.e., in models with no interaction(s) 

specified). In fact, we have used  pseudo latent variable regression in models with no second-order 

terms to produce error-adjusted forecasting equations. This is accomplished by "stepping in" the 

variables, based on their R2, to produce a forecast equation that contains only the "important" 

forecast variables. This can also be accomplished using structural equations analysis, but the process 

is tedious. 
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Table 1-- Simulated Data Sets Coefficient Estimates 

 
                                         Pseudo LV Regression        Structural Equation Analysis  

                                          Coef-                                        Coef- 

                 Popu-               ficient                                       ficient 

  Coeffic-  lation  Sample  Aver-                                        Aver- 

    ient       Valuea   Size      ageb     Biasc   RMSEd               ageb    Biasc   RMSEd       

 

bY,XZ  0 

ρ = .7e 

    bY,X -0.15 100 -0.174  0.024 0.1490 -0.170  0.020 0.1510 

300 -0.163  0.013 0.0867 -0.162  0.012 0.0847 

    bY,Z  0.17  100  0.203  0.033 0.1340  0.196  0.026 0.1350 

300  0.191  0.021 0.0781  0.186  0.016 0.0801 

    bY,W  0.25 100  0.219  0.019 0.1810  0.205  0.005 0.1790 

300  0.211  0.011 0.1059  0.202  0.002 0.1069 

    bY,XZ  0.12 100  0.103 -0.017 0.1438  0.093 -0.027 0.1458 

300  0.110 -0.010 0.0916  0.109 -0.011 0.0896 

 

ρ = .9e 

    bY,X -0.15 100 -0.137 -0.013 0.1221 -0.139 -0.011 0.1211 

300 -0.142 -0.008 0.0754 -0.140 -0.010 0.0764 

    bY,Z  0.17  100  0.159 -0.011 0.1085  0.157 -0.013 0.1075 

300  0.163 -0.007 0.0674  0.162 -0.008 0.0664 

    bY,W  0.25 100  0.190 -0.010 0.1483  0.193 -0.007 0.1493 

300  0.193 -0.007 0.0919  0.197 -0.003 0.0929 

    bY,XZ  0.12 100  0.131  0.011 0.0922  0.134  0.014 0.0912 

300  0.125  0.005 0.0649  0.139  0.019 0.0659 

 

ρ = .7e 

    bY,X -0.35 100 -0.332 -0.018 0.1078 -0.331 -0.019 0.1088 

300 -0.340 -0.010 0.0639 -0.339 -0.011 0.0649 

    bY,Z  0.37  100  0.349 -0.021 0.0965  0.350 -0.020 0.0975 

300  0.358 -0.012 0.0570  0.360 -0.010 0.0560 

    bY,W  0.40 100  0.409  0.009 0.1313  0.407  0.007 0.1303 

300  0.401  0.001 0.0777  0.400  0.000 0.0787 

    bY,XZ  0.30 100  0.315  0.015 0.1056  0.316  0.016 0.1066 

300  0.308  0.008 0.0704  0.310  0.010 0.0694 

 

 ρ = .9e 

    bY,X -0.35 100 -0.355  0.005 0.0842 -0.354  0.004 0.0849 

300 -0.353  0.003 0.0520 -0.353  0.003 0.0512 

    bY,Z  0.37  100  0.377  0.007 0.0754  0.378  0.008 0.0762 

300  0.374  0.004 0.0471  0.375  0.005 0.0479 

    bY,W  0.40 100  0.398 -0.002 0.1016  0.404  0.004 0.1024 

300  0.400  0.000 0.0647  0.401  0.001 0.0640 

    bY,XZ  0.30 100  0.298 -0.002 0.0668  0.294 -0.006 0.0675 

300  0.300  0.000 0.0454  0.296 -0.004 0.0462 

 

___________ 
a Population coefficient values correspond to R2's of .10 and .50 . 
b Average over 100 replications. 
c Difference between population coefficient value and coefficient average (Columns 4 or 7). 
d Root mean squared error or average difference across 100 data sets between the coefficient estimates and the population 

value. 
e Reliability. 



Table 1 (Continued)-- Simulated Data Sets Coefficient Estimates 

 
                                         Pseudo LV Regression        Structural Equation Analysis  

                                          Coef-                                        Coef- 

                 Popu-               ficient                                       ficient 

  Coeffic-  lation  Sample  Aver-                                        Aver- 

    ient       Valuea   Size      ageb     Biasc   RMSEd               ageb    Biasc   RMSEd       

 

bY,XZ = 0 

ρ = .7e 

    bY,X -0.15 100 -0.172  0.022 0.1470 -0.172  0.022 0.1450 

300 -0.165  0.015 0.0847 -0.164  0.014 0.0827 

    bY,Z  0.17  100  0.204  0.034 0.1350  0.197  0.027 0.1360 

300  0.193  0.023 0.0771  0.185  0.015 0.0761 

    bY,W  0.25 100  0.217 -0.033 0.1830  0.207 -0.043 0.1850 

300  0.212 -0.038 0.1079  0.204 -0.046 0.1099 

    bY,XZ  0.12 100  0.013  0.013 0.0469  0.012  0.012 0.0459 

300  0.009  0.009 0.0325  0.011  0.011 0.0345 

 

ρ = .9e 

    bY,X -0.15 100 -0.138 -0.012 0.1231 -0.138 -0.012 0.1241 

300 -0.141 -0.009 0.0764 -0.139 -0.011 0.0774 

    bY,Z  0.17  100  0.158 -0.012 0.1075  0.156 -0.014 0.1065 

300  0.162 -0.008 0.0684  0.163 -0.007 0.0694 

    bY,W  0.25 100  0.191 -0.009 0.1493  0.194 -0.006 0.1503 

300  0.194 -0.006 0.0909  0.196 -0.004 0.0899 

    bY,XZ  0.12 100  0.009  0.009 0.0317  0.010  0.010 0.0327 

300  0.007  0.007 0.0226  0.008  0.008 0.0236 

 

ρ = .7e 

    bY,X -0.35 100 -0.331 -0.019 0.1088 -0.330 -0.020 0.1098 

300 -0.339 -0.011 0.0629 -0.340 -0.010 0.0619 

    bY,Z  0.37  100  0.350 -0.02 0.0975  0.351 -0.019 0.0985 

300  0.357 -0.013 0.0560  0.359 -0.011 0.0550 

    bY,W  0.40 100  0.408  0.008 0.1323  0.408  0.008 0.1333 

300  0.402  0.002 0.0787  0.401  0.001 0.0797 

    bY,XZ  0.30 100  0.010  0.01 0.0362  0.011  0.011 0.0372 

300  0.007  0.007 0.0225  0.006  0.006 0.0215 

 

ρ = .9e 

    bY,X -0.35 100 -0.354  0.004 0.0849 -0.353 0.0033 0.0857 

300 -0.354  0.004 0.0527 -0.352 0.0023 0.0535 

    bY,Z  0.37  100  0.378  0.008 0.0762  0.379 0.0087 0.0769 

300  0.375  0.005 0.0464  0.374 0.0043 0.0456 

    bY,W  0.40 100  0.399 -0.001 0.1024  0.405 0.0047 0.1031 

300  0.399 -0.001 0.0640  0.400 0.0003 0.0632 

    bY,XZ  0.30 100  0.006  0.006 0.0215  0.005 0.0053 0.0208 

300  0.004  0.004 0.0159  0.005 0.0048 0.0166 

 

___________ 
a Population coefficient values correspond to R2's of .10 and .50 . 
b Average over 100 replications. 
c Difference between population coefficient value and coefficient average (Columns 4 or 7). 
d Root mean squared error or average difference across 100 data sets between the coefficient estimates and the population 

value. 
e Reliability. 



Table 2-- Simulated Data Sets Coefficient Standard Error Results 

 
                 Popu-              Pseudo LV Regression        Structural Equation Analysis  

  Coeffic-  lation  Sample                Average                                 Average 

    ient       Valuea   Size      RMSEb     SEc   Biasd              RMSEb     Sec    Biasd        

 

bY,XZ = 0 

ρ = .7e 

    bY,X -0.15 100  0.1490 0.1315 0.882 0.1510 0.1329 0.880  

300  0.0867 0.0813 0.938 0.0847 0.0813 0.938 

    bY,Z  0.17  100  0.1340 0.1180 0.881 0.1350 0.1190 0.882   

300  0.0781 0.0733 0.939 0.0801 0.0753 0.941 

    bY,W  0.25 100  0.1810 0.1589 0.878 0.1790 0.1575 0.880   

300  0.1059 0.0998 0.942 0.1069 0.1008 0.943 

    bY,XZ  0.12 100  0.1438 0.1211 0.842 0.1458 0.1226 0.841   

300  0.0916 0.0753 0.822 0.0896 0.0738 0.824 

 

ρ = .9e 

    bY,X -0.15 100  0.1221 0.1122 0.919 0.1211 0.1114 0.920   

300  0.0754 0.0739 0.981 0.0764 0.0750 0.982 

    bY,Z   0.17  100  0.1085 0.0998 0.919 0.1075 0.0987 0.918   

300  0.0674 0.0661 0.981 0.0664 0.0651 0.980 

    bY,W   0.25 100  0.1483 0.1366 0.921 0.1493 0.1376 0.922   

300  0.0919 0.0900 0.979 0.0929 0.0911 0.980 

    bY,XZ   0.12 100  0.0922 0.0866 0.939 0.0912 0.0857 0.940   

300  0.0649 0.0579 0.891 0.0659 0.0588 0.892 

 

ρ = .7e 

    bY,X -0.35 100  0.1078 0.0950 0.881 0.1088 0.0960 0.882   

300  0.0639 0.0600 0.939 0.0649 0.0610 0.940 

    bY,Z  0.37  100  0.0965 0.0850 0.881 0.0975 0.0860 0.882   

300  0.0570 0.0536 0.939 0.0560 0.0526 0.938 

    bY,W  0.40 100  0.1313 0.1154 0.879 0.1303 0.1146 0.880   

300  0.0777 0.0731 0.941 0.0787 0.0741 0.942 

    bY,XZ  0.30 100  0.1056 0.0877 0.831 0.1066 0.0887 0.832   

300  0.0704 0.0569 0.809 0.0694 0.0561 0.808 

 

ρ = .9e 

    bY,X -0.35 100  0.0842 0.0775 0.921 0.0849 0.0783 0.922   

300  0.0520 0.0510 0.981 0.0512 0.0502 0.980 

    bY,Z  0.37  100  0.0754 0.0695 0.921 0.0762 0.0702 0.922   

300  0.0471 0.0462 0.979 0.0479 0.0469 0.980 

    bY,W  0.40 100  0.1016 0.0936 0.921 0.1024 0.0943 0.922   

300  0.0647 0.0634 0.979 0.0640 0.0626 0.979 

    bY,XZ  0.30 100  0.0668 0.0621 0.931 0.0675 0.0628 0.930   

300  0.0454 0.0400 0.881 0.0462 0.0407 0.882 

___________ 
a Population coefficient values correspond to R2's of .10 and .50 . 
d Root mean squared error or average difference across 100 data sets between the coefficient estimates and the population 

value. 

 c Average coefficient standard error over 100 replications. 
d Average SE divided by RMSE. Values less than 1 indicate the SE is biased downward. 
e Reliability. 



Table 2 (Continued)-- Simulated Data Sets Coefficient Standard Error Results 

 
                 Popu-              Pseudo LV Regression        Structural Equation Analysis  

  Coeffic-  lation  Sample                Average                                    Average 

    ient       Valuea   Size      RMSEb     SEc   Biasd                RMSEb     SEc   Biasd       

 

bY,XZ = 0 

ρ = .7e 

    bY,X -0.15 100  0.1470 0.1379 0.938 0.1450 0.1363 0.940   

300  0.0847 0.0836 0.988 0.0827 0.0815 0.986 

    bY,Z  0.17  100  0.1350 0.1270 0.941 0.1360 0.1281 0.942   

300  0.0771 0.0765 0.992 0.0761 0.0754 0.991 

    bY,W  0.25 100  0.1830 0.1724 0.942 0.1850 0.1739 0.940   

300  0.1079 0.1069 0.991 0.1099 0.1091 0.993 

    bY,XZ  0.12 100  0.0469 0.0445 0.949 0.0459 0.0437 0.951   

300  0.0325 0.0299 0.918 0.0345 0.0318 0.920 

 

ρ = .9e 

    bY,X -0.15 100  0.1231 0.1207 0.981 0.1241 0.1216 0.980   

300  0.0764 0.0764 1.001 0.0774 0.0775 1.002 

    bY,Z  0.17  100  0.1075 0.1053 0.979 0.1065 0.1042 0.978   

300  0.0684 0.0684 0.999 0.0694 0.0694 1.000 

    bY,W  0.25 100  0.1493 0.1464 0.981 0.1503 0.1476 0.982   

300  0.0909 0.0910 1.001 0.0899 0.0899 1.000 

    bY,XZ  0.12 100  0.0317 0.0315 0.991 0.0327 0.0324 0.990   

300  0.0226 0.0211 0.931 0.0236 0.0220 0.932 

 

ρ = .7e 

    bY,X -0.35 100  0.1088 0.1013 0.931 0.1098 0.1024 0.932   

300  0.0629 0.0617 0.981 0.0619 0.0607 0.980 

    bY,Z  0.37  100  0.0975 0.0908 0.931 0.0985 0.0918 0.932   

300  0.0560 0.0549 0.979 0.0550 0.0538 0.978 

    bY,W  0.40 100  0.1323 0.1232 0.931 0.1333 0.1240 0.930   

300  0.0787 0.0772 0.981 0.0797 0.0782 0.982 

    bY,XZ  0.30 100  0.0362 0.0341 0.941 0.0372 0.0350 0.942   

300  0.0225 0.0204 0.909 0.0215 0.0195 0.908 

 

ρ = .9e 

    bY,X -0.35 100  0.0849 0.0833 0.981 0.0857 0.0841 0.982   

300  0.0527 0.0527 0.999 0.0535 0.0535 1.000 

    bY,Z  0.37  100  0.0762 0.0747 0.981 0.0769 0.0755 0.982   

300  0.0464 0.0464 1.001 0.0456 0.0456 1.000 

    bY,W  0.40 100  0.1024 0.1004 0.981 0.1031 0.1012 0.982   

300  0.0640 0.0639 0.999 0.0632 0.0631 0.999 

    bY,XZ  0.30 100  0.0215 0.0211 0.979 0.0208 0.0203 0.980   

300  0.0159 0.0146 0.921 0.0166 0.0153 0.922 

___________ 
a Population coefficient values correspond to R2's of .10 and .50 . 
d Root mean squared error or average difference across 100 data sets between the coefficient estimates and the population 

value. 

 c Average coefficient standard error over 100 replications. 
d Average SE divided by RMSE. Values less than 1 indicate the SE is biased downward. 
e Reliability. 



Table 3-- Unadjusted Covariances for S, A, I, C, and E; with Reliabilities, Estimated Loadings (Λs), and 

Estimated Measurement Errors (θ) 

 

        S        A      I    C     E  SxA              AxI 

S  16.78816   -9.80047   7.58572   6.57148   -20.73284    53.51358   -7.73302 

A   -9.80047  19.65213  -4.71621  -8.50311    20.44497   -55.59004     7.34272 

I    7.58572   -4.71621 22.22471 14.73352     -8.08200   -7.733023    -2.69775 

C    6.57148   -8.50311 14.73352 25.13758     -8.86009      5.52795  -3.685302 

E -20.73284  20.44497  -8.08200  -8.86009    66.64125 -117.17370     1.22814 

SxA  53.51358 -55.59004  -7.73302   5.52795 -117.17370  857.81926 113.15626 

AxI   -7.73302    7.34272  -2.69775  -3.68530      1.22814  113.15626 386.20813 

 

                S            A            I              C             E 

Reliabilities:                           0.9325    0.9262    0.9271    0.9494     0.9622 

Estimated Loadings (Λs)a           6.75962  5.77435  5.77716  4.87185   9.80917 

Estimated Measurement Errors (θ)a      1.13320  1.45032  1.62018  1.27196   2.51903 

 
─────────────────────── 
a See p. 6. 



Table 4-- Adjusted Covariances for S, A, I, C, and E, with Coefficient Estimates 
 

     S    A     I    C      E   SxA            AxI 

S  0.34261 -0.25108  0.19424  0.19954 -0.31268  0.20282 -0.03429 

A -0.25108  0.54589 -0.14137 -0.30225  0.36095 -0.24664  0.03811 

I  0.19424 -0.14137  0.61735  0.52347 -0.14261 -0.03429 -0.01399 

C  0.19954 -0.30225  0.52347  1.00550 -0.18540  0.02906 -0.02267 

E -0.31268  0.36095 -0.14261 -0.18540  0.66641 -0.30603  0.00375 

SxA  0.20282 -0.24664 -0.03429 0.02906 -0.30603  0.55758  0.04549 

AxI -0.03429  0.03811 -0.01399 -0.02267  0.00375  0.04549  0.33604 

 

 

Pseudo Latent Variable Regression Coefficient Estimates: 

                   S            A             I             C           SxA         AxI 

bi -0.571 0.335 -0.027 0.048 -0.192 -0.057 (Line 1 

SEa  0.0969 0.0728  0.0726 0.0557  0.0751  0.0798 

t-value -5.89 4.59 -0.37 0.86 -2.55 -0.71 

SEEb 0.59024 

 

OLS (Unadjusted) Regression Coefficient Estimates: 

                   S            A             I             C           SxA        AxI 

bi -0.526 0.314 -0.037 0.034 -0.235 -0.018 

SEa  0.0932 0.0700  0.0698 0.0535  0.0722  0.0767 

t-value -5.64 4.48 -0.53 0.64 -3.26 -0.24 

SEEb      0.56737 

Kc          1.04030 

 

LISREL 8 Coefficient Estimates: 

                   S             A             I             C          SxA          AxI       χ2/df      GFId  AGFId  CFIe  RMSEAf 

bi -0.553 0.333 -0.071 0.076 -0.160 -0.040 

SEa  0.1096 0.0767  0.0798 0.0624  0.0644  0.0823 

t-value -5.04 4.34 -0.90 1.22 -2.49 -0.49     1519/575  .721   .677    .883     .086 

 

_________ 
a Coefficient standard error. 
b Standard error of the estimate-- see p. 7. 
c K is the adjustment factor used to obtain the pseudo latent variable coefficient SEs, and is equal to the ratio of the SEEs (i.e., 0.59024/ 

0.56737) (see p. 7). 
d Shown for completeness only-- GFI and AGFI may be inadequate for fit assessment in larger models (see Anderson and Gerbing 1984). 
e .90 or better indicates acceptable fit (see McClelland and Judd 1993). 
f .05 suggests close fit, .051-.08 suggests acceptable fit (Brown and Cudeck 1993, Jöreskog 1993). 



Table 5-- SxA Interaction Significance 
 

               A-E Association                             S-E Association                 

                 A        SE of                                   S          SE of                 

     S       Coef-    A Coef-        t-         A       Coef-     S Coef-        t-      

 Valuea  ficient b   ficientc      value  Valued  ficiente    ficientf     value    

  1.20 0.90       0.24         3.76 1  -0.27        0.13       -2.04     

    2  0.75       0.18         4.02 2  -0.46        0.07       -6.15     

    3 0.56       0.12         4.42     2.56g  -0.57        0.06       -9.14     

    4  0.36       0.09         3.99 3 -0.65        0.07       -9.27    

  4.17g  0.33       0.09         3.67        4 -0.84        0.12       -6.79     

    5 0.17       0.11         1.58 5 -1.04        0.19       -5.37   

 

 
─────────────────────── 
a S ranged from 1.2 (=low) to 5 in the study.  
b The coefficient of A is given by (.335-.192S)  with S zero centered (i.e., S = Col. 1 - 4.16) (see Line 1 in Table 4).  
c The Standard Error (SE) of the A coefficient is given by  

     ____________      ______________________________  

   Var(bA+bSxAS)  = (Var(bA)+S2Var(bSxA)+2SCov(bA,bSxA) , 

   where Var(a) is the squares of the Standard Errors (SE) of a at Line 1 of Table 4, and Cov(bA,bSxA) = K*bcov(bA,bSxA) 

   where K is the SE adjustment factor (see Line 1 of Table 4) and bcov is the unadjusted covariance of bA and bSxA available in SPSS. 
d A ranged from 1 (=low) to 5 in the study . 
e The coefficient of S is given by (-.160+.276A) with A zero centered (i.e., A = Col. 5 - 2. 56) (see Line 5 of Table 2). 
f The Standard Error (SE) of the S coefficient is given by 

     ____________      ______________________________ 

   Var(bS+bSxAA)  = Var(bS)+A2Var(bSxA)+2ACov(bS,bSxA) , 

   where Var(a) is the squares of the Standard Errors (SE) of a at Line 5 of Table 2, and Cov(bS,bSxA) = r*SEbS*SEbSxA, 

   where r is the covariance of bS and bSxA available in SPSS. 
g Mean value. 



Appendix A-- Simulation Details 

 

To produce the Table 1 and 2 results, the model 

(A1)  Y = b1X + b2Z + b3W + b4XZ + ζY 

was estimated using simulated data sets that met the Kenny and Judd (1984) normality assumptions (indicators 

are multivariate normal with mean zero and independent of their measurement errors, and measurement errors 

are independent of each other), using the population parameters shown in Table A1. These parameters 

represent the original Kenny and Judd (1984) values for the variances of X, Z, and W, and polar but plausible 

values for model validation studies. For example, the loadings and measurement errors produced reliabilities of 

.7 (the minimum acceptable reliability in model validation studies) and .9, and the structural parameters (i.e., 

bs and ζs) corresponded to R2 's of .10 and .50. 

X, Z, W, and their indicators x1, ..., x4, z1, ..., z4, w1, ..., w4 were created in data sets using PRELIS, 

and its normal random number generator. Each data set contained 100 or 300 cases and was replicated 100 

times. Next, the values for x1, ..., x4 were summed (not averaged-- see p. 7) to form X in each case. vales for Z 

and W were added similarly, and the value of XZ (= X*Z) was added to each case. Y was determined using 

equation A1, the Table A1 population values, and PRELIS random number generator (for ζY). Then the Table 

A1 population parameters were used to generate the indicators of Y, y1, ..., y4, again using PRELIS normal 

random number generator. 

For each of the resulting data sets, the sample (unadjusted) covariance matrix for X, Z, W, Y and XZ 

was generated. Then these sample covariances were imported to an EXCEL spreadsheet, and the coefficient 

alphas for X, Z, W, and Y were calculated usung SPSS. Next these coefficient alphas were used in equations 2-

5 with Λ = n(α) and Λ
2 = n

2α, where  is the latent variable X, Z, W, or Y, and n is the number of indicators 

of  (= 4 in this case-- n is required to make Λ and 2Λ commensurate with Var()), to adjust the attenuated 

covariance matrix. Then this adjusted covariance matrix was exported to SPSS matrix regression procedure. 

The SPSS matrix regression procedure produced pseudo latent variable regression structural 

coefficients, coefficient standard errors, and a standard error of the estimate (SEE) (SEE = Σ[yi - i]2, where yi 

and i. are observed and estimated ys respectively). Then the unadjusted covariance matrix was input to 

SPSSs matrix regression procedure to produce unadjusted coefficient standard errors and an unadjusted 

Standard Error of the Estimate (uSEE). Next the coefficient standard errors for the pseudo latent variable 

regression coefficients were computed as described on p. 7. Finally the raw data was input to LISREL 8 to 

produce structural coefficient estimates for comparison purposes. 



Table A1-- Population Parameters for Simulated Data Sets 

 
          Population             

     Parametera Variance  Coefficient 

All Data Sets: 

X  2.15    

Z, Y 1.60    

W  1.00 

Corr(X,Z)  0.20 

Corr(X,W)  0.20 

Corr(Z,W)  0.20 

b0   0.00b 

High Reliability Samples (ρ = .9): 

λx1  1.00   

λx2-λx4  0.90   

λz1  1.00   

λz2-λz4  0.90    

λw1  1.00   

λw2-λw4  0.90    

εx1-εx4 0.82    

εz1-εz4 0.61    

εw1-εw4 0.38    

Low Reliability Samples (ρ = .7): 

λx1  1.00   

λx2-λx4  0.70   

λz1  1.00   

λz2-λz4  0.70    

λw1  1.00   

λw2-λw4  0.70    

εx1-εx4 2.21    

εz1-εz4 1.65    

εw1-εw4 1.03    

Small Coefficients (R2 = .10) 

ζY  1.6    

bY,X  -0.15   

bY,Z  0.17   

bY,W   0.20 

bY,XZ   0.12   

Large Coefficients (R2 = .50): 

ζY  0.8    

bY,X  -0.35   

bY,Z  0.37   

bY,W   0.40 

bY,XZ  0.30   

 
───────────────────────────────── 
a In Y = bY,XX + bY,ZZ + bY,WW  + bY,XZXZ + ζY xi = λxiX + εxi zi = λziZ + εzi wi = λwiW + εwi . 
b The indicators, including those for Y were zero centered. 
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 Abstract 

 

Because there is comparatively little guidance for substantive researchers in detecting interactions 

involving unobserved or latent variables in theory tests, the paper addresses these matters. After examining 

situations where including interactions might be appropriate, the paper describes detection techniques for these 

variables. Since structural equation analysis and errors-in-variables techniques are less accessible than 

regression in this application, the detection capabilities of several regression-based techniques are evaluated 

using Monte Carlo simulations. 

Perhaps surprisingly, some of these techniques performed adequately in detecting interactions 

involving unobserved variables that were present in the population model, rejecting interactions that were not 

present in the population model, and not mistaking a quadratic in the population model for an interaction. 

Overall, product-term regression, and saturated product-term regression, followed by subgroup analysis and 

dummy variable regression detected true interactions better than ANOVA or the Chow test. These techniques 

also rejected spurious interactions better than the Chow Test. Overall, product-term regression, saturated -

product-term regression, subgroup analysis, and dummy variable regression performed best at both tasks. 

The paper also discusses characteristics of the data that appear to influence the detection of interactions 

involving unobserved variables and regression. These data characteristics include the presence of a quadratic in 

the population model and its being mistaken for an interaction, which has received no empirical attention to 

date. The effects of several data set characteristics are illustrated in the detection of an interaction between Role 

Clarity and Closeness of Supervision in their association with sales rep Satisfaction using a survey data set. The 

paper concludes with suggestions to improve the detection of interactions involving unobserved variables and 

regression that include mean centering, reporting multiple studies, and the use of a combination of detection 

techniques. 

 

 

 Introduction 

 

In studies involving categorical independent variables (i.e., ANOVA studies), interactions are routinely 

estimated to aid in interpreting significant main effects. In studies involving continuous variables, interaction 

variables are also specified, although not routinely, and not to aid interpretation as they are in ANOVA. 

Typically continuous interactions are specified in response to theory that proposes their existence. 

  Researchers in the social sciences have called for the inclusion of interactions in models involving 

continuous variables (Aiken & West, 1991; Blalock, 1965; Cohen, 1968; Cohen & Cohen, 1975, 1983; 

Howard, 1989; Jaccard, Turrisi & Wan, 1990; Kenny, 1985). However, for variables measured with error such 

as unobserved variables, the options for detecting interactions have drawbacks. Regression is known to 

produce biased and inefficient coefficient estimates for variables measured with error (Bohrnstedt & Carter, 

1971; Busemeyer & Jones, 1983). As a result, interaction detection techniques such as product-term regression 

and regression-based techniques involving sample splitting, such as subgroup analysis, will produce biased and 

inefficient coefficient estimates for unobserved variables. 

While there have been several proposals to solve these problems (e.g., Warren, White & Fuller, 1974; 

Heise, 1986; Ping, 1995a) (see Feucht, 1989 for a summary), the proposed techniques lack significance testing 

statistics (Bollen, 1989), and are therefore inappropriate for theory tests. Nonlinear structural equation analysis 

(e.g., Kenny & Judd, 1984; Ping, 1995b,c) also shares this limitation for popular estimators such as Maximum 

Likelihood and Generalized Least Squares (Bollen, 1989; Kenny & Judd, 1984).1 

This paper addresses this discouraging situation. After examining the influence that interactions can 

have on the interpretation of a model test, the paper summarizes the available approaches for detecting 
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interactions. It then reports the results of an investigation, using Monte Carlo simulations, of the ability of 

regression-based approaches to detect true interactions, and reject spurious interactions involving unobserved 

variables. The paper discusses the effects the characteristics of the data have on the detection of these 

interactions using regression, and illustrates several of these effects using survey data. The paper concludes 

with suggestions for improved detection of these interactions. 

We begin with a summary of the influence interactions can have on the interpretation of model tests 

involving continuous variables. 

 Interactions in Model Tests 

Researchers include interactions in theory tests under several circumstances. The first arises when 

theory proposes the existence of interactions. The second occurs as part of the researcher's effort to improve the 

interpretation of significant main effects. Theories that propose interactions are ubiquitous in the Marketing 

literature (see for example Walker, Churchill & Ford 1977; and Weitz 1981 in the personal selling literature; 

Ajzen & Fishbein 1980, Engel, Blackwell & Kollat 1978, Howard 1977, and Howard & Sheth 1969 in the 

consumer behavior literature; Dwyer, Schurr & Oh 1987, and Stern & Reve 1980 in the channel literature; and 

Sherif & Hovland 1961 in the advertising literature). Researchers in Marketing have tested these and other 

proposed interactions involving continuous variables (see for example Batra & Ray 1986, Heide & John 1992, 

Kohli 1989, Laroche & Howard 1980, and Teas 1981). However, examples of the inclusion of continuous 

interactions reported as part of a researcher's efforts to reduce interpretational errors are rare. 

Researchers who call for the investigation of continuous interaction and quadratic variables have 

argued that failing to do so increases the risk of false negative and conditional positive research findings. To 

demonstrate this, consider a model with linear terms only, 

Y = b0 + b1X + b2Z . (1 

The Z-Y association in this model may be over- or understated because of the influence of an interaction of Z 

with X in the population model. When an XZ interaction is present in the population model, the actual coeffi-

cient of Z in equation (1) is given by 

Y = b'0 + b'1X + b'2Z + b3XZ , (2 

    = b'0 + b'1X + (b'2 + b3X)Z . (3 

In equation (3) the relationship between Z and Y varies with the values of X. For X values at one end of its 

range, it is possible for Z in equation (3) to have a stronger association with Y than it does in equation (1) (e.g., 

b'2 + b3X is larger than b2). For X values at the other end, it is possible for Z to have a weaker association with 

Y that it does in equation (1). It is also possible for Z to have a negative association with Y (i.e., b'2 + b3X is 

negative) for X values near one end of its range, a positive association near the other end, and no association in 

between. 

Perhaps more important for theory testing, the significance of the b2 coefficient of Z in equation (1) 

could be different from the significance of the b'2 + b3X coefficient of Z in equation (3). In particular, 

o b2 could be nonsignificant, while b'2 + b3X could be significant over part(s) of the range of X, or 

o b2 could be significant while b'2 + b3X could be nonsignificant over part of the range of X. 

In the first situation, interpreting equation (1) could lead to a false disconfirmation of the Z-Y association. A 

nonsignificant linear variable in equation (1) may actually be significantly associated with the dependent 

variable over part of the range of an interacting variable in the population model. In the second situation, inter-

preting equation (1) could produce a misleading picture of the contingent Z-Y association. A significant linear 

effect (e.g., b2) could actually be conditional in the population model, and nonsignificant for certain values of 

an interacting variable. 

We now turn to the detection of interactions among unobserved variables. 

 Interaction Detection Techniques 

Because studies in Marketing frequently involve unobserved variables with multiple observed 

variables measured with error, our discussion will involve variables in equations (1) and (2) that consist of 

sums of observed variables xi and zj, i.e., 
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or are specified as V(xi)= λi
2V(X)+V(εi), V(zj)= λj

2V(Z)+V(εj), or V(xizj)= λi
2λj

2V(XZ)+λi
2V(X)V(εj) 

+λj
2V(Z)V(εi), where V(a) is the variance of a, and λ's and ε's are loadings and errors. The quadratic vari-

able ZZ (= Z*Z) can be added to equation (1) or (2), and will be of interest later. 

Approaches to detecting interactions among unobserved variables can be grouped into several general 

categories2: product indicator approaches, errors-in-variables approaches, product-term regression, and 

subgroup analysis. Product indicator approaches involve structural equation analysis, while errors-in-variables 

approaches typically involve regression using a moment matrix adjusted for measurement error. In product-

term regression the dependent variable is regressed on variables comprised of summed observed variables and 

products of these summed variables (e.g., equations 2 and 4). Subgroup analysis involves splitting the sample 

and assessing differences in model coefficients when the model is restricted to the resulting subsets. Estimating 

these coefficient differences can be accomplished using regression, structural equation analysis, ANOVA, 

dummy variable regression, and the Chow test (Chow, 1960). We will discuss each of these approaches next. 

Structural Equation Analysis 

In product indicator/structural equation approaches, an interaction variable is specified using all 

possible products of the observed variables for the unobserved variables that comprise the interaction. For 

example if the unobserved variables X and Z have the observed variables x1, x2, z1, and z2, the indicators of the 

interaction XZ would be x1z1, x1z2, x2z1, and x2z2.3 Structural coefficients (i.e., γ's and β's) can be estimated 

directly using the Kenny and Judd (1984) (see Jaccard & Wan, 1995) or Ping (1995b) techniques and software 

such as COSAN (available in SAS), or LISREL 8.4 They can also be estimated indirectly using techniques 

such as the Hayduk (1987), Ping (1995c), or Wong and Long (1987) approaches and software such as CALIS 

(also available in SAS), EQS or LISREL 7.5 However, these product indicator approaches produce model fit 

and structural coefficient significance statistics with Maximum Likelihood and Generalized Least Squares 

estimators that should be used with caution (Bollen, 1989; Jaccard & Wan, 1995; Kenny & Judd, 1984). 

Regression Techniques 

Typical of the errors-in-variables approaches are the Warren, White and Fuller (1974), Heise (1986), 

and Ping (1995a) proposals for adjusting the regression moment matrix to account for the errors in the vari-

ables (see Feucht, 1989 for a summary). The moment matrix (e.g., covariance matrix) produced by the sample 

data is adjusted using estimates of the errors. Regression estimates are then produced using this adjusted 

moment matrix in place of the customary unadjusted matrix. However, these approaches lack significance 

testing statistics (Bollen, 1989), and are not useful in theory tests. 

In product-term regression (Blalock, 1965; Cohen, 1968) the dependent variable is regressed on the 

linear independent variables and one or more interactions formed as cross products of these linear independent 

variables (e.g., equation 2). The significance of the regression coefficient for the interaction variable (e.g., b3) 

suggests the presence of an interaction between the components of this cross product variable (e.g., X and Z). 

Subgroup analysis involves dividing the sample into subsets of cases based on different levels of a sus-

pected interaction variable (e.g., low and high). The coefficients of the linear model (e.g., equation 1) are then 

estimated in each subset of cases using regression or structural equation analysis6 (see Jöreskog, 1971). Finally, 

these coefficients are tested for significant differences using a coefficient difference test. A significant coeffi-

cient difference for a variable suggests an interaction between that variable and the variable used to create the 

subgroups. 

Variations on this subgroup analysis theme include dummy variable regression and ANOVA. The 

ANOVA approach to detecting an interaction among continuous variables typically involves dicotomizing the 

independent variables in equation (1), frequently at their medians. This is accomplished by creating categorical 

variables that represent two levels of each independent variable (e.g., high and low), then analyzing these 

categorical independent variables using an ANOVA version of equation (2). 

To use dummy variable regression (Cohen, 1968) to detect an interaction between X and Z in for 

example equation (1), the X (or Z) term of equation (1) is dropped, and dummy variables are added to create 

the regression model 

Y = b"0 + a0d + b"2Z + a1DZ , (5 

where the dummy variable is defined as 

D = 0 if Xi < the median of the values for X 

   = 1 otherwise, (i= 1,...,the number of cases) 
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and 

DZ = D*Z . 

The add and adz terms measure any difference in b"0 and b"2Z, respectively, when X is "high" and when it is 

"low." A significant coefficient for a dummy variable corresponding to an independent variable (e.g., a1) sug-

gests an interaction between that independent variable (e.g., Z) and the variable that produced the subsets (e.g., 

X). 

Because of the potential drawbacks involving significance testing of product indicator/structural 

equation approaches and errors-in-variables techniques, we will restrict our attention to product-term regression 

and variations of subgroup analysis in the balance of the paper. 

 Population Models 

For model tests there are several substantive matters that we have suggested should be addressed. One 

is the effect of failing to consider the possibility of an interaction in the population model. Others include 

failing to detect an interaction that is present in the population model (a true interaction), or mistakenly detect-

ing an interaction that is absent in the population model (a spurious interaction). 

These problems involving the detection of interactions could occur in several ways. An interaction 

could be detected using equation (2), when the population model contains no interaction and the population 

model is actually given by equation (1). In addition, the estimation of equation (2) could also produce a signifi-

cant interaction coefficient (e.g., b3) when the population model is given by 

Y = b'"0 + b"1X + b'"2Z + b4ZZ . (6 

This mistaking of a quadratic (e.g., ZZ) as an interaction has received no empirical attention to date, and was 

observed by Lubinski and Humphreys (1990). Finally, the estimation of equation (2) could produce a nonsig-

nificant interaction coefficient (e.g., b3) when there is an interaction in the population model and it is actually 

of the equation (2) form. 

These matters will be examined next. We begin with the ability of the ANOVA approach, product-

term regression, dummy variable regression, subgroup analysis, and the Chow test to detect an interaction that 

is actually present in the population model. 

 Detecting True Interactions 

To gauge the ability of these regression techniques to detect an interaction that is present in the popula-

tion model, we generated 100 data sets each containing 100 cases. The data sets were generated using the 

population model 

Y = .5 -.15X + .35Z + .15XZ + eY , (7 

and the population parameters shown in Table 1. These parameters produced variables that were normally 

distributed, and involved small interaction effects. The linear variables in these data sets (i.e., X and Z) were 

moderately correlated, and each had moderate reliability (ρx= .81 and ρz= .76). These characteristics were 

repeated in the other data sets used in this investigation, and the resulting data sets represent a somewhat 

average (i.e., neither favorable nor unfavorable) set of data characteristics for the detection of an interaction 

involving unobserved variables. 

The population interaction term -.15XZ in equation (7) was estimated in each of the 100 data sets just 

described using each of the regression-based techniques of interest, beginning with the ANOVA approach. 

ANOVA 

Researchers have received little encouragement to use an ANOVA approach to detecting interactions 

between continuous variables. The approach is criticized in the Psychometric literature for its reduced statis-

tical power that increases the likelihood of Type II (false negative) errors (Cohen, 1978; Humphreys & 

Fleishman, 1974; Maxwell, Delaney & Dill, 1984). Maxwell and Delaney (1993) showed that this approach 

can also produce Type I (false positive) errors. To gauge its false negative propensity we estimated equation (7) 

using the ANOVA approach and the 100 data sets just described. We expected the small population coefficient 

of XZ in equation (7), and the reduced statistical power of the ANOVA approach to combine to produce 

interaction detections at a chance level (e.g., 10%) for this technique. 

