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Hypoxia/Aglycemia-Induced Endothelial Barrier
Dysfunction and Tight Junction Protein Downregulation
Can Be Ameliorated by Citicoline

Xiaotang Ma'®, Huiting Zhang'®, Qunwen Pan’, Yuhui Zhao?, Ji Chen"? Bin Zhao'*, Yanfang Chen'?*

1 Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China,
2 Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America

Abstract

This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs) in endothelial
cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD) was utilized to induce
endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular
endothelial cells (bEnd.3s). The effect of citicoline on endothelial barrier breakdown models was determined at either low or
high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was
measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD
increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1) and occludin at both
mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and
claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with
elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells
compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs.
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Introduction

Citicoline (CDP-choline, cytidine diphosphate choline, cytidine
5'-diphosphocholine) is composed of ribose, pyrophosphate,
cytosine and choline; clinically, CDP-choline is commonly used
for treating various types of neurodegenerative diseases, such as
Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS) and
Alzheimer disease (AD) [1]. More recent evidences suggest that
citicoline may increase dopamine production and glutamate
uptake in the brain to improve cognition [2,3]. Citicoline could
also reduce free fatty acid release and recover the activities of
mitochondrial ATPase and membrane Na'/K" ATPase to
alleviate brain damage [4,5]. However, the pathophysiology of
neurodegenerative diseases is complex which includes cholinergic
deficit, glutamate excitatory [6], neuroinflammation [7], immunity
dysregulation [8], glucose hypometabolism and blood-brain
barrier (BBB) disruption [9,10]; therefore the underlying mecha-
nisms of citicoline’s therapeutic effects on neurological diseases are
largely unknown.

Endothelial cells play an important role in BBB function; BBB
dysfunction is recognized to participate in neurodegenerative
disorders [11,12]. Cerebral vascular endothelial cells develop
highly selective barrier which controls the exchanges between
blood and brain compartments for the maintenance and
regulation of the neuronal microenvironment [13]. Tight junctions
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proteins (TJPs) such as zonula occludens-1 (ZO-1), occludin and
the claudin family exist in cerebral vascular endothelial cells,
which are the most crucial factors modulating barrier integrity
[14] [15]. It has been suggested that BBB dysfunction in AD is
likely related to the injury or dysregulation of TJPs [16].

In the study described herein, we examine the therapeutic effect
of citicoline on hypoxia/aglycemia-induced endothelial barrier
breakdown as well as the correlated changes in 'TJP expression.

Materials and Methods

Cell Culture

Human umbilical vein endothelial cells (HUVECSs) and mouse
brain microvascular endothelial cells (bEnd.3s) were obtained from
Shanghai Bioleaf Biotech Co., Ltd. The cells were cultured on
poly-D-lysine-coated six-well plates at a density of 1x10° cells/
well in DMEM and DMEM/F12 (Invitrogen, Carlsbad, CA, US),
respectively, supplemented with 10% fetal bovine serum (FBS;
GBICO), 100 U/ml penicillin and 100 U/ml streptomycin in a
37°C incubator with humidified atmosphere of 5%CO4/95% air.
The media were changed every 2 days. After reaching confluence,
cells were passaged using 0.1% trypsin-EDTA (GIBCO, Grand
Island, NY, USA). The 4™ passage of cells was used in this study.
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Figure 1. The effects of citicoline on Hypoxia/OGD induced