Predicting alcohol withdrawal in intensive care units

Reza Sadeghi
Wright State University, sadeghir@sacredheart.edu

Tanvi Banerjee
Wright State University - Main Campus, tanvi.banerjee@wright.edu

William L. Romine
Wright State University - Main Campus, william.romine@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/urop_celebration
Part of the Computer Engineering Commons, and the Medicine and Health Sciences Commons

Repository Citation
This Poster is brought to you for free and open access by the Office of the Vice Provost for Research and Innovation at CORE Scholar. It has been accepted for inclusion in Symposium of Student Research, Scholarship, and Creative Activities Materials by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Predicting alcohol withdrawal in intensive care units

Rational

- Alcohol use disorder is a common health issue in older adults who are facing depression caused by retirement, loss of a spouse, and sleep problems.
- The prolonged, heavy alcohol ingestion will lead to high alcohol dependency such that cessation or reduction of using alcohol causes alcohol withdrawal syndrome (AWS) in roughly 4 to 72 hours after the last drink.
- There is an essential need to predict and treat AWS in the initial stages otherwise the patients will suffer from hallucinations, fever, seizures, and agitation.
- Using physiological signals and machine learning techniques, we examined the predictability of AWS over the records of patients who stayed in critical care units in Medical Information Mart for intensive care III (MIMIC-III).

Method

MIMIC-III contains the records of 243 patients who were admitted in ICUs with the primary issue of AWS. To have a fair comparison, an equal number of records of patients without AWS are considered as the control group. We extracted nine descriptive statistical features from physiological signals and medical history of patients: average heart rate, average amount of magnesium in the blood, average body temperature, average systolic blood pressure, maximum systolic blood pressure, minimum systolic blood pressure, age, gender and length of stay in intensive care units. The computed features were fed into 11 supervised machine learning classifiers to identify AWS conditions.

Alcohol Withdrawal Prediction

<table>
<thead>
<tr>
<th></th>
<th>Naïve Bayes</th>
<th>Gradient Boosting</th>
<th>Adaptive Boosting</th>
<th>Support Vector Machine</th>
<th>Random Forest</th>
<th>Multi Layer Perceptron</th>
<th>Bagged Decision Tree</th>
<th>k-Nearest Neighbors</th>
<th>Decision Tree</th>
<th>Linear discriminant Analysis</th>
<th>Logistic regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.85</td>
<td>0.85</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>0.81</td>
<td>0.80</td>
<td>0.80</td>
<td>0.77</td>
<td>0.76</td>
</tr>
<tr>
<td>Precision</td>
<td>0.80</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.80</td>
<td>0.76</td>
<td>0.57</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td>Recall</td>
<td>0.92</td>
<td>0.90</td>
<td>0.88</td>
<td>0.88</td>
<td>0.87</td>
<td>0.86</td>
<td>0.82</td>
<td>0.89</td>
<td>0.91</td>
<td>0.80</td>
<td>0.77</td>
</tr>
</tbody>
</table>

10-fold cross-validation strategy

Acknowledgment

This work is supported by the National Institutes of Health (NIH) under Grant no K01 LM012439. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NIH.

Contact Information

Email: sadeghi.2@wright.edu
Website: https://rezasadeghiwsu.github.io/Website/