X and Z in each of the 100 data sets were dicotomized at their medians. This was accomplished by 

resetting each observation for X, for example, to 0 if the observed value was less than the median of its data set 

values, and 1 otherwise. A two-way analysis of the main and XZ interaction effects of each of these 100 data 
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sets using the ANOVA equivalent of equation (2) identified 50 of the 100 data sets in which the interaction 

effect was significant (see Table 2 line 1, column 1). These results will be discussed shortly. 

Product-Term Regression 

Regression involving variables measured with error produces coefficient estimates that are biased and 

inefficient (Bohrnstedt & Carter, 1971). Because product-term regression is based on regression, coefficient 

estimates for equation (2) using product-term regression are also biased and inefficient (Busemeyer & Jones, 

1983). Since this bias is known to produce attenuated coefficient estimates, we expected that the weak -.15XZ 

interaction in the population model would be detected at a chance level only. 

To test this anticipated result we added the cross product term XZ to each of the 100 data sets and 

estimated equation (2) using ordinary least squares regression. An R2 difference test of XZ's incremental 

explained variance identified 81 of the 100 data sets in which there was a significant interaction (Table 2 

column 1 shows this result as 100 - 81= 19, the number of data sets in which no significant interaction was 

identified). 

Dummy Variable Regression 

Dummy variable regression does not suffer from reduced statistical power as the ANOVA approach 

does, but it is a regression technique and it should therefore detect a weak population interaction such as   -

.15XZ at a chance level only. To test this, each of the 100 data sets was split at the median of X to create the 

dummy variable D in equation (5). Estimating the coefficients for equation (5) in each of the 100 data sets 

produced significant interactions in 69 data sets (see Table 2 column 1 for the number of nonsignificant 

interactions). 

Subgroup Analysis 

Turning to subgroup analysis, it too is criticized for its reduction of statistical power and increased 

likelihood of Type II error (Cohen & Cohen, 1983; Jaccard, Turrisi & Wan, 1990). We therefore expected that 

it would detect the weak -.15XZ population interaction by chance only. To test this expectation each data set 

was split at the median of X to produce two subsets, and X was dropped from equation (1) to create 

Y = b0 + b2Z . (8 

The coefficient of Z was then estimated in each subset, and coefficient difference tests (see Jaccard, Turrisi & 

Wan, 1990) for the Z coefficients between the pairs of subsets identified 75 of the 100 data sets in which there 

was a significant interaction (see Table 2 column 1 for the number of nonsignificant interactions). 

Chow Test 

A Chow test is used with dummy variable regression (see Dillon & Goldstein, 1984) and subgroup 

analysis to detect the presence of an interaction. Detecting an interaction using the Chow test involves 

comparing the total of the sum of squared errors associated with the estimation of equation (8)7 in each subset, 

and the sum of squared error associated with estimating equation (8) using the full data set. If the Chow test 

suggests a significant sum of squared error difference, this in turn suggests that the Z coefficient for equation 

(8) in the full group is different from those in the subsets. Since these subsets were created by median splits of 

the cases using X, this is considered to be evidence of an interaction between X and Z. 

Because it relies on splitting the sample, we also expected the Chow test to detect a weak population 

interaction such as -.15XZ by chance only. To test this expectation each of the 100 data sets was split at the 

median of X, and a Chow test was performed using equation (8) to determine if there were differences in the Z 

coefficients between the two subsets. The Chow test indicated significant interactions in 3 of the 100 data sets 

(see Table 2 column 1 for the number of nonsignificant interactions). 

This completes the detection of the equation (7) population interaction using the regression-based tech-

niques. All the techniques detected the weak -.15XZ population interaction at a rate that was higher than 

chance, except Chow test.  We will complete the remaining tests and then discuss the results. 

We now turn to rejecting interactions that are not present in the population model. 

 Rejecting Spurious Interactions 

Detecting an interaction that is not in the population model can occur at least two ways. One involves 

the detection of a significant interaction using for example equation (2), when the population model contains 

no interaction variable and is of the form of equation (1). A second situation involves the presence of a 

quadratic term in the population model (e.g., equation 6) that is mistakenly detected as an interaction using for 

example equation (2) (see Lubinski & Humphreys, 1990). 
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No Population Interaction 

We investigated both these possibilities, beginning with the first in which an interaction is specified 

using equation (2), for example, but an interaction is not present in the population model (e.g., the population 

model is of the equation 1 form). 

We are aware of no theoretical or practical reason the above techniques should fail to reject an inter-

action that is not present in the population model. Accordingly we expected these approaches to detect a 

spurious interaction at approximately a chance level. 

To test this expectation we generated 100 more data sets of 100 cases each, using the population model  

Y = .5 + .35X + .35Z + eY (9 

and the population parameters shown in Table 3, and tested for an interaction using an equation (2) model. 

Repeating the procedures just described, we tested for the presence of an interaction in each of the 100 

equation (9) data sets using the ANOVA approach, product-term regression, dummy variable regression, 

subgroup analysis, and the Chow test. We obtained the results shown in column 2 of Table 2. In summary, all 

the techniques except the Chow test detected spurious interactions at or below a chance rate. These techniques 

detected spurious interactions in from 3 to 8% of the samples, except for the Chow Test, which detected 

spurious interactions in 70 of the data sets. 

A Population Quadratic 

Next we investigated the detection of an interaction term using an equation (2) model in data sets 

generated using a population model that contained a quadratic term but no interaction (e.g., equation 6). We 

generated 100 more data sets of 100 cases each, using the population model 

Y = .5 -.15X + .35Z + .15ZZ + eY  (10 

and the population parameters shown in Table 4, then tested for an interaction using an equation (2) model. 

Lubinski and Humphreys (1990) suggested that product-term regression might mistake a quadratic 

variable in the population model for an interaction (see Cortina 1993). However, this possibility has not been 

investigated empirically. As a result, since their regression foundation relates all the detection techniques, we 

expected that the detection techniques would all mistake a quadratic in the population model for an interaction, 

and produce a significant interaction using an equation (2) model  more frequently than by chance.8 

We repeated the procedures described above using the additional equation (10) data sets, and the 

equation (2) model, along with the ANOVA approach, product-term regression, dummy variable regression, 

subgroup analysis, and the Chow test. We obtained the results shown in column 3 of Table 2. The ANOVA 

approach detected a spurious interaction in 10 of the 100 data sets. The Chow test detected no spurious 

interactions. The other techniques detected a spurious interaction in 19 to 30 of the 100 data sets. 

These results are discussed next. 

Interpretation 

To help interpret these results we used the Table 2 detection frequencies to produce conditional proba-

bilities of a true interaction, or lack of it, given the results in Table 2. The Table 5 entries for the ANOVA 

approach, for example, were calculated as follows. The "Significant" line for ANOVA shows the probability of 

a true interaction, given ANOVA produced a significant interaction effect. It was calculated by dividing the 

frequency that ANOVA detected a true interaction (100 - Column 1) by the frequency that it detected any 

interaction (100 - Column 1 + Column 2 + Column 3) (= 50/65= .77). Similarly, the "Non-Signif." line, the 

probability of no interaction in the population model given that ANOVA produced a nonsignificant interaction 

effect, was calculated by dividing the frequency that ANOVA rejected a spurious interaction (100 - Column 2 

+ 100 - Column 3) by the frequency that ANOVA rejected all interactions (Column 1 + 100 -Column 2 + 100 - 

Column 3) (= 185/235= .79). 

Based on the conditional probabilities shown in column 2 of Table 5, product-term regression, 

followed by dummy variable regression, subgroup analysis, and the ANOVA approach, attained the highest 

probability of no interaction in the population model given none was detected (.90 to .79). The Chow Test 

performed the worst. It produced a probability of no interaction in the population model given none was 

detected of .57. 

However, none of these techniques detected a true interaction as well as they rejected a spurious 

interaction (see column 1 of Table 5). The ANOVA approach, product-term regression, and dummy variable 

regression performed about the same in detecting a true interaction, and produced probabilities of a true 
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interaction given one was detected of .77 to .76. Again, the Chow test did not perform well. It produced a 

probability of a true interaction given one was detected of .04. 

Saturated Approaches 

Examining Table 2 more closely, the low true interaction detection rates in column 1 of Table 5 were 

caused by the misdetections of a population quadratic as an interaction. Were it not for these misdetections, the 

Table 5 column 1 probabilities would have been in the .9 range, except for the Chow test. Following Lubinski 

and Humphrey's (1990) suggestion, we investigated adding X and Z quadratic terms (i.e., XX and ZZ) to 

equation (2) to create a saturated second order equation for estimation, i.e., 

Y = b""0 + b'"1X + b""2Z + b'3XZ + b'4ZZ + b5XX . (11 

We re-ran the product-term regression procedure described earlier using an equation (11) model and the 

equation (10) data sets, and the results are shown in Table 6. The resulting conditional probabilities are shown 

in Table 7. 

The resulting .88 probability of a true interaction, given one was detected using saturated product-term 

(equation 11) regression, was higher than the .76 probability using the equation (2) approach (see Table 5). In 

addition, saturated product-term regression produced a probability of no interaction in the population model, 

given none was observed, of .88. 

Efficacy 

Combining the results shown in Tables 5 and 7, saturated product-term regression, followed by 

ANOVA analysis, product-term regression, dummy variable regression, and subgroup analysis detected true 

interactions better than the Chow test. Product-term regression, followed by saturated product-term regression, 

subgroup analysis, dummy variable regression, and ANOVA analysis rejected spurious interactions better than 

the Chow Test. 

Overall, product-term regression, saturated product-term regression, and dummy variable regression  

performed best. They exhibited the highest percentage of correct detections (see Table 8). 

However, the Chow test performed the worst. It produced a probability of detecting a true interaction 

of .04, and rejecting a spurious interaction of .57. The Chow test appears to be unable to detect weak nonlinear 

variables in general. When we created 200 case versions of the 100 case samples, we observed the same lack of 

sensitivity to nonlinear variables with relatively small coefficients. 

We now turn to other factors that influence the detection of interactions involving unobserved 

variables and regression. 

 Conditions that Influence Interaction Detection 

The number and size of the continuous interactions reported in the social sciences have been small. In 

a single study of management variables Podsakoff, Todor, Grover and Huber (1984) examined 576 interactions 

and found 72 of them significant (12.5%). This detection frequency is only slightly above that of chance. 

Literature reviews in Marketing and Psychology report that observed interactions are typically small-- 

accounting for 3 to 9% of the variance explained in Marketing studies (see Churchill, Ford, Hartley & Walker, 

1985), and 1 to 3% of the variance explained in Psychological studies (see Aiken & West, 1991). 

Research to date suggests that several characteristics of the data used to test a model can have 

deleterious effects on the detection of a true interaction. For example, McClelland and Judd (1993) showed 

that because field studies are similar to an ANOVA model with unbalanced data, field studies are less efficient 

than ANOVA models with balanced data in detecting interactions (see also Stone-Romero, Alliger & Aguinis, 

1994). Authors have argued or shown that other characteristics of the data, such as reliability and 

multicollinearity between an interaction and its constituent variables can also affect the detection of an 

interaction. We will discuss these data characteristics and their impact on the detection of interactions 

involving unobserved variables next. 

Reliability of the Independent and Dependent Variables 

Low reliability in the independent variables reduces the observed size of the coefficient of a true 

interaction. Aiken and West (1991) observed that when reliabilities of the independent variables X and Z, and 

the dependent variable Y, all drop from 1 to .7, the observed interaction effect size for XZ is 33% of its true 

size. As a result, reduced reliability in first order variables also attenuates the R2 contribution of an interaction 

containing those variables (Busemeyer & Jones, 1983). 
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In addition, low interaction reliability attenuates the standard errors of observed interactions, which can 

reduce the power of the test for an interaction (Aiken & West, 1991). However Dunlap and Kemery (1987) 

reported that for small samples (N=30) and reliabilities in X and Z of .8 or above, reasonable power of the test 

for XZ is maintained. In addition, larger samples can offset the loss of power of the test for XZ induced by low 

interaction reliability (Jaccard, Turrisi & Wan, 1990). 

The reliability of XZ is a function of the reliability of X times the reliability of Z (see Bohrnstedt & 

Marwell, 1978; Busemeyer & Jones, 1983). For an uncorrelated X and Z that are bivariate normal, and have 

zero means, the reliability of XZ is the product of the reliabilities of X and Z. As the correlation between this X 

and Z increases, the reliability the interaction XZ increases (see Table 9). However, as the shaded area of Table 

9 suggests, for X and Z with correlations in a range typical of survey data (0 to .5), the reliabilities of X and Z 

should generally be .7 or above to produce interaction reliabilities of .6 or more. 

Systematic Error and Sample Size 

Correlated/systematic error between the independent and dependent variables also attenuates the 

observed coefficient sizes of interactions (Evans, 1985). As a result, survey data gathered using a single 

questionnaire and/or the use of scales that are identical for the independent and dependent variables could 

produce an attenuated coefficient estimate for a true interaction. 

As with first order variables, sample size and power are directly related in the detection of interactions. 

As a result in order to detect a weak population interaction, a relatively large sample size is required.  For 

example in a model with an R2 of .20 or .30, samples of 119 or 103 are required to detect an interaction that 

raises the model R2 by 5 points to .25 or .35  (Jaccard, Turrisi & Wan, 1990) (see also McClelland & Judd, 

1993). 

Research Design 

In an exploration of the difficulties of detecting predicted interactions using survey data and 

regression, McClelland and Judd (1993) noted that interactions are frequently detected in ANOVA studies. 

Comparing field studies and experiments, optimal experiments for detecting interactions can be described as 

requiring a balanced polar distribution for the independent variables. For two independent variables this 

distribution has polar treatment combinations with equal cell sizes. The most efficient of these McClelland and 

Judd characterized as a "four-cornered" data model (which has a three-dimensional frequency distribution that 

looks like the four legs on an upside-down kitchen table), and an "X-model" (which has a three-dimensional 

frequency distribution that resembles a bas-relief X anchored on the four polar cells). They showed that the 

interaction variance that remains after the main effects have been partialed out depends on the joint distribution 

of the linear variables comprising the interaction, and suggested the most efficient joint distributions were 

produced by four cornered or X models. 

Because field studies produce mound shaped joint distributions for the independent variables they are 

similar to ANOVA models with unbalanced data, which are not as efficient at detecting interactions as 

balanced data models. As a result, McClelland and Judd argued that field studies may have observed 

comparatively few interactions to date because field studies are relatively less able to do so. For example 

comparing a four-cornered ANOVA data model involving two independent variables with typical field study 

bivariate distributions, they argued that the typical field study data distributions are only 6% to 10% as efficient 

at detecting interactions as the four-cornered ANOVA data model. 

As a result in order to detect a population interaction, they suggested using field studies that were 

designed to oversample the extremes of the scales. Based on their results, a stratified sample that produces an 

approximately uniform frequency distribution for the two independent variables increases the efficiency of the 

interaction detection by a factor of between 2.5 and 4. 

Intercorrelation 

Interactions are usually highly correlated with their components (Blalock, 1979). This collinearity 

produces inflated standard errors for the linear variables (e.g., X and Z in equation 2) (Jaccard, Turrisi & Wan, 

1990; see Aiken & West, 1991 for a demonstration). As a result for scales that have an arbitrary zero point, 

mean centering9 is recommended to reduce this correlation (Aiken & West, 1991; Cronbach, 1987; Jaccard, 

Turrisi & Wan, 1990). This is accomplished by subtracting the mean of X, for example, from the value for X in 

each case. The result is a zero mean for X. Most rating scales used in the social sciences such as Likert scales 
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would have an arbitrary zero point. As an aside, the independent variables in the data sets used in the study 

were mean centered. 

Aiken and West (1991) showed that if X, Z and Y are multivariate normal with zero means, the 

covariance between XZ and Y is zero, and there is no interaction between XZ and Y. As a result, one view of 

an interaction is that it is the result of nonnormality in the data. This suggests that scale construction could 

influence nonnormality and the detection of interactions. Scales that produce data sets with distributions that 

are skewed, truncated (censored) (i.e., the frequency distributions are mound shaped with one end cut off), or 

have excess kurtosis (a peaked or flattened distribution) are nonnormal. As a result, using pretests it should be 

possible to design scale items that will alter the skewness, truncation or kurtosis in the resulting data and 

thereby increase the likelihood of detecting an interaction. 

In an investigation of spurious interactions Lubinski and Humphreys (1990) pointed out that 

interactions and quadratics are usually correlated. As the correlation between X and Z approaches 1, the 

correlation between XX (or ZZ) and XZ also approaches 1. This is seen most easily for an X and Z that are 

bivariate normal with zero means: 

rXX,XZ =     C(XX,XZ)    

(V(XX)V(XZ))1/2 

 

         =   2V(X)C(X,Z)   (see Kenny and Judd 1984) 

(2V(X)2V(XZ))1/2 

 

         =   21/2C(X,Z)  

  V(XZ)1/2 

 

         = rx,z          21/2       

         V(XZ) 1/2 (12 

      V(X)V(Z)1/2 

 

         = K rx,z , 

 

where ra,b is the correlation between a and b, V(a) is the variance of a, C(a,b) is the covariance of a and b, and 

K is a constant equal to the terms following rx,z in equation (12). As a result they argued, and we have seen, 

that a population quadratic can be mistaken for an interaction. The Monte Carlo results for saturated product-

term regression reported above support their argument that the quadratic combinations of the linear variables 

comprising an interaction should be entered before the interaction is entered and tested for significant 

incremental variance explained. 

Spurious interactions have not been shown to be induced by reliability/measurement error or correlated 

errors between the predictor and criterion variables (see Aiken & West, 1991). In addition, the use of 

standardized coefficients does not affect the observed significance of the interaction (Jaccard, Turrisi & Wan, 

1990). 

We now illustrate the use of the detection techniques and the effects of several of the data 

characteristics using a survey data set. 

 A Survey Example 

As part of a larger study of sales rep reactions to dissatisfaction with their organization (see Rusbult, 

Farrell, Rogers & Mainous, 1988), data were gathered concerning overall Satisfaction, Role Clarity, and 

Closeness of Supervision. Of interest were the relationships between Satisfaction and these antecedents (see 

Comer & Dubinsky, 1985), and the possibility that the reported variability in these associations may be due to 

an interaction between Role Clarity and Closeness of Supervision in their association with Satisfaction. 

Since this is an illustration of the use of the detection techniques and data characteristics, the study will 

simply be sketched. Satisfaction (SAT), Role Clarity (RC), and Closeness of Supervision (CS) were measured 

using multiple item 5 point rating scales. The 204 survey responses were used to create summed variables for 

SAT, RC, and CS that were then mean centered. To test for the presence of an interaction between RC and CS, 

saturated product-term regression, product-term regression, subgroup analysis, dummy variable regression, 
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ANOVA analysis, and the Chow test were used. Table 10 shows the zero-order correlations of the variables, 

and Table 11 shows the results of these analyses. 

The product-term regression techniques and subgroup analysis suggested the presence of an RC-CS 

interaction (see Table 11), while dummy variable regression, ANOVA, and the Chow test suggested the 

absence of this interaction. Based on the Monte Carlo results reported earlier, we are inclined to discard the 

Chow test results as unreliable. The remaining 3 positive and 2 negative tests plus the positive product-term 

regression results suggest that there is an interaction between Closeness of Supervision and Role Clarity. 

Several comments on these results seem warranted. The divergence of the results of the detection 

techniques underscores the desirability of using multiple techniques to detect interactions involving unobserved 

variables and regression. In addition, comparing the saturated product-term and the product-term regression 

results, the inclusion of a significant quadratic term in the model increased the size and the significance of the 

interaction coefficient. This suggests that improper specification of nonlinear effects (i.e., ignoring quadratics) 

may also attenuate the detection of a population interaction. 

We varied several of the conditions in this data set to observe the effects on the interaction coefficient. 

We reran the product-term regression analysis using uncentered data, less reliable indicators, fewer cases, and a 

more balanced data model. The results are shown in Table 12. For example, the product-term regressions were 

rerun using uncentered data for CS and RC.10 Comparing the product-term regression results using uncentered 

data with those in Table 11, the collinearity between the interaction and the linear variables severely attenuated 

the significance of the linear variables in the uncentered data, and the efficacy of mean centering is 

demonstrated. 

Table 12 also shows the results of reduced reliability in the independent and dependent variables on 

the detection of an interaction involving unobserved variables with product-term regression. To obtain these 

results a random amount of error was added to each indicator of SAT, RC and CS for each case, to produce 

reliabilities for these variables of .6. Comparing Tables 11 and 12, reducing the reliability of SAT, RC and CS 

from approximately .8 to .6 produced an interaction coefficient that was not significant. The significance of the 

coefficients for CS and RC, however, were relatively unaffected by this reliability reduction. This illustrates the 

multiplicative effect of the reliability of linear variables on an interaction comprised of these variables. CS and 

RC had reliabilities of .6 while RCxCS had a reliability of .38 (ρXZ= (r2
X,Z+ρXρZ)/(r2

X,Z+1), where ρa is the reliability 

of a and rX,Z is the correlation between X and Z (=.207); see Busemeyer and Jones 1983). 

To gauge the effect of a small sample, we drew a subsample of 50 cases from the data set. Comparing 

Tables 11 and 12, the small number of cases adversely affected the standard error of the interaction, and 

produced an interaction that was not significant. 

We also altered the weights on the cases to approximate the results of an experiment with a balanced 

number of cases in each cell. The result was a more-nearly balanced data model in which the distributions of 

CS and RC were adjusted to approximate bivariate uniform distributions. First the ranges of CS and RC were 

divided into five intervals or "cells," and the resulting 5x5 matrix of cells was used to increase the weights of 

the polar cells (i.e., cells (1,1) (1,5), (5,1) and (5,5)) . Next the cases in all the cells were initially weighted by 

1, and the size of the polar cell with the most cases was determined. Then the cases in the other three polar 

cells were weighted by the ratio of the largest polar cell size to their (smaller) cell size. The resulting heavier 

weights on the cases in the smaller polar cells approximated an oversampling of these polar cells, and produced 

a more nearly balanced data model.11 

The results of this polar weighting for the reduced reliability and small sample data sets are shown in 

Table 12. In both situations the effects of unreliability or sample size on the significance of the RCxCS 

interaction was reversed. The heavier weights on the polar cases increased the interaction coefficient and 

decreased its standard error. However, we tried this polar weighting approach on the small sample, adding 

reduced reliability, and the interaction was not significant. 

In summary these survey data results were generally consistent with the predicted results of the 

detection technique used, data reliability, mean centering, small data sets, and balanced data on the detection of 

an interaction involving unobserved variables and regression. In addition, the observed interaction was small, 

and its incremental R2 contribution (1.7%) was consistent with the incremental variance explained by 

interactions observed in previous studies (see Table 11). 

 Implications 
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In order to increase the likelihood of detecting a true interaction in a field study, the number of cases in 

the data set should be relatively large. Based on Jaccard, Turrisi and Wan's (1990) results and R2's typical of 

survey research, data sets of 100 or more may be appropriate. In addition, the reliability of the independent and 

dependent variables should be high. Based on Dunlap and Kemery's (1987) results and Table 9, reliabilities 

below .7 should be avoided.12 Further, the independent variables should be mean centered. Finally, the study 

should use a different method to measure the independent variables from that used to measure the dependent 

variable. Perhaps at a minimum, a different scale should be used for the independent variables from that used 

for the dependent variables. 

As the study results suggested, the techniques used to analyze the data are also important for detecting 

interactions. The field survey results, the greater-than-chance error rates implied by Table 8, and the frequency 

of misdetection of a population quadratic as an interaction suggest that the use of a combination of detection 

techniques may be appropriate for detecting true interactions and rejecting spurious interactions. The Monte 

Carlo results suggested that saturated product-term regression and product-term regression, and dummy 

variable regression, subgroup analysis, and ANOVA may perform best in this application. The field study 

results suggested that a combination of the two product-term techniques could be used, followed by a 

combination of dummy variable regression, a subgroup analysis, and ANOVA, particularly if the product-term 

regression tests provide inconsistent results. 

Based on McClelland and Judd's (1993) results, to more nearly approximate a balanced data model in a 

field study and thereby improve its ability to detect an interaction, polar responses could be oversampled. As 

they point out, this suggestion is controversial because it creates interpretational difficulties.13 In order to show 

the presence or absence or an interaction, an alternative to oversampling would be to report two studies: the 

field study, and an additional study involving an experiment using the survey instrument and a balanced data 

design.14 If the independent variables are measured with the survey instrument in this experiment, their 

distributions would have properties that more nearly approximated a four-cornered data model. This in turn 

would increase the efficiency of a product-term regression analysis using the experimental data, and 

presumably the efficiency of the other regression-based detection techniques investigated in this paper. 

Finally, while the Tables 5 and 7 detection probabilities were not unity, they were not unacceptably 

low. However, a study's detection frequency for interactions involving unobserved variables could be lower 

than those observed in this study if it combines a poor choice of detection technique, low reliability, fewer 

cases, omission of mean centering, and few polar responses. But with care, especially regarding the choice of 

detection technique, the use of multiple techniques, mean centering, reliability, and a more-nearly balanced 

data model, the detection frequency a researcher actually experiences in a study involving these variables could 

be higher than those observed in this study. 

 Summary 

The paper has addressed interactions involving unobserved variables. It began with the case for 

including interactions in theory tests, even when theory is silent on their existence, to avoid false negative and 

conditional positive interpretations of the theory test results. 

The paper commented on the efficacy of the available detection techniques for interactions involving 

unobserved variables. It then observed the actual performance of popular regression-based techniques in 

detecting interactions involving unobserved variables, with several interesting results. Of the five techniques 

studied, dummy variable regression, subgroup analysis, ANOVA analysis, and product-term regression 

mistook a weak population quadratic variable for an interaction at a level higher than chance, as Lubinski and 

Humphreys' (1990) results implied. However, saturated product-term regression, product-term regression, 

dummy variable regression, subgroup analysis, and ANOVA performed acceptably in detecting a true 

interaction and rejecting a spurious interaction. The Chow test performed the worst in this task. There was 

evidence that the Chow test is insensitive to small nonlinear effects. 

The paper discussed the characteristics of the data used to test a model, such as the existence of a 

quadratic in the population model, reliability, the number of cases, mean centering, and systematic error, 

nonnormality, and their effect on the detection of interactions involving unobserved variables. Several of these 

effects were illustrated in an analysis of a survey data set. 

In order to improve the likelihood of detecting a true interaction involving unobserved variables and 

field survey data, the paper suggested that a combination of detection techniques should be used, beginning 
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with saturated product-term regression. It also suggested reporting regression results from an experiment with 

balanced data, along with the field survey results. In addition, the independent variables should be mean 

centered, the study should use a different method to measure the independent variables from that used to 

measure the dependent variable, the reliability of the independent and dependent variables should be high, and 

the number of cases to be analyzed should be relatively large. 
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Table 1--Population Parameters 

                                                 

   Population   

  Vari-  Coeffi-   

Parametera ance    cient   

 X  2.15    

 Z   1.60    

 Corr(X,Z)  0.20 

 ex1 0.36    

 ex2 0.81    

 ez1 0.49    

 ez2 0.64    

 eY  0.64    

_____________ 
a Y = .5 -.15X + .35Z + .15XZ + eY , 

  X = (x1 + x2)/2 , 

  x1 = .9*X + ex1 , 

  x2 = .6*X + ex2 , 

  Z = (z1 + z2)/2 , 

  z1 = .8*Z + ez1 , 

  z2 = .7*Z + ez2 , and 

  XZ = X*Z . 
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Table 2--Detection Results 

                                                     

                      Frequency               

           Interaction  Interaction  Quadratic 

             in the     Not in the     in the 

           Population   Population   Population 

           Equation,    Equation,     Equation, 

             and No       and an       and an 

           Interaction  Interaction  Interaction 

Technique   Detected     Detected     Detected   

 

ANOVA 

 Analysis      50           5            10 

 

Product- 

 Term 

 Regression    19           3            22 

 

Dummy 

 Variable 

 Regression    31           3            19 

 

Subgroup 

 Analysis      25           8            30 

 

Chow Test      97          70             0 
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Table 3--No Interaction Term Population Parameters 

                                                  

     Population   

   Vari-  Coeffi-   

Parametera ance   cient   

 X  2.15    

 Z   1.60    

 Corr(X,Z)  0.20 

 ex1 0.36    

 ex2 0.81    

 ez1 0.49    

 ez2 0.64    

 eY  0.16    

_____________ 
a  Y = .5 + .35X + .35Z + eY , 

  X = x1 + x2 , 

  x1 = .9*X + ex1 , 

  x2 = .6*X + ex2 , 

  Z = z1 + z2 , 

  z1 = .8*Z + ez1 , and 

  z2 = .7*Z + ez2 . 
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Table 4--Quadratic Term Population Parameters 

                                               

     Population   

   Vari-  Coeffi-   

Parametera ance   cient   

 X  2.15    

 Z   1.60    

 Corr(X,Z)  0.20 

 ex1 0.36    

 ex2 0.81    

 ez1 0.49    

 ez2 0.64    

 eY  0.64    

_____________ 
a Y = .5 -.15X + .35Z + .15ZZ + eY , 

  X = (x1 + x2)/2 , 

  x1 = .9*X + ex1 , 

  x2 = .6*X + ex2 , 

  Z = (z1 + z2)/2 , 

  z1 = .8*Z + ez1 , 

  z2 = .7*Z + ez2 , and 

  ZZ = Z*Z . 
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Table 5--Conditional Probabilities 

                                            

Technique     P(Inter-  P(No In- 

   and         action   teraction 

  Test          |Test     |Test 

 Result        Result)   Result) 

ANOVA 

 Analysis: 

 Significant     .77 

 

 Non-Signif.               .79 

 

Product- 

 Term 

 Regression 

 Significant     .76 

 

 Non-Signif.               .90 

 

Dummy 

 Variable 

 Regression: 

 Significant     .76 

 

 Non-Signif.               .85 

 

Subgroup 

 Analysis: 

 Significant     .66 

 

 Non-Signif.               .87 

 

Chow Test: 

 Significant     .04 

 

 Non-Signif.               .57 
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Table 6--Results for Saturated Regression Estimation 

                                                     

                      Frequency               

           Interaction  Interaction  Quadratic 

             in the     Not in the     in the 

           Population   Population   Population 

           Equation,    Equation,     Equation, 

             and No       and an       and an 

           Interaction  Interaction  Interaction 

Technique   Detected     Detected     Detected   

 

Saturated 

 Product- 

 Term 

 Regression    25            0           10 
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Table 7--Conditional Probabilities for Saturated Model Estimation 

                                                   

              P(Inter-  P(No In- 

               action   teraction 

  Test          |Test     |Test 

 Result        Result)   Result) 

 

Saturated 

 Product- 

 Term 

 Regression 

 Significant     .88 

 

 Non Signif.               .88 
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Table 8--Percent Correct Detections 

                                            

Technique     % Correcta 

ANOVA 

 Analysis   78 

 

Product- 

 Term 

 Regression  85 

 

Dummy 

 Variable 

 Regression  82 

 

Subgroup 

 Analysis  79 

 

Chow Test   44 

 

Saturated 

 Product- 

 Term 

 Regression  80 

 

 

 
a (300 - Table 2/6 Column 1 - Table 2/6 Column 2 - Table 2/6 Column 3)/300 
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Table 9a--Interaction Reliabilitiesb for Selected Constituent Variablesc 

Reliabilities and Intercorrelations 

                                                            

 

    Reliability 

 X: 0.9    0.8   0.7  0.6 

 Z: 0.9 0.8 0.7 0.6 0.8 0.7 0.6 0.7 0.6 0.6 

rX,Z            

0  0.81 0.72 0.63 0.54 0.64 0.56 0.48 0.49 0.42 0.36 

0.1  0.81 0.72 0.63 0.54 0.64 0.56 0.49 0.50 0.43 0.37 

0.15  0.81 0.73 0.64 0.55 0.65 0.57 0.49 0.50 0.43 0.37 

0.2  0.82 0.73 0.64 0.56 0.65 0.58 0.50 0.51 0.44 0.38 

0.25  0.82 0.74 0.65 0.57 0.66 0.59 0.51 0.52 0.45 0.40 

0.3  0.83 0.74 0.66 0.58 0.67 0.60 0.52 0.53 0.47 0.41 

0.35  0.83 0.75 0.67 0.59 0.68 0.61 0.54 0.55 0.48 0.43 

0.4  0.84 0.76 0.68 0.60 0.69 0.62 0.55 0.56 0.50 0.45 

0.45  0.84 0.77 0.69 0.62 0.70 0.63 0.57 0.58 0.52 0.47 

0.5  0.85 0.78 0.70 0.63 0.71 0.65 0.58 0.59 0.54 0.49 

0.55  0.85 0.79 0.72 0.65 0.72 0.66 0.60 0.61 0.55 0.51 

0.6  0.86 0.79 0.73 0.66 0.74 0.68 0.62 0.63 0.57 0.53 

0.65  0.87 0.80 0.74 0.68 0.75 0.69 0.63 0.64 0.59 0.55 

0.7  0.87 0.81 0.75 0.69 0.76 0.70 0.65 0.66 0.61 0.57 

0.75  0.88 0.82 0.76 0.71 0.77 0.72 0.67 0.67 0.63 0.59 

0.8  0.88 0.83 0.77 0.72 0.78 0.73 0.68 0.69 0.65 0.61 

0.85  0.89 0.84 0.79 0.73 0.79 0.74 0.70 0.70 0.66 0.63 

 

 
a The shading depicts combinations of X and Z reliabilities that produce XZ reliabilities of .6 

or above for the typical range of correlations observed in field studies (0 to .5). 
b  XZ = (rX,Z2 +  X  Z)/(rX,Z2 + 1), where rX,Z is the correlation between X and Z, and  a is the 

reliability of a. 
c X and Z are bivariate normal and have zero means. 
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Table 10--Zero Order Correlations for Field Survey Variables 

                                                             

         CS       RC       CS2      RC2      RCxCS     SAT 

 

CS     1.0000    .2078*  -.2942** -.0855   -.0623    .4004** 

RC      .2078*  1.0000   -.0529   -.4009** -.1224    .3379** 

CS2     -.2942** -.0529   1.0000    .1238    .1883*  -.0998 

RC2     -.0855   -.4009**  .1238   1.0000    .3481** -.2052* 

RCxCS  -.0623   -.1224    .1883*   .3481** 1.0000    .0761 

SAT     .4004**  .3379** -.0998   -.2052*   .0761   1.0000    

 
*  p< .01 

** p< .001 
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Table 11--Detection Techniques Results for Field Survey Dataa 

                                                             

                                               

Dependent   Predictor   Coefficient             p-value 

Variable    Variable      b  p-value    R2    of difference 

 

 Saturated Product-Term Regressionb 

 SAT          CS         .267 .000 

              RC         .112 .001      .228 

              CS2         .000 .995 

              RC2        -.058 .046 

              RC x CS    .143 .009c      .261      .004c 

 

 Product-Term Regressionb 

 SAT          CS         .266 .000 

              RC         .138 .000      .228 

              RC x CS    .107 .038c      .245      .039c 

 

 Subgroup Analysisb 

  Higher CS: 

   SAT        CS         .389 .005 

              RC         .175 .005 

  Lower CS: 

   SAT        CS         .344 .001 

              RC         .091 .046                .000c 

 

 Dummy Variable Regressiond 

 SAT          CS         .332 .001 

              RC         .130 .000 

              D x CS     .076 .659e 

              D         1.851 .521 

 

 ANOVAb                    df  SS    MS    F    p-value 

 SAT          CS           1  2.02  2.02 12.79  .000 

              RC           1  1.92  1.92 12.13  .001 

              RC x CS      1   .14   .14   .91  .339e 

              Residual   191 30.25   .15  9.62  .000 

 

 Chow Testb 

 SSE Full Data Set= 26.878 

 SSE Lower CS=      12.181 

 SSE Higher CS=     14.143 

 Q~ F3,189= 1.325 (p-value= .267)e 

 

                              
a Cases= 204, centered CS and RC, and unreduced reliabilities: SAT= 79, CS= .81, RC= .83. 
b SAT= b0+b1RC+b2CS+b3RCxCS. 
c Suggests the existence of an interaction in the population equation. 
d SAT= b0+D+DxRC+RC+CS (D= 0 if CS   the median of the values for CS, D= 1 otherwise). 
e Suggests the absence of an interaction in the population equation. 
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Table 12--Various Conditions Results 

                                                            

                                               

Dependent   Predictor   Coefficient             p-value 

Variable    Variable      b  p-value    R2    of difference 

 

 Uncentered, Unreduced Reliability, Unweighted, Cases= 204 

 SAT          CS        -.273 .563 

              RC         .054 .815 

              CS2         .000 .995 

              RC2        -.058 .046     .234 

              RC x CS    .143 .009b     .261       .035b  

 

 SAT          CS        -.137 .487 

              RC        -.235 .189     .228 

              RC x CS    .107 .038b     .245       .035b  

 

 Centered, Reduced Reliabilitya, Unweighted, Cases= 204 

 SAT          CS         .198 .000 

              RC         .101 .006 

              CS2        -.004 .936 

              RC2        -.029 .318     .148 

              RC x CS    .071 .141c     .158       .124c  

 

 Centered, Reduced Reliabilitya, Polar Weighted, Cases= 204 

 SAT          CS         .351 .000 

              RC         .198 .000 

              CS2         .060 .713 

              RC2         .099 .065     .506 

              RC x CS    .116 .000b     .643       .000b  

 

 Centered, Unreduced Reliability, Unweighted, Cases= 50 

 SAT          CS         .282 .016 

              RC         .162 .011 

              CS2        -.087 .586 

              RC2        -.052 .437     .275        

              RC x CS    .114 .357c     .289       .340c  

 

 Centered, Unreduced Reliability, Polar Weighted, Cases= 50 

 SAT          CS         .388 .000 

              RC         .204 .000 

              CS2        -.100 .389 

              RC2         .029 .698     .527        

              RC x CS    .225 .003b     .615       .005b  

 

                              
a Reliabilities: SAT= .60, CS= .60, RC= .60. 
b Suggests the existence of an interaction in the population equation. 
c Suggests the absence of an interaction in the population equation. 
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 Footnotes 

 
1. While Maximum Likelihood (ML) and Generalized Least Squares (GLS) estimators are not formally 

appropriate for nonnormal variables (because ML and most implementations of GLS assume multivariate 

normality), their coefficient estimates appear to be robust against departures from normality (Anderson & 

Amemiya, 1985, 1986; Bollen, 1989; Boomsma, 1983; Browne, 1987; Harlow, 1985; Sharma, Durvasula & 

Dillon, 1989; Tanaka, 1984). However, their model fit and significance statistics are believed to be biased by 

nonnormal variables. Since the product indicators in nonlinear structural equation analysis are nonnormal 

(products of normally or nonnormally distributed variables are nonnormal), ML and GLS estimators are 

believed to be inappropriate for significance and model fit statistics in nonlinear structural equation analysis 

(Bollen, 1989; Kenny & Judd, 1984). The evidence to date (Jaccard & Wan, 1995; Kenny & Judd, 1984; Ping, 

1995b,c) suggests that in nonlinear structural equation analysis these statistics from ML and possibly GLS 

estimators are robust to the addition of a few product indicators, involving linear indicators that are normal. 

However, the robustness of fit and significance statistics from these estimators to the addition of many product 

indicators (i.e. over four) or product indicators comprised of nonnormal linear indicators (typical of survey 

data) is unknown. While estimators that are less dependent on distributional assumptions hold some promise in 

this application, their empirical properties for smaller samples are generally unknown (see Hu, Bentler & Kano, 

1992 for a summary). 

2. There are also correlational approaches to detecting an interaction. These approaches include a subgrouping 

approach, and a case weighted regression approach (see Hedges & Olkin, 1985). Because these techniques are 

rarely seen, and the interested reader is directed to Jaccard, Turrisi and Wan (1990). 

3. Ping (1995b) has proposed the use of a single indicator for XZ, x:z = (x1 + x2)(z1 + z2). 

4. Software such as LINCS (distributed by APTEC Systems), RAMONA (distributed by Professor Michael W. 

Browne at The Ohio State University), and MECOSA (distributed by SLI-AG, Frauenfeld Switzerland) could 

also be utilized. 

5. LISREL 8 is available for microcomputers only, and according to individuals at SSI and SPSS when this 

paper was written (May, 1995), there were no plans to release a mainframe version of LISREL 8 in the near 

future. As a result mainframe LISREL 7 is likely to remain in use. 

6. The sample size requirement of subgroup analysis using structural equation analysis limits its utility. 

Samples of 200 cases per group are usually recommended (Boomsma, 1983) (see Gerbing & Anderson, 1985 

for an alternative view). 

7. The Chow test can also be used with equation (5) and dummy variable regression. This test was not reported 

because the results of subgroup analysis and the Chow test are representative of the use of the Chow test with 

dummy variable regression. 

8.  Lubinski and Humphreys (1990) pointed out that as the correlation between X and Z approaches 1, the 

correlation between XX (or ZZ) and XZ also approaches 1. We therefore expected the .2 correlation between X 

and Z to increase the incidence of misdetecting a population quadratic as an interaction to a level above that of 

chance. 

9. While it is a standard assumption in Structural Equation Modeling (see for example Bollen 1989), mean or 

zero centering has been the source of much confusion in regression analysis. The interested reader is directed 

to Aiken and West (1991) for an exhaustive and compelling demonstration of the efficacy of mean centering. 

10. Mean centering is optional for the dependent variable, and SAT was uncentered for the Table 11 results 

(see Aiken and West 1991).  
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11. This strategy was generally representative of the results of the many variations on this theme. For example, 

the cases in the nonpolar cells could also have been weighted at some minimum level such as .1. This would 

have produced a four-cornered data model. Alternatively, the diagonal cells could have been weighted using a 

ratio of the largest polar cell size and their cell size, and the off-diagonal cells could have been minimally 

weighted. This would have produced an X data model. 

12. As the Churchill and Peter (1984) results suggest, scale reliability can be improved by increasing the 

number of points in the scale. Churchill (1979) and Gerbing and Anderson (1988) proposed systematic 

approaches to improving scale reliability. In addition Anderson and Gerbing (1982) and Jöreskog (1993) 

proposed procedures to improve the unidimensionality of scales, which is related to their reliability. Finally see 

Netemeyer, Johnson and Burton (1990) for an example of their efforts to reduce measurement error in the 

unmeasured variables Role Conflict and Role Ambiguity using Average Variance Extracted (Fornell & Larker, 

1981). 

13. In addition we have experimented with this approach, and it appears to increase the likelihood of mistaking 

a quadratic in the population equation for an interaction. 

14. Rusbult, Farrell, Rogers and Mainous (1988) reported multiple studies of employee reactions to 

dissatisfaction that included a Scenario Analysis. In this experiment students were instructed to read written 

scenarios in which they were to imagine they were the subjects of the experiment. The results of this research 

design and the other reported designs with considerably more internal and external validity were generally 

similar. Although no interactions were reported, the similarity of its results with those from other designs 

suggests that an experiment using Scenario Analysis might be appropriate as a easily executed second study. 
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 ABSTRACT 

 

Using several examples, the paper proposes an easily implemented procedure for interpreting interactions 

and quadratics in unobserved or latent variables. The suggested procedure also sheds considerable light on 

these variables, and, overall, the paper is intended to help bridge what may be a gap in survey researchers' 

understanding of the nature of associations in survey data. 

 

 

Interactions, e.g. XZ in 

1)  Y = b0 + b1X + b2Z + b3XZ + b4XX + b5ZZ + ζY , 

and quadratics (e.g., XX and ZZ in Equation 1) are likely to occur in experiments (McClelland and Judd 

1993). Perhaps as a result, commercially available statistical packages (e.g., SAS, SPSS, etc.) estimate all 

possible ANOVA interactions by default, and experimental researchers routinely estimate all possible 

quadratics in ANOVA, to help them interpret significant main effects (e.g., b1 and b2 in Equation 1). 

Interactions and quadratics are less likely to occur in survey data (see McClelland and Judd 1993, 

Podsakoff, et al 1984). Nevertheless, they may be more likely than their lack of investigation in survey research 

suggests (Busemeyer and Jones 1983; Birnbaum 1973, 1974)  (however, in Marketing see Baumgartner and 

Bagozzi 1995; Lusch and Brown 1996; Osterhuis 1997; Ping 1994, 1999; Singh 1998).1 

Authors have warned of the risks involved in ignoring interactions and quadratics in surveys (Blalock 

1965; Cohen 1968; Cohen and Cohen 1975, 1983; Friedrich 1982; Kenny 1985; Howard 1989; Jaccard, 

Turrisi and Wan 1990; Aiken and West 1991): failure to consider interactions and quadratics is likely to lead to 

erroneous interpretations of the study's results.2 

Yet estimating interactions and quadratics in survey data is rare for several reasons. Estimating these 

variables with regression is comparatively straightforward (see Aiken and West 1991). However, when 

variables are measured with error, regression coefficients (e.g., b1, b2, b3, and b4 in Equation 1) are biased (i.e., 

as more studies are done, the average of b1, for example, across these studies does not converge to the 



population value for b1), and inefficient (i.e., b1 varies widely across studies) (Bohrnstedt and Carter 1971; 

Busemeyer and Jones 1983; Cochran 1968; Fuller 1987; Gleser, Carroll and Gallo 1987). 

When variables are measured with error, unbiased and comparatively consistent structural equation 

estimation techniques for interactions and quadratics in are available (e.g., Bollen 1995; Hayduk 1987; Jaccard 

and Wan 1995; Jöreskog and Sörbom 1996; Kenny and Judd 1984; Ping, 1995, 1996b; Wong and Long 1987). 

However, these approaches are difficult to use (Aiken and West 1991-- see for example Jöreskog and Yang 

1996). Further, despite numerous explanations of interactions and their interpretation (e.g., Aiken and West 

1991; Darlington 1990; Denters and Van Puijenbroek 1989; Friedrich 1982; Hayduk 1987; Hayduk and 

Wonnacott 1980; Jaccard, Turissi and Wan 1990; Stolzenberg 1980), they may not be well understood by 

survey researchers (see for example Bedeian and Mossholder 1994; Denters and Van Puijenbroek 1989; 

Friedrich 1982; Lubinski and Humphreys 1990, Maxwell and Delaney 1993). 

This paper aims to shed additional light on interactions and quadratics in survey data. It describes 

interactions and quadratics in this venue, and provides a straightforward approach to interpreting them that 

further illuminates their nature. We begin with a brief description of interactions and quadratics in survey data. 

 INTERACTIONS AND QUADRATICS IN SURVEY DATA 

When there is no interaction between the variables X and Z in their association with the variable Y, their 

joint relationship with Y can be visualized as forming a plane in 3 dimensional space, the edges of which are 

the regression line of Y on Z (line 1 in Figure 1A), and the regression line of Y on X (line 2 in Figure 1A). The 

slope of regression line 1, for example, gives the strength, direction and significance of the association between 

Z and Y. For any values of X (e.g., xa and xb in Figure 1A) the regression lines of Y on Z at xa and xb (e.g., 

lines 1' and 1") are identical to line 1: they do not change orientation (i.e., they have the same slope). For all 

values of X the slope of the corresponding Z-Y regression line, or the association between Z and Y, at each of 

these x's is independent of the choice of x. Similarly, for all values of Z the slope of the corresponding X-Y 

regression line is independent of Z, and thus the association of X and Y is independent of Z. 

When there is an interaction between X and Z, their joint relationship with Y can be visualized as a warped 

plane (see Figure 1B). In this case each value of x (e.g., xc and xd in Figure 1B) produces a different regression 

line of Y on Z (e.g., lines 3 and 4): each of these lines has a different orientation or slope. The equation for the 



slope of each of these lines, or the association between Z and Y, is the factored coefficient of Z in Equation 1 

(e.g., the slope of line 3, or the association of Z and Y at xc, is the number b2 + b3xc ; the association of Z and Y 

at xd illustrated by line 4 is the number b2 + b3xd ; etc.). In this case, for each value of X the slope of the 

regression line, or the association between Z and Y, is different (i.e., the slope of regression line 3 is different 

from regression line 4, etc.), and thus the association between Z and Y (the slope) depends on the level of X. 

Notice that in Equation 1 the factored coefficient of X is b1 + b3Z, and if the regression lines of Y on X 

were drawn in Figure 1 for different values of Z, each of them would also have a different orientation. Thus an 

XZ interaction produces a plane that is warped in both the Z-Y direction and the X-Y direction, and an XZ 

interaction affects the relationship or association between Z and Y, and the relationship between X and Y. In 

different words, a significant XZ changes the Z-Y and the X-Y associations from constants to variables (e.g., b2 

+ b3X and b1 + b3Z in Equation 1). 

These comments apply regardless of how large the coefficient of the interaction XZ (b3) is, and they have a 

perhaps surprising implication. There is always some amount of interaction between X and Z in Equation 1 

with survey data, except in the unlikely event that the survey data is multivariate normal. Thus for proper 

interpretation of a study's results, the issue is how large is this interaction? If it is small (e.g., b3 is not 

significant), it can safely be ignored because the Y relationships with X and Z, though they are nearly always 

variable in the sample, are not sufficiently variable to warrant special attention. However, if b3 is not small, the 

almost always variable Y relationships with X and Z are sufficiently variable to warrant special attention. 

Quadratics are visualized using tangent lines to a sufrace. When there is no quadratic in X (i.e., b4 in 

Equation 1 is non significant), the joint relationship of X and Z with Y can be visualized as forming a plane as 

it did when there was no interaction. However, when there is a significant quadratic in X, the joint association 

plane is deformed into a trough (see Figure 1C). The shape of the trough is independent of Z (i.e., it is the same 

for all values of Z), but each different value of X produces a different tangent line to the trough (e.g., the 

tangent lines 3 and 4 for xe and xf, respectively, have different slopes), the slope of which is the association 

between X and Y. Stated differently, the association of X with Y at xc is different from the association of X 

with Y at xd because the tangent lines for each of these points have different slopes. The equation for the slope 

of each of these tangent lines (i.e., line 3 and 4) is the factored coefficient of X from Equation 1 (i.e., b1 + b4xe 



or b1 + b4xf ). Thus the size and direction of the slope, or the association between X and Y, in a small 

neighborhood of x (e.g., xc) depends on the level of X (e.g, xc): when X is low (e.g., xc) the X-Y association 

(the slope if line 3) is negative, but when X is higher the X-Y association (the slope of line 4) is nearly zero. 

Warps and troughs are not the only possible shapes of the Y-X-Z response surface. Other possibilities 

include shapes corresponding to third order terms (e.g., interactions between Z and XX or ZZ, cubics in Z such 

as ZZZ, etc.), fourth order terms (e.g., interactions between ZZ and XZ), and more. However, the strength of 

these higher order terms (i.e., their structural coefficients or their b's) depends directly on their reliability, 

which is a function of the product of powers of the reliabilities of the first order variables that make up these 

higher order terms (e.g., X and Z for ZXZ). Because reduced reliability in higher order variables reduces their 

structural coefficient strength in survey data (see Aiken and West 1991), higher order terms above second 

order are likely to have small structural coefficients (i.e., b's), and thus they are likely to have minimal effects 

on the primary associations in a study (e.g., b1 and b4). 

For emphasis, Equation 1 is the correct specification of a model with the three variables X, Z and Y. 

Similarly, a model with four variables (e.g., X, Z, W, and a dependent variable Y) is correctly specified by 

including all possible interactions and quadratics among X, Z and W (i.e., XZ, XW, ZW, XX, ZZ, and WW). 

The fact that this is done automatically in ANOVA for interactions, or easily accomplished by the analyst using 

contrasts for quadratics, but it requires many additional software instructions in regression or structural 

equation analysis, may help explain why interactions and quadratics are seldom investigated in survey data. 

However, we suspect that even if the effort required to specify all possible interactions and quadratics in 

ANOVA were the same as that required in structural equation analysis, few experimental researchers would 

simply assume that interactions and quadratics are unimportant, and not bother to investigate them, as survey 

researchers appear to do. 

 INTERPRETING INTERACTIONS AND QUADRATICS 

 There have been several proposals for interpreting regression interactions in survey data (e.g., Aiken and 

West 1991; Darlington 1990; Denters and Van Puijenbroek 1989; Friedrich 1982; Hayduk 1987; Hayduk and 

Wonnacott 1980; Jaccard, Turissi and Wan 1990; Stolzenberg 1980). Some of these interaction approaches 

involve evaluating the coefficient of the interaction itself (e.g., b3 in Equation 1), while others involve data 



plots similar to those employed in ANOVA. Others compare coefficients from median splits of the data, or 

they evaluate the factored coefficients (e.g., b2 + b3X from Equation 1). However, there is little guidance for 

interpreting quadratics in survey data, and there is no guidance for interpreting latent variable interactions and 

quadratics. To help fill this gap, we will adapt an approach patterned after Friedrich's (1982) suggestions for 

interpreting interactions in regression (see also Darlington 1990, Jaccard, Turrisi and Wan 1990) because the 

result may be useful and it sheds additional light on the nature of interactions and quadratics. 

To illustrate the proposed approach we will use examples that are based on disguised, but nevertheless real, 

data from actual surveys. The abbreviated results of the LISREL 8 (ML) estimation of a model similar to 

Equation 1 is shown in Figure 2A. In these results the XZ interaction is large enough to warrant interpretation 

(i.e., it is significant). The proposed interpretation approach for interactions relies on tables such as Table 1 and 

factored coefficients such as the factored coefficient of Z, bZ + bXZX in Figure 2A. Column 2 in Table 1, for 

example, shows the factored coefficient of Z from Figure 2A (.047 - .297X) at several Column 1 levels of X in 

the study that produced the Figure 2A results. Column 3 shows the standard errors of these factored 

coefficients of Z at the various levels of X, and Column 4 shows the resulting t-values. Footnotes a) through d) 

further explain the Columns 1-4 entries, and Footnote a) provides a verbal summary of the moderated Z-Y 

association produced by the significant XZ interaction in Figure 2A. 

Because there are always two factored coefficients produced by an interaction, and the XZ interaction was 

large enough to warrant the Table 1 attention, Columns 5-8 are shown to interpret the factored coefficient of X, 

-.849 - .297Z. Column 6 shows this factored coefficient at several Column 5 levels of Z. Column 7 shows the 

standard errors of this factored coefficient at the various levels of Z, and Column 4 shows the resulting t-

values. Again additional information regarding Columns 5-8 is provided in Footnotes e) through i), and 

Footnote e) provides a verbal summary of the moderated X-Y association produced by the significant XZ 

interaction in Figure 2A. 

To provide an example of the interpretation of a quadratic, the abbreviated results of the LISREL 8 (ML) 

estimation of another model similar to Equation 1 is shown in Figure 2B. The interpretation of the significant 

VV quadratic shown there uses Table 2 and the factored coefficient of V, .348 - .159V. Column 2 of Table 2 

shows the factored coefficient of V at several Column 1 levels of V in the study that produced the Figure 2B 



results. Column 3 shows the standard errors of the factored coefficient of V at the various levels of V, and 

Column 4 shows the t-values. Again, the Footnotes further explain the column entries, and Footnote a) in Table 

2 provides a verbal description of the effect of V on the V-Y association. 

The suggested interpretation procedure is: 

a) Request that the structural equation output include the variances and the covariances of the 

structural coefficients (e.g., Var(bZ)'s and Cov(bZ,bXZ)) required to compute factored coefficient 

standard errors (see Footnotes d and h). 

b) Create table(s) similar to Table 1 for a significant interaction, or Table 2 for a significant quadratic, 

using a spreadsheet. For emphasis, use mean centered X (Z) values in Column 2 (Column 6). Use 

the standard errors of the factored coefficients for an interaction that are shown in Footnotes d) 

and h) of Table 1, and the standard error of the factored coefficient for a quadratic that is shown in 

Footnote d) of Table 2. For the minimum, maximum, and average values shown in Column 1 (and 

5) use those of the observed indicator whose loading was fixed at 1 (e.g., in Column 1 use the 

minimum, maximum, and average values of the indicator x with a structural model loading of 1, 

since this is the indicator that establishes the metric for X).3 

c) Use Footnotes a) and e) as a guide to develop a verbal description(s) of the moderated 

association(s). These verbal description(s) should then be used in the discussion of the study 

results and their implications. 

 DISCUSSION 

Several comments about Tables 1 and 2 may be of interest. As Columns 2 and 4 of Table 2 suggest, 

quadratics can behave like interactions. A factored coefficient for a quadratic can be negative at the high end of 

the range of the moderating variable (where it may or may not be significant), and it could be positive at the 

other end (where it may or may not be significant). 

There are other possibilities as well. With different combinations of coefficients, interactions and 

quadratics could start out positive then become negative, or they could be consistently positive or consistently 

negative and simply become larger or smaller across the range of values of the moderating variable. 

Notice that in Figure 1A bZ was nonsignificant (t = 0.59), yet the factored coefficient of Z was significant 



at both ends of the range of X in the study (see Column 4 of Table 1). Z had a negative association with Y 

when X was high or above its study average for the sample, but its association with Y was positive when X 

was lower or below its study average. Similarly, bX was significant in Figure 1A (t= -5.32), yet the coefficient 

of X moderated by Z was non significant when Z was very low (see Column 8 of Table 1). X was positively 

associated with Y for almost all levels of Z, except when Z was very low, where it was not associated with Y. 

If standardized factored coefficients are desired (e.g., to compare the strength of the moderated coefficients 

to those of other variables, for example), they can be computed by multiplying the Column 2 factored 

coefficients in Table 1, for example, by the ratio of the variances of Z and Y (i.e., Column 2 

value*Var(Z)/Var(Y), where Var is the dissattenuated variance available in the structural equation output). 

As Aiken and West (1991) point out, the Column 2 (and 6) factored coefficient value at the average of the 

moderating variable is approximately the coefficient (and significance) of Z, for example, if XZ were omitted 

from Equation 1. Stated differently, if XZ were not specified in the Figure 2A equation, the observed Z-Y 

association would bZ'  .04. Similarly, if XZ were not specified in the Figure 2A equation the X-Y association 

would be bX'  -.84, and if VV were not specified in the Figure 2B equation bV' would be approximately 

.34. Notice that because mean centered data was used, the Column 2 value (and significance) of the factored 

coefficient for Z, for example, at the mean value of the moderating variable X was equal to the bZ value in 

Figure 2A (i.e., bZ + bXZX at X = 0, the mean of X, is bZ + bXZ0 = .047 = bZ).4  

This has several implications. Omitting a significant interaction or quadratic will not change the size, 

direction or significance of first order variables (e.g., X and Z in Equation 1), as long as mean centered 

variables are used. Omitting them simply reduces what we know about significant and nonsignificant first 

order variables and therefore clouds what we can say about them. For example in Figure 1A, bX would still 

have been significant if XZ were omitted; thus any hypothesis involving X and Y would have been supported, 

and many would be tempted, for example, to recommend increasing X to decrease Y. However, this would be a 

poor recommendation because X actually had no effect on Y when Z was low (see Column 8 of Table 1). 

Similarly if XZ were omitted from Figure 2A, any hypothesis involving Z-Y would have been 

disconfirmed, but we would not have known that the Z-Y hypothesis could have just as easily been confirmed 



if the study average of X were lower (or higher) (see Column 2 of Table 1) . Stated differently, a significant XZ 

interaction, for example, can mask or suppress the Z-Y association. Based on our experience, when interactions 

and quadratics are omitted in the analysis of survey data, an hypothesized association, such as bZ for example, 

that turns up nonsignificant is frequently a signal that there is a significant XZ interaction or a significant XX 

or ZZ quadratic that is masking the hypothesized association (i.e., making it nonsignificant). 

The invariance of bx or bz, for example, in Figure 2A to the presence or absence of significant interactions 

and quadratics also suggests that a significant interaction or quadratic adds to the explained variance of Y in 

Equation 1. In different words, omitting significant interactions and quadratics understates the impact of the 

first order variables X and Z in Equation 1, for example, on Y. 

In addition, omitting a significant interaction or quadratic distorts any comparison of main effects (e.g., the 

comparison of βX and βZ, the standardized versions of bx or bz). For example, if the variances of X and Z were 

approximately equal (and thus Var(X)/Var(Y)  Var(Z)/Var(Y)), X does not actually explain more variance in 

Y than the nonsignificant Z in Figure 2A. When X was low, X and Z explained about the same amount of 

variance in Y (see the bottom of Column 2 in Table 1). 

For emphasis, mean or zero centered variables (i.e., deviation scores, where the mean of a variable is 

subtracted from each case value for that variable) were used in Tables 1 and 2. Mean centering is required for 

all variables, including Y, in order to use structural equation analysis with the available interaction and 

quadratic detection techniques (see Kenny and Judd 1984). However, there has been much confusion over the 

use of deviation scores and interactions in the regression literature. Nevertheless, as Aiken and West (1991) 

showed, when factored  coefficients are used, mean centering has no effect on interpretation (i.e., the factored 

coefficients are scale invariant: the factored coefficients, their standard errors, and thus their t-values are 

identical with or without mean centering). 

Explaining a quadratic usually requires some thought and care in wording. At first, it seems confusing to 

speak of the variable V, for example, as moderating itself. But when VV is significant, this is exactly what is 

implied: the variable V's association with Y depends on the existing level of V. For study respondents with a 

lower level of V in Table 2, increases in the variable V are associated with increased Y (see Column 2 of Table 



2). For study respondents with a high level of V, changes in V are not associated with changes in Y. 

Explaining both sides of an interaction can also be challenging. For example, a weakening and eventually 

non significant X-Y association (e.g., Columns 6 and 8 of Table 1) could be theoretically (or practically) 

plausible, but a positive then negative Z-Y association (e.g., Columns 2 and 4 of Table 1) could challenge 

existing theory. Associations that are significantly positive and significantly negative in one study can be 

difficult to explain, and it is natural to want to dismiss the result as faulty analysis. However, an implausible Z-

Y association in Column 2 of Table 1, for example, can always be verified by restricting the model to cases 

where X (actually the indicator x whose loading was set to 1) is above 4.05 and below 3, and one may be left 

with a result that creates more questions than it answers. 

The Columns 3 and 7 standard errors must be manually computed. While the output of variances and 

covariances of the structural coefficients (i.e., b's) required in Footnotes d) and h) can be requested, LISREL 

produces correlations instead. Nevertheless, the variance of a structural coefficient b is the square of its 

standard error, and standard errors are always available. In addition, the covariance of bX and bZ, for example, 

is rX,Z*SEbx*SEbz), where rX,Z is the correlation of bX and bZ produced by LISREL. 

It is also possible to calculate the point(s) at which the factored coefficients become significant (see Aiken 

and West 1991). For t = 2, the Column 1 (or 5) values (xc) at which the factored coefficient t-value equals 2 are 

                                                               ________________________________________ 
                            -[2ab - 8Cov(a,b)]  [2ab - 8Cov(a,b)]2 - 4[a - 4Var(a)][b2 - 4Var(b)] 
                            -------------------------------------------------------------------------------------, 
                                                                   2[b2 - 4Var(b)] 
 

where a and b are the coefficients in the factored coefficient a + bX (e.g., b2 + b3X, b1 + b4X, etc.); Var denotes 

the variance of a structural coefficient (i.e., the square of its standard error); and Cov denotes covariance. For 

emphasis a or b could be negative. 

While it is possible to have significant pairs of second order variables that share a common first order 

variable (e.g., XZ and ZZ, XZ and XX, etc.), such occurrences appear to be rare with survey data in the social 

sciences (second order variables with no common first order variable, such as XZ and VV, are more likely). 

However, for completeness, the factored coefficient of Z, for example, for significant XZ and ZZ is (b2 + b3X + 

b5Z), and the standard error of this factored coefficient is 

  ___________________________________________________________________________ 



 Var(bZ) + X2Var(bXZ) + 2XCov(bZ,bXZ) + 2XZCov(b3,b5) + Z2Var(b5) + 2ZCov(b2,b5) .  
 

The Table 1 is replaced by several interpretation tables, one for each level of X. The factored coefficient for X 

is similar, and it too has multiple interpretation tables. 
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Figure 1- Response Surfaces for Y as a function of X and Z 

 

 

  (Click here to view Figure 1) 

 

 

 

Figure 2- Equation 1 Structural Model Estimation Results 

 

A)  Y =  bXX  +  bZZ  +  bXZXZ  +  bXXXX  +  bZZZZ 

                    -.849     .047     -.297          .001         .004      (= b) 

                   (-5.32)  (0.59)   (-4.00)       (0.10)       (0.09)    (= t-value) 

 

B)  Y =  bVV + bWW + bVWVW + bVVVV + bWWWW 

                    .348    -.347     -.007          -.159         .010      (= b) 

                   (5.11)  (-2.34)   (-0.09)       (-3.45)      (0.29)    (= t-value) 
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Table 1- Unstandardized Y Associations with Z and X Implied by the Figure 2A Results 

 

                  Z-Y Association                                 X-Y Association   

                  Moderated by Xa                                Moderated by Ze             

                                 SE of     t-value                                 SE of     t-value 

                     Z            Z           of Z                        X           X         of X      

       X         Coef-     Coef-      Coef-          Z        Coef-     Coef-     Coef- 

     Levelb   ficientc   ficientd    ficient      Levelf   ficientg   ficienth   ficient 

        5 -0.23 0.09 -2.48           5 -1.31       0.25      -5.19  

     4.05i 0.04 0.08  0.59           4 -1.01       0.19      -5.33  

        4  0.06 0.08  0.77        3.44i -.84       0.16      -5.32  

        3  0.36 0.12  2.92           3 -.71       0.14      -5.15 

        2  0.65 0.18  3.52           2 -.42       0.11      -3.59 

     1.2 0.89 0.24  3.70           1       -.12       0.13       -.94  

 

      (1)          (2)          (3)          (4)           (5)          (6)         (7)         (8)      (Column Number) 

 

 

                                      
a The table displays the variable association of X and Z with Y produced by the significant XZ interaction. In 

Columns 1-4 when the existing level of X was low in Column 1, small changes in Z were positively 

associated with Y (see Column 2). At higher levels of X however, Z was less strongly associated with Y, 

until near the study average for X, the association was nonsignificant (see Column 4). When X was above its 

study average, Z was negatively associated with Y. 
b  The value of X ranged from 1.2 (= low X) to 5 in the study. 
c  The coefficient of Z is (.047-.297X)Z with X mean centered. E.g., when X = 1.2 the coefficient of Z is .047-

.297*(1.2 - 4.05) = .89. 
d  The Standard Error of the Z coefficient is: 
     ___________            _______________________________ 
    Var(bZ+bXZX)  =  Var(bZ) + X2Var(bXZ) + 2XCov(bZ,bXZ), 
   where Var and Cov denote variance and covariance, and b denotes unstandardized structural coefficients 

    from Figure 2A. 
e This portion of the table displays the association of X and Y moderated by Z. When Z was low in Column 5, 

the X association with Y was not significant (see Column 8). However, as Z increased, Xs association with 

Y quickly strengthened, until it was negatively associated with Y for most values of Z in the study. 
f  The value of Z ranged from 1 (= low Z) to 5 in the study.  
g  The unstandardized coefficient of X is (-.849-.297Z)X with Z mean centered. E.g., when Z = 1 the 
   coefficient of X is -.849-.297*(1-3.44) = -.12. 
h  The Standard Error of the X coefficient is: 
    ____________      ________________________________ 
    Var(bX+bXZZ)  =  Var(bX) + Z2Var(bXZ) + 2ZCov(bX,bXZ),  

   where Var and Cov denote variance and covariance, and b denotes unstandardized structural coefficient from 

Figure 2A. 
 
i  Mean value in the study. 



Table 2- Unstandardized V-Y Associations Implied by the Figure 2B Results 

 

      V-Y Association Moderated 

             by the Level of Va             

                           SE of        t-value 

               V            V            of V 

   V        Coef-      Coef-       Coef- 

 Levelb  ficient c  ficientd      ficient 

    5 -0.07       0.11          -0.64 

    4 0.08       0.07           1.11   

    3  0.24       0.06           3.96 

  2.36e 0.34       0.06           5.11 

    2 0.40       0.07           5.31 

    1         0.56       0.11           5.15 

 

(1)  (2)   (3)      (4)  (Column Number) 

 

 

                                      
a The table displays the variable association of V with Y produced by the significant quadratic VV. When the 

existing level of V was low in Column 1, small changes in V were positively associated with changes in Y 

(see Column 2). As the Column 1 level of V increased in the study, Vs association with Y weakened (i.e., 

became smaller in Column 2), and it was nonsignificant when the level of V was high (see Column 4).  
b The value of V ranged from 1 (= low V) to 5 in the study.  
c The factored coefficient of V is (.348-.159V)V with V mean centered. E.g., when V = 1 the coefficient of V 

is .348 -.159*(1-2.36) = .56. 
d The Standard Error of the V coefficient is: 
     ___________          _____________________________________ 
    Var(bV+bVV)  =  Var(bV)+V2*Var(bVV)+2*V*Cov(bV,bVV) ,  

where Var and Cov denote variance and covariance, and b denotes unstandardized structural coefficients 

from Figure 2B. 
e The mean of V in the study. 



ENDNOTES 

 

 

                                                 

1.Interactions and quadratics can be viewed as an artifact of data that is not multivariate normal, and 

continuous or ratio survey data, although typically nonnormal, is less so than data from experiments. 

However, because many surveys involve ordinal data (e.g., from Likert scales) that is per se nonnormal, 

interactions and quadratics should be more likely than their occurrence in published survey results suggest. 

2. In Equation 1 the factored coefficient of Z is (b2 + b3X). When the coefficient of XZ (b3) is significant, 

this factored coefficient of Z will be significant for some X values in the study, and this produces very 

different interpretations of the Z-Y association than does the coefficient of Z in Equation 1 without XZ 

(i.e., Y = b0' + b1'X + b2'Z ) (see Aiken and West 1991). If b2' is not significant, failing to include a 

significant XZ in Equation 1 produces a misleading interpretation of the Z-Y association. A nonsignificant 

b2' implies the Z-Y association is disconfirmed, but it is misleading to state that Z is not associated with Y 

in the study. This association simply depends on the level of X in the study, and this statement may be 

more important to some readers than the disconfirmation of the Z-Y association. 

     Alternatively, b2' could be significant while (b2 + b3X) could be nonsignificant for some (but not all) 

values of X. In this case, not including a significant XZ will produce a misleading confirmation of the Z-Y 

association. The significant Z-Y association is actually nonsignificant for some values of X in the study, 

and this information may also be more important to some readers than a confirmation of the Z-Y 

association 

     The algebra and implications of not including quadratics in Equation 1 are similar, except the equation 

for the coefficient of Z, for example, changes to (b2 + b5Z). 

3. If there are any indicators of X with loadings greater than one, the loadings of X should be respecified 

by fixing the loading of the indicator with largest loading to 1 and freeing the other indicators of X. 

4. This is not true with non mean centered data. With non mean centered data (which should not be used to 

detect interactions or quadratics with structural equation analysis), the Column 2 factored coefficient value 

at the average of the moderating variable X, for example, will not equal bZ in Figure 2A. 
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 ABSTRACT 

 

An alternative estimation technique is proposed for interaction and quadratic latent variables in structural 

equation models using LISREL, EQS, and AMOS. The technique specifies these variables with a single indicator. The 

loading and error terms for this single indicator can be specified as constants in the structural model. The technique is 

shown to perform adequately using synthetic data sets. 

 

 INTRODUCTION 

 

Opportunities for investigating interactions and quadratic variables are ubiquitous in Marketing theory (e.g., Walker, 

Churchill, and Ford 1977 and Weitz 1981 in the personal selling literature; Ajzen and Fishbein 1980, Engel, Blackwell 

and Kollat 1978, Howard 1977, and Howard and Sheth 1969 in the consumer behavior literature; Dwyer, Schurr and Oh 

1987 and Stern and Reve 1980 in the channel literature; and Sherif and Hovland 1961 in the advertising literature). 

Interactions and quadratics are often encountered by survey researchers in Marketing (Howard 1989) (see for example 

Batra and Ray 1986, Heide and John 1992, Kohli 1989, Laroche and Howard 1980, and Teas 1981). In addition, 

researchers have called for the investigation of interaction and quadratic variables in survey data to improve the interpre-

tation of study results (see the citations in Aiken and West 1991, and Jaccard, Turrisi and Wan 1990 involving the social 

sciences, and Howard's 1989 remarks in Marketing). They point out that failing to consider the existence of interactions 

and quadratic variables in survey data increases the risk of misleading research findings, as it does in ANOVA studies. 

However, researchers encounter major obstacles when they attempt to estimate interactions or quadratics in models 

involving latent variables. The popular estimation methods for these nonlinear latent variables have theoretical or 

practical limitations. For example, the most popular estimation technique, regression, is known to produce coefficient 

estimates that are biased and inefficient for variables measured with error such as latent variables (Busemeyer and Jones 

1983). Approaches that involve sample splitting to detect these variables are criticized for their reduction of statistical 

power, and the resultant likelihood of false disconfirmation (Cohen and Cohen 1983, Jaccard, Turrisi and Wan 1990). 

Structural equation analysis approaches are difficult to use (Aiken and West 1991), in part because, until recently, 

popular structural equation software packages (e.g., LISREL, EQS, etc.) were unable to properly specify interaction and 

quadratic latent variables. 

This article proposes an estimation technique for interaction and quadratic latent variables that avoids many of these 

obstacles. The technique involves structural equation analysis, and it specifies an interaction or quadratic latent variable 

with a single indicator. The loading and error term for this single indicator need not be estimated in the structural model: 

they can be specified as constants in that model. The efficacy of this technique is investigated by recovering known 

coefficients, detecting known significant effects, and gauging known model-to-data fits in synthetic data sets. 

 

 ESTIMATING INTERACTION AND QUADRATIC VARIABLES 

 

While there are many proposed approaches to detecting interactions and quadratics (see Jaccard, Turrisi and Wan 

1990 for a summary), there are three general categories of approaches to estimating these variables involving latent vari-

ables: regression analysis, subgroup analysis, and indicator-product structural equation analysis. 

To use regression analysis with unobserved or latent variables, a dependent variable is regressed on independent 

variables composed of summed indicators and products of these summed indicators (i.e, for the interactions or 

quadratics). Subgroup analysis involves dividing the study cases into subgroups of cases using, for example, the median 

of a suspected interaction or quadratic variable, estimating the model using each subgroup of cases and regression or 

structural equation analysis, and then testing for significant coefficient differences between the subgroups. To use 
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structural equation analysis, quadratic and interaction latent variables are specified in a structural equation model using 

products of indicators. Coefficients are estimated either directly using software such as LISREL 8 or CALIS (available in 

SAS), or indirectly using software such as EQS AMOS, or earlier versions of LISREL. 

Regression analysis, is generally recommended for continuous variables (Cohen and Cohen 1983, Jaccard, Turrisi 

and Wan 1990, Aiken and West 1991). However, for variables measured with error such as latent variables, regression is 

known to produce biased and inefficient coefficient estimates (Busemeyer and Jones 1983). While proposals to remedy 

this situation have been made (see Feucht 1989 for a summary), they are seldom seen in the social sciences, perhaps 

because they lack significance testing statistics (Bollen 1989). Authors have also commented on the loss of statistical 

power in regression as reliability declines (see Aiken and West 1991 for a summary). Finally, regression limits the re-

searcher to investigating one dependent variable at time. 

The second approach, subgroup analysis, is a preferred technique in some situations. Jaccard, Turrisi and Wan 

(1990) state that subgroup analysis may be appropriate on theoretical grounds: the model could be posited to be 

structurally different for different subject subgroups. They also point out that an interaction need not be of the form "X 

times Z" (the possibilities for the form of an interaction are infinite, Jaccard, Turrisi and Wan 1990), and that three group 

analysis may be more appropriate in these cases. Sharma, Durand and Gur-Arie (1981) recommend subgroup analysis to 

detect what they term a homologizer: a variable W, for example that affects the strength of the independent-dependent 

variable association, yet is not related to either of these variables. 

However, the subgroup analysis approach of splitting the sample is criticized for its reduction of statistical power, 

and the resultant likelihood of false disconfirmation (Cohen and Cohen 1983, Jaccard, Turrisi and Wan 1990). This 

approach also reveals neither the magnitude nor the actual form of any significant interaction or quadratic. 

The third approach, uses products of indicators to specify interaction and quadratic variables in a structural equation 

model (Kenny and Judd 1984). For example, in the Figure 1 model that involves the latent variables X, Z and Y, the 

latent variables XZ and XX have been added by specifying their indicators to be all possible unique products of the X 

and Z indicators. This product-indicator structural equation model is then analyzed using the full set of cases, and 

significant XZ or XX coefficients suggest the presence of an interaction or quadratic, respectively, and their form and 

magnitude. 

However, this approach has theoretical and practical limitations. For example it is inappropriate when the form of the 

interaction is other than the product of independent variables (e.g., the interaction could be of the form X/Z, Jaccard, 

Turrisi and Wan 1990). In addition, it is complicated by the nonlinear form of the loadings and error terms of the product 

indicator (e.g., λx1z1 and εx1z1 in Figure 1). These nonlinear loadings and error terms cannot be specified in a 

straightforward manner in most structural equation analysis software (e.g., EQS, AMOS, etc.) (Hayduk 1987). For 

structural equation modeling software that provides straightforward specification of nonlinear loadings and error terms 

(e.g., LISREL 8), however, the mechanisms provided to accomplish are tedious to use. In addition, straightforward 

specification produces many additional variables that can produce problems with convergence and unacceptable solutions 

in larger models. Further, adding these nonlinear indicators (e.g., more than about 6) can produce model-to-data fit 

problems. Finally, significance tests and model fit statistics produced by popular estimators such as maximum likelihood 

are believed to be inappropriate for models involving interactions and quadratics (Bollen 1989, see Hu, Bentler and Kano 

1992). 

Fortunately these matters are beginning to be addressed for product-indicator structural equation analysis (see Bollen 

1989 for a summary). Because product-indicator analysis avoids the limitations of regression and subgroup analysis, the 

balance of the article will discuss product-indicator analysis. 

 

 PRODUCT-INDICATOR ANALYSIS TECHNIQUES 

 

There are two published implementations of product-indicator analysis (when this article was published).1 The first 

was proposed by Kenny and Judd (1984), and the next was suggested by Hayduk (1987). 

 

THE KENNY AND JUDD APPROACH 

 

Kenny and Judd (1984) proposed that products of indicators would specify nonlinear latent variables. For example, 

in the Figure 1 model that involves the latent variables X, Z and Y, the latent variables XX and XZ have been added by 

specifying their indicators to be all possible unique products of the X and Z indicators. In addition, they showed that 

under certain conditions, the variance of a product of indicators is determined by the variance of their linear constituents. 
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They showed for latent variables X and Z, the variance of the indicator x1z1 is given by 

Var(x1z1) = Var[(λx1X + εx1)(λz1Z + εz1)] 

1)    = λx1
2λz1

2Var(XZ) + λx1
2Var(X)θεz1 + λz1

2Var(Z)θεx1 + θεx1θεz1 . 

when X and Z are independent of the error terms εx1 and εz1, the error terms are themselves mutually independent, the 

indicators (x1 and z1) have zero expected values, and X and Z along with εx1 and εz1 are normally distributed.  

Then they specified latent variables such as XZ with indicators such as x1z1 by constraining the loading and the error 

term for x1z1 (λx1z1 and θεx1z1) to be the following nonlinear combinations of linear-terms-only model parameters 

2)   λx1z1 = λx1λz1 , 

and 

3)   θεx1z1 = λx1
2Var(X)θεz1 + λz1

2Var(Z)θεx1 + θεx1θεz1 . 

They specified these directly using the structural equation package COSAN (now available in SAS as a subprocedure 

in the procedure CALIS), that accepts nonlinear constraints such as the terms on the right-hand sides of equations (2) and 

(3). 

 

THE HAYDUK APPROACH 

 

Hayduk demonstrated that the product indicators that Kenny and Judd proposed could be specified indirectly by 

adding additional "convenience" variables to the Figure 1 model. For example, inserting a convenient latent variable η1 

on the path between XZ and x1z1 in Figure 1 will specify the first term of equation (1) when the loading of this variable 

(λXZ,η1) is set equal to λx1, its loading on x1z1 (λη1,x1z1) is set equal to λz1, and its variance is fixed at 1 (using the rules of 

path analysis: the variance of x1z1 is now the product of λXZ,η1
2 (= λx1

2), λη1,x1z1
2 (= λz1

2), and the variance of XZ). By 

creating additional paths to x1z1 using more such η's with parameters fixed at the equation (1) values, the remaining three 

terms in equation (1) can be specified (see Hayduk 1987 Chapter 7). 

For a latent variable with many indicators, or for models with several interactions or quadratics, however, these 

approaches can become impractical: the volume of indicator product variables created using all pairwise products, and 

the number of "equation 2's and 3's" to be coded can create difficulties for the researcher, the computer estimation 

process, and model-to-data fit. This suggests the need for an approach that does not require the use of numerous 

additional variables or numerous equation (2) and (3) specifications. 

The balance of this article describes an estimation approach that involves a single indicator per latent variable. 

 

 A PARSIMONIOUS ESTIMATION TECHNIQUE 

 

In the regression literature Cohen and Cohen (1983) suggested the use of the product of summed indicators to 

estimate an interaction or quadratic variable. They proposed that, for example, the observed variables x = x1 + x2  and z = 

z1 + z2, when multiplied together as (x1 + x2)(z1 + z2), would specify an XZ interaction. Similarly this article proposes that 

a single indicator, for example x:z = (x1 + x2)(z1 + z2), could be used to specify the latent variable interaction XZ. In 

particular, the Figure 1 model could be respecified as the Figure 2 model in which the single indicators x:x (= [x1 +  

x2][x1 + x2]) and x:z (= [x1 + x2][z1 + z2]) are used in place of the product indicators shown in the Figure 1 model. 

The loadings and errors for the indicators x:z and x:x in Figure 2 are given by 

4)    λx:z = (λx1 + λx2)(λz1 + λz2) 

5)     θεx:z = (λx1+λx2)2Var(X)(θεz1+θεz2) + (λz1+λz2)2Var(Z)(θεx1+θεx2) + (θεx1+θεx2)(θεz1+θεz2), 

6)    λx:x =  (λx1 + λx2)2, 

and 

7)   θεx:x = 4(λx1+λx2)2Var(X)(θεx1+θεx2) + 2(θεx1+θεx2)2 

(see Appendix A for details). 

With these formulas for λx:z, θεx:z, λx:x, and θεx:x, CALIS, or LISREL 8 could be used to estimate the Figure 2 model 

directly. However, since estimates of the parameters on the right-hand side of equations (4) through (7) are available in 

the measurement model for Figure 2, we could further simplify matters by using measurement model parameter estimates. 

Anderson and Gerbing (1988) recommended the use of a measurement model to separate measurement issues from 

model structure issues. Many researchers view a latent variable model as the synthesis of two models: the measurement 

model that specifies the relationships between the latent variables and the observed variables, and the structural model 

that specifies the relationships among latent variables (Anderson and Gerbing 1988, Bentler 1989, Bollen 1989, Jöreskog 

and Sörbom 1989). Anderson and Gerbing (1988) proposed specifying these two models separately, beginning with the 
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measurement model, and using the measurement model to ensure the unidimensionality of the latent variables. They 

argued that this avoids interpretational confounding (Burt, 1976), the interaction of the measurement and structural 

models, and the possibility of marked differences in the estimates of the parameters associated with the observed vari-

ables (i.e., λ's, θε's, and latent variable variances) between the measurement and structural models.  

Anderson and Gerbing (1988) added that with "acceptable unidimensionality" the measurement model parameter 

estimates should change trivially, if at all, when the measurement submodel and alternative structural submodels are 

simultaneously estimated (p. 418). As a result, I propose that as an alternative to specifying the interaction and quadratic 

parameters (e.g., λx:z, θεx:z, λx:x, and θεx:x in Figure 2) as variables, they can be specified as constants in the structural 

model when X and Z are each acceptably unidimensional. Specifically, parameter estimates from a linear-terms-only 

measurement model (e.g., involving X and Z only) can be used to compute the values of λx:z, θεx:z, λx:x, and θεx:x in equa-

tions (4) through (7), and these computed values can be specified as fixed loadings and errors for x:z and x:x in the 

Figure 2 structural model. The unidimensionality of X and Z in Figure 2 enables the omission of the nonlinear latent 

variables from the linear-terms-only measurement model: because X and Z are each unidimensional, their indicators are 

unaffected by the presence or absence of other latent variables in a measurement or structural model, in particular XX or 

XZ. Stated differently, this provides trivially dissimilar measurement parameter estimates between measurement and 

structural models, and enables the use of the equation (4) through (7) estimates as fixed values in the structural model. 

To gauge the efficacy of this proposed approach with its two options for estimating equations (4) through (7) either as 

variables or as constants, known coefficients were recovered in synthetic data sets. 

 

 SYNTHETIC DATA SETS 

 

Synthetic data sets were generated using known population parameters, and the proposed approach was used to 

estimate the population structural coefficients. Using a normal random number generator and the procedure described in 

Appendix B, data sets composed of 100 replications of samples of 100, 200 or 300 cases were created.2 

We will describe the baseline simulation first: a data set containing 100 replications of a sample involving 200 cases. 

Each replication was generated using the Table 1 population characteristics for x1, x2, z1, z2, t1, t2 and y in the Figure 3 

model. 

This model was estimated using the proposed technique on each replication by (i) estimating the measurement model 

parameters,3 (ii) calculating the equations (4) through (7) values for the loadings and error variances of x:z and x:x (i.e., 

λx:z, θεx:z, λx:x, and θεx:x) using the measurement model parameter estimates,4 and (iii) estimating the Figure 3 structural 

model with fixed equation (4) through (7) values for λx:z, θεx:z, λx:x, and θεx:x as follows. 

For each replication, the linear-terms-only measurement model associated with the Figure 3 model was estimated using 

maximum likelihood (ML) and LISREL 8. This produced estimates of the λ's, θε's, and latent variable variances required 

in equations (4) through (7). Then the structural model for Figure 3 was specified by fixing the values for the single 

indicator loadings (λx:z and λx:x) and error variances ( θεx:z and θεx:x) to the appropriate equation (4) through (7) calculated 

values. The results of the subsequent structural model estimations of the Figure 3 β's using LISREL 8 and ML 5 are 

shown in Table 2 and titled "2 Step." 

We also generated several additional estimates. These included LISREL 8 ML estimates of Figure 3 produced by 

specifying the equation (4) through (7) single indicator loadings (λx:z and λx:x) and error variances ( θεx:z and θεx:x) using 

LISREL 8's constraint equations (i.e., the proposed approach with free instead of fixed single indicator loadings and error 

variances) (these estimates are titled "LISREL 8" in Table 2). In addition, Kenny and Judd estimates were produced using 

a product indicator version of Figure 3 with XX and XZ specified as they are in Figure 1, LISREL 8 with ML estimation, 

and constraint equation specifications for the loadings and errors of the indicator products (i.e., x1z1, x1z2, x2z1, z2z2, x1x1, 

x1x2, and x2x2). Finally, regression estimates were produced using ordinary least squares. 

To gauge the effects of varying the simulation conditions, eight more data sets were generated. These variations in the 

simulation conditions reflected four indicators per linear latent variable, two levels of sample size (100 and 300), two 

levels of linear latent variable reliability (ρ=.6 and .9), and two levels of nonlinear coefficient size. Following the two 

step procedure described above using Figure 3, four indicators per linear latent variable, and the population parameters 

shown in Table 3; and 100 replications, ML estimates, and EQS instead of LISREL 8, the results shown in Table 4 were 

obtained. 

In order to assess significance and model fit in these eight data sets, Tables 5 and 6 summarize the observed incidence 

of nonsignificant coefficients (i.e., coefficients with t-values less than 2) and lack of fit (i.e., a Comparative Fit Index 

(Bentler 1990) less than .9) produced by ML estimates, and two convenient less distributionally dependent estimators, the 
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Robust estimator (Bentler and Dijkstra 1985), and the asymptotic distribution free (ADF) estimator (Browne 1982). 

These results, along with those shown in Tables 2 and 4, will be discussed next. 

 

 RESULTS 

 

Based on the estimation results, the detection of significant effects, and model-to-data fit the proposed approach 

performed adequately. For example, the proposed approach with fixed or free single indicator loadings and error 

variances produced average coefficient values (E(β)'s in Table 2) that were within a few points of the population values. 

It also had a bias or distance from the population value of these averages equivalent to the Kenny and Judd estimates,6 

and less than the regression estimates, except for T.7 

The mean squared differences between the estimated coefficient and the population value (MSE in Table 2) for the 

proposed approach were equivalent overall to those from the Kenny and Judd approach, but larger than they were for 

regression for the linear variables.8 For the nonlinear variables, the situation was reversed with respect to regression, and 

overall, the techniques all produced approximately the same average variation around the population value. 

The variance of the coefficient estimates for the proposed approach was equivalent to the Kenny and Judd approach -

(see Table 2). In comparison, the variances for the proposed approach were larger than those for regression and the linear 

variables (see Footnote 6), but smaller than regression for the nonlinear variables. Overall, the variances for the proposed 

approach were smaller than those for regression. 

The eight additional simulation results shown in Table 4 paralleled the baseline simulation results shown in Table 2: 

the coefficient estimate averages were within a few points of the population values, the biases were small and they 

appeared to be random, and the variations of estimates around the population and average values were consistent with the 

baseline simulation. The low-reliability-100-case samples (SβLρ100 and LβLρ100) produced the worst effectiveness 

measures, while the high-reliability-300-case samples (SβHρ300 and LβHρ300) produced the best. For the low-

reliability-100-case samples, however, the effectiveness measures did not appear to be unacceptable. For example, the 

distance of the coefficient averages from the population value (Bias) ranged from 2.29 to 8.67%. In addition, the mean 

squared differences between the estimated coefficient and the population value variations (MSE), and the variance of the 

coefficient estimates (Var(β)), ranged between .05 and .07 . 

Turning to the detection of significant effects, the proposed approach performed acceptably (see Table 5). However, 

the incidence of false negative significance tests was sensitive to reliability, sample size, and population coefficient size. 

In general, smaller population coefficients in the 100 case samples with low (.6) reliabilities produced false negative 

significance tests at a level well above that of chance (10%). As coefficient and sample size increased and reliability 

improved, however, the incidence of false negatives declined to chance levels. The relative effects of increasing 

reliability and larger samples were slightly different: selectively raising reliability decreased the incidence of false 

negatives more than selectively increasing sample size. In particular, at low reliability the larger sample size reduced the 

incidence of false negatives to near chance levels. But at the smaller sample size, increased reliability reduced the 

incidence of false negatives to zero. Overall, these results were consistent with previous studies (see Aiken and West 

1991 for a summary), which suggest that increased sample size, reliability and population coefficient size increase the 

likelihood of detecting a nonlinear effect. 

The incidence of false negatives was generally the same using ML, ML-Robust, and ADF estimators (see Table 5). 

This result was unexpected because it is believed that standard errors associated with ML estimates are not robust to 

departures from normality (see for example Bentler 1989, Bollen 1989, and Jöreskog and Sörbom 1989). Since the 

simulations involved the specification of two nonlinear indicators in a model involving more than a dozen indicators that 

were generated to be normally distributed, it is possible that the proposed approach's addition of relatively few nonlinear 

indicators retains some robustness with ML estimation. 

The proposed approach also performed satisfactorily in assessing model fit. Table 6 shows the incidence of replications 

in which the population model did not fit the data using the Comparative Fit Index (Bentler 1990) resulting from ML, 

ML-Robust, and ADF estimators. While there is little agreement on indices of model fit (see Bollen and Long 1993), the 

Comparative Fit Index is commonly reported in Marketing studies, it is available in EQS, LISREL 8, and CALIS, and it 

ranges in value between 0 and 1 (values above .9 suggest adequate fit (Bollen 1990)). Since each replication was 

generated using the model being fitted, lack of fit (a Comparative Fit Index value less than .9) should have occurred at a 

chance level (in 10% or fewer replications). For reference purposes, model fit is also shown for a structural model 

involving only the linear terms. Replications involving this linear-terms-only model were generated in an identical 

manner as the Figure 3 replications, except that XX and XZ were not generated, and Y did not depend on XX or XZ in 
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the population. Since these linear-terms-only replications were multivariate normal, their model fit results serve as a 

baseline "best case" to which to compare the Figure 3 model fit results. The results suggest that the proposed approach 

failed to fit the population model with generally the same incidence as the linear-terms-only replications. This result was 

also unexpected because it is believed that the χ2 statistic (upon which the Comparative Fit Index is based) associated 

with ML estimates is not robust to departures from normality (see Bentler 1989, Bollen 1989, and Jöreskog and Sörbom 

1989), and as a result, the incidence of lack of fit for the ML estimates should be different between the linear-terms-only 

replications and the proposed approach. Again, since the Figure 3 model produced by the proposed approach involved 

comparatively few non normal indicators, it is possible that the proposed approach's addition of relatively few nonlinear 

indicators to an otherwise normal model retains some robustness when ML estimates are used. 

There were, however, differences between the ML, ML-Robust and ADF estimator results for model fit (see Table 6). 

The ML estimator rejected the Figure 3 population model at a chance rate. The ADF estimates, on the other hand, 

rejected the Figure 3 population model at rates that were considerably above chance in all the simulation conditions. For 

the low reliability, small sample condition, the Robust estimator rejected the model at rates that were slightly above 

chance. These results are generally consistent with those reported in Hu, Bentler and Kano (1992), where the ML and 

ML-Robust estimators performed about the same, and ADF estimates appeared to be sensitive to smaller sample sizes 

(i.e., less than 1000). 

 

 DISCUSSION 

 

The assumption of normality for the linear indicators made in the proposed and the Kenny and Judd approaches -

enabled the simplification of the variance calculations in these approaches, and this assumption cannot be relaxed for 

either approach. Consequently, the assessment of linear indicator normality is an important step in the use of these 

approaches. A reviewer suggested using the skewness and kurtosis tests in discussed in Bollen (1989, p. 418) to assess 

linear indicator normality. These tests are available in PRELIS (available with LISREL) and EQS, and involve 

determining the degree of skewness and kurtosis in the linear indicators singly and jointly (see Jöreskog and Sörbom 

1993 p. 23, Bentler 1989 p. 227). To correct for linear indicator nonnormality, Bollen (1989) suggests transformation of 

the data (p. 425) (see Neter, Wasserman and Kunter 1988 for alternatives to the loge transformation), and Bentler (1989) 

discusses the deletion of cases that contribute to nonnormality (p. 228). Bollen (1995) suggested using 2 stage least 

squares estimation, which does not assume multivariate normality. 

However, the assumption of independent error terms for the indicators could be relaxed. The derivations in Appendix 

A would be changed by the addition of Cov(εxi,εzj) and Cov(εxk,εxm) terms, and the resulting covariance parameters 

could be estimated in a measurement model specifying correlated error terms. 

In addition, the assumption of unidimensionality in the latent variables could be relaxed.9 For constructs that are not 

sufficiently unidimensional to produce measurement parameter estimates for the linear latent variables that are "trivially 

different" between the measurement and structural models (e.g., different in the third decimal place), an iterative 

approach could be used. In this approach, the nonlinear loadings and error variances are recomputed using the structural 

model estimates of the equation (4) through (7) parameters and equations (4) through (7), and the structural model is 

reestimated. One to three of these iterations involving recomputation of equation (4) through (7) values using the latest 

structural equation estimates of the equation (4) through (7) parameters should be sufficient to produce exact effect 

estimates (i.e., equal to direct LISREL 8 estimates).  

The strongest limitation of the proposed approach is shared with the Kenny and Judd, and Hayduk approaches: 

nonlinear indicators are not normal (Kenny and Judd 1984, Bollen 1989). This renders popular estimators such as ML 

and generalized least squares formally inappropriate because these estimators assume indicator normality. However, ML 

(and generalized least squares) estimates appear to be robust against departures from normality by the indicators (see 

Footnote 5). The results of the present study support this: the simulations involved indicators that were formally not 

normal, yet both the proposed approach and the Kenny and Judd approach recovered the population coefficients (Kenny 

and Judd 1984 and Hayduk 1987 reported similar findings). 

The strongest limitation of the article is that a pedagogical example was not provided. The web site provides a 

pedagogical example in "Interactions and Quadratics in Latent Variable Associations: a Sourcebook for Advanced 

Survey Researchers," and an EXCEL spreadsheet for calculating single indicator values is available on the web site. 

For emphasis, the proposed technique could be utilized in two ways. The baseline simulations were estimated using the 

proposed product indicators and LISREL 8 with and without constraint equations. This suggests that equations (4) and 

(5), or (6) and (7) could be specified as constants in a structural model using the two step technique. Alternatively, using 
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the nonlinear constraint capabilities available in LISREL 8 and CALIS, these equations could be specified as variables in 

a structural model and estimated directly. Specifically, the loading of a product indicator in a latent variable model could 

be specified as a variable to be estimated, rather than  specified as fixed, using equations (4) or (6) and a nonlinear 

constraint equation. The error term could also be specified as a variable to be estimated in a similar manner using 

equation (5) or (7). In this way, the proposed technique could be used with or without the two step approach as a 

parsimonious specification alternative for interaction and quadratic latent variables in situations where researchers in 

Marketing desired fewer indicators and constraint equations than required by the Kenny and Judd technique. 
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 APPENDIX A- Var(x:z) and Var(x:x) Derivations 

 

The variance of X = x1 + x2 , where X is independent of εx1 and εx2, εx1 and εx2 are independent of each other, 

and X is multivariate normal with zero mean, is given by the following: 

Var(X) = Var(x1 + x2) = Var[(λx1X + εx1) + (λx2X + εx2)] 

             = Var((λx1 + λx2)X) + Var(εx1) + Var(εx2)  

             = Var(ΓXX) + θX = ΓX
2Var(X) + θX, 

where ΓX = λx1 + λx2, θX = Var(εx1) + Var(εx2). By induction, Var(X) = ΓX
2Var(X) + θX, where Var(X) is the variance of 

the latent variable X, ΓX = λx1 + λx2 +...+  λzm, θX = Var(εx1) + Var(εx2) +...+ Var(εxm), and m is the number of indicators 

of X. 

Since Var(X*X) = 2Var(X)2 and Var(X*Z) = Var(X)Var(Z) + Cov(X,Z)2 under the above assumptions (Kenny 

and Judd 1984), 

Var(x:x) = Var(X*X) = 2Var(X)2 = 2[ΓX
2Var(X) + θX]2 

= Γx
4Var(XX) + 4Γx

2Var(X)x θX + 2θX
2  

= λx:x
2Var(X2) + 2θεx:x , 

where λx:x = Γx
2 and θεx:x = 4Γx

2Var(X)x θX + θX
2 . 

Similarly for Z meeting the same assumptions as X, 

Var(x:z) =  Var(X)Var(Z) + Cov(X,Z)2 

= [ΓX
2Var(X)+θX][ΓZ

2Var(Z)+θZ] + [ΓXΓZCov(X,Z)]2 

= ΓX
2ΓZ

2[Var(X)Var(Z)+Cov(X,Z)2] + ΓX
2Var(X)θZ + ΓZ

2Var(Z)θX + θXθZ 

= ΓX
2ΓZ

2Var(XZ) + ΓX
2Var(X)θZ + ΓZ

2Var(Z)θX + θXθZ 

= λx:z
2Var(XZ) + θx:z , 

where λx:z = ΓXΓZ , and θx:z = ΓX
2Var(X)θZ + ΓZ

2Var(Z)θX + θXθZ . 
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 APPENDIX B- Synthetic Data Set Creation 

 

The data for equation (8) was generated as follows. Let M be an n X 1 vector of random normal variates with 

mean 0 and variance 1, where n is the number of cases. The n X 3 matrix P with columns that were the population values 

for the n X 1 vectors X, Z, and T were determined by P = M(1 1 1)C', where (1 1 1) is a 1 X 3 unit vector and C is a 

lower triangular matrix such that 

┌   VX   ┐ 

CC' = │ r(VZVX)    VZ   │ 

│ r(VTVX) r(VTVZ)  VT  │ 
└       ┘ 

where V* is the variance of *, and r is the correlation between X, Z and T. The n X 4 matrices of observed values x, z and 

t for the population vectors X, Z and T, respectively, (an n X 2 matrix was used in the baseline simulation) were given by 

x = (.6P(1 0 0) + N(0,θεx))(1 1 1 1) , z = (.6P(0 1 0) + N(0,θεz))(1 1 1 1) and t = (.6P(0 0 1) + N(0,θεt))(1 1 1 1), where (1 

0 0), (0 1 0), (0 0 1), and (1 1 1 1) are vectors of 1's, and the N(0,θε*)'s are n X 1 vectors of random normal variates with 

mean 0 and variance θε* ((1 1 1 1) was replaced by (1 1) in the baseline simulation). The values for the n X 1 vector for 

dependent variable Y was determined by 

Y = bXX + bZZ + bTT + bXXXX + bXZXZ + ζY , 

where the b*'s are the scalar effects of * on Y, and ζY is an n X 1 vector of random normal variates with mean 0 and 

variance equal to .16 . 
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 Table 1 

 BASELINE SIMULATION POPULATION CHARACTERISTICS  

 

       Population                 Population           

      Vari- Coeffi-              Vari- Coeffi-        

Parameter   ance   cient   Parameter    ance  cient   

 

X  2.15          ζY   0.16    

Z  1.60          λx1   1.00   

T  1.00          λx2   0.60   

Corr(X,Z)  0.60   λz1   1.00  

Corr(X,T)  0.60   λz2   0.60   

Corr(T,Z)  0.60   λt1   1.00  

εx1  0.36   λt2   0.60   

εx2  0.81   βY,X   -0.15   

εz1  0.49   βY,Z   0.35   

εz2  0.64   βY,T    0.25   

εt1  0.15   βY,XZ   0.70   

εt2  0.55   βY,XX   -0.50    
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 Table 2 

 BASELINE SIMULATION ESTIMATION SUMMARY 

 

          Estimation            Biasc     

 Variable Techniquea   E(β)b  Amount    %    MSEd   Var(β)e 
 

    X     Pop. Value -0.150 

          2 Step     -0.142  0.008   -5.3  0.016   0.02 

          LISREL 8   -0.140  0.010   -6.7  0.017   0.02 

          K&Judd     -0.145  0.005   -3.3  0.014   0.01 

          Regression -0.083  0.067  -44.7  0.010   0.01 

 

    Z     Pop. Value  0.350 

          2 Step      0.334 -0.016   -4.6  0.014   0.01 

          LISREL 8    0.339 -0.011   -3.1  0.015   0.01 

          K&Judd      0.338 -0.012   -3.4  0.015   0.01 

          Regression  0.301 -0.049  -14.0  0.009   0.01 

 

    T     Pop. Value  0.250 

          2 Step      0.241 -0.009   -3.6  0.019   0.02 

          LISREL 8    0.247 -0.003   -1.2  0.020   0.02 

          K&Judd      0.252  0.002    0.8  0.020   0.02 

          Regression  0.250  0.000    0.0  0.008   0.02 

 

    XZ    Pop. Value  0.700 

          2 Step      0.718  0.018    2.6  0.012   0.01 

          LISREL 8    0.715  0.015    2.1  0.011   0.01 

          K&Judd      0.709  0.009    1.3  0.013   0.01 

          Regression  0.540 -0.160  -22.9  0.026   0.00 

 

    XX    Pop. Value -0.500 

          2 Step     -0.513 -0.013    2.6  0.009   0.01 

          LISREL 8   -0.508 -0.008    1.6  0.009   0.01 

          K&Judd     -0.516 -0.016    3.2  0.008   0.01 

          Regression -0.370  0.130  -26.0  0.019   0.00 

 

  All     2 Step             0.013         0.014   0.01 

   Coeff. LISREL 8           0.010         0.014   0.01 

          K&Judd             0.010         0.014   0.01 

          Regression         0.099         0.014   0.01 

 

  Non-    2 Step             0.016         0.011   0.01 

   Lin.   LISREL             0.012         0.010   0.01 

   Coeff. K&Judd             0.013         0.011   0.01 

          Regression         0.146         0.023   0.00 

                             (RMS)f        (Avg)g  (Avg)g 

_______________________ 

 
a 2 Step = LISREL 8 estimates using the proposed two step approach. 

LISREL 8 = LISREL 8 estimates using the proposed single indicator 

specification and LISREL 8 constraint equations. K&Judd = LISREL 8 

estimates using a Kenny and Judd (1984) specification and constraint 

equations. 
b Average of coefficient estimates across all data sets. 
c E(β) minus the population value. 
d Mean Square Error =  (population value - estimated value)2/n . 
e Variance of β = (E(β) - estimated value)2/n . 
f RMS of column entries. 
g Average of column entries. 
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 Table 3 

 VARYING CONDITIONS SIMULATIONS POPULATION CHARACTERISTICS  

 

   Population   

   Vari- Coeffi-   

Parametera   ance   cient   

 

All Data Sets: 

X  2.15    

Z  1.60    

T  1.00 

Corr(X,Z)  0.60 

Corr(X,T)  0.60 

Corr(T,Z)  0.60 

ζY  0.16    

βY,X  -0.15   

βY,Z  0.35   

βY,T   0.25   

High Reliability Samples: 

λx1   1.00   

λx2-λx4  0.90   

λz1   1.00   

λz2-λz4  0.90    

λt1   1.00   

λt2-λt4  0.90    

εx1-εx4 0.82    

εz1-εz4 0.61    

εt1-εt4 0.38    

Low Reliability Samples: 

λx1   1.00   

λx2-λx4  0.60   

λz1   1.00   

λz2-λz4  0.60    

λt1   1.00   

λt2-λt4  0.60    

εx1-εx4 2.81    

εz1-εz4 2.09    

εt1-εt4 1.31    

Small Nonlinear Coefficients: 

βY,XZ  -0.25   

βY,XX  0.15    

Large Nonlinear Coefficients: 

βY,XZ  0.70   

βY,XX  -0.50    

_______________ 

 
a Y = βY,XX + βY,ZZ + βY,TT  + βY,XZXZ + βY,XXXX + ζY 

  xi = λxiX + εxi (i=1,4) 

  zj = λzjZ + εzj (j=1,4) 

  tk = λtkT + εtk (k=1,4) . 
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 Table 4 

 COEFFICIENT ESTIMATION SUMMARY FOR VARYING CONDITIONS SIMULATIONS 

 

                                 Coefficient Estimate              

Simulation  Variable/                 Biasc     

Conditiona  Coefficient   E(β)b  Amount     %      MSEd   Var(β)e 
 

SβLρ100 X -0.15 -0.160 -0.010   6.67% 0.057 0.05 

LβLρ100 X -0.15 -0.161 -0.011   7.33% 0.063 0.06 

SβLρ100 Z  0.35  0.330 -0.020  -5.71% 0.051 0.05 

LβLρ100 Z  0.35  0.335 -0.015  -4.29% 0.055 0.05 

SβLρ100 T  0.25  0.268  0.018   7.20% 0.061 0.06 

LβLρ100 T  0.25  0.235 -0.015  -6.00% 0.056 0.05 

LβLρ100 XZ  0.70  0.684 -0.016  -2.29% 0.054 0.05 

SβLρ100 XZ -0.25 -0.237  0.013  -5.20% 0.059 0.05 

LβLρ100 XX -0.50 -0.481  0.019  -3.80% 0.051 0.05 

SβLρ100 XX  0.15  0.134 -0.013  -8.67% 0.060 0.06 
 

SβHρ100 X -0.15 -0.148  0.002  -1.33% 0.003 0.00 

LβHρ100 X -0.15 -0.154 -0.004   2.67% 0.004 0.00 

SβHρ100 Z  0.35  0.349 -0.001  -0.29% 0.006 0.00 

LβHρ100 Z  0.35  0.353  0.003   0.86% 0.002 0.00 

SβHρ100 T  0.25  0.248 -0.002  -0.80% 0.003 0.00 

LβHρ100 T  0.25  0.252  0.002   0.80% 0.002 0.00 

LβHρ100 XZ  0.70  0.697 -0.003  -0.43% 0.005 0.00 

SβHρ100 XZ -0.25 -0.254 -0.004   1.60% 0.004 0.00 

LβHρ100 XX -0.50 -0.497  0.003  -0.60% 0.002 0.00 

SβHρ100 XX  0.15  0.152  0.002   1.33% 0.003 0.00 
 

SβLρ300 X -0.15 -0.145  0.005  -3.33% 0.013 0.01 

LβLρ300 X -0.15 -0.153 -0.003   2.00% 0.012 0.01 

SβLρ300 Z  0.35  0.360  0.010   2.86% 0.019 0.01 

LβLρ300 Z  0.35  0.343 -0.007  -2.00% 0.015 0.01 

SβLρ300 T  0.25  0.245 -0.005  -2.00% 0.009 0.00 

LβLρ300 T  0.25  0.246 -0.004  -1.60% 0.011 0.01 

LβLρ300 XZ  0.70  0.703  0.003   0.43% 0.012 0.01 

SβLρ300 XZ -0.25 -0.248  0.002  -0.80% 0.015 0.01 

LβLρ300 XX -0.50 -0.505 -0.005   1.00% 0.012 0.01 

SβLρ300 XX  0.15  0.148 -0.002  -1.33% 0.012 0.01 
 

SβHρ300 X -0.15 -0.149  0.001  -0.67% 0.002 0.00 

LβHρ300 X -0.15 -0.150  0.000   0.00% 0.001 0.00 

SβHρ300 Z  0.35  0.350  0.000   0.00% 0.001 0.00 

LβHρ300 Z  0.35  0.349 -0.001  -0.29% 0.001 0.00 

SβHρ300 T  0.25  0.249 -0.001  -0.40% 0.001 0.00 

LβHρ300 T  0.25  0.251  0.001   0.40% 0.002 0.00 

LβHρ300 XZ  0.70  0.700  0.000   0.00% 0.002 0.00 

SβHρ300 XZ -0.25 -0.249  0.001  -0.40% 0.001 0.00 

LβHρ300 XX -0.50 -0.500  0.000   0.00% 0.002 0.00 

SβHρ300 XX  0.15  0.149 -0.001  -0.67% 0.001 0.00 

_____________________ 

 
a SβLρ100 = Small nonlinear β's, Low reliability (ρ), 100 case sample, LβHρ300 = 

Large nonlinear β's, High reliability (ρ), 300 case sample, etc. 
b Average of coefficient estimates across all data sets. 
c E(β) minus the population value. 
d Mean Square Error =  (population value - estimated value)2/n . 
e Variance of β = (E(β) - estimated value)2/n . 
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 Table 5 

 STANDARD ERROR SUMMARY FOR VARYING CONDITIONS SIMULATIONS 

 

Simulation  Variable/   % False Negativesb  

Conditiona  Coefficient   ML  ML/ROBUST ADF 

 

SβLρ100 X -0.15 83% 74%  c 

LβLρ100 X -0.15 81% 73% 

SβLρ100 Z  0.35 70% 71% 

LβLρ100 Z  0.35 72% 72% 

SβLρ100 T  0.25 74% 77% 

LβLρ100 T  0.25 75% 79% 

LβLρ100 XZ  0.70 17% 16% 

SβLρ100 XZ -0.25 41% 31% 

LβLρ100 XX -0.50 26% 28% 

SβLρ100 XX  0.15 66% 59% 
 

SβHρ100 X -0.15 14% 12%  c 

LβHρ100 X -0.15 15% 13% 

SβHρ100 Z  0.35 11% 10% 

LβHρ100 Z  0.35 10% 10% 

SβHρ100 T  0.25 10% 10% 

LβHρ100 T  0.25 10% 11% 

LβHρ100 XZ  0.70 00% 00% 

SβHρ100 XZ -0.25 00% 00% 

LβHρ100 XX -0.50 00% 00% 

SβHρ100 XX  0.15 00% 00% 
 

SβLρ300 X -0.15 31% 29% 30% 

LβLρ300 X -0.15 32% 27% 29% 

SβLρ300 Z  0.35 28% 20% 23% 

LβLρ300 Z  0.35 26% 22% 22% 

SβLρ300 T  0.25 35% 33% 32% 

LβLρ300 T  0.25 36% 31% 30% 

LβLρ300 XZ  0.70 00% 00% 00% 

SβLρ300 XZ -0.25 27% 28% 25% 

LβLρ300 XX -0.50 00% 00% 00% 

SβLρ300 XX  0.15 31% 27% 26% 
 

SβHρ300 X -0.15 00% 00% 00% 

LβHρ300 X -0.15 00% 00% 00% 

SβHρ300 Z  0.35 00% 00% 00% 

LβHρ300 Z  0.35 00% 00% 00% 

SβHρ300 T  0.25 00% 00% 00% 

LβHρ300 T  0.25 00% 00% 00% 

LβHρ300 XZ  0.70 00% 00% 00% 

SβHρ300 XZ -0.25 00% 00% 00% 

LβHρ300 XX -0.50 00% 00% 00% 

SβHρ300 XX  0.15 00% 00% 00% 

______________________ 

 
a SβLρ100 = Small nonlinear β's, Low reliability (ρ), 100 case sample, 

LβHρ300 = Large nonlinear β's, High reliability (ρ), 300 case sample. 
b Percent NS coefficient estimates based on t2. 
c Not available in EQS when the sample size is less than the number of 

unique elements in the sample covariance matrix. 
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 Table 6 

 MODEL FIT SUMMARY FOR VARYING CONDITIONS SIMULATIONS 

 

             Percent Rejected Models Based on CFI Statisticb       

             Linear-terms-only Model          Figure 3 Model       

              CFI<.9        CFI<.95       CFI<.9       CFI<.95     

Simulation     ML/           ML/           ML/           ML/ 

Conditiona ML Robust ADF ML Robust ADF  ML Robust ADF ML Robust ADF 

 

SβLρ100 3 9 c 11 21 c 1 13 c 15 17 c 

SβHρ100 1 3 c 2 4 c 1 2 c 4 1 c 

SβLρ300 2 3 59 3 1 90 2 2 57 2 4 94 

SβHρ300 3 1 30 3 2 78 2 2 35 3 4 82 

 

LβLρ100 1 11 c 8 20 c 3 12 c 17 22 c 

LβHρ100 2 2 c 3 2 c 1 1 c 1 3 c 

LβLρ300 2 3 55 4 2 85 1 2 61 2 2 91 

LβHρ300 2 1 34 2 3 74 2 2 26 4 3 79 

 

__________________ 

 
a SβLρ100 = Small nonlinear β's, Low reliability (ρ), 100 case sample,  LβHρ300 = 

Large nonlinear β's, High reliability (ρ), 300 case sample. 
b Percent of replications in which the model did not fit the data, based on the CFI 

(Bentler 1990) statistic (lack of fit= the CFI value was < .9 or < .95). 
c Not available in EQS when the sample size is less than the number of unique 

elements in the sample covariance matrix. 
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Figure 1 

A PRODUCT INDICATOR INTERACTION AND QUADRATIC MODEL 

 

 

(Click here to view Figure 1) 
 

 

 

 

 

Figure 2 

A SINGLE PRODUCT INDICATOR INTERACTION AND QUADRATIC MODEL 

 

 

(Click here to view Figure 2) 
 

 

 

 

 

Figure 3 

SYNTHETIC DATA STRUCTURAL MODEL 

 

 

(Click here to view Figure 3) 

http://www.wright.edu/~robert.ping/f1jmr.jpg
http://www.wright.edu/~robert.ping/f2jmr.jpg
http://www.wright.edu/~robert.ping/f3jmr.jpg
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 ENDNOTES 

 

                                                 
1. There are now several more, and most of them are refinements of the Kenny and Judd (1984) approach (which will be 

described next). Bollen 1995 proposed using a two-stage least squares estimator. Jöreskog and Yang (1996) provided 

additional details for the Kenny and Judd approach. Jaccard and Wan (1995) suggested using a subset of the Kenny and 

Judd indicators. Ping (1996a) suggested a two step refinement of the Kenny and Judd approach, and Ping (1996b) 

suggested an errors-in-variables regression approach. 

2.The number of replications was a compromise between practicality and a very large number of replications. The 

simulations could not be automated, and each replication required the equivalent of three computer runs punctuated with 

manual coding activities. 

3. The X, Z and constructs were generated to be unidimensional, and the indicators were created to meet the Kenny and 

Judd normality conditions. 

4. EXCEL templates are available from the author (see the web site) to accomplish the equation (4) through (7) 

calculations. 

5. Product indicators are not multivariate normal (Bollen 1989, Kenny and Judd 1984), and ML and generalized least 

squares estimates are not formally appropriate in this application because they assume multivariate normality (Bollen 

1989). However, ML and generalized least squares estimates appear to be robust to departures from normality (Anderson 

and Amemiya 1985, 1986; Bollen 1989; Boomsma 1983; Browne 1987; Harlow 1985; Sharma, Durvasula and Dillon 

1989; Tanaka 1984). 

6. These results provide an empirical demonstration of the efficacy of the Kenny and Judd technique. As far as I know (in 

1993) the only other evidence is provided by two data sets reported in Kenny and Judd's original article (Jaccard and 

Wan 1995 also demonstrated the efficacy of the Kenny and Judd technique). 

7. The unbiased regression estimates for T appear to be the result of a chance combination of the population 

intercorrelations among X, Z and T and lack of sample intercorrelations with XX and XZ. 

8. (In 1993) As far as I know this study provides first direct comparison of regression and structural equation estimates 

for models with nonlinear variables (Jaccard and Wan 1995 also compared regression and Kenny and Judd estimates). 

While regression estimates are known to be inefficient for variables measured with error, based on these results they may 

nevertheless be less variable than structural equation estimates for linear variables under these conditions.  

9. Procedures for obtaining unidimensionality are suggested in Anderson and Gerbing 1982 p. 454, Gerbing and 

Anderson 1988, and Jöreskog 1993 p. 313 (see the discussion of the need for unidimensionality in Anderson and Gerbing 

1988, Burt 1976, and Jöreskog 1993). 
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 LATENT VARIABLE INTERACTION AND QUADRATIC EFFECT ESTIMATION: 

 A TWO-STEP TECHNIQUE USING STRUCTURAL EQUATION ANALYSIS 

 

(An earlier, but revised, version of Ping 1996, Psychological Bulletin, 119 (January), 166-175) 

(Updated July, 2001) 

 

 

 ABSTRACT 

 

This paper proposes an alternative estimation technique for latent variable interactions and quadratics that is useful with 

EQS and AMOS. First, measurement parameters for indicator loadings and errors of linear latent variables are estimated 

in a measurement model that excludes the interaction and quadratic variables. Next, these estimates are used to calculate 

values for the indicator loadings and error variances of the interaction and quadratic latent variables. Finally, these 

calculated values are specified as constants in the structural model containing the interaction and quadratic variables. 

 

 

Interaction and quadratic effects are routinely reported in ANOVA to aid in the interpretation of significant main 

effects. However, interaction and quadratic effects are less frequently reported for survey data. Thus, researchers have 

called for the inclusion of interaction and quadratic variables in survey data analysis (Aiken & West, 1991; Cohen & 

Cohen, 1975, 1983; Jaccard, Turrisi & Wan, 1990). However, for unobserved or latent variables, there has been no 

adequate method of estimating interaction and quadratic effects until recently. Kenny and Judd (1984) proposed that, 

under certain conditions, interaction and quadratic latent variables could be adequately specified using products of 

indicators. They demonstrated their proposed technique using COSAN (McDonald, 1978) (now available in the SAS 

procedure CALIS), because at the time COSAN was the only structural equation software that accommodated the 

nonlinear constraints required to estimate these variables. 

Hayduk (1987) subsequently implemented the Kenny and Judd technique using LISREL 7. However, the Hayduk 

approach required the specification of many additional latent variables to account for the loadings and error variances of 

the nonlinear indicators. The result is that the specification of latent variable interactions and quadratics is a tedious and 

error prone process in COSAN, EQS and AMOS.1 

Recently, LISREL 8 provided a nonlinear constraint capability that can be used to implement the Kenny and Judd 

technique. However, EQS and AMOS have yet to provide an equivalent method of implementing the Kenny and Judd 

approach. 

This paper proposes an alternative to the Hayduk technique that can be used with all structural equation analysis 

software. Because it creates no additional variables or equations, the proposed technique may be useful to EQS, AMOS 

and LISREL 7 users, which do not directly model these latent variables. 

The proposed technique is implemented in two-steps. For indicators in mean deviation form,2 loadings and error 

variances for the indicators of linear latent variables are estimated in a first-step measurement model. Then the nonlinear 

indicators of interaction and quadratic latent variables are created as products of the indicators of linear latent variables, 

as Kenny and Judd (1984) suggested. Next the loadings and error variances for these product indicators are calculated 

using the first step measurement model estimates plus equations derived from Kenny and Judd (1984) results. Finally the 

relations among the linear, interaction, and quadratic latent variables are estimated, using a second-step structural model 

in which these calculated loadings and error variances are specified as constants. 

The balance of the paper describes this technique. 

   

 QUADRATIC AND INTERACTION EFFECT ESTIMATION 

For latent variables X and Z, with indicators x1, x2, z1 and z2, Kenny and Judd (1984) proposed the interaction latent 

variable XZ could be specified with the product indicators x1z1, x1z2, x2z1, and x2z2. They also showed that the variance 

of product indicators such as x1z1 depends on measurement parameters associated with X and Z. Assuming that each of 

the latent variables X and Z is normally distributed and independent of the errors (εx1, εx2, εz1, and εz2) (X and Z may be 

correlated), that the errors are mutually independent, and that the indicators and the errors are normally distributed and in 

mean deviation form (i.e. have means of zero), the variance of the product indicator x1z1 is given by 

Var(x1z1) = Var[(λx1X + εx1)(λz1Z + εz1)] 



 

 

2 

                = λx1
2λz1

2Var(XZ) + λx1
2Var(X)Var(εz1) + λz1

2Var(Z)Var(εx1) + Var(εx1)Var(εz1) (1) 

                =  λx1
2λz1

2[Var(X)Var(Z) +Cov2(X,Z)] + λx1
2Var(X)Var(εz1) + λz1

2Var(Z)Var(εx1) 

                             + Var(εx1)Var(εz1) , (1a) 

for x1 and z1 with expected values of zero. In equations 1 and 1a λx1 and λz1 are the loadings of x1 and z1 on X and Z; εx1 

and εz1 are the error terms for x1 and z1; Var(X), Var(Z), Var(x1z1), Var(εx1), and Var(εz1) are the variances of X, Z, x1z1, 

εx1, and εz1, respectively; and Cov(X,Z) is the covariance of X and Z. 

In the quadratic case (where X = Z), the variance of the product indicator x1x1 is given by 

Var(x1x1) = Var[(λx1X + εx1)(λx1X + εx1)] 

         = λx1
2λx1

2Var(X2) +4λx1
2Var(X)Var(εx1) + Var(εx1) , (2) 

                = 2λx1
2λx1

2Var2(X) + 4λx1
2Var(X)Var(εx1) + 2Var2(εx1) . (2a) 

Kenny and Judd then specified equations 1a and 2a using COSAN by creating additional variables for the terms in 

these equations. For example, equation 1a required five additional variables, one each for λxλz, 

Var(X)Var(Z)+Cov2(X,Z), Var(X)Var(εz), Var(Z)Var(εx), and Var(εx)Var(εz). These additional variables were then 

specified (constrained) to equal their respective equation 1a terms for COSAN estimation. Some creativity is required, 

however, to estimate equations 1 and 2 with EQS, AMOS and LISREL 7,3 because these software products are not able 

to specify the nonlinear (product) terms in equation 1 or 2. 

Hayduk's contribution was to provide a LISREL implementation of the Kenny and Judd technique. Hayduk's 

approach was to create additional latent variables to specify, for example, the right-hand side of equation 1a. It is difficult 

to do justice to Hayduk's approach in a few sentences, and the interested reader is directed to Hayduk (1987) Chapter 7 

for details. In summary, to specify the first term of equation 1a, Hayduk created a chain of additional latent variables that 

affected the indicator x1z1. Using three additional chains of latent variables, the remaining three terms in equation 1a can 

be specified. 

For a latent variable with many indicators, or for a model with several interaction or quadratic latent variables, the 

Hayduk approach of adding variables is arduous. For example, the single interaction model shown in Figure 1 requires an 

additional thirty latent variables to specify the loadings and error variances of the indicators for XZ. 

As a result, researchers may find the specification of the additional variables or constraint equations4 required by the 

Hayduk technique difficult. The number of additional variables required or generated by these techniques may also lead 

to estimation difficulties produced by the large matrices required to specify these additional variables. 

The next section proposes a technique that requires the specification of no additional variables or constraint 

equations. 

 

 A PROPOSED ESTIMATION TECHNIQUE 

 

In estimating structural equation models, Anderson and Gerbing (1988) proposed that the measurement specification 

of the model should be assessed separately from its structural specification, to ensure the unidimensionality of each of the 

latent variables in the model. This they argued avoids interpretational confounding (Burt, 1976), the interaction of the 

measurement and structural models. Interpretational confounding produces marked changes in the estimates of the 

measurement parameters when alternative structural models are estimated. They also noted that when a latent variable is 

unidimensional, the measurement parameter estimates for that latent variable should change trivially, if at all, between the 

measurement and structural model estimations (p. 418). 

As a result, if X and Z are each unidimensional, that is their indicators have only one underlying construct each 

(Aker & Bagozzi, 1979; Anderson & Gerbing, 1988; Burt, 1973; Hattie, 1985; Jöreskog, 1970, 1971; McDonald, 1981), 

estimates of the parameters appearing in equations 1 and 2 are available in a measurement model that contains X and Z 

but excludes XX and XZ. To explain this result, the measurement parameters of a unidimensional latent variable are by 

definition unaffected by the presence or absence of other latent variables in a structural model. Consequently, other latent 

variables can be added or deleted from a measurement or structural model containing a unidimensional latent variable 

with no effect on the measurement parameter estimates for that latent variable. Thus if X and Z are unidimensional, the 

parameter estimates for equation 1 or 2 could be obtained from a measurement model that excludes XX and XZ. 

Similarly, the addition of XX and/or XZ to a structural model does not affect the measurement parameter estimates of X 

or Z in this structural model if X and Z are unidimensional.  

As a result, the equation 1 and 2 loadings and error variances for product indicators such as x1z1 and x1x1 could be 

calculated using parameter estimates from a measurement model that excludes XX and XZ. Because these measurement 
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parameter estimates should change trivially, if at all, between the measurement and structural model estimations 

(Anderson and Gerbing, 1988), these calculated loadings and error variances could then be used as fixed values 

(constants) in a structural equation model containing the interaction and quadratic latent variables XX and XZ. 

In particular, for indicators in mean deviation form and under the Kenny and Judd normality assumptions stated in 

conjunction with equation 1, equations 1 and 2 can be simplified to 

Var(xz) = a2Var(XZ) + Var(b) . (3) 

In equation 3 Var(xz) is the variance of the indicator xz, Var(XZ) is the variance of the latent variable XZ, and a = λxλz. 

Var(b), the error variance for xz, is given by Var(b) = Kλx
2Var(X)Var(εz) + Kλz

2Var(Z)Var(εx) + KVar(εx)Var(εz), 

(K=2 if x=z, K=1 otherwise). Then if X and Z are each unidimensional, values for the loading "a" and the error variance 

for xz, Var(b), can be calculated using measurement model estimates for λx, λz, Var(X), Var(Z), Var(εx), and Var(εz). The 

loading and error variance of xz can subsequently be specified using these calculated values as fixed (constant) terms in a 

structural model involving XX and/or XZ, instead of variables to be estimated as the Kenny and Judd (1984) technique 

requires. 

Consequently, the Figure 1 structural model could be estimated by setting the loadings and error variances for the 

product indicators equal to constants that are calculated using equation 3 and parameter estimates from a linear-latent-

variable-only measurement model involving only X, Z and Y. 

To illustrate this technique, the results of two tests of the technique's recovery of known parameters are presented. 

 

 EXAMPLES 

 

ARTIFICIAL DATA SETS 

 

Method The proposed technique was used to recover known parameters in two artificial data sets. Using a normal 

random number generator, two sets of 500 cases were created. One set of 500 cases contained values based on the Table 

1 population characteristics for x1, x2, and Y in the Figure 2 quadratic model. The other set of 500 cases contained values 

based on the Table 1 population characteristics for x1, x2, z1, z2, and Y in the Figure 3 interaction model. These data sets 

were generated to meet the Kenny and Judd normality and mean deviation assumptions stated in conjunction with 

equation 1. 

The covariance matrices for these two data sets are shown in Table 2. The Figure 2 structural model was specified by 

first estimating the parameters in a linear-latent-variable-only measurement model that excluded XX. Next the equation 3 

loadings ("a's") and error variances (Var(b)'s), for the product indicators in Figure 2 were calculated using parameter 

estimates from this linear-latent-variable-only measurement model. Finally the Figure 2 structural model was estimated 

with the loadings and error variances of the nonlinear latent variables fixed at their respective "a" and Var(b) values. 

The linear-latent-variable-only measurement model associated with the Figure 2 model was estimated using LISREL 

7 and maximum likelihood. This produced the Table 3 estimates for the λ's, Var(ε)'s, and Var(X) to be used in calculating 

the equation 3 values for the product indicators of XX. Next the equation 3 values for ax1,x1, ax1,x2, ax2,x2, Var(bx1,x1), 

Var(bx1,x2), and Var(bx2,x2) were computed (see Figure 2 for the equations, and Table 3 for the values and example 

calculations). Then the structural model shown in Figure 2 was specified by fixing the loading and error variance for each 

product indicator to the appropriate "a" and Var(b) values computed in the previous step. The results of the Figure 2 

structural model estimation using LISREL 7 and maximum likelihood are shown in Table 4. 

We repeated this process for the interaction model shown in Figure 3, and obtained the results shown in Tables 3 and 

4. 

To obtain a basis for comparing the efficacy of the proposed technique, Kenny and Judd, and Hayduk estimates were 

also generated. These estimates used the Figure 2 and 3 models. The Kenny and Judd estimates were produced using 

COSAN and generalized least squares, and the Hayduk estimates utilized LISREL 7 and maximum likelihood. The 

results are shown in Table 4. 

 

Results The three estimation techniques produced essentially equivalent parameter estimates. The estimates were 

within a few points of the population values and each other. The squared average deviations from the population values 

(MSE's in Table 4) produced by each technique were also within a few points of each other. For the quadratic model, the 

overall MSE values for the three techniques (MSE-all parameters in the Quadratic Term Model portion of Table 4) were 

nearly identical. The MSE for the quadratic effect coefficients produced by the proposed technique (MSE-γ's) was 
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slightly smaller than it was for the Hayduk and Kenny and Judd techniques. In the interaction model portion of the table, 

the all-parameter MSE's were also within a few points of each other. However, the all-parameter MSE's were slightly 

larger than they were for the quadratic model, the effect coefficient MSE's were smaller, and the Kenny and Judd 

technique produced the smallest effect coefficient MSE. Combining the parameter estimates for the two models (see the 

"Overall:" section of Table 4), the proposed technique produced MSE's that were the same or slightly smaller than the 

Hayduk and Kenny and Judd techniques. 

To illustrate the use of the proposed technique, a field survey data analysis involving nonlinear latent variables is 

presented.  

 

A FIELD SURVEY 

 

Method. As part of a larger study of a social exchange view of long term buyer-seller relationships involving business 

firms, data were gathered from key informants in retailing firms concerning their loyalty to their primary economic 

exchange partner, their primary wholesaler; their satisfaction with that economic exchange partner, and the attractiveness 

of the best alternative wholesaler. Relationship satisfaction (SAT) and alternative attractiveness (ALT) were hypothesized 

to affect loyalty (LOY) (see Ping, 1993; Rusbult, Zembrodt & Gunn, 1982). 

Since this is an illustration of the use of the proposed estimation technique, the study will simply be sketched. SAT, 

ALT and LOY were measured using multiple item Likert measures. The survey responses were used to create indicators 

of the independent variables (i.e., SAT and ALT) that were in mean deviation form. The responses were then used to 

assess the unidimensionality of SAT, ALT and LOY. They were also used to gauge the normality of the linear indicators 

using the skewness and kurtosis tests in LISREL 7's PRELIS. 

Values for the product indicators were created for each survey response by forming all unique products of the values 

of the appropriate indicators of the linear latent variables, then appending these products to the response (see the 

comments regarding the formation of these indicators at the foot of Table 6). Next the linear-latent-variable-only 

measurement model for the Figure 4 model (i.e., with SAT, ALT and LOY only) was estimated. This was accomplished 

using the Table 5 variance-covariance matrix, maximum likelihood, and LISREL 7. The resulting measurement parameter 

estimates for the equation 3 "a's" and Var(b)'s are shown in Table 6. 

The structural equation was then estimated. This was accomplished by calculating the Figure 4 product indicator 

loadings and error variances ("a's" and Var(b)'s), using the Table 6 measurement model estimates and equation 3 (see 

Table 6).5 Then the loadings and error variances for the product indicators were fixed at these calculated values in the 

structural model, and the structural equation estimates shown in Table 7 were then produced using LISREL 7 and 

maximum likelihood. Table 7 also shows the maximum likelihood estimates using the Kenny and Judd technique for 

comparison. 

 

Discussion. The estimates produced by the Kenny and Judd technique and the proposed technique were again similar. 

While some were higher and some were lower, the calculated "a's" and Var(b)'s produced by the proposed technique were 

within a few points of the Kenny and Judd estimates for the loadings and error variances of the product indicators. 

Similarly, the structural effect coefficients (γs) for the two techniques were comparable. 

 

 DISCUSSION 

 

As the results in Tables 6 and 7 show, the measurement parameter estimates for the unidimensional SAT and ALT 

variables changed trivially between the linear-latent-variable-only measurement model and the Figure 4 structural model 

that contained the linear and nonlinear latent variables. Procedures for obtaining unidimensionality are suggested in 

Anderson and Gerbing (1982), Gerbing and Anderson (1988), and Jöreskog (1993). While there is no agreement on the 

detailed steps, the process of obtaining unidimensionality must balance concern for the content validity of a measure with 

its consistency. In the field survey example the estimation of single construct measurement models (Jöreskog, 1993) with 

a target comparative fit index (Bentler, 1990) of .99 produced the desired trivial difference in measurement parameters 

between the measurement and structural models.6 

Had more than a trivial change been observed in the measurement parameters for the linear latent variables between 

the measurement and structural models (i.e., differences in the second decimal place), measurement parameter estimates 

for the linear latent variables from the previous structural model to recompute the "a's" and Var(b)'s, and thereby 



 

 

5 

"converge" to the desired trivial change between structural model estimates of the measurement parameters for the linear 

latent variables7. 

The assumption that the error terms for linear indicators are independent can be relaxed. In equation 3 the expression 

for Var(b) would be changed by an additional covariance term (available in the measurement model) as follows, 

Var(b) = Kλx
2Var(X)Var(εz) + Kλz

2Var(Z)Var(εx) + KVar(εx)Var(εz) 

+ (2K)λxλzCov(X,Z)Cov(εx,εz) , 

(K=2 if x=z, K=1 otherwise). 

 

LIMITATIONS 

 

Just as in the Hayduk and Kenny and Judd techniques, the assumption of normality in the linear indicators cannot be 

relaxed. The derivation of the "a" and Var(b) terms is based on this assumption. Bollen (1989, Ch. 9) discusses 

appropriate normality tests involving indicator skewness and kurtosis. EQS and LISREL's PRELIS have implemented 

several of these tests. However, for typical sample sizes used in structural equation analysis, even small deviations from 

normality are likely to be statistically significant (Bentler, 1989). In addition, there is little guidance for determining 

when statistical nonnormality becomes practical nonnormality (Bentler, 1989). As a result, while the survey items were 

judged to be not nonnormal, several items were statistically nonnormal using standard skewness and kurtosis tests 

(although the coefficients were not unreasonably large). In addition, the Mardia (1970) coefficient of multivariate 

nonnormality was significant (although not excessively so). 

The robustness of the proposed, Hayduk and Kenny and Judd techniques to departures from normality is not known, 

and unreasonable departures from multivariate normality should be remedied. Bollen (1989) suggests transformation of 

the data (p. 425) (see Neter, Wasserman and Kunter, 1988 for alternatives to the loge transformation), and Bentler (1989) 

discusses the deletion of cases that contribute to nonnormality (p. 228). 

In the proposed, Hayduk, and Kenny and Judd techniques the product indicators are not normally distributed. This 

means that the customary maximum likelihood (ML) and generalized least squares (GLS) estimators are formally 

inappropriate for these techniques because they assume multivariate normality. 

This presents several apparent difficulties in using these techniques: structural model parameter estimates, and the fit 

and significance statistics may be incorrect. However, based on available evidence (e.g., Anderson & Amemiya, 1985, 

1986; Boomsma, 1983; Browne, 1987; Harlow, 1985; Sharma, Durvasula & Dillon, 1989; Tanaka, 1984) ML and GLS 

parameter estimates are robust against departures from normality (Jöreskog & Sörbom, 1989; Bollen, 1989). The results 

of the present study support this: the Figure 2 and 3 models were not multivariate normal (because the product indicators 

are not normally distributed), yet the proposed, Hayduk, and Kenny and Judd techniques reproduced the population 

parameters quite well using maximum likelihood and generalized least squares estimates8. 

For model fit and significance statistics, however, these estimation techniques should be used with caution (Bentler, 

1989; Bollen, 1989; Hu, Bentler & Kano, 1992; Jöreskog & Sörbom, 1989).9 Additional estimators that are less 

dependent on distributional assumptions should be used with these techniques to determine model fit and significance. 

EQS and LISREL provide asymptotic distribution free estimation10 (Browne, 1982, 1984). EQS also provides linearized 

distribution free estimation (Bentler, 1983) and Robust statistics (Satorra & Bentler, 1988). For large models, fit indices 

(see Bollen & Long, 1993) may be appropriate (Kenny & Judd, 1984; Hayduk, 1987). This is obviously an area where 

additional work is needed. 

Finally, mean deviation form for the indicators cannot be relaxed. The derivation of the "a" and Var(b) terms were 

based on this assumption. Further, mean deviation form is recommended to improve the interpretability of the linear 

effect coefficients in regression (see Aiken & West, 1991, and Jaccard, Turrisi & Wan, 1990). 

 

 CONCLUSION 

 

The article has proposed an alternative to the Hayduk (1987) and Kenny and Judd (1984) techniques for estimating 

structural equation models with interaction or quadratic latent variables. The proposed technique is limited to indicators 

that are in mean deviation form and multivariate normal. In addition, the linear latent variables are assumed to be 

unidimensional, so that measurement model parameter estimates can be used in the structural model as constants. An 

iterative procedure was suggested to correct for slight differences in the measurement parameter estimates of linear latent 

variables between the measurement and structural models. The efficacy of the proposed technique was suggested by 
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recovering known parameters in artificial data sets, and producing estimates for field survey data that are similar to 

Kenny and Judd estimates. 
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Table 1. Artificial Data Set Population Characteristics 

Quadratic Term Model: 

   Population    

 Vari- 

Parametera         ance    Value  

X  1.00   

εx1  0.15   

εx2  0.55   

EY  0.20    

λx1   1.00    

λx2   0.60    

γY,X   .25   

γY,XX  -.50   

 

Interaction Term Model: 

               Population    

             Vari- 

Parameterb       ance   Value  

X  2.15    

Z   1.60    

ψX,Z 0.20  

εx1  0.36    

εx2  0.81    

εz1  0.49    

εz2  0.64    

EY  0.16    

λx1   1.00   

λx2   0.60   

λz1   1.00   

λz2   0.70    

γY,X  -0.15   

γY,XZ  0.70   

γY,Z  0.35    
───────────────────────────────── 
a Y = γY,XX + γY,XXX2 + EY 
  x1 = λx1X + εx1 
  x2 = λx2X + εx2 
b Y = γY,XX + γY,ZZ + γY,XZXZ + EY 
  x1 = λx1X + εx1 
  x2 = λx2X + εx2 
  z1 = λz1Z + εz1 
  z2 = λz2Z + εz2 
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Table 2. Artificial Data Set Sample Variance-Covariance Matrix 

Quadratic Term Model: 

           x1         x2         x1x1       x1x2       x2x2         y 
             ┌────────────────────────────────────────────────────────── 

x1 │ 1.272 

x2 │ .605 .826 

x1x1 │ .202 .105 3.614 

x1x2 │ .208 .131 1.687 1.553 

x2x2 │ .162 .141 .860 1.175 1.731 

y │ .186 .112 -1.317 -.729 -.443 .898 

 

Interaction Term Model: 

x1 x2 z1 z2 x1z1 x1z2 x2z1 z2z2  y 
        ┌────────────────────────────────────────────────────- 

x1 │ 2.376 

x2 │ 1.234 1.492 

z1 │ .319 .139 2.129 

z2 │ .206 .068 1.174 1.497 

x1z1 │ .106 .004 .179 .199 5.130 

x1z2 │ -.244 -.121 .174 .187 2.830 3.927 

x2z1 │ -.003 .074 .166 .095 2.516 1.326 2.885 

x2z2 │ -.125 -.161 .085 .096 1.333 1.908 1.572 2.153 

y │ -.232 -.188 .595 .453 2.688 2.009 1.396 1.040 2.324 
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Table 3. Artificial Data Set Sample Measurement Model Parameter Estimates 

Quadratic Term Model:              

 

                       Vari-               

      Parameter  ance    Value        

X 1.009            

εx1 0.262          

εx2 0.463          

λx1  1.000    

λx2  0.599    

 

Equation 3 Valuesa 

a1,1 = 1.000   Var(b1,1) = 1.198  

a1,2 =  .599   Var(b1,2) =  .684  

a2,2 =  .359   Var(b2,2) = 1.101  

 

Interaction Term Model:  

                Vari-       

     Parameter   ance    Value  

X    2.223       

Z    1.604       

ψX,Z 0.237       

εx1 0.152       

εx2 0.807       

εz1 0.524       

εz2 0.637       

λx1  1.000  

λx2  0.554  

λz1  1.000  

λz2  0.731  

 

Equation 3 Valuesb 

a1,1 = 1.000   Var(b1,1) = 1.492 

a1,2 =  .731   Var(b1,2) = 1.646 

a2,1 =  .554   Var(b2,1) = 2.077 

a2,2 =  .406   Var(b2,2) = 1.644 
──────────── 
a e.g., a2,2 = λx2

2 = .5992 = .359 , 

Var(b2,2) = 4λx2
2Var(X)Var(εz2) + 2Var(εx2)

2 

               = 4(.599)2(1.009)(.463)+2(.463)2  1.101 
b e.g., a2,2 = λx2λz2 = .554*.731  .406 , 

  Var(b2,2) = λx2
2Var(X)Var(εz2) + λz2

2Var(Z)Var(εx2) + Var(εx2)Var(εz2) 

= .5542(2.223)(.637)+.7312(1.604)(.807)+.807(.637)  1.644 
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Table 4. Structural Model Parameter Estimates 

Quadratic Term Model: 

                                                         Kenny & Judd             Hayduk                      Proposed 

                          Population                  Approach                Approach                   Approach       

                         Vari-                       Vari-                        Vari-                         Vari-         

Parameter          ance    Value           ance       Value         ance       Value          ance        Value  

X  1.00  1.050  1.080  1.009 

εx1  0.15  0.243  0.243  0.264 

εx2  0.55  0.516  0.524  0.463 

EY  0.20   0.102  0.098  0.235 

λx1   1.00   1.000   1.000   1.000 

λx2   0.60   0.585   0.592   0.600 

γY,X  0.25   0.275   0.274   0.290 

γY,XX  -.50   -0.573   -0.570   -0.494 

MSEa-all parameters   .003   .004   .003 

MSEa-γ's     .003   .003   .001 

Interaction Term Model: 

                                                        Kenny & Judd              Hayduk                    Proposed 

                          Population                Approach                 Approach                 Approach     

                         Vari-                       Vari-                        Vari-                         Vari-         

Parameter          ance    Value           ance       Value         ance       Value          ance   Value  

X  2.15   2.277   2.368   2.223 

Z   1.60   1.643  1.605   1.604 

 ψX,Z   `0.20  0.336  0.161   0.237 

εx1  0.36   0.122   0.144   0.327 

εx2  0.81   0.710   0.769   0.747 

εz1  0.49   0.450   0.462   0.538 

εz2  0.64   0.678   0.692   0.638 

EY  0.16   0.224   0.186    0.353 

λx1   1.00   1.000       1.000       1.000 

λx2   0.60   0.543   0.537   0.599 

λz1   1.00  1.000       1.000       1.000 

λz2   0.70    0.722   0.720   0.737 

γY,X  -0.15   -0.145   -0.140   -0.132 

γY,XZ  0.70    0.695   0.780   0.666 

γY,Z  0.35    0.317   0.320   0.318 

MSEa-all parameters    .008   .007   .004 

MSEa-γ's                           .000   .002   .001 

Overall: 

MSEa-all parameters    .006   .007   .003 

MSEa-γ's     .001   .003   .001 

 
──────────────── 
a Mean squared deviations from the population parameters. 
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Table 5. 

Field Data Set Variance-Covariance Matrix 

 

                         s1            s2           s3           s4            a5           a1            a2           a3              a4 
            ┌──────────────────────────────────────────────────────── 

s1 │ .49 

s2 │ .36 .53 

s3 │ .41 .46 .62 

s4 │ .37 .40 .44 .52 

s5 │ .37 .43 .48 .43 .56 

a1 │ -.28 -.34 -.35 -.29 -.31 1.00 

a2 │ -.25 -.30 -.32 -.24 -.31 .71 .94 

a3 │ -.26 -.33 -.38 -.32 -.34 .79 .76 .92 

a4 │ -.21 -.29 -.32 -.22 -.29 .59 .61 .66 .76 

l1 │ -.06 -.03 .04 -.05 -.05 .03 .08 .05 .05 

l2 │ .00 .02 .03 .04 .02 .04 .07 .02 .03 

l3 │ .05 .11 .14 .11 .09 -.07 -.07 -.12 -.09 

l4 │ -.13 -.05 -.14 -.08 -.14 -.02 .06 .00 .05  

  

                         l1             l2           l3            l4 
            ┌──────────────────────── 

l1 │ .70 

l2 │ .54 .68 

l3 │ .35 .42 .88 

l4 │ .39 .41 .30 .96 
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Table 6. Field Data Set Measurement Model Parameter Estimates 

 

         Parameter  Variance  Parameter  Value   Parameter  Value 

SAT   0.519  εa3   0.077  λs5   0.939 

ALT   0.850  εa4   0.244  λa1   0.924 

ψX,Z   -0.372  εl1   0.234  λa2   0.904 

εs1   0.167  εl2   0.069         λa3   1.000 

εs2   0.132  εl3   0.589       λa4   0.783 

εs3   0.108  εl4   0.680        λl1   0.876 

εs4   0.119  λs1   0.793       λl2   1.000 

εs5   0.102  λs2   0.883       λl3   0.688 

εa1   0.275  λs3   1.000       λl4   0.682 

εa2   0.248  λs4   0.880 

 

    Equation 3 Values (λ's = "a's", ε's = b's)a 

    λs1,s1 = .628  Var(εs1,s1) = .273   λa3,a4 = .783  Var(εa3,a4) = .266 

    λs1,s2 = .700  Var(εs1,s2) = .132   λa4,a4 = .613  Var(εa4,a4) = .627 

    λs1,s3 = .793  Var(εs1,s3) = .139   λs1,a1 = .732  Var(εs1,a1) = .256 

    λs1,s4 = .697  Var(εs1,s4) = .125   λs1,a2 = .716  Var(εs1,a2) = .238 

    λs1,s5 = .744  Var(εs1,s5) = .126   λs1,a3 = .793  Var(εs1,a3) = .179 

    λs2,s2 = .779  Var(εs2,s2) = .248   λs1,a4 = .620  Var(εs1,a4) = .207 

    λs2,s3 = .883  Var(εs2,s3) = .126   λs2,a1 = .815  Var(εs2,a1) = .243 

    λs2,s4 = .777  Var(εs2,s4) = .116   λs2,a2 = .798  Var(εs2,a2) = .224 

    λs2,s5 = .829  Var(εs2,s5) = .115   λs2,a3 = .883  Var(εs2,a3) = .153 

    λs3,s3 = 1.00  Var(εs3,s3) = .247   λs2,a4 = .691  Var(εs2,a4) = .199 

    λs3,s4 = .880  Var(εs3,s4) = .118   λs3,a1 = .924  Var(εs3,a1) = .250 

    λs3,s5 = .939  Var(εs3,s5) = .113   λs3,a2 = .904  Var(εs3,a2) = .230 

    λs4,s4 = .774  Var(εs4,s4) = .219   λs3,a3 = 1.00  Var(εs3,a3) = .140 

    λs4,s5 = .826  Var(εs4,s5) = .107   λs3,a4 = .783  Var(εs3,a4) = .209 

    λs5,s5 = .881  Var(εs5,s5) = .207   λs4,a1 = .813  Var(εs4,a1) = .229 

    λa1,a1 = .853  Var(εa1,a1) = .949   λs4,a2 = .795  Var(εs4,a2) = .211 

    λa1,a2 = .835  Var(εa1,a2) = .439   λs4,a3 = .880  Var(εs4,a3) = .141 

    λa1,a3 = .924  Var(εa1,a3) = .310   λs4,a4 = .689  Var(εs4,a4) = .189 

    λa1,a4 = .723  Var(εa1,a4) = .387   λs5,a1 = .867  Var(εs5,a1) = .227 

    λa2,a2 = .817  Var(εa2,a2) = .812   λs5,a2 = .848  Var(εs5,a2) = .209 

    λa2,a3 = .904  Var(εa2,a3) = .283   λs5,a3 = .939  Var(εs5,a3) = .129 

    λa2,a4 = .707  Var(εa2,a4) = .359   λs5,a4 = .735  Var(εs5,a4) = .189 

    λa3,a3 = 1.00  Var(εa3,a3) = .273 

 
───────────────────────────────────────────────────────────────── 
a Since SAT and ALT have 5 and 4 indicators respectively, SAT*SAT has 15 product indicators (=p*(p+1)/2, where p is 

the number of indicators), one for each unique product of the indicators of SAT, and that many sets of equation (3) "a's" 

and Var(b)'s (one set for each product indicator). Similarly ALT*ALT has 10 sets of "a's" and Var(b)'s, and SAT*ALT has 

20 (=p*q, where p and q are the number of indicators of SAT and ALT respectively). 
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Table 7. Field Data Set Structural Parameter Estimates 

                  Variance                           Variance                              Variance/Value        

Para-    Pro-                      Para-    Pro-                         Para-      Proposed       COSAN 

meter   posed   COSAN   meter    posed   COSAN     meter      (t-value)a       (t-value)a  
SAT 0.519 0.554 λs4,s5 0.826 0.839 εs3a2 0.230  0.219  
ALT 0.851 0.892 λs5,s5 0.881 0.897 εs3a3 0.140  0.152  
λs1 0.793    0.741 λa1,a1 0.853 0.866 εs3a4 0.209  0.187  
λs2 0.883    0.875 λa1,a2 0.835 0.821 εs4a1 0.229  0.210  
λs3 1.000    1.000 λa1,a3 0.924 0.911 εs4a2 0.211  0.200  
λs4 0.880    0.872 λa1,a4 0.723 0.734 εs4a3 0.141  0.149  
λs5 0.940    0.931 λa2,a2 0.817 0.824 εs4a4 0.189  0.169  
λa1 0.924    0.930 λa2,a3 0.904 0.906 εs5a1 0.227  0.238  
λa2 0.905    0.890 λa2,a4 0.707 0.692 εs5a2 0.209  0.217  
λa3 1.000    1.000 λa3,a3 1.00 1.00 εs5a3 0.129  0.109  
λa4 0.783    0.774 λa3,a4 0.783 0.796 εs5a4 0.189  0.201  
λl1 0.879    0.860 λa4,a4 0.613 0.600 εs1s1 0.273  0.251  
λl2 1.000    1.000 λs1,a1 0.732 0.739 εs1s2 0.132  0.115  
λl3 0.692    0.708 λs1,a2 0.716 0.731 εs1s3 0.139  0.147  
λl4 0.686    0.671 λs1,a3 0.793 0.781 εs1s4 0.125  0.139  
εs1 0.166 0.134 λs1,a4 0.620 0.610 εs1s5 0.126  0.141  
εs2 0.133 0.101 λs2,a1 0.815 0.824 εs2s2 0.248  0.250  
εs3 0.108 0.129 λs2,a2 0.798 0.806 εs2s3 0.126  0.114  
εs4 0.119 0.101 λs2,a3 0.883 0.898 εs2s4 0.116  0.134  
εs5 0.102 0.079 λs2,a4 0.691 0.678 εs2s5 0.115  0.111  
εa1 0.275 0.194 λs3,a1 0.924 0.931 εs3s3 0.247  0.237  
εa2 0.248 0.262 λs3,a2 0.904 0.900 εs3s4 0.118  0.136  
εa3 0.077 0.124 λs3,a3 1.00 1.00 εs3s5 0.113  0.116  
εa4 0.244 0.219 λs3,a4 0.783 0.772 εs4s4 0.219  0.202  
εl1 0.232 0.247 λs4,a1 0.813 0.827 εs4s5 0.107  0.115  
εl2 0.072 0.061 λs4,a2 0.795 0.808 εs5s5 0.207  0.217  
εl3 0.587 0.569 λs4,a3 0.880 0.871 εa1a1 0.949  1.001  
εl4 0.677 0.702 λs4,a4 0.689 0.694 εa1a2 0.439  0.479  
λs1,s1 0.621 0.615 λs5,a1 0.867 0.853 εa1a3 0.310  0.321  
λs1,s2 0.700 0.710 λs5,a2 0.848 0.840 εa1a4 0.387  0.374  
λs1,s3 0.793 0.781 λs5,a3 0.939 0.930 εa2a2 0.812  0.813  
λs1,s4 0.697 0.705 λs5,a4 0.735 0.748 εa2a3 0.283  0.267  
λs1,s5 0.744 0.759 εs1a1 0.256 0.271 εa2a4 0.359  0.349 
λs2,s2 0.779 0.769 εs1a2 0.238 0.227 εa3a3 0.273  0.237  
λs2,s3 0.883 0.880 εs1a3 0.179 0.161 εa3a4 0.266  0.232 
λs2,s4 0.777 0.798 εs1a4 0.207 0.216 εa4a4 0.627  0.639 
λs2,s5 0.829 0.841 εs2a1 0.243 0.254 γLOY,SAT 0.031 ( .3) 0.020 ( .2) 
λs3,s3 1.00 1.00 εs2a2 0.224 0.256 γLOY,ALT 0.097 (1.4) 0.099 (1.4) 
λs3,s4 0.880 0.871 εs2a3 0.153 0.171 γLOY,SAT*ALT 0.384 (6.0) 0.379 (5.9) 
λs3,s5 0.939 0.951 εs2a4 0.199 0.176 γLOY,ALT*ALT 0.127 (3.1) 0.119 (2.9) 
λs4,s4 0.774 0.763 εs3a1 0.250 0.261 γLOY,SAT*SAT 0.153 (2.3) 0.161 (2.4) 
────────────── 
a Approximate 
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Figure 1. A Covariance Structure Model. 

 
(Click here to view Figure 1) 

 

 

Figure 2. A Quadratic Model Using 

               The Proposed Approach. 
 

(Click here to view Figure 2) 

 

 

Figure 3. An Interaction Model Using 

               The Proposed Approach. 
 

(Click here to view Figure 3) 

 

 

Figure 4. A Field Survey Model Using The Proposed Approach. 

 
 

(Click here to view Figure 4) 
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ENDNOTES 

 

 
                     

1. Since this article was written several additional approaches have been proposed, most of them refinements of the 

Kenny and Judd (1984) approach (described later). Bollen 1995 proposed using a two-stage least squares estimator. 

Jöreskog and Yang (1996) provided additional details for the Kenny and Judd approach. Jaccard and Wan (1995) 

suggested using a subset of the Kenny and Judd indicators. Ping (1995) suggested a single indicator approach to 

estimating latent variable interactions and quadratics, and Ping (1996) suggested an errors-in-variables regression 

approach. 

2. An indicator in mean deviation form is the result of subtracting the mean of the indicator from the value of that 

indicator in each case. The resulting indicator has mean zero (see Aiken & West, 1991; Bollen, 1989 p. 13; Jaccard, 

Turrisi & Wan, 1990 p. 28; Kenny & Judd, 1984). 

3. LISREL 8 provides constraint equations that can be used to implement the Kenny and Judd technique. Equation 1, for 

example, can be specified using two constraint equations, one for λx1λz1 and one for the balance of equation 1 after the 

λx1
2λz1

2Var(XZ) term. 

4. The number of required constraint equations specifications in LISREL 8 is approximately equal to the number of 

additional variable specifications required by COSAN. Each interaction latent variable requires the specification of 2pq 

equations and each quadratic latent variable  requires p(p+1) equations, where p and q are the number of indicators for 

the linear variables comprising the interaction or quadratic latent variable. 

5. See the representative calculations in Table 3. An EXCEL spreadsheet is available on the web site to calculate the "a's" 

and Var(b)'s. 

6. For each linear latent variable, a single construct measurement model (Jöreskog, 1993) was re-estimated until a target 

comparative fit index (Bentler, 1990) value of .99 was attained by serially deleting items that did not appear to degrade 

construct validity. 

7. A reviewer suggested this procedure to deal with slight differences between the measurement parameter estimates from 

the linear-latent-variable-only measurement model and their estimates in the structural model. The effectiveness of this 

procedure for larger measurement parameter differences (i.e. in the first decimal place) is unknown. 

8. Kenny and Judd (1984) and Hayduk (1987) reported similar results. 

9. Results from recent investigations (see Jaccard & Wan, 1995; Ping, 1995) suggest that model fit and significance 

statistics from ML and possibly GLS estimators are robust to the addition of a few nonlinear indicators (e.g., x1z1) 

involving linear indicators (e.g. x1 and z1) that are normally distributed. However, the robustness of model fit and 

significance statistics from these estimators to the addition of many nonlinear indicators (i.e. over four) or nonlinear 

indicators composed of nonnormal linear indicators (typical of survey data) is unknown. 

10. As Aiken and West (1991) warn, and other studies suggest (see Hu, Bentler & Kano, 1990; Jaccard & Wan 1995), -

results from asymptotic distribution free estimation with less than very large sample sizes also seem to require cautious 

interpretation. 
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 LATENT VARIABLE REGRESSION: 

 A TECHNIQUE FOR ESTIMATING INTERACTION AND QUADRATIC COEFFICIENTS 

 

(An earlier, but revised, version of Ping 1996, Multivariate Behavioral  

Research, 31 (1), 95-120) 
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 ABSTRACT 

 

The article proposes a technique to estimate regression coefficients for interaction and quadratic latent variables that 

combines regression analysis with the measurement model portion of structural equation analysis (e.g., analysis involving 

EQS, LISREL, or AMOS). The measurement model provides parameter estimates that can be combined to correct the 

variance-covariance matrix used in regression, as Heise (1986) and others recommend. The proposed technique will 

provide coefficient estimates for regression models involving existing measures, or new measures for which a priori error 

estimates are not available. 

 

 

For survey data, regression is the predominant data analysis technique in several social science literatures. It is 

widely used in other social science literatures, presumably because it is easily understood and available in popular 

statistics packages for microcomputers (e.g., SAS, SPSS, etc.). 

  Researchers in the social sciences have called for the inclusion of interaction and quadratic variables (e.g., xz and zz 

respectively in 

y = b0 + b1x + b2z + b3xz  (1) 

and 

y = b'0 + b'1x + b'2z + b4zz) (2) 

in analyses of survey data with regression (Aiken & West, 1991; Cohen & Cohen, 1983; Jaccard, Turrisi & Wan, 1990). 

However, regression is known to produce coefficient estimates that are biased and inefficient for variables measured with 

error such as unobserved or latent variables (Bohrnstedt & Carter, 1971; Busemeyer & Jones, 1983; Cochran, 1968; 

Fuller, 1987; Gleser, Carroll & Gallo, 1987). 

  Recently, Heise (1986) proposed a regression approach to estimating interaction and quadratic coefficients for 

variables measured with error in survey data. The approach requires the researcher to have advance estimates of the 

errors in the measures used in the study. This limits the applicability of the technique to studies involving established 

measures with previously reported reliabilities. 

The balance of the paper discusses a technique for estimating quadratic and interaction latent variables in survey data 

using regression, that avoids the requirement for a-priori estimates of reliability. The proposed technique uses estimates 

of measurement error provided by the measurement model step in structural equation analysis (see Anderson & Gerbing, 

1988). These error estimates are used to correct the variance-covariance matrix used in regression. After a brief 

discussion of the techniques available for estimating interactions and quadratics in survey data using regression, the 

proposed technique is developed. The efficacy of the technique is then suggested by recovering known coefficients in 

synthetic data sets, and the proposed technique is applied to a field survey data set. 

 

 INTERACTION AND QUADRATIC ESTIMATION 

 

Survey researchers who include latent variable interaction and quadratic terms in their models use two types of 

techniques: those that produce estimates of the coefficients for the interaction and quadratic terms in equations 1 and 2, 

and those that do not. Techniques that produce coefficient estimates for interactions and quadratics include regression 

and structural equation analysis (e.g., analysis involving AMOS, EQS or LISREL). Techniques that do not produce 

coefficient estimates for interactions and quadratics in survey data include ANOVA (see Maxwell & Delaney, 1993), 

subgroup analysis (see Jaccard, Turissi & Wan, 1990; Jöreskog, 1971), dummy variable regression (see Dillon & 

Goldstein, 1984), and the Chow test (Chow, 1960). These techniques that do not produce coefficient estimates for 

interactions and quadratics are also limited to testing for a single interaction or quadratic variable. The balance of the 

article will concentrate on techniques that produce coefficient estimates. 
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STRUCTURAL EQUATION TECHNIQUES 

 

Kenny and Judd (1984), among others (e.g., Bollen 1995, Hayduk, 1987; Jaccrd & Wan 1995; Jöreskog & Yang 

1996; Ping 1995, 1996; Wong & Long, 1987), have proposed an approach to specifying interaction and quadratic latent 

variables using structural equation analysis. In structural equation analysis the measured variables (indicators) are 

assumed to be linear functions of their unobserved (latent) variable. For an indicator x this relationship is specified as 

Var(x) = λX
2Var(ξX) + Var(εX) , (3) 

where  Var(a) is the variance of a, λX is the (factor) loading of x on the latent variable ξX, εX is the error in measuring x, 

and ξX and εX are independent (Jöreskog, 1973; Keesling, 1972; Wiley, 1973). The Kenny and Judd approach involves 

specifying the indicators of a latent variable interaction, ξXZ for example, by using all possible products of the indicators 

of the latent variables ξX and ξZ. In particular for ξX and ξZ with indicators x1, x2, z1, and z2, respectively, ξXZ would have 

the indicators x1z1, x1z2, x2z1, and x2z2.1 Under certain conditions the variance of these indicator products is given by 

Var(xizj) = Var((λXiξX + εXi)(λZjξZ + εZj)) 

= λXiλZjVar(ξXZ) + λXiVar(ξX)εZj + λZjVar(ξZ)εXi + Var(εXi)Var(εZj) . (4) 

Specification of these indicator products is tedious however. The Kenny and Judd approach requires the specification 

of four dummy (non-linear) variables, one for λXiλZj, and one for each of the last three terms of equation 4. Hence a total 

of sixteen dummy variables would be required for the four product indicators of ξXZ. For models with several interactions 

or quadratics, or several indicators per variable, these dummy variables can overwhelm the model. For example a model 

with two linear latent variables (e.g., ξX and ξZ) having six indicators each, one interaction, and two quadratic variables 

requires the specification of three hundred and seventy-two additional dummy variables.2 Aiken and West (1991) noted 

that this approach has been difficult for researchers to implement. 

 

Regression Techniques 

 

Perhaps for these reasons regression continues to be a popular alternative to structural equation analysis for 

estimating interactions and quadratic effects among latent variables. Two regression approaches are available. 

Researchers can ignore measurement error, sum the items to form a single measure of each concept, and form arithmetic 

products of these summed measures to create interaction and quadratic variables. For example, the interaction variable 

corresponding to the summed variables X = x1 + x2 and Z = z1 + z2 would have the form XZ = (x1 + x2)(z1 + z2). 

Quadratic variables would be similarly constructed. These variables can then be added to the regression model. However, 

this approach has been criticized for its biased and inefficient coefficient estimates for both the summed variables and the 

interactions and quadratics (Bohrnstedt & Carter, 1971; Busemeyer & Jones, 1983; Cochran, 1968; Fuller, 1987; Gleser, 

Carroll & Gallo, 1987). 

Warren, White and Fuller (1974) and Heise (1986) proposed an alternative approach for regression  and variables 

measured with error, that involved correcting the regression moment matrix using appropriate error variance terms. 

Consider the variable x given by x = XT + ex , where x is the observed score, XT is the true score, and ex is error. The 

variance of the true score XT could be estimated using the variance of the observed score x and the variance of the error 

ex, and the regression variance-covariance matrix could be corrected for this error. Specifically, 

Var(x) = Var(XT) + Var(ex) (5) 

where XT and ex are assumed to be uncorrelated. Hence 

Var(ex) = Var(x) - Var(XT) 

             = Var(x) - ρXXVar(X) 

             = Var(x)(1 - ρXX) 

where 

ρXX = Var(XT)/Var(x) = the (a-priori) reliability of x. 

For an interaction variable xz, 

Var(XTZT) = Var[(x-ex)(z-ez)] 

   = Var(xz - xez - zex + exez) 

   = Var(xz) - Var(z)Var(ex) - Var(x)Var(ez)+ Var(ex)Var(ez) 

   = Var(xz) - Var(z)Var(x)(1 - ρXX) - Var(x)Var(z)(1 - ρZZ) 

+ Var(x)(1 - ρXX)Var(z)(1 - ρZZ) 

(see Bohrnstedt & Goldberger, 1969) could replace Var(xz) in the regression variance-covariance matrix, assuming x and 
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z have a multivariate normal distribution with zero mean. 

While useful, this approach is limited to situations where the a-priori errors or reliabilities of x and z are known. 

Nevertheless, a similar correction approach could be taken using a structural equation analysis. This approach is 

developed next. 

 A PROPOSED ESTIMATION TECHNIQUE 

 

Structural equation modeling packages such as AMOS, EQS and LISREL can provide a straightforward estimate of 

λX, Var(ξX), and Var(εX) in equation 3 using the so-called measurement model (see Anderson & Gerbing, 1982; 1988) 

(see also Byrne, 1989). This measurement model is intended to gauge the adequacy of the assignment of indicators to 

latent variables, and in the process it produces estimates of the parameters  in equation 3 (i.e., Var(εX), λX and Var(ξX)). 

For variables formed as sums of indicators such as X = x1 + x2 , equation 3 becomes 

Var(X) = Var(x1 + x2) 

     = Var[(λX1ξX + εX1) + (λX2ξX + εX2)] 

     = Var((λX1 + λX2)ξX) + Var(εX1) + Var(εX2)  

     = Var(ΛXξX) + θX, 

     = ΛX
2Var(ξX) + θX, (6) 

where ΛX = λX1 + λX2, θX = Var(εX1) + Var(εX2), x1 and x2 are independent of εX1 and εX2, εX1 and εX2 are independent of 

each other, and x1 and x2 are multivariate normal with zero means. Since estimates of ΛX = λX1 + λX2, θX = Var(εX1) + 

Var(εX2), and Var(ξX) are available in a measurement model for ξX, they can be used to correct Var(X), and provide a 

consistent estimate of Var(ξX). Rearranging equation 6, Var(X) in a regression variance-covariance matrix could be 

replaced by an estimate of Var(ξX) 

Var(ξX) = (Var(X) - θX)/ΛX
2 . (7) 

 

CORRECTION EQUATIONS 

 

The balance of the regression variance-covariance matrix could be corrected in a similar manner, using combinations 

of the uncorrected variance-covariance matrix entries and measurement model estimates. For example, consider the 

following regression model, 

Y = b0 + b1X + b2Z + b3V + b4W + b5XX + b6ZZ + b7XZ + b8VW + b9VZ , (8) 

where X, Z, V, W and Y are sums of indicators and of the form 

Q = q1 + q2 , 

XX, ZZ, XZ, VW, and VZ are of the form 

     PQ = (p1+p2)(q1+q2) , 

and p1, p2, q1 and q2 are indicators meeting the equation 6 conditions. 

The correction for the diagonal term Var(X) in the variance-covariance matrix for equation 8 is given by equation 7 

and the corrections for Var(Z), Var(V), Var(W), and Var(Y) are similar to those shown in equation 7. Under the 

assumptions for equation 6, the corrections for the other terms in the variance-covariance matrix for equation 8 can be 

determined. For example, the corrections for the equation 8 variance-covariance matrix diagonal terms composed of 

interactions such as Var(XZ), Var(VW) and Var(VZ) are given by 

Var(ξXξZ) = (Var(XZ) - Var(ξX)ΛX
2θZ - Var(ξZ)ΛZ

2θX -θXθZ)/ΛX
2ΛZ

2 (9) 

where ΛX = λx1 + λx2, ΛZ = λz1 + λz2, θX = Var(εx1) + Var(εx2), and θZ = Var(εz1) + Var(εz2)  (see Appendix A). 

The correction for quadratics such as Var(XX) and Var(ZZ) is similar 

Var(ξXξX) = (Var(XX) - 4Var(ξX)ΛX
2θX - 2θX

2)/ΛX
4 . (10) 

Off diagonal terms composed of linear variables such as Cov(X,Z), are given by 

Cov(ξX,ξZ) = Cov(X,Z)/ΛXΛZ . (11) 

Other combinations of linear terms such as Cov(X,Y), Cov(X,V), Cov(X,W), Cov(Z,Y), Cov(Z,V), Cov(Z,W) and 

Cov(V,W) are similar. 

Mixed off-diagonal terms composed of linear and interaction or quadratic variables are also corrected. For example, 

terms such as Cov(V,XZ) are corrected as follows  

Cov(ξV,ξXξZ) = Cov(V,XZ)/ΛVΛXΛZ . (12) 

The other combinations of linear and interaction or quadratic terms such as Cov(X,XX), Cov(Z,XZ), etc. are similar. 

For the correction of off diagonal combinations of interactions and quadratics there are several cases: a covariance 

term composed of two quadratics, two interactions, or an interaction and a quadratic. The covariance of a quadratic and 
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an interaction with a common linear term such as Cov(XX,XZ) is corrected with  

Cov(ξXξX,ξXξZ) = (Cov(XX,XZ) - 2Cov(ξX,ξZ)ΛXΛZθX)/ΛX
3ΛZ . (13) 

Other combinations of interactions or quadratics are corrected similarly. For example, a covariance with two interactions 

with a common linear term such as Cov(VW,VZ) is corrected with 

Cov(ξVξW,ξVξZ) = (Cov(VW,VZ) - Cov(ξW,ξZ)ΛWΛZθV)/ΛV
2ΛWΛZ . (14) 

A covariance with a combination of interactions or quadratics with no common terms such as Cov(XZ,VW) or 

Cov(XX,ZZ) is corrected with 

Cov(ξXξZ,ξVξW) = Cov(XZ,VW)/ΛXΛZΛVΛW . (15) 

Equations 7 and 9-15 generalize to an arbitrary number of indicators for X, Z, V, W and Y (see Appendix A). 

 

 SYNTHETIC DATA EXAMPLES 

 

To gauge the efficacy of this technique it was used to recover known coefficients in synthetic data sets. Using a 

normal random number generator, data sets composed of 100 replications of samples of 50, 100, and 150 cases were 

created. Each replication was generated using the Table 1 population characteristics for x1, x2, z1, z2, t1, t2 and y in the 

equation  

Y = βY,XX + βY,ZZ + βY,TT + βY,XZXZ + βY,XXXX + ζY  (16) 

(see Appendix B for details).To gauge the effects of varying the simulation conditions the process was repeated for two 

additional levels of latent variable reliability (see Table 1). 

The equation 16 model was estimated for each replication by creating the variables X (= [x1+x2]/2), Z (= [z1+z2]/2), 

T (= [t1+t2]/2), XX (= X*X), XZ (= X*Z), and Y (= y, a single indicator) in each case.3 Then the linear-terms-only 

measurement model associated with equation 16 (i.e., involving only X, Z, T and Y-- see Figure 1) was estimated using 

EQS and maximum likelihood estimates. Specifically the λ's, θε's and the variances and covariances of the latent variables 

ξX, ξZ, ξT, and ξY were estimated. This produced estimates of the λ's, θε's and Var(ξ)'s for use in equations 7 and 9-13. 

After using equation 7 and 9-13 to correct the equation 16 variance-covariance matrix, the coefficients in equation 16 

were estimated using this corrected matrix and ordinary least squares regression. The results are shown in Table 2. 

To obtain a basis for comparison uncorrected regression estimates were also generated for each replication. These 

estimates used the uncorrected equation 16 variance-covariance matrix and ordinary least squares. The results are also 

shown in Table 2, and will be discussed later. 

To illustrate the use of the proposed technique a field survey data analysis involving interaction and quadratic latent 

variables is presented. 

 

 A FIELD SURVEY EXAMPLE 

 

As part of a study of reactions to changes in overall inter-group satisfaction with an exchange relationship (e.g., a 

firm selling to another firm) data were gathered using multiple Likert items measuring overall satisfaction (SAT) of the 

subject group with the partner group, the attractiveness of the best alternative group (ALT), and the opportunism (OPP) 

(self interest seeking with guile, Williamson, 1975) (which can plausibly be viewed as a form of instrumental aggression) 

committed by the subject group on the partner group (see Ping, 1993). 

Since the purpose is to illustrate the use of the proposed estimation technique the study will simply be summarized. 

SAT was measured using a seven-item scale, ALT used six items, and OPP was measured with eight items. The 

anticipated relationships among the study concepts were 

OPP = b1SAT + b2ALT + ζ. (17) 

Opportunism was expected to be negatively associated with satisfaction and positively associated with the attractiveness 

of the best alternative. 

Because alternative attractiveness was a new measure developed for this study, an a-priori estimate of its reliability 

was not available, and the approaches suggested by Heise (1986) or Feucht (1989) were not feasible. In addition, a 

structural equation analysis using the Kenny and Judd (1984) approach produced an unacceptably low model-to-data fit, 

that was improved only by deleting items in the measures. Because these item deletions appeared to compromise the 

content validity of the established measures, the proposed technique was used.4 

Two hundred eighty dyads were analyzed, and the resulting cases were used to produce the uncorrected variance-

covariance matrix shown in Table 3. The uncorrected regression results shown in Table 4 were the result of testing the 

indicators for non normality, averaging the indicators of each concept, zero centering each indicator for the linear 
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independent variables (i.e., s1, s2, ... , s7, a1, .... a6), and entering the interaction and quadratic variables into the regression 

jointly (see Lubinski & Humphreys, 1990). Zero centering the indicator s1, for example, is accomplished by subtracting 

the sample mean of s1 from the value of s1 in each case. The result is a mean of zero for s1 which meets the equation 6 

requirement for an indicator mean of zero. 

The equation 17 regression results shown in Table 4 suggested that opportunism was weakly associated with 

satisfaction, and that alternatives had the larger association. Because these results were difficult to explain, interaction 

and quadratic terms were added to equation 17: 

OPP = b1SAT + b2ALT + b3SAT2 + b4SATALT + b5ALT2 + ζ. (17a) 

The equation 17a uncorrected regression results shown in Table 4 suggested that opportunism was associated with 

both antecedents, but that the opportunism association with satisfaction may be contingent on the level of alternatives. 

To obtain unbiased estimates of these associations, the equation 17 measurement model was estimated using LISREL 

7 (see Figure 2). The resulting estimates for the indicator λ's and θ's, and the variances and covariances of SAT, ALT and 

OPP are shown in Table 5. These estimates and equations 7 and 9-13 were used to correct the Table 3 variance-

covariance matrix, and produced the corrected matrix shown in Table 6. The corrected regression results shown in Table 

7 suggested that the association between opportunism and satisfaction was contingent on the level of alternatives. In 

particular when alternatives were few (i.e., ALT was less than zero, its average), the negative association between 

satisfaction and opportunism was stronger (the coefficient of SAT was given by -.158+.213ALT), than when there were 

many alternatives (i.e., when ALT was above average or positive). These results will be discussed next. 

 

 DISCUSSION 

 

When compared to the uncorrected equation 17a results, the equation 17 regression produced a simple but 

misleading view of the relationships between opportunism and its antecedents. Adding the uncorrected interaction and 

quadratic terms (equation 17a) clarified these relationships somewhat, but the coefficient estimates for both the linear and 

nonlinear variables were biased. The corrected estimates of the equation 17a coefficients, however, suggested that the 

relationship between opportunism and satisfaction was contingent on the level of alternatives. 

In this example, removing the regression coefficient bias did not produce dramatically different estimates. However, 

the corrected Table 7 estimates could have been larger, smaller, or of different signs than the uncorrected Table 4 

estimates. Bohrnstedt and Carter (1971) demonstrated that the extent and direction of regression coefficient bias, when 

there are multiple independent variables measured with error, depends not only on the reliabilities of the independent 

variables, but also on the population correlations among the independent variables. As a result, the uncorrected Table 4 

coefficients could have born little resemblance to the population coefficients and their estimates given by the corrected 

Table 7 coefficients. 

The proposed technique appeared to produce less biased coefficient estimates than uncorrected regression in the 

synthetic data sets (see Table 2). The average coefficient estimates (Sample Coefficient Average in Table 2) were within 

a few points of the population values for all three sample sizes and reliabilities, and as a result the biases, the differences 

between the sample average values and the population values, were small. However, the variances of the coefficient 

estimates and the average squared deviations of the estimates around the population values (MSE in Table 2) were larger 

than for uncorrected regression. Hence the proposed estimation technique appeared to reduce coefficient estimate bias at 

the expense of increased coefficient estimate variability. 

Several assumptions made in the derivations of the proposed corrections were required and one was not. The 

assumption that the indicator error terms were mutually independent, and the assumption that the indicators have zero 

means, were not absolutely necessary-- they merely simplified the correction equations for this exposition. Relaxing the 

assumption of mutually independent error terms adds error covariance terms to equations 11-15, and error variance terms 

to equations 7, 9 and 10. 

Relaxing the assumption of zero indicator means also changes the form of the corrections. Without this assumption 

the covariance of each combination of a linear terms and an interaction or quadratic term (e.g., Cov(SAT,SATSAT)) 

must also be corrected for the non zero means of the measures. However, transforming independent variables so that they 

have zero means (i.e., zero centering) is recommended when investigating interaction and quadratic terms in the presence 

of their linear component terms (Cronbach, 1987; Jaccard, Turrisi & Wan, 1990; Aiken & West, 1991). 

The assumptions of indicator normality however cannot be relaxed. This assumption is required of latent variables in 

structural equation analysis, and enables the use of the measurement model estimates. However, measurement model 

estimates from Maximum Likelihood and Generalized Least Squares appear to be robust to departures form normality 
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(Anderson & Amemiya, 198; 1986; Boomsma, 1983; Browne, 1987; Harlow, 1985; Sharma, Durvasula & Dillon, 1989; 

Tanaka, 1984). 

(At the time the paper was written) Perhaps the most serious limitation of the proposed technique is the lack of a 

formally appropriate significance testing statistic. Since the distribution of the standard errors estimated with the 

proposed technique is unknown, the p-values associated with these coefficient estimates should not be trusted. Ping 

(2001) proposed scaling the uncorrected coefficient standard errors using the ratio of the uncorrected standard error of 

the estimate to the corrected standard error of the estimate (this paper is on the web site). 

Finally, modification of the variance-covariance matrix is not a feature of any popular regression software package, 

and the estimation of a measurement model adds procedural complexity. A spreadsheet package (LOTUS) was used in 

the simulations and the field survey example. The simulation variance-covariance matrix was created as an output file 

using SPSS and imported to the spreadsheet. Next the measurement model estimates were manually keyed into the 

spreadsheet and used to compute the corrected matrix.5 This matrix was output to a file (using the spreadsheet's ability to 

print to a file in ASCII) that was then read by the final regression program. Measurement model estimation is described in 

some detail in Bentler (1989, p. 26), Byrne (1989), and Jöreskog and Sörbom (1989, p. 96). An EXCEL version of this 

spreadsheet is available on the web site. 

 

 SUMMARY 

 

A technique for estimating regression effects involving interaction and quadratic latent variables has been proposed 

that is conceptually simple and appears to produce unbiased estimates that have a larger variance than uncorrected 

regression estimates. The technique appears to be suitable for studies in which all interactions and quadratics are probed, 

structural equation estimation is undesirable, or new measures are involved. The proposed technique involves several 

steps: I) zero center the indicators for the linear independent variables, create summed variables from the indicators (e.g., 

X = x1+x2+...+xn), then create the interaction and quadratic terms (e.g., XZ = X*Z), ii) create the regression variance-

covariance matrix, iii) estimate the measurement model parameters associated with the indicators of the summed 

variables (e.g., x1, x2, ..., xn), iv) correct the variance-covariance matrix using equations 7 and 9-13 and the measurement 

model parameter estimates, and v) estimate the regression effects using the corrected regression variance-covariance 

matrix resulting from step iv (the coefficient standard errors should be computed using Ping 2001).  
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APPENDIX A-- Correction Details  for an Arbitrary Variance-Covariance Matrix  

 

The following presents the proposed corrections for the elements of an arbitrary variance-covariance matrix in 

more detail. 

The correction for the variance of the linear term X = x1 + x2, where x1 = λX1ξX + εX1, x2 = λX2ξX + εX2, x1 and x2 

are independent of εX1 and εX2, εX1 and εX2 are independent of each other, and x1 and x2 are multivariate normal with zero 

means, is as follows: 

Var(X) = Var(x1 + x2) 

  = Var[(λX1ξX + εX1) + (λX2ξX + εX2)] 

  = Var((λX1 + λX2)ξX) + Var(εX1) + Var(εX2)  

  = Var(ΛXξX) + θX, 

  = ΛX
2Var(ξX) + θX, 

where Var(a) is the variance of a, ΛX = λX1 + λX2, θX = Var(εX1) + Var(εX2). As a result, a correction for Var(X) is given 

by 

Var(ξX) = (Var(X) - θX)/ΛX
2. 

The correction for Cov(X,Z) is  

Cov(X,Z) = Cov(x1 + x2, z1 + z2) 

    = Cov(x1,z1) + Cov(x1,z2) + Cov(x2,z1) + Cov(x2,z2) 

    = Cov(λX1ξX+εX1,λZ1ξZ+εZ1) + Cov(λX1ξX+εX1,λZ2ξZ+εZ2) 

+ Cov(λX2ξX+εX2,λZ1ξZ+εZ1) + Cov(λX2ξX+εX2,λZ2ξZ+εZ2) 

    = Cov(ξX,ξZ)(λX1λZ1 + λX1λZ2 + λX2λZ1 + λX2λZ2) 

    = Cov(ξX,ξZ)(λX1 + λX2)(λZ1 + λZ2)  

    = Cov(ξX,ξZ)ΛXΛZ , 

and a correction for Cov(X,Z) is given by 

Cov(ξX,ξZ) = Cov(X,Z)/ΛXΛZ , 

where ΛX = λX1 + λX2 +...+  λzm, and ΛZ = λZ1 + λZ2 +...+  λZn . 

Off-diagonal terms composed of linear and non linear variables such as Cov(V,XZ) are corrected as follows: 

Cov(V,WX) = Cov(ΛVξV + EV,[ΛWξW + EW][ΛXξX + EX]) , 

where EV = εV1 + εV2 +...+ εVp, EW = εW1 + εW2 +...+ εWq, and EX = εX1 + εX2 +...+ εXm. Hence 

Cov(V,WX) = Cov(ξV,ξWξX)ΛVΛWΛX , 

and 

Cov(ξV,ξWξX) = Cov(V,WX)/ΛVΛWΛX , 

where ΛV = λV1 + λV2 +...+  λVp , ΛW = λW1 + λW2 +...+  λWq, and ΛX = λX1 + λX2 +...+  λXm . 

The covariance of an interaction is given by 

Cov(VW,XZ) = Cov(V,X)Cov(W,Z) + Cov(V,Z)Cov(W,X) , (i) 

(see Kenny and Judd 1984), and 

Cov(VW,XZ) = Cov(ξV,ξX)ΛVΛXCov(ξW,ξZ)ΛWΛZ 

+ Cov(ξV,ξZ)ΛVΛZCov(ξW,ξX)ΛWΛX 

           = Cov(ξVξW,ξXξZ)ΛVΛWΛXΛZ . 

A correction for Cov(VW,XZ) is therefore given by 

Cov(ξVξW,ξXξZ) = Cov(VW,XZ)/ΛVΛWΛXΛZ , (ii) 

where ΛV = λV1 + λV2 +...+  λVp, ΛW = λW1 + λW2 +...+  λWq, ΛX = λX1 + λX2 +...+  λXm, and ΛZ = λZ1 + λZ2 +...+  λZn . 

By equality ii the correction for the covariance of two quadratics such as Cov(XX,ZZ) is 

Cov(ξXξX,ξZξZ) = Cov(XX,ZZ)/ΛX
2ΛZ

2 , 

where ΛX = λX1 + λX2 +...+  λXm, and ΛZ = λZ1 + λZ2 +...+  λZn . 

For the variance of an interaction 

Var(XZ) = Cov(XZ,XZ) 

   = Var(X)Var(Z) + Cov(X,Z)2 , 

using equality i. Hence 

Var(XZ) = [ΛX
2Var(ξX) + θX][ΛZ

2Var(ξZ) + θZ] + [Cov(ξX,ξZ)ΛXΛZ]2 

   = Cov(ξXξZ,ξXξZ)ΛXΛWΛXΛZ + Var(ξX)ΛX
2θZ 

+ Var(ξZ)ΛZ
2θX + θXθZ , 

and 
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Var(ξXξZ) = (Var(XZ) - Var(ξX)ΛX
2θZ - Var(ξZ)ΛZ

2θX -θXθZ)/ΛX
2ΛZ

2 , 

where ΛX = λX1 + λX2 +...+  λXm, ΛZ = λZ1 + λZ2 +...+  λZn, θX = Var(εX1) + Var(εX2) +...+ Var(εXm), θZ = Var(εZ1) + 

Var(εZ2) +...+ Var(εZn). 

The correction for a quadratic such as Var(XX) is similar: 

Var(XX) = 2Var(X)2 

                        = 2[ΛX
2Var(ξX) + θX]2 

   = Var(ξXξX)ΛX
4 + 4Var(ξX)ΛX

2θX + θX
2 , 

and 

Var(ξXξX) = (Var(XX) - 4Var(ξX)ΛX
2θX - 2θX

2)/ΛX
4 , 

where ΛX = λX1 + λX2 +...+  λXm and θX = Var(εX1) + Var(εX2) +...+ Var(εXm). 

For the covariance of a quadratic and an interaction that has common linear terms such as Cov(XX,XZ), 

Cov(XX,XZ) = 2Var(X)Cov(X,Z) 

          = 2[ΛX
2Var(ξX) + θX]Cov(ξX,ξZ)ΛXΛZ 

          = Cov(ξXξX,ξXξZ)ΛX
2ΛXΛZ + 2Cov(ξX,ξZ)ΛXΛZθX , 

and 

Cov(ξXξX,ξXξZ) = (Cov(XX,XZ) - 2Cov(ξX,ξZ)ΛXΛZθX)/ΛX
3ΛZ , 

where ΛX = λX1 + λX2 +...+  λXm, ΛZ = λZ1 + λZ2 +...+  λZn, and θX = Var(εX1) + Var(εX2) +...+ Var(εXm) . 

For a combination of interactions with common linear terms such as Cov(VW,VZ) 

Cov(VW,VZ) = Var(V)Cov(W,Z) + Cov(V,Z)Cov(W,V) 

           = [ΛV
2Var(ξV) + θV]Cov(ξW,ξZ)ΛWΛZ 

+ Cov(ξV,ξZ)ΛVΛZCov(ξW,ξZ)ΛWΛV 

           = Cov(ξVξW,ξVξZ)ΛV
2ΛWΛZ + Cov(ξW,ξZ)ΛWΛZθV , 

and 

Cov(ξVξW,ξVξZ) = (Cov(VW,VZ) - Cov(ξW,ξZ)ΛWΛZθV)/ΛV
2ΛWΛZ , 

where ΛV = λV1 + λV2 +...+  λVp, ΛW = λW1 + λW2 +...+  λWq, ΛZ = λZ1 + λZ2 +...+  λZn, and θV = Var(εV1) + Var(εV2) +...+ 

Var(εVp) . 

By induction a correction for Var(X) is given by Var(ξX) = (Var(X) - θX)/ΛX
2 , where 

ΛX = λX1 + λX2 +...+  λXm, 

θX = Var(εX1) + Var(εX2) +...+ Var(εXm), 

and m is the number of indicators of ξX. The other corrections are similarly generalized. For example Cov(ξVξW,ξVξZ) = 

(Cov(VW,VZ) - Cov(ξW,ξZ)ΛWΛZθV)/ΛV
2ΛWΛZ where 

V = v1 + v2 +...+ vm, 

W = w1 + w2 +...+ wn, 

Z = z1 + z2 +...+ zp,  

ΛV = λV1 + λV2 +...+  λVm,  

ΛW = λW1 + λW2 +...+  λWn,  

ΛZ = λZ1 + λZ2 +...+  λZp,  

θV = Var(εV1) + Var(εV2) +...+ Var(εVm),  

θW = Var(εW1) + Var(εW2) +...+ Var(εWn),  

θZ = Var(εZ1) + Var(εZ2) +...+ Var(εZp),  

and m, n, and p are the number if indicators for V, W and Z respectively. 
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APPENDIX B-- Synthetic Data Set Creation Details 

 

The data for equation 16 was generated as follows. Let M be an n by 1 vector of random normal variates with 

mean 0 and variance 1, where n is the number of cases. The n by 3 matrix P with columns that were the population values 

for the n by 1 vectors X, Z, and T were determined by P = M(1 1 1)C', where (1 1 1) is a 1 by 3 unit vector and C is a 

lower triangular matrix such that 
┌   VX  ┐ 

CC' = │ r(VZVX)    VZ  │ 

│ r(VTVX) r(VTVZ)  VT │ 
└      ┘ 

where V* is the variance of *, and r is the correlation between X, Z and T. The n by 4 matrices of observed values x, z 

and t for the population vectors X, Z and T, respectively, were given by x = (.6P(1 0 0) + N(0,θεx))(1 1 1 1) , z = (.6P(0 1 

0) + N(0,θεz))(1 1 1 1) and t = (.6P(0 0 1) + N(0,θεt))(1 1 1 1), where (1 0 0), (0 1 0), (0 0 1), and (1 1 1 1) are vectors of 

1's, and the N(0,θε*)'s are n by 1 vectors of random normal variates with mean 0 and variance θε* . The values for the n by 

1 vector for dependent variable Y was determined by 

Y = bXX + bZZ + bTT + bXXXX + bXZXZ + ζY , 

where the b*'s are the scalar effects of * on Y, and ζY is an n by 1 vector of random normal variates with mean 0 and 

variance equal to .16 . 
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TABLE 1 

Synthetic Data Sets Population Characteristics 

─────────────────────────────────────────────────────── 

               Population           

 Coeffi-        Varianceb        

Parametera   cient  All  Mixed  Low   High  

X                2.15 

Z                1.60 

T                1.00 

Corr(X,Z)  0.60 

Corr(X,T)  0.60 

Corr(T,Z)  0.60 

εx1                      0.36  1.15  0.19 

εx2                      0.81  1.15  0.19 

εz1                      0.49  0.85  0.14 

εz2                      0.64  0.85  0.14 

εt1                      0.15  0.53  0.09 

εt2                      0.55  0.53  0.09 

εy                0 

ζY               0.16 

λx1        1.00 

λx2        0.60 

λz1        1.00 

λz2        0.60 

λt1        1.00 

λt2        0.60 

λy         1.00 

βY,X       -0.15 

βY,Z        0.35 

βY,T        0.25 

βY,XX       -0.50 

βY,XZ        0.70 
 

───────────────────────────────── 
a Y = βY,XX + βY,ZZ + βY,TT + βY,XXXX + βY,XZXZ + ζY 

  Var(x1) = λx12Var(X) + Var(εx1) 

  Var(x2) = λx22Var(X) + Var(εx2) 

  Var(z1) = λz12Var(Z) + Var(εz1) 

  Var(z2) = λz22Var(Z) + Var(εz2) 

  Var(t1) = λt12Var(T) + Var(εt1) 

  Var(t2) = λt22Var(T) + Var(εt2) 
b Mixed Variance:  ρX=.75, ρZ=.69, ρT=.69 . 

  Low Variance: ρ for X, Z and T = .6 . 

  High Variance: ρ for X. Z and T = .9 . 



 

 

13 

TABLE 2 

Synthetic Data Set Regression Results 

─────────────────────────────────────────────────────── 

                           Sample 

                           Coef- 

             Popu-         ficient 

  Coeffic-  lation  Sample  Aver-         Var- 

    ient     Value   Size    age   Bias   iance   MSE 

─────────────────────────────────────────────────────── 

 

Uncorrected Regressions: 

 

    bY,X -0.15 n=50   0.081   0.231  0.000  0.067 

  100   0.072   0.222  0.000  0.057 

  150   0.068   0.218  0.000  0.049 

    bY,Z 0.35 50   0.199  -0.151  0.133  0.046 

  100   0.201  -0.149  0.109  0.033 

  150   0.202  -0.148  0.099  0.028 

    bY,T 0.25 50   0.307   0.057  0.005  0.018 

  100   0.306   0.056  0.002  0.012 

  150   0.304   0.054  0.002  0.010 

    bY,XX -0.50 50   -0.340   0.155  0.000  0.033 

  100   -0.350   0.150  0.000  0.024 

  150   -0.350   0.147  0.000  0.019 

    bY,XZ  0.70 50   0.544  -0.156  0.138  0.047 

  100   0.547  -0.153  0.115  0.035 

  150   0.549  -0.151  0.101  0.028 

 

Corrected Regressions: 

 

    bY,X -0.15 n=50  -0.174  -0.024  0.146  0.128 

  100  -0.169  -0.019  0.119  0.106 

  150  -0.168  -0.018  0.042  0.035 

    bY,Z 0.35 50   0.390   0.040  0.040  0.057 

  100   0.379   0.029  0.042  0.055 

  150   0.373   0.023  0.045  0.055 

    bY,T  0.25 50   0.218  -0.032  0.053  0.039 

  100   0.228  -0.022  0.043  0.034 

  150   0.236  -0.014  0.036  0.031 

    bY,XX  -0.50 50   -0.438   0.062  0.148  0.200 

  100   -0.468   0.032  0.166  0.193 

  150   -0.480   0.020  0.172  0.189 

    bY,XZ  0.70 50   0.785   0.085  0.147  0.220 

  100   0.746   0.046  0.166  0.206 

  150   0.736   0.036  0.158  0.188 
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  TABLE 2 (Con't.) 

 Synthetic Data Set Results 

─────────────────────────────────────────────────────── 

                            Sample 

                            Coef- 

             Popu-          ficient 

  Coeffic-  lation  Relia-   Aver-         Var- 

    ient     Value  bility    age   Bias   iance   MSE 

─────────────────────────────────────────────────────── 

 

Uncorrected Regressions: 

 

    bY,X     -0.15 ρ=High  -0.040  0.101  0.016  0.052 
Mixed    0.047  0.197  0.002  0.058 

Low      0.223  0.373  0.016  0.061 

    bY,Z      0.35 High     0.300 -0.050  0.049  0.029 

Mixed    0.104 -0.246  0.216  0.048 

Low      0.197 -0.153  0.103  0.028 

    bY,T      0.25 High     0.264  0.014  0.008  0.011 

Mixed    0.339  0.089  0.000  0.014 

Low      0.312  0.062  0.003  0.013 

    bY,XX    -0.50 High    -0.460  0.032  0.018  0.028 

Mixed   -0.350  0.149  0.000  0.024 

Low     -0.230  0.267  0.015  0.021 

    bY,XZ     0.70    High     0.670 -0.030  0.059  0.045 

Mixed    0.546 -0.154  0.120  0.037 

Low      0.431 -0.269  0.193  0.029 

 

Corrected Regressions: 

 

    bY,X     -0.15 ρ=High  -0.156 -0.006  0.013  0.012 
Mixed   -0.184 -0.034  0.062  0.046 

Low     -0.182 -0.032  0.237  0.207 

    bY,Z      0.35 High     0.351  0.001  0.014  0.014 

Mixed    0.399  0.049  0.020  0.036 

Low      0.397  0.047  0.084  0.114 

    bY,T      0.25 High     0.241 -0.009  0.011  0.009 

Mixed    0.222 -0.028  0.037  0.027 

Low      0.221 -0.029  0.080  0.064 

    bY,XX     -0.50 High    -0.493  0.007  0.071  0.075 

Mixed   -0.474  0.026  0.105  0.122 

Low     -0.419  0.081  0.289  0.383 

    bY,XZ      0.70 High     0.725  0.025  0.036  0.046 

Mixed    0.746  0.046  0.118  0.152 

Low      0.796  0.096  0.299  0.413 
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  TABLE 3 

 Field Data Variance-Covariance Matrix 

────────────────────────────────────────────────────────── 

 

             SAT    ALT    OPP  SATSAT SATALT ALTALT 

         ┌────────────────────────────────────────── 

  SAT    │  0.408  

  ALT    │ -0.290  0.645  

  OPP    │ -0.098  0.141  0.359  

 SATSAT  │ -0.216  0.221 -0.001  0.546   

 SATALT  │  0.221 -0.225 -0.007 -0.454  0.545  

 ALTALT  │ -0.225  0.215  0.065  0.367 -0.524  0.928 

 

 

 

 

 

TABLE 4 

Uncorrected Field Data Regression Results 

─────────────────────────────────────────────────────────────── 

 

Dependent  Independent   Coefficient            F-value     R2 and (p) 

Variable    Variable      b    Beta   p-value   and (p)   of difference 

─────────────────────────────────────────────────────────────────────── 

 

OPP            SAT  -.123  -.131     .09   11.92 (.00)      .09 

               ALT  .163   .219     .00 

 

OPP            SAT  -.181  -.193     .01 

               ALT  .189   .254     .00 

             SATSAT    -.069  -.058     .47 ┐ 

             SATALT     .195   .240     .10 │  7.14 (.00)   .14 (.006) 

             ALTALT     .120   .193     .04 ┘ 
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TABLE 5 

Field Data Measurement Model Results 

   ─────────────────────────────────────────────────────── 

 

   Parameter   Variance    Parameter     Value  

εs1  0.300        λs1  0.790 

εs2  0.156        λs2  0.799 

εs3  0.216        λs3  0.736 

εs4  0.133        λs4  0.877 

εs5  0.101        λs5  1.000 

εs6  0.131        λs6  0.860 

εs7  0.107        λs7  0.929 

εa1  0.368        λa1  0.816 

εa2  0.267        λa2  0.948 

εa3  0.251        λa3  0.921 

εa4  0.111        λa4  1.000 

εa5  0.224        λa5  0.814 

εa6  0.343        λa6  0.644 

εo1  0.762        λo1  0.553 

εo2  0.639        λo2  0.711 

εo3  0.510        λo3  0.837 

εo4  0.173        λo4  0.946 

εo5  0.191        λo5  0.890 

εo6  0.282        λo6  1.000 

εo7  0.250        λo7  0.890 

εo8  0.357        λo8  0.958 

 

 

   PHI 

 

             SAT   ALT   OPP 

     ┌──────────────────────── 

SAT │ .525 

ALT │ -.381  .815 

OPP │ -.119  .184  .425 

 

 

 

 

 

TABLE 6 

Field Data Corrected Variance-Covariance Matrix 

──────────────────────────────────────────────────────── 

 

 

             SAT    ALT    OPP  SATSAT SATALT ALTALT 

         ┌─────────────────────────────────────────── 

  SAT    │  0.525  

  ALT    │ -0.381  0.815  

  OPP    │ -0.119  0.184  0.425  

 SATSAT  │ -0.345  0.351 -0.002  0.949   

 SATALT  │  0.351 -0.357 -0.012 -0.819  0.953  

 ALTALT  │ -0.357  0.341  0.104  0.681 -0.927  1.516 



 

 

17 

TABLE 7 

Field Data Corrected Regression Results 

─────────────────────────────────────────────────────────────────── 

 

                                                   F-Value     R2 and (p) 

Dependent  Independent  Coefficient   p-value    and (p)    of difference 

Variable     Variable     b    Beta   (Approx.)  (Approx.)    (Approx.) 

───────────────────────────────────────────────────────────────────────── 

 

OPP            SAT  -.158  -.176     .03 

               ALT  .210   .291     .00     12.94 (.00)      .10 

             SATSAT    -.053  -.079     .54 ┐ 

             SATALT     .213   .319     .05 │    8.47 (.00)  .16 (.001) 

             ALTALT     .138   .261     .01 ┘ 

 

 

 

 

 

Figure 1- Equation 16 Measurement Model 

 
(Click here to view Figure 1) 

 

 

Figure 2- Equation 17 Measurement Model 

 
(Click here to view Figure 2) 

http://www.wright.edu/~robert.ping/fig1mvbr.jpg
http://www.wright.edu/~robert.ping/fig2mvbr.jpg
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ENDNOTES 

 

 
                     

1. Ping (1995) has proposed the use of a single indicator for ξXZ, x:z = (x1 + x2)(z1 + z2). 

2. A LISREL 8 implementation of the Kenny and Judd (1984) technique requires the specification of two dummy 

variables for equation 4, one for λxiλzj and another for the balance of equation 4 (see Jaccard & Wan, 1995). 

LISREL 8 then creates the remaining Kenny and Judd dummy variables using partial derivatives. While the 

specification work with LISREL 8 is reduced, the number of dummy variables produced is the same, and the 

lengthy execution times, convergence problems and improper solutions potential produced by the resulting large 

information matrix is unchanged. Ping (1996) has proposed a two-step approach that uses fixed (not estimated) 

values for the loadings and errors of the indicators of ξXZ for example, and reduces the size of the resulting 

information matrix (see Jaccard and Wan, 1995 for an alternative approach that uses a subset of the indicators, and 

Ping 1995 for a single indicator approach). 

3. The indicators x1, x2, z1, z2, t1, and t2 were generated to meet the equation 6 conditions. In particular, the 

indicators were generated to have zero means. 

4. The measurement model for SAT, ALT, OPP, SATSAT, SATALT, and ALTALT was specified using the Kenny 

and Judd (1984) approach and the full measures. The indicators for the interaction and quadratic latent variables 

were specified using all unique products of the indicators for SAT and ALT. The Kenny and Judd equations for the 

loadings and the error terms for these indicator products were coded using COSAN (a subprocedure of the SAS 

procedure CALIS) (LISREL 8 could also be used), the measurement model was estimated, but the resulting model-

to-data fit was unacceptable (e.g., the Comparative Fit Index (Bentler, 1990) was .6). Model fit was subsequently 

improved by deleting items from each measure (see Anderson & Gerbing, 1982; and Netemeyer, Johnson & Burton, 

1990). However, the measures for SAT and OPP were well established, and item deletion appeared to substantially 

reduce their content validity. As a result the structural equation analysis approach was abandoned. 

5. EQS will create an ASCII file containing the measurement model parameter estimates that also can be imported 

to the spreadsheet. 
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 ABSTRACT 

 

Latent variable regression, a path coefficient estimation technique for interactions and quadratics in unobserved or latent 

variables, uses an error-attenuated covariance matrix (e.g., available from SAS, SPSS, etc.) which is then adjusted for 

measurement error, as input to ordinary least squares regression. However, it was proposed without a standard error for 

the path coefficients. This research suggests an approximate standard error for interaction coefficients in latent variable 

regression, and provides an example of its use. 

 

In experiments with categorical independent variables (e.g., experiments analyzed with ANOVA), interactions, e.g. 

XZ in 

1)  Y = b0 + b1X + b2Z + b3XZ + b4XX + ζY , 

and quadratics (e.g., XX in Equation 1) are investigated to help interpret significant main effects (e.g., b1 and b2, the X-Y 

and Z-Y effects respectively in Equation 1). However, interactions and quadratics are seldom investigated in theoretical 

model validation studies using survey data, even when theory suggests their existence, possibly because they have been 

difficult to detect (see for example Podsakoff, Todor, Grover and Huber 1984; also see McClelland and Judd 1993). 

Until recently they may also have been difficult to specify with latent variables (Aiken and West 1991). 

Nevertheless significant latent variable interactions have been reported (e.g., Baumgartner and Bagozzi 1995; Lusch 

and Brown 1996; Osterhuis (1997); Ping 1994, 1999; Singh 1998), and authors have called for the investigation of these 

variables in survey research (Aiken and West 1991; Blalock 1965; Cohen 1968; Cohen and Cohen 1975, 1983; Freidrich 

1982; Howard 1989; Jaccard, Turrisi and Wan 1990; Kenny 1985). Their argument is that failing to consider interactions 

and quadratics in the population model increases the risk of false negative research findings (Type II error) because a 

interaction (or a quadratic) can mask a significant conditional effect, and misleading positive research findings because 

the effect could be conditional (see Ping 1996c for details). 

There has been considerable progress recently in estimating interactions in survey data using regression (Aiken and 

West 1991; Jaccard, Turissi and Wan 1990; Ping 1996a) and using structural equation analysis (Bollen 1995; Hayduk 

1987; Jaccard and Wan 1995; Jöreskog and Sörbom 1996; Kenny and Judd 1984; Ping, 1995, 1996b; Wong and Long 

1987), and in interpreting these results (see Aiken and West 1991; Jaccard, Turissi and Wan 1990, Denters and Van 

Puijenbroek 1989). 

In particular, Ping (1996a) suggested adjusting the covariance matrix used in ordinary least squares (OLS) regression 

to estimate interactions involving unobserved or latent variables with multiple indicators (see Heise 1986 for another 

covariance matrix adjustment approach to the errors-in-variables problem that involves OLS regression). Using simulated 

data, his results suggested the proposed technique, which he termed latent variable regression (LVR), performed 

adequately by producing unbiased and consistent regression coefficients. However, the suggested technique included no 

standard error for the LVR coefficients (i.e., b1 through b4, in Equation 1). This renders LVR useless for theoretical 

model testing, the major use of errors-in-variables analysis in the social sciences. 

This research suggests an approximate standard error for the linear (i.e., b1 and b2 in Equation 1) and interaction (i.e., 

b3 in Equation 1) regression coefficients produced by LVR. We will not argue for the use of LVR or the proposed 

standard error (however see p. 7). We will simply show that the proposed standard error performs adequately, and that 

point out that with it LVR could be used in theoretical model testing. 

The paper begins with a brief review of LVR. Then it investigates the suggested standard error using simulated data 

sets. It concludes with a pedagogical example using LVR and the suggested standard error. 
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Latent Variable Regression 

 

Ping (1996a) proposed using an attenuated covariance matrix (e.g., available from SAS, SPSS, etc.) that has been 

adjusted for measurement error as input to ordinary least squares regression in order to detect latent variable interactions 

and quadratics. Loadings and measurement errors from a structural equation analysis measurement model are used to 

provide the adjustments for this covariance matrix. For example, for unidimensional latent variables X, Z, XZ, and Y 

meeting the Kenny and Judd (1984) normality assumptions (i.e., indicators are multivariate normal with zero means and 

independent of their measurement errors, and measurement errors are independent of each other), a measurement model 

for X, Z and Y could be estimated, and the adjusted or disattenuated variance, Var(X), associated with X = x1+x2+...+xn 

could be estimated using 

Var(X) = [Var(X)-θX]/ΛX
2, 

where Var(X) is the attenuated variance of X (available from SAS, SPSS, etc.), θx is the sum of the measurement errors of 

xi (= Var[εx1] +...+ Var[εxn]), and ΛX is the sum of the loadings of xi on X (= λx1 +...+ λxn). The variances of Z and Y are 

similar. 

The adjusted covariance of X and Z could be estimated from 

Cov(X,Z) = Cov(X,Z)/ΛXΛZ, 

where Cov(X,Z) is the attenuated covariance of X and Z (=z1+...+zm). The covariances of Y with X, and Z are similar. 

The adjusted covariance of XZ with Y could be estimated with 

Cov(XZ,Y) = Cov(XZ,Y)/ΛXΛZΛY. 

The covariances of XZ with X and Z are similar. 

Finally, the adjusted variance of XZ could be estimated using 

Var(XZ) = (Var(XZ) - ΛX
2Var(X)θZ - ΛZ

2Var(Z)θX - θXθZ)/ΛX
2ΛZ

2. 

 

A Suggested Latent Variable Regression Coefficient Standard Error 

 

The coefficient standard errors (SEs) (i.e., the SEs of b1, b1, b3, and b4 in Equation 1) produced by ordinary least 

squares (OLS) regression using an error-adjusted covariance matrix are incorrect because they assume variables 

measured without error (e.g., Warren, White and Fuller 1974). A common approach to this problem (e.g., in instrumental 

variables and two-stage least squares-- see Hanushek and Jackson 1977) is to adjust the SE from unadjusted OLS 

regression by changes in its standard error, RMSE (= [Σ[yi - i]2], where yi and i. are observed and estimated ys 

respectively). Thus an adjusted SE for LVR coefficients would involve the SE from unadjusted OLS regression, and a 

ratio of the standard error from unadjusted OLS regression and the standard error from LVR. Specifically, it is well 

known that SEs produced by unadjusted OLS regression (i.e., an SE produced using covariances unadjusted for 

measurement error) are attenuated by measurement error and OLS regression RMSE is reduced by accounting for 

measurement error (e.g., Warren, White and Fuller 1974, see Myers 1986 for additional citations). Thus an adjustment 

for the SE from unadjusted OLS regression would be the ratio of the RMSE produced by unadjusted OLS regression to 

that produced by LVR, or 

SELVR = SEU*RMSEU/RMSELVR , 

where SELVR is the suggested LVR standard error, SEU is the SE produced by unadjusted OLS regression (i.e., the SE 

produced using covariances unadjusted for measurement error), RMSEU is the standard error produced by unadjusted 

OLS regression, and RMSELVR is the standard error produced by LVR. 

Table 2 shows the performance of this suggested standard error in detecting known population structural coefficients 

(i.e., bs in Y = b0 + b1X + b2Z + b3XZ + b4W +ζY) under several combinations of reliability, structural coefficient size, 

and sample size. These results include the performance of structural equation analysis (i.e., LISREL 8) for reference, and 

were produced using the Table 3 population parameters and the simulation procedure described in Appendix A. 

Overall, the suggested standard error performed adequately as a coefficient standard error for LVR. Table 2 shows 

the bias (i.e., the ratio of the average of the standard errors to the root mean square difference of the coefficients from 

their population values) of the suggested standard errors and the LISREL 8 for comparison. While the downward bias of 

the suggested standard error was considerable in some cases, it was similar to the downward bias experienced by LISREL 

8 and the LISREL 8 biases reported by Jaccard and Wan (1995), and thus it was judged to be acceptable. Further, the 

number of significant coefficients produced by the suggested standard error was similar to LISREL 8 over the simulation 
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conditions, except for the low reliability-small sample condition, where the power of the test for the suggested standard 

error (i.e., the number of true positive interpretations) was slightly higher than LISREL 8. 

 

An Example 

 

In business-to-business relationships, relationship neglect (allowing the relationship to deteriorate) (NEG) has been 

argued to be associated with overall satisfaction with that relationship (SAT), the attractiveness of alternative relationships 

(ALT), investment in the relationship (INV), and the cost to switch relationships (SCT) (see Ping 1993). To illustrate the 

use of the adjusted coefficient standard error, we will add a satisfaction-alternative attractiveness interaction (SxA) to the 

variables argued to be associated with neglect, and estimate the structural equation 

2)  NEG = b0 + b1SAT + b2ALT + b3INV + b4SCT + b5SxA + ζNEG. 

Because we this is a pedagogical example, we will omit the details of the study (see Ping 1993 for a test of this 

model without an interaction). The unadjusted covariance matrix for these variables, along with the results from a 

measurement model of SAT, ALT, INV, SCT, and NEG are shown in Table 4. The spreadsheet calculations used to adjust 

the attenuated covariance matrix, plus the adjusted covariance matrix are also shown in Table 4. The resulting coefficient 

estimates for Equation 2 are shown in Table 1. 

To produce the Table 1 estimates for LVR, first we verified that SAT, ALT, INV, SCT, and NEG were unidimensional 

using single construct (structural equation) measurement models (see Jöreskog 1993). Then we mean centered the 

indicators of SAT, ALT, INV, SCT, and NEG (s, a, i, sc, and n respectively in Table 4) by subtracting the mean of an 

indicator from its case values using SPSS. Mean centering produces indicators and constructs with zero means, and is 

required for LVR (and interaction estimation with structural equation analysis without an intercept term in Equation 2-- 

see Jöreskog and Yang 1996). Next, the mean centered indicators for each construct were summed for each case to form 

regression variables SAT, ALT, INV, SCT, and NEG, and these new variables were added to each case, again using 

SPSS. The interaction SxA (= SAT times ALT) was also added to each case using SPSS. 

Then the unadjusted covariance matrix of SAT, ALT, INV, SCT, NEG, and SxA was produced using SPSS, and a 

measurement model for SAT, ALT, INV, SCT, and NEG was estimated using LISREL 8 and maximum likelihood. 

Measurement model parameters for SxA are not necessary because the covariance matrix entries involving an interaction 

are adjusted using the unadjusted interaction and the liner-terms-only measurement model (e.g., involving SAT, ALT, 

INV, SCT, and NEG-- see Equation 2). Next, the measurement model loadings and measurement errors were used to 

adjust the covariance matrix of SAT, ALT, INV, SCT, NEG, and SxA to produce an adjusted covariance matrix for SAT, 

ALT, INV, SCT, NEG, and SxA using an Excel spreadsheet available on the web site. 

This adjusted covariance matrix for SAT, ALT, INV, SCT, NEG, and SxA was input to SPSS to produce i) LVR 

coefficient estimates and ii) an LVR standard error (RMSELVR). Next the unadjusted covariance matrix was input to 

SPSS to estimate iii) unadjusted coefficient standard errors (SEU) and iv) an unadjusted OLS regression standard error 

(RMSEU). 

Then adjusted coefficient standard errors were calculated by multiplying the unadjusted coefficient standard errors 

(SEU-- result [iii]) by RMSEU (result [vi]) divided by RMSELVR (result [ii]). Finally, the significance of the LVR 

coefficients was estimated by dividing the LVR coefficients (result [i]) by the adjusted coefficient standard errors just 

calculated. 

The LISREL 8 estimates shown in Table 1 were produced by first attempting to use the Kenny and Judd (1984) 

approach of itemizing the SXA interaction with all unique products of the indicators of SAT and ALT. The resulting 

itemization of SXA produced 25 product-indicators and the LISREL 8 structural model for Equation 2 did not fit the 

data. Next, we attempted to use the Jaccard and Wan (1995) approach of itemizing SXA with a consistent subset of its 25 

product-indicators. However, while several consistent subsets of the product-indicators were found, none were judged to 

be content valid because none spanned the indicators of SAT and ALT (i.e., all the indicators of SAT and ALT were 

not represented in any of these subsets of product indicators). Finally, using the Ping (1995) approach of itemizing SXA 

with a single product indicator that is the sum of the SAT items times the sum of the ALT indicators, we were able to 

estimate the Equation 2 model. 

Several comments may be of interest. The spreadsheet calculations involved multiplying the unadjusted covariances 

by functions of the number of items in the measures involved (e.g., G7, G8, etc. in Table 4). This was required because 

the unadjusted covariances in Table 4 were based on averaged, rather than summed, indicators. Multiplying each 

unadjusted covariance by functions of the number of items in its measures reverses the effect of averaging and produces 
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usable variances and covariances. 

Because of the number of steps involved, LVR is as tedious to use as other structural equation techniques for 

interactions. In addition, it cannot be used to jointly estimate multiple dependent variables as structural equation analysis 

can. Thus it appears to be no real threat to the popularity of LISREL, AMOS, EQS, etc. 

However, since it does not involve specifying a structural equation model (e.g., LISREL) that involves an interaction 

(and experiencing estimation difficulties such as those described above), LVR might be useful to substantive researchers 

not interested in learning the intricacies of specifying and estimating interactions with structural equation analysis (e.g., 

LISREL). It may also be effective in estimating several interactions or probing for interactions to explain non-significant 

associations (a disordinal interaction can mask a significant association). The specification of several interactions 

noticeably increases the nonnormality of a structural equation model, and virtually guarantees unacceptable model-to-data 

fit; it can also increase structural model convergence and improper solution difficulties. 
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Appendix A- Simulated Data Set Creation 

 

To produce the Table 2 results, the model Y = b0 + b1X + b2Z + b3W + b4XZ + ζY was estimated using simulated data 

sets that met the Kenny and Judd (1984) normality assumptions (indicators are multivariate normal with mean zero and 

independent of their measurement errors, and measurement errors are independent of each other) with the  Table 3 

population parameters. These parameters are the original Kenny and Judd (1984) values for the variances of X, Z, and W, 

and polar but plausible values for model validation studies. E.g., the loadings and measurement errors produce 

reliabilities of .7 and .9, and the structural parameters (i.e., bs and ζs) correspond to R2 's of .10 and .50. 

X, Z, W, and their indicators x1, ... , x4, z1, ... , z4, w1, ..., w4 were created using PRELIS, and a normal random 

number generator. Each data set contained 100 or 300 cases and was replicated 100 times. For each of these data sets 

PRELIS and the Table 3 population parameters were used to generate Y and its single indicator y1, again using a normal 

random number generator. Next, the indicators x1, ... , x4, z1, ... , z4, w1, ..., w4 were summed to form X, Z and W, and 

these variables and Y (= y1) were mean centered by subtracting the mean of each variable from each case value for that 

variable to produce zero means for all variables. XZ (= X times Z) was added to the data set, and the attenuated 

covariance matrix for X, Z, W, Y and XZ was generated using SPSS. Then the raw data for x1, ... , x4, z1, ... , z4, w1, ..., 

w4, and y1 was used in a measurement model with LISREL 8 and maximum likelihood (ML) to produce the loadings and 

measurement errors for x1, ... , x4, z1, ... , z4, w1, ..., w4. Next these measurement parameters were used to adjust the 

attenuated covariance matrix, and the resulting adjusted covariance matrix was input to SPSSs matrix regression 

procedure to produce latent variable regression (LVR) structural coefficients, and an LVR Root Mean Squared Error 

(RMSE). Then the attenuated covariance matrix was input to SPSSs matrix regression procedure to produce unadjusted 

coefficient standard errors and an unadjusted RMSE. Finally the raw data was input to LISREL 8 to produce (ML) 

estimates for comparison purposes. 
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Table 1-- Coefficient Estimates for the Example 

 
Latent Variable (OLS) Regression Results: Dependent Variable = NEG 

                  Standardized      Unstandardized                                     

Variable      Coefficient          Coefficient          SEa   t-value (p-value) 

   SAT -.317  -.279 .068 -4.05    (.000) 

   ALT .214 .147 .051 2.84    (.005) 

   INV -.217 -.168 .056 -2.98    (.003) 

   SCT .066 .044 .045 0.97    (.333) 

   SxA -.127 -.080 .050 -1.57    (.117) 

Const.  .000 .035 0.00    (1.00) 

 

LISREL 8 (GLS) Results: Endogenous Variable = NEG 

                  Standardized     Unstandardized 

Variable      Coefficient          Coefficient           SE       t-value 

   SAT  -.337 -.327  .088 -3.70 

   ALT .207 .143  .054 2.63 

   INV -.185 -.156  .071 -2.20 

   SCT .042 .028  .058 0.49 

   SxA -.108 -.072  .052 -1.37 
 

χ2/df/p = 309/216/0.28E-4, GFI = .88, AGFI = .84, CFI = .99, RMSEA = .04 

 

_______________ 
a Suggested coefficient standard errors (i.e., coefficient standard errors from 

unadjusted regression multiplied by the ratio of unadjusted regression Root 

Mean Squared Errors [RMSE] to adjusted regression RMSE). 
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Table 2-- Bias in Coefficient Standard Error (SE) and Significant Coefficient Counts for the Suggested Standard 

Errors (Sugg. SE) and LISREL 8 (L8) 
       

        Bias
a
 in SE              Significant Coefficients         

LVRb with  LVRb with 

Sugg. SE L8 Sugg. SE L8 Difference  
 
lsi100: b1,b2,b4

c 0.831 0.881 110 82 28 

b3 0.833 0.841 33 29 4 

lsi300: b1,b2,b4 0.917 0.946 191 179 12 

b3 0.818 0.823 55 54 1 
  
 
lsn100: b1,b2,b4 0.878 0.941 106 73 33 

b3 0.959 0.942 0 4 (4) 

lsn300: b1,b2,b4 0.958 0.998 185 169 16 

b3 0.913 0.924 25 21 4 
  
 
lli100: b1,b2,b4 0.884 0.866 265 273 (8) 

b3 0.837 0.825 96 99 (3) 

lli300: b1,b2,b4 0.936 0.944 291 289 2 

b3 0.810 0.814 100 100 0 
  
 
lln100: b1,b2,b4 0.919 0.932 295 289 6 

b3 0.932 0.944 8 4 4 

lln300: b1,b2,b4 0.978 0.980 299 298 1 

  b3 0.918 0.908 27 28 (1) 
  
 
hsi100: b1,b2,b4 0.929 0.918 80 81 (1) 

b3 0.938 0.944 25 24 1 

hsi300: b1,b2,b4 0.974 0.984 183 180 3 

b3 0.891 0.885 53 56 (3) 
  
 
hsn100: b1,b2,b4 0.978 0.983 81 80 1 

b3 0.991 0.980 0 5 (5) 

hsn300: b1,b2,b4 1.000 1.000 183 182 1 

b3 0.938 0.923 23 27 (4) 
  
 
hli100: b1,b2,b4 0.926 0.918 296 297 (1) 

b3 0.930 0.931 100 100 0 

hli300: b1,b2,b4 0.980 0.984 300 300 0 

b3 0.880 0.883 100 100 0 
  
 
hln100: b1,b2,b4 0.987 0.978 296 297 (1) 

b3 0.982 0.972 0 4 (4) 

hln300: b1,b2,b4 1.000 1.000 300 300 0 

b3 0.929 0.905 19 27 (8) 
_______________ 
a The average of the suggested coefficient standard errors divided by the root mean square difference of the coefficients from their population 

values. A bias less than 1 suggests the suggested standard error underestimates the actual coefficient variation (measured in this case the root 

mean square deviation from the population value). 
b Latent Variable Regression. 
c b1, b2, and b4 are the coefficients of X, Z, and W in 100 data sets with lower reliability, small coefficients, a population interaction, and a sample 

size of 100. The next line shows this information for the XZ coefficients. Subsequent lines show combinations that include high reliability, large 

coefficients, with no population interaction, and a sample size of 300.  
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Table 3-- Population Parameters for Simulated Data Sets 

 
          Population             

     Parametera Variance  Coefficient 

All Data Sets: 

X  2.15    

Z  1.60    

W  1.00 

Corr(X,Z)  0.20 

Corr(X,W)  0.20 

Corr(Z,W)  0.20 

λy   1.00   

εy  0.00 

b0   0.00 

High Reliability Samples (ρ = .9): 

λx1  1.00   

λx2-λx4  0.90   

λz1  1.00   

λz2-λz4  0.90    

λw1  1.00   

λw2-λw4  0.90    

εx1-εx4 0.82    

εz1-εz4 0.61    

εw1-εw4 0.38    

Low Reliability Samples (ρ = .7): 

λx1  1.00   

λx2-λx4  0.70   

λz1  1.00   

λz2-λz4  0.70    

λw1  1.00   

λw2-λw4  0.70    

εx1-εx4 2.21    

εz1-εz4 1.65    

εw1-εw4 1.03    

Small Coefficients (R2 = .10) 

ζY  1.6    

bY,X  -0.15   

bY,Z  0.17   

bY,W   0.20 

bY,XZ   0.12   

Large Coefficients (R2 = .50): 

ζY  0.8    

bY,X  -0.35   

bY,Z  0.37   

bY,W   0.40 

bY,XZ  0.30   

 
───────────────────────────────── 
a Y = bY,XX + bY,ZZ + bY,WW  + bY,XZXZ + ζY 

  xi = λxiX + εxi 

  zi = λziZ + εzi 

 wi = λwiW + εwi 
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Table 4-- Unadjusted Covariances and Measurement Model Results for the Example 
 

               [Col A]            [Col B]             [Col C]              [Col D]             [Col E]              [Col F]               [C ol G] 

 
Unadjusted Covariances: 

                 SAT                ALT                   INV                  SCT                  NEG                  SxA 
 

Row 1] SAT 0.4440214 

Row 2] ALT -0.2986497   0.7387649 

Row 3] INV 0.1690241  -0.1894359   0.6089392 

Row 4] SCT 0.1703342  -0.3365397   0.4214534  0.9570907 

Row 5] NEG -0.0053209   0.0034348  -0.0116940  0.0833171  0.5073915 

Row 6] SxA 0.2559515  -0.2630964  -0.0110285  0.0544937  0.0775070  0.6710534  

 

Loadings: 

                    1                       2                      3                        4                        5                     Sum              # of Indicators 
 

Row 7] s 0.8020420  0.8935347  1  0.8880973  0.93956542  4.52323953  5 

Row 8] a 0.9388913  0.9082904  1  0.7782776   3.62545943 4 

Row 9] i 0.8971429  0.9864732  1  0.9910887  0.75174001  4.62644498 5 

Row 10] sc 0.9298091  1.0108595  1  1.0286587   3.96932738 4 

Row 11] n 1.2562465  1.4469622  1  0.9756666   4.67887537 4 

  

Measurement Errors: 

                    1                       2                      3                        4                        5                     Sum  
 

Row 12] s 0.16497635  0.1304105  0.09750127  0.11863208  0.10498881 0.61650901 

Row 13] a 0.26669386  0.2477777  0.08196178  0.23768765   0.83412104 

Row 14] i 0.44856484  0.1266073  0.09591831  0.11563109  0.44733779  1.23405942 

Row 15] sc 0.29333068  0.2127870  0.17113061  0.21136906   0.88861735 

Row 16] n 0.23881176  0.0646641  0.58677303  0.67803413   1.56828306 

 

Adjusted Covariance Matrix:a 

                     SAT                  ALT                   INV                   SCT                   NEG                  SxA 
 

Row 17] SAT 0.512423355 (= [G7^2*A1-F12]/F7^2)b 

Row 18] ALT -0.364233127   0.83583034 (= [G8^2*B2-F13]/F8^2) 

Row 19] INV 0.201925726  -0.22588210   0.653589285 (= [G9^2*C3-F14]/F9^2) 

Row 20] SCT 0.189742817  -0.37417633   0.459002695   0.915539276 (= [G10^2*D4-F15]/F10^2) 

Row 21] NEG -0.005028333   0.00323979  -0.010804488   0.083317100   0.299196894 (= [G11^2*E5-F16]/F11^2) 

Row 22] SxA 0.345060666  -0.35402114  -0.014536385   0.066974076   0.080812176   0.93852398 (= [G7^2*G8^2*F6 
              (=G7^2*G8*A6/[F7^2*F8])                                                                                                                            -F7^2*A17*F13 

                                           (=G8^2*G7*B6/[F8^2*F7])                                                                                               -F8^2*B18*F12 

                                                                        (=G7*G8*G9*C6/[F7*F8*F9])                                                             -F12*F13]/F7^2*F8^2) 

                                                                                                    (=G7*G8*G10*D6/[F7*F8*F10]) 

                                                                                                                                 (=G7*G8*G11*E6/[F7*F8*F11]) 

             Cov(SAT,ALT) = G7*G8*A2/[F7*F8]. Italicized adjusted covariances are similar 

 

_________________ 
 
a SPSS requires a square matrix as input to matrix regression. 
b Spreadsheet formula for covariance matrix entry. 
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Hypothesized Associations and  

Unmodeled Latent Variable Interactions/Quadratics: 

An F-Test, Lubinski and Humphreys Sets,  

and Shortcuts Using Reliability Loadings 

 

 

 

When hypothesized associations are non significant in model tests with 

survey data, researchers typically report this with little further analysis. However, an 

unmodeled population interaction or a quadratic may have produced this 

nonsignificant association. In this case, the association's significance varies with the 

levels of a moderating variable in the study, and its non-significance does not hold 

for all levels of this moderating variable. The association even may be significant in a 

future study.  

Model-testers are discouraged from looking for interactions or quadratics in 

survey data after the hypothesized model has been estimated, as experimental 

researchers routinely do in ANOVA to better interpret associations, because it 

appears unscientific. In addition, structural equation analysis techniques for detecting 

interactions and quadratics are difficult to use.  

This article discusses these matters, and proposes an accessible approach for 

post-hoc probing for latent variable interactions and quadratics to better interpret 

significant and nonsignificant associations. 
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Hypothesized Associations and 

Unmodeled Latent Variable Interactions/Quadratics: 

An F-Test, Lubinski and Humphreys Sets,  

and Shortcuts Using Reliability Loadings 

 

Testing structural equation models in survey data, when one or more variables is measured 

with error, has received considerable attention since the 19th century (see Fuller, 1980 for a 

summary). The resulting approaches to specifying measurement error could be grouped into errors-

in-variables approaches that use regression (see Fuller, 1991 for a summary), and covariant structure 

analysis (structural equation) approaches that use LISREL, EQS, AMOS, etc. (e.g., Bentler & 

Weeks, 1980; Jöreskog, 1970; and McDonald, 1978). These specification approaches were extended 

to multiplicative interactions and quadratics (e.g., XZ and XX respectively in 

Y = b0 + b1X + b2Z + b3XZ + b4XX + ζ , (1 

where ζ is error or structural disturbance) by Kenny and Judd (1984) for structural equation analysis, 

and Heise (1986) for errors-in-variables. 

However, approaches for specifying interactions and quadratics with measurement error have 

been slow to diffuse in the Social Sciences (Cortina, Chen & Dunlap, 2001). Errors-in-variables 

approaches are inaccessible to many substantive researchers, and structural equation analysis 

approaches when applied to interactions and quadratics have proven difficult for substantive 

researchers to use (Aiken & West, 1991). (The extant interaction/quadratic specification approaches 

include Kenny & Judd, 1984; Algina & Moulder, 2001; Bollen, 1995; Jaccard & Wan, 1995; 

Jöreskog & Yang, 1996; Jöreskog, 2000; Klein & Moosbrugger, 2000/Schermelleh-Engle, Kein & 

Moosbrugger, 1998/Klein & Muthén, 2002; Marsh, Wen & Hau, 2004; Mathieu, Tannenbaum & 

Salas, 1992; Moulder & Algina, 2002; Ping, 1995, 1996a and 1996c; and Wall & Amemiya, 2001 



 3 

and 2003. With rare exceptions these approaches are unknown outside of the methods literature 

(Cortina, Chen & Dunlap, 2001) and they are tedious to use (Jöreskog & Yang, 1996).) Perhaps as a 

result, interactions and quadratics are comparatively rare in published model tests involving latent 

variables and survey data. 

Nevertheless, failing to consider unmodeled population interactions or quadratics in a survey 

model can produce erroneous research findings and misleading recommendations. For example, with 

a significant interaction in Equation 1, the coefficient of Z factors to  

Y = b0 + b1X + (b2 + b3X)Z + b4XX + ζ , (1a 

 rather than b2 (see Aiken and West, 1991). Because the (factored) coefficient of Z in Equation 1a is 

now a variable that depends on the various levels of X in the survey, the magnitude, sign, and 

statistical significance of b2 + b3X are variable, and thus very different from the coefficient of Z in an 

Equation 1 without XZ (i.e., b2' in 

Y = b0' + b1'X + b2'Z + ζ' ).              (1b 

For example, b2' could be nonsignificant, while b2 + b3X could be significant over part(s) of the 

range of X in the survey. In this event, it is not the case that Z is unassociated with Y in the study. 

The hypothesized Z-Y association is simply conditional, and its significance depends on the various 

levels of X observed in the study.  

This has important implications. Because b2' is approximately the same as b2 + b3Xavg , where 

Xavg is the average of X in the study (see Aiken and West, 1991), if Xavg is low (small), b2 + b3Xavg 

may be numerically small, and thus b2' may be nonsignificant. In different words, Z may appear to be 

unrelated to Y in an Equation 1b model, when in the Equation 1 model, for larger values of X in the 

study b2 + b3X may be significant as hypothesized. This also implies that with a significant 
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interaction XZ in Equation 1, the Z-Y association in Equation 1b may be significant in the next study 

if Xavg is larger (higher) in that study. 

Alternatively, with a significant interaction in Equation 1, b2' could be significant, but b2 + 

b3X could be nonsignificant over part of the range of X in a study. In this case, the customary 

interpretation based on the significance of b2', that Z was associated with Y, is incorrect: there is a 

group of respondents in the study where changes in Z had no association with Y. Further, any 

"management implications" of the apparently significant Z-Y association in Equation 1b due to b2' 

may be misleading. Again, there is a group of respondents for which "managing" (changes in) Z had 

no effect on Y. 

Similarly, with a significant quadratic such as XX in Equation 1, Equation 1 can be 

refactored into Y = b0 + (b1 + b4X)X + b2Z + b3XZ + ζ , and the coefficient of X is given by b1 + b4X, 

rather than by b1' in Equation 1b. In this case, the association between X and Y depends on the 

particular level of X at which this association is evaluated. (Interpreting quadratics and "the 

association between X and Y depending on the particular level of X at which this association is 

evaluated" is discussed later.) As a result, b1' could be significant while b1 + b4X could be 

nonsignificant, or vice versa, which creates the same interpretation and implications issues as a 

significant interaction. 

Thus, for improved interpretation of study results, interactions and quadratics should be 

investigated post-hoc (i.e., after the hypothesized model has been estimated). Specifically, this may 

provide plausible explanations for hypothesized but nonsignificant associations, which avoids 

casting a shadow on the relevant theory because it appears not to apply, and it improves the 

interpretation of significant associations that may be conditional. 
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Unfortunately, survey researchers are discouraged from post-hoc probing for interactions 

(e.g., Aiken & West, 1991; Cohen & Cohen, 1983) on grounds this is unscientific because these 

variables were not hypothesized. However, the logic of model testing and its variables can easily be 

separated from the logic of discovery and its variables (interactions/quadratics) (e.g., Hunt, 1983) as 

long as any discovered interactions/quadratics and their relationships in the hypothesized model are 

properly presented as hypothetical and to be tested in a later study. Specifically, any 

interactions/quadratics discovered in post-hoc probing should be presented as potentially an artifact 

of the sample: Their existence in any population and thus in other samples/studies should be viewed 

as an empirical question to be answered in later studies.  

However, given the estimation difficulties mentioned above in identifying significant 

interactions or quadratics among latent variables in survey data, substantive researchers who want to 

probe for these variables may decide to use approaches such as ordinary least squares (OLS) 

regression or analyzing subsets of data (e.g., median splits). Unfortunately regression estimates of 

interaction or quadratic structural coefficients for latent variables are well known to be biased (see 

the demonstrations in Aiken and West, 1991). Similarly, subset analysis is criticized in the 

psychometric literature for a variety of reasons, including its reduced ability to detect interactions or 

quadratics (see Maxwell and Delaney, 1993 and the citations therein). 

There are other post-hoc estimation concerns as well, such as correlations among interactions 

and quadratics that can produce no significant interactions or quadratics when several interactions or 

quadratics are estimated jointly, and extant search techniques, such as forward selection and 

backward elimination, can be indeterminate in that they can produce different subsets of significant 

interactions and/or quadratics. 
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This article discusses these matters: It proposes an accessible approach for, and an example 

of, post-hoc probing for latent variable interactions and quadratics in model tests involving survey 

data. 

 A Suggested Approach 

Because of the potential for detecting spurious interactions or quadratics (unhypothesized 

interactions or quadratics that do not exist in the population and are significant by chance), an F-test 

is desirable to determine if any unhypothesized interactions or quadratics are likely to be significant 

above the level of chance. To accomplish this, after the hypothesized structural model has been 

estimated, all possible interactions and quadratics should be added to the hypothesized model. To 

decrease the attendant amount of specification work, reliability loadings and measurement errors for 

these interactions and quadratics could be used (e.g., Mathieu, Tannenbaum and Salas, 1992; see 

Cortina, Chen and Dunlap, 2001, and Appendix A). 

 

An F-Test 

To reduce the likelihood of spurious (chance) interactions or quadratics, the increase in R2 

(e.g., the "Squared Multiple Correlations for Structural Equations" in LISREL) due to adding all 

implied interactions and quadratics to a model should be significant. A test statistic that assesses this 

increase is 

F = [( R2
2 - R1

2 )/( k2 - k1 )] / [( 1- R2
2 )/( N - k2 - 1 )] (2 

where R2
2 is the total explained variance (Squared Multiple Correlations for Structural Equations) in 

the structural model with the interactions and quadratics added, R1
2 is the total explained variance in 

the structural model with no interactions and quadratics added, k1 is the number of exogenous 
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variables (predictors) in the structural model without the interactions and quadratics, k2 is the number 

of exogenous variables in the structural model plus the number of interactions and quadratics added, 

and N is the number of cases (see for example Jaccard, Turrisi and Wan, 1990). This F statistic has 

k2 - k1 and N - k2 - 1 degrees of freedom. 

 

Calculating F 

 With a single endogenous or dependent variable (e.g., in the structural model Y = b1X + b2Z 

+ b3W + ζ, Y is the endogenous or dependent variable and there are three exogenous variables or 

predictors of Y on the right-hand side of the equal sign) the F statistic is a straightforward 

calculation. Specifically, k1 = 3 and R1
2 is the explained variance in Y. The interactions are those 

involving the exogenous variables XZ, XW and ZW, and the quadratics are those involving these 

exogenous variables XX, ZZ, and WW. So, k2 = k1 + 6 = 9 and R2
2 is the explained variance of Y in 

the structural equation with the interactions and quadratics added (i.e., Y = c1X + c2Z + c3W + c4XZ 

+ c5XW + c6ZW + c7XX + c8ZZ + c9WW).  

 

Multiple Endogenous Variables With multiple dependent or endogenous variables the 

suggested F-test is performed multiple times, once for each endogenous variable. (An overall F-test 

is discussed later.) First, the linear equations implied by the structural model are written out, and the 

relevant interactions/quadratics are added. For example, in the structural model with the structural 

equations 

Z = d1X                 (3a 

A = d2X + d3Z                (3b 

Y =        d4Z                 (3c 

B =        d5Z + d6C ,               (3d 
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the interactions implied by the model are those involving the variables on the right-hand side of each 

equation (i.e., XZ and ZC, and not XC--C and X did not occur together in any equation). The 

quadratics in the variables that comprise these interactions are the quadratics in the variables on the 

right-hand side of each equation (i.e., XX, ZZ, and CC). Thus, with the relevant interactions and 

quadratics added to their respective equations the origonal equations become 

Z = d1'X +                    d7XX              (3e 

A = d2'X + d3'Z +         d8XX + d9XZ + d10ZZ           (3f 

Y =        d4'Z +                                    d11ZZ           (3g 

B =        d5'Z + d6'C +                         d12ZZ + d13ZC + d14CC         (3h 

(d1 through d6 will change with the addition of the interactions and quadratics). F is computed for 

Equation 3e with R1
2 equal to the explained variance for Z in the structural model with Equations 3a, 

3b, 3c and 3d all specified together, and k1 = 1. R2
2 for Equation 3e is Z's explained variance in the 

structural model with Equations 3e through 3h all specified together, and k2 = k1 + 1. Similarly, for 

the F of Equation 3f, R1
2 for Equation 3b is A's explained variance in the structural model with 

Equations 3a through 3d specified together, and k1 = 2. R2
2 for Equation 3f is A's explained variance 

the structural model with Equations 3e through 3h specified together, and k2 = k1 + 3. F's for 

Equations 3g and 3h are computed as F for Equations 3e and Equation 3f, respectively, were. 

Several comments may be of interest. If F is significant, it means there is likely to be one or 

more non-spurious interactions or quadratics in the population model (represented by the present 

sample). However, because interactions and quadratics are usually highly correlated, none of the 

interactions or quadratics in the structural equation with all the relevant interactions and quadratics 

added may be significant. We will discuss this matter later. 

If F is not significant, it suggests it is unlikely there are any population interactions or 

quadratics in the population model. Because the reliability loadings and measurement errors are 
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approximations, so are R2
2 and F. If the p-value of F is in a neighborhood of 0.05, R2

2 could be re-

estimated using more exact loadings and errors for the interactions and quadratics (e.g., by 

standardizing X, Z and W so that their variances are equal to 1). However, experience suggests that 

more exact loadings and errors do not improve the F statistic materially, and it is usually less tedious 

to conclude there are no population interactions or quadratics in the model. 

 Examples 

We will reanalyze model test data involving the latent variables T, U, V, W, and Y, and their 

indicators ti (i = 1,5), uj (j = 1,4), vk (k = 1,4), wp (p = 1,4), and yq (q = 1,5), involving at least 200 

usable survey responses. (Other study details have been omitted to skirt details that are of lesser 

importance to the example.) The example will also develop a suggested approach for finding 

significant interactions/quadratics.  

The latent variables T through W were hypothesized to be associated with Y, the measures 

for the latent variables were judged to be unidimensional, valid and reliable, and the 

unidimensionally specified measurement model for T, U, V, W, and Y was judged to fit the data. 

However, estimating the structural model 

Y = β1T + β2U + β3V + β4W + ζ (4 

(Model I) using LISREL 8 and Maximum Likelihood estimation suggested that T, V and W were not 

associated with Y (see Table 1). Nevertheless, these non-significant associations seemed 

counterintuitive. Thus, the possibility that quadratics in T, V or W (i.e., TT, VV, or WW), or 

interactions involving these variables (i.e., TU, TV, TW, UV, UW or VW), were "masking" the 

nonsignificant associations was investigated using the approach suggested above. 

To do so, each indicator of the independent and dependent variables was mean-centered by 
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subtracting the indicator's average from its value in each of the cases (see Aiken and West, 1991). 

Then, the indicators for the constituent variables of the interactions and quadratics (i.e., T, U, V and 

W) were summed and averaged in each of the cases, and a single indicator for each of these 

interactions and quadratics was formed as the product of the indicator averages of the relevant 

constituent variables and added to each case (see Ping, 1995). (Averaging reduces the magnitude of 

the variance of these product-variables, which avoids estimation difficulties produced by a large 

determinant of the input covariance matrix.) Specifically, the single indicators t:t (= 

[(t1+t2+t3+t4+t5)/5]2), t:u (= [(t1+t2+t3+t4+t5)/5][(u1+u2+u3+u4)/4]), t:v (= [(t1+t2+t3+t4+t5)/5] 

[(v1+v2+v3+v4)/4]), t:w (= [(t1+t2+t3+t4+t5)/5][(w1+w2+w3+w4)/4]), u:u, u:v, u:w, v:v, v:w, and w:w 

were added to each case. 

Next, the Equation 4 structural model was re-specified to include all interactions and 

quadratics: 

Y = β1T + β2U + β3V + β4W + βTTTT + βUUUU + βVVVV + βWWWW  

+ βTUTU + βTVTV + βTWTW + βUVUV + βUWUW + βVWVW + ζ .         (4a 

These interactions and quadratics were specified using the Equations A7, A7a, A8 and A8a 

reliability approximations for the product indicator loadings and measurement errors. The previous 

structural model (i.e., without the interactions and quadratics) values for the correlations among the 

latent variables, and coefficient alphas for T, U, V and W, were used to calculate the 

interaction/quadratic reliabilities. In addition, the variances of the interactions and quadratics were 

freed, and the interactions and quadratics were allowed to covary with each other and the other 

exogenous variables. (With multivariate normality, interactions and quadratics have zero correlations 

with their constituent variables (Kendall and Stewart, 1958, see Kenny and Judd, 1984). However, it 
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is well known that interactions and quadratics are correlated with their constituent variables in (non-

normal) real-world data, and not correlating these variables diminishes model-to-data fit and thus it 

may bias structural coefficient estimates. Similarly, with multivariate normality the variance of 

interactions and quadratics should equal their Kendall and Stewart (1958) values (see Kenny and 

Judd, 1984). However, constraining interaction/quadratic variances to their Kendall and Stewart 

values in real-world data can produce several difficulties, including lack of estimation convergence.) 

The resulting structural model was estimated using LISREL 8 and Maximum Likelihood 

estimation (chi square/df/p-value/RMSEA/GFI/AGFI = 659/394/0.0/0.055/0.950/0.799). The 

squared multiple correlations from this model and those from the previous structural model (without 

the additional interactions or quadratics) were used in Equation 2 to calculate the proposed F statistic 

with R1
2 = 0.12, R2

2 = 0.24, k1 = 4, k2 = k1 + 10, and N = 200. The resulting F statistic with 10 and 

185 degrees of freedom was significant (F = 2.95, p = 0.002), which suggested there was likely to be 

at least one significant interaction or quadratic in the population Equation 4 model.  

However, none of the interactions or quadratics in Equation 4 when they were all estimated 

together was significant (not reported). Experience suggests this is common in real-world data 

because interactions and quadratics are typically highly correlated. Thus, Equation 4 was probed for 

significant interactions and quadratics.  

As implied earlier, depending on the search technique, different search results can obtain. 

However, Lubinski and Humphreys' (1990) suggestion that an interaction, XZ for example, should 

be estimated with its relevant quadratics, XX and ZZ, suggests an alternative search approach: Gauge 

each interaction with its relevant quadratics (Step 1); then estimate a final model containing only the 

significant interaction(s)/quadratic(s) from each of these tests (Step 2). This avoids mistaking an 



 12 

interaction for it's related quadratic (see Lubinski and Humphreys, 1990), or vice versa, and the 

number of interactions/quadratics to be jointly tested in Step 2 is reduced to the number of 

interactions or fewer, which should materially reduce masking. 

Thus, the interaction TU was tested with its relevant quadratics TT and UU. (A significant 

UU could not be used to explain the nonsignificant T, V or W associations with Y. However, a 

significant UU would mean the U-Y association was conditional, and it should be interpreted 

accordingly.) To accomplish this the path coefficients (β's) for the paths between the dependent 

variable Y and each of the interactions and quadratics in Equation 4a were fixed at zero so their 

(LISREL) modification indices (MI's) could be examined. This model was estimated (Estimation A-- 

chi square/df/p-value/RMSEA/GFI/AGFI = 695/409/0.0/0.056/0.844/0.798) and the interaction or 

quadratic β with the largest MI in the Lubinski and Humphreys interaction set TU, TT and UU was 

found (i.e., other MI's were ignored). Because β for TT-Y had the largest MI of the three, its path 

coefficient was freed and the model was re-estimated. In this re-estimation the TT-Y path was 

significant and the β's for TU and UU had MI's that suggested they were non-significant (i.e., below 

3.8 which roughly corresponds to a t-value of 2 with 1 degree of freedom). Next, this process of 

examining the MI's in Estimation A for the Lubinski and Humphreys interaction set for TV was 

repeated, and VV had the largest MI. Because its MI was above 3.8 its path to Y was significant 

when it was freed. The process was repeated for each of the other the Lubinski and Humphreys 

interaction sets (i.e., TW, TT and WW; UV, UU and VV; UW, UU and WW; and VW, VV and 

WW) using the Estimation A MI's. Finally, the significant interaction(s)/quadratic(s) from the Step 1 

Lubinski and Humphreys interaction sets were estimated in a structural model in which only they 

were specified (Step 2). 
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The results are shown in Table 2 (Part a), along with the results of estimating the Table 2 

(Part a) model using the Ping (1995) estimation approach (with averaged loadings and measurement 

errors). 

Next, the structural equations  

U = β5T + β6W + ζ                (5a 

W = β7V + ζ                 (5b 

T = β8W + ζ                 (5c 

were added to Equation 4 to create Model II. For Equation 4, estimating this model produced results 

similar to those in Table 1 (only the U-Y association was significant). The T-U and W-U 

associations were significant in Equation 5a, and the V-W association in Equation 5b was significant 

(not reported). As a result, we probed not only the nonsignificant hypothesized Y associations with 

T, V and W in Equation 4, and the W-T association in Equation 5c for unmodeled interactions or 

quadratics that might be used as explanations for nonsignificance, but also the significant 

associations for any unmodeled interactions or quadratics that would mean they were contingent 

instead of linear as hypothesized in Equations 4, 5a, 5b and 5c. The procedure was the same as 

before with one addition: Interactions were not relevant for Equations 5b and 5c, and the relevant 

quadratics were added to those equations to obtain  

U = β5'T + β6'W + βTT'TT + βTW'TW + βWW'WW + ζ  ,           (5d 

W = β7'V + βVV'VV + ζ ,               (5e 

and 

T = β8'W + βWW"WW + ζ               (5f 

for the F-tests. In this case F for Equation 4a was again significant (F = 2.88, k1 = 4, k2 = k1 + 10, N 
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= 200, R1
2 = 0.13, and R2

2 = 0.25). Similarly F for Equation 5d was (barely) significant (F = 2.44, k1 

= 2, k2 = k1 + 3, N = 200, R1
2 = 0.31, and R2

2 = 0.34), F for Equation 5e was nonsignificant (F = 

1.94, k1 = 1, k2 = k1 + 1, N = 200, R1
2 = 0.31, and R2

2 = 0.32), and F for Equation 5f was significant 

(F = 9.36, k1 = 1, k2 = k1 + 1, N = 200, R1
2 = 0.01, and R2

2 = 0.06). (Overall confidence of the 

significant F's was at least 93% using a Bonferroni approach, which is discussed later.) Next, 

Lubinski and Humphreys (L&H) interaction sets for Equation 4a suggested TT and VV were again 

significant, and the L&H interaction set for Equation 5d suggested TT was significant. In Equation 5f 

L&H interactions sets did not apply, but the modification index for WW suggested it was significant. 

In the Step 2 structural model with TT and VV added to Equation 4, TT added to Equation 5a and 

WW added to Equation 5c, these quadratics were significant (not reported).  

 Discussion 

The next step would normally be to interpret the significant post-hoc interactions and 

quadratics. However, because they were not hypothesized, theoretical justifications were developed 

for them to further reduce the likelihood of their being an artifact of the data. Stated differently, if a 

post-hoc interaction or quadratic cannot be theoretically justified, it should not be interpreted or used 

as an explanation for nonsignificance association because this difficulty with theoretical justification 

will likely reoccur in subsequent studies. In fact, if an interaction or quadratic cannot be theoretically 

justified, it probably should not be included in the Step 2 estimation. 

Interpreting the theoretically plausible Table 2 Part b results (from probing Model I), U 

remained significant with the addition of TT and VV; T and V were moderated by TT and VV, 

respectively, (i.e., TT and VV were significant); and W was now significant. In the conditional 

structural coefficient for T, (β1 + βTTT) (Equation 4 with TT and VV added, Y = β1T + β2U + β3V + 
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β4W + βTTTT + βVVVV + ζ = (β1 + βTTT)T + β2U + β3V + β4W + βVVVV + ζ), for a low level of 

existing T in the study (e.g., T = - 2.96 in Table 3--T was mean centered), small changes in that level 

of T were nonsignificantly associated with Y. This was true for increasing levels of T, until at a high 

level of existing T in the study (e.g., T = 1.8), small changes in that level of T were negatively and 

significantly associated with Y. The V-Y association was similar, except this moderated association 

became significant just above the average of V in the study (see Table 3). Specifically, for levels of 

V above the study average of V (V = 0), small changes in those levels of V were negatively and 

significantly associated with Y. 

Turning to the second half of the example (Model II), the nonsignificant associations in 

Equation 4 for T and V were likely to be explained by the suppressing effects of TT and VV in the 

sample, and with these quadratics added, W was significant in the sample. Similarly, the 

nonsignificant W-T association in Equation 5f was likely explained by the suppressing effect of WW 

in the sample. Since these associations were determined to be theoretically plausible, they ought to 

be significant in subsequent studies; and with TT and VV added, the W-Y association ought to be 

significant. However, these results may have been an artifact of the sample and their existence in the 

study population and thus in other samples from that population is an empirical question to be 

answered in future studies. 

Parenthetically, the significant U-Y association in Equation 4, the significant W-U 

association in Equation 5a, and the significant V-W association in Equation 5e were likely to be 

unconditional (unmoderated) in the study, and these associations would be candidates for the 

customary "provisional confirmation" interpretation (i.e., they were not disconfirmed). The W-Y 

association in Equation 4 might also receive this interpretation. However, since its significance was 
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the result of TT and VV, and thus may be an artifact of the sample, a caveat such as, "...if confirmed 

in subsequent studies...," should probably be added. 

There was one Step 1 combination of an interaction and its related quadratics in Equation 4 

with modification indices that suggested the interaction and both quadratics were significant, and the 

modification indices were trivially different from each other. This supports Lubinski and Humphreys' 

(1990) observation that interactions and quadratics can be difficult to distinguish.  

In this case the "tie" was broken using substantive theory. Specifically, the interaction seemed 

implausible. However, this also suggests that the "exact" nonlinear form of an association (i.e., 

interaction or quadratic) occasionally might be difficult to determine in real-world data without 

considering relevant theory.  

In general, the "winner" in case of "ties" should probably be the interaction/quadratic best 

supported by theory. This seemingly "backward science" of observing a relationship then finding 

theory to explain it should not conflict with the logic of science (justification) (see Hunt, 1989): The 

observed relationship was within the logic of discovery. Finding theoretical support for an observed 

relationship simply suggests its observation should be likely in the future.  

It is possible that when the significant interactions and quadratics resulting from each of the 

Step 1 Lubinski and Humphreys interaction sets are estimated together (Step 2), one or more of these 

interactions/quadratics will be nonsignificant. In that case, several approaches could be taken to 

further investigate the "true" set of (population) interactions and quadratics (e.g., "trimming" 

nonsignificant interactions/quadratics, backward selection, etc.). However, these approaches could be 

characterized as capitalizing on chance, and the suggestion of theoretically justifying the significant 

Step 1 interactions/quadratics, then estimating them in Step 2 (and not proceeding further) may be 
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more defensible.  

The Step 2 results with significant quadratics illustrates several points. Experience suggests, 

and authors believe, that quadratics are more likely than their presence in published substantive 

research suggests (e.g., Howard, 1989). In addition, while the modification indices for the TV 

interaction in Equation 4a was significant when considered in its Lubinski and Humphreys 

interaction set, it was judged to be plausible for one moderation (T moderates V) but implausible for 

the other (V moderates T). This underscores that a significant interaction, in this case TV, creates 

two moderations, the T-Y association with the factored coefficient (βT + βTVV)T, and the V-Y 

association with the factored coefficient (βV + βTVT)V, and theoretical support should probably apply 

to both of the moderations. 

For emphasis, these post-hoc results should be presented as an artifact of the study's sample, 

and their existence in a population should be viewed as an empirical question to be answered in 

future studies. Specifically, they should be hypothesized in a future study, with theoretical support, 

and these hypotheses should be tested. However, there are several difficulties with this approach. In 

addition to the question of the contribution-versus-journal-space of a replication based solely on a 

previously observed interaction/quadratic (this matter is discussed later), experience suggests that 

providing theoretical support for an interaction/quadratic can be demanding. Interested readers are 

directed to Howard (1989); Jaccard, Turrisi and Wan (1990); and Kenny and Judd (1984) for 

accessible discussions and examples of quadratics in substantive data, and to Aiken and West (1991), 

and the citations therein, Ajzen and Fishbein (1980), Kenny and Judd (1984) and Ping (1994, 1999) 

for interactions. 

The suggested F-test can become an overall test with multiple structural equations using a 
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Bonferroni approach to significance (e.g., Model II) (see Neter, Kunter, Nachtsheim and Wasserman, 

1996; however, also see Perenger, 1998). Specifically, the confidence of multiple F-tests is greater 

than 1 minus the sum of the p-values of each test. Thus, in the example the confidence of the three 

significant F-tests was at least 93% (= 1 - [0.002 + 0.065 + 0.002]). 

Although the Table 2 (Part a) reliability results were similar to the Ping (1995) (Part b) results 

for Model I, final estimation of a Step 2 model should probably use a technique that does not use 

approximate loadings and error variances, because the behavior of the reliability loadings and 

measurement errors under all circumstance is unknown. 

The model-to-data fit in the example illustrates the utility of single indicator 

interaction/quadratic specification. In the example, Model I had five latent variables, and specifying 

an additional 10 interactions and quadratics produced a fit of RMSEA/GFI/AGFI = 

0.055/0.950/0.799. While there is little agreement on fit indices (see Bollen and Long, 1993), a Root 

Mean Error of Approximation (RMSEA) (Steiger, 1990) of 0.05 suggests a close model-to-data fit 

(see Brown and Cudeck, 1993; Jöreskog, 1993). 

As previously mentioned, the coefficient alpha reliability loadings and measurement error 

variances used in the example, were approximate. Improved estimations could use standardized 

variables (see Equation A2) and latent variable reliabilities (see Equation A1), or a different 

interaction/quadratic estimation approach. However, experience suggests the suggested (coefficient 

alpha) reliability approach may be trustworthy for latent variables with moderate to lower 

intercorrelations, high reliability, and moderate to larger sample sizes (e.g., Table 2 Part a versus Part 

b). 

Using Maximum Likelihood (ML) estimation is not without its apparent difficulties. While it 
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is now widely believed that ML estimates are robust to "reasonable" departures from normality (i.e., 

in survey data), their standard errors are believed to be biased (in unknown directions) (see Cortina, 

Chen and Dunlap, 2001 for more). Nevertheless, in the present case, it is probably safe to use the 

customary t-value cutoff of 2 in absolute value to judge post-hoc significance because the results are 

exploratory. However, if more precision is desired, EQS offers an ML (ROBUST) estimator that is 

less sensitive to data distributional assumptions. 

Future Research 

Experience suggests that coefficient alpha reliability loadings and measurement error 

variance estimates are trustworthy under the conditions mentioned earlier. However, it would be 

interesting to investigate these estimates under more demanding conditions. Specifically, the 

reliability approximations could be formally investigated using a "best conditions" (realistic) 

scenario: artificial data sets with many cases, high reliability, and low correlations between XZ, for 

example, and X and Z. If they appear sufficiently unbiased and efficient, a "worse case" simulation 

scenario of fewer cases, lower reliabilities and higher intercorrelations might be investigated. This is 

usually done first for normal data to see if there is any point in repeating the investigation with non-

normal data. 

In the example, significant interactions and quadratics were identified given a significant F-

Test. However, experience suggests the suggested F-test may be conservative. Specifically, even 

with a nonsignificant F-test, significant interactions and quadratics can frequently be found in survey 

data. Thus, the F-test may be (conservatively) biased in structural equation analysis, and artificial 

data sets and an approach similar to that described above could be used to investigate these matters 

further.  
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While the logic of discovery does not necessarily require identifying "the" set of population 

interactions/quadratics, it would be interesting to recover known interactions/quadratics in artificial 

data sets (see above) using the suggested approach to gauge its efficacy. Specifically, the suggested 

approach could be formally investigated using several scenarios: normal and nonnormal artificial 

data sets with many or few cases, high or low reliability, and low and high correlations between XZ, 

for example, and X and Z.  

Summary and Conclusion 

The article provided arguments against neglecting the possibility of significant unmodeled 

interactions or quadratics in theoretical model tests using survey data, and thus for post-hoc probing 

for interactions/quadratics (after the hypothesized model has been estimated). For example, the 

article argued that significant unmodeled interactions or quadratics might explain hypothesized but 

nonsignificant model associations. Not exploring this possibility casts a shadow on the theory that 

generated the association, it appears not to explain the association. Similarly, in the present era of 

infrequent replication, it may be unnecessarily risky to interpret (or provide "management 

implications" for) a significant model association without checking first to see if the association 

could actually be contingent or moderated by another variable, and thus not significant in some study 

circumstances.  

To guard against finding them by chance, the article suggested an F-Test of the additional 

explained variance from adding all possible interactions and quadratics. The article also suggested 

the use of reliability approximations for interaction/quadratic loadings and error variances as a 

laborsaving approach.  

Because interactions and quadratics are correlated, they may suppress each other in a model 
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in which all possible interactions and quadratics are all estimated together. Thus, the article 

suggested an approach to detecting significant interactions and quadratics using an implication from 

Lubinski and Humphrey (1990) that some of this suppression involves an interaction (XZ) and its 

related quadratics (XX and ZZ). The suggested procedure was to write the structural equations 

implied by the model. Then, all implied interactions and quadratics are added to each of these 

structural equations, and the change in an F statistic from adding these interactions/quadratics is 

examined. Next, if this F-test is significant, any significant interaction/quadratic in each Lubinski and 

Humphreys interaction set is found using modification indices. Next, theoretical justification for 

each significant interaction/quadratic that results is provided. Then, the interactions/quadratics that 

were successfully theoretically justified are added to the hypothesized model (the model with no 

post-hoc interactions/quadratics) and the resulting model is estimated. Finally, the significant 

interactions/quadratics are interpreted in detail to identify the resulting zones of significance and 

nonsignificance for the moderated association (e.g., Table 3). 

The article argued that this post-hoc probing for interactions/quadratics (after the 

hypothesized model has been estimated) was within the logic of science as long as any significant 

interaction/quadratic that was found was also presented as an artifact of the study's sample, and its 

existence in the study population was viewed as an empirical question to be answered in subsequent 

studies. A Scenario Analysis could provide an easily conducted subsequent study to be reported 

along with the study where interactions and/or quadratics were post-hoc probed. Scenario analysis 

has been used elsewhere in the Social Sciences, and it is an experiment in which subjects, usually 

students, read written scenarios in which they are asked to imagine they are the subjects of an 

experiment in which variables are verbally manipulated. Then, these subjects are asked to complete a 



 22 

questionnaire containing the study measures, in this case the same questionnaire as the study with 

post-hoc probing (see Ping, 2004). The results of this research design when compared with other 

research designs such as cross sectional surveys (see for example Rusbult, Farrell, Rogers and 

Mainous, 1988), have been reported to be similar enough to suggest that scenario analysis may be 

useful in "validating" interaction/quadratic(s) discovered post-hoc in a previous study. When 

reported with the post-hoc probing study, it would provide a replication without the rigors of finding 

an outlet for a replication.  
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Table 1-- Abbreviated Results of Estimating the Equation 4 Structural Modela 

 

Y = -.044T + .210U - .151V + .118W + ζ (= .392) 

        (-.53)    (3.13)   (-1.98)    (1.93)             (6.71)   (t-values) 

 
─────────────────────── 
a Using LISREL 8 with maximum likelihood estimation. T, U, V, W were allowed to intercorrelated but their 

measurement errors were not. 

 

 

 

 

 

 

Table 2-- Abbreviated Results of Estimating the Equation 4 Structural Model with All (Relevant) Interactions 

and Quadratics Added, and the Path Coefficients (βs) for TT and VV Freed (All other interaction and 

quadratic path coefficients were fixed at zero) 

 

LISREL 8 with Equations A7, A7a, A8 and A8a reliability loadings and measurement errors:(Part a 

 

      Y = -.127T + .226U - .189V + .132W -.146TT -.139VV + ζ (= .362) 

             (-1.37)    (3.40)   (-2.22)    (2.21)      (-2.20)       (-2.25)             (6.62)   (t-values) 

 

χ2 = 522 GFIa = .87 CFIb = .97 

df = 377 AGFIa = .82 RMSEAc = .04 

 

  Abbreviated Results of Estimating the Equation 4 Structural Model with All (Relevant) Interactions 

and Quadratics Added, and the Path Coefficients (βs) for TT and VV Freed (All other interaction and 

quadratic path coefficients were fixed at zero) 

 

LISREL 8 with Ping (1995) (Measurement Model) loadings and measurement errors for TT and VV:

 (Part b 

 

      Y = -.126T + .225U - .190V + .132W -.119TT -.136VV + ζ (= .362) 

             (-1.36)    (3.40)   (-2.24)    (2.21)      (-2.19)       (-2.26)             (6.62)   (t-values) 

 

χ2 = 522 GFIa = .87 CFIb = .97 

df = 377 AGFIa = .82 RMSEAc = .04 

 
─────────────────────── 
a Shown for completeness only-- GFI and AGFI may be inadequate for fit assessment in larger models (see 

Anderson and Gerbing, 1984). 
b .90 or higher indicates acceptable fit (see McClelland and Judd, 1993). 
c .05 suggests close fit, .051-.08 suggests acceptable fit (Brown and Cudeck, 1993; Jöreskog, 1993). 
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Table 3-- Unstandardized T-Y and V-Y Associations Implied by the Table 2 Part b Results 
 

               T-Y Association                             V-Y Association                 

                 T        SE of                                   V          SE of                 

     T       Coef-    T Coef-        t-         V       Coef-     V Coef-        t-      

 Valuea  ficient b   ficientc      value  Valued  ficiente    ficientf     value    

  -2.96 0.22       0.20         1.10     -1.8  0.05        0.15        0.36     

    -2  0.11       0.16         0.66       -1  -0.05        0.12       -0.44     

    -1 -0.00       0.13        -0.07        0  -0.19        0.10       -1.75     

     0  -0.12       0.12        -1.03 1 -0.32        0.12       -2.63    

     1  -0.24       0.13        -1.82      1.2 -0.35        0.13       -2.71    

    1.8 -0.34       0.15        -2.16 

    (1)        (2)         (3)            (4)         (5)       (6)           (7)         (8)    (Column)  

 
─────────────────────── 
a T was mean centered and ranged from -2.96 (= low) to 1.8 in the study. 
b The coefficient of T was (-.126 - .119T). 
c The Standard Error (SE) of the T coefficient was 

     ____________      ________________________________  

   √Var(bT+bTxTT)  = √ (Var(bT)+T2Var(bTxT)+2TCov(bT,bTxT) , 

where Var(bT), for example, is the square of the Standard Error (SE) of bT (= -.126) in Part b of Table 2, 

Cov(bT,bTxT) = r*SEbT*SEbTxT, and r is the correlation of bT and bTxT (available in LISREL 8). 
d V was mean centered and ranged from -1.8 (= low) to 1.2 in the study. 
e The coefficient of V was (-.190 - .136V). 
f The Standard Error (SE) of the V coefficient was 

     ____________        _______________________________ 

   √Var(bV+bVxVV)  = √Var(bV)+V2Var(bVxV)+2VCov(bV,bVxV) , 

where Var(bV), for example, is the squares of the Standard Error (SE) of bV (= - .190) in Part b of Table 2, 

Cov(bV,bVxV) = r*SEbV*SEbVxV, and r is the correlation of bV and bVxV (available in LISREL 8). 
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Appendix A--Reliability Loadings and Measurement Errors 

 Werts, Linn and Jöreskog (1974) suggested the latent variable reliability (ρX) of a 

measure of a unidimensional latent variable X (i.e., the measure has only one underlying 

latent variable) is 

ρX = ΛX 2Var(X)/[ΛX 2Var(X) + θX ] , (A1 

where ΛX is the sum of the loadings of the indicators of X, Var(X) is the error disattenuated 

(i.e., measurement model) variance of X, and θX is the sum of the measurement error 

variances of the indicators of X. It is also well known that θX is 

θX = Var(X)( 1 - ρX ) , (A1a 

where Var(X) is the error-attenuated variance of X (e.g., obtained from SAS, SPSS, etc.). 

Solving Equation A1 for the loading of X, ΛX, and substituting Equation A1a into the result, 

ΛX = [ Var(X)ρX / Var(X) ]1/2 ≈ ρX 1/2 , (A2 

where ≈ is approximate equality if Var(X) does not equal Var(X), and equality if Var(X) and 

Var(X) are 1 (i.e., if Var(X) and Var(X) are standardized). 

Busemeyer and Jones (1983) showed that the reliability of XZ, ρXZ, is 

ρXZ = ( rXZ
2 + ρXρZ )/( rXZ

2 + 1 ), (A3 

where rXZ
2 is the square of the disattenuated correlation of X and Z (i.e., available in a 

measurement model). Thus, using Equation A2 

ΛXZ ≈ ρXZ 1/2 = [( rXZ
2 + ρXρZ )/( rXZ

2 + 1 )]1/2  (A4 

Using Equation A1a, A3, and the formula for rXZ (= Cov(X,Z) / Var(X)Var(Z) ), 

where Cov(X,Z) is the error disattenuated (i.e., measurement model) covariance of X and Z, 

along with the Kenny and Judd (1984) result for normal X and Z that Var(XZ) = 
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Var(X)Var(Z) + Cov (X,Z)2 , 

θXZ = Var(XZ)(1 - ρXZ) = Var(X)Var(Z)( 1 - ρXρZ ) . (A4a 

Similarly, based on Equation A3 the reliability of a quadratic such as XX, ρXX, is 

ρXX = ( 1 + ρX
2 ) / 2 (A5 

and using Equation A2 

ΛXX ≈ ρXX 1/2 = [( 1 + ρX
2 ) / 2 ) 1/2 (A6 

Using Equation A1a, A5, and the Kenny and Judd (1984) result for normal X that 

Var(XX) = 2Var(X)2, 

θXX = Var(X)2( 1 - ρX
2 ) . (A6a 

Anderson and Gerbing (1988) pointed out that for unidimensional constructs there is 

little practical difference between latent variable reliability ρ and coefficient alpha (α). Thus 

for unidimensional constructs Equations A4, A4a, A6, and A6a can be approximated by 

ΛXZ =
.
  [( rXZ

2 + αXαZ )/( rXZ
2 + 1 )]1/2 , (A7 

θXZ =
.
   Var(X)Var(Z)( 1 - αXαZ ) , (A7a 

ΛXX =
.
   [( 1 + α X

2 ) / 2 ) 1/2  and (A8 

θXX =
.
   Var(X)2( 1 - αX

2 ) , (A8a 

where =
.
  is approximate equality, and α is coefficient alpha. These approximate loadings and 

error variances could then be used in single indicator specifications to probe multiple 

interactions and quadratics as a labor-saving technique (also see Cortina, Chen and Dunlap, 

2001). 


	Latent Variable Interactions and Quadratics
	Repository Citation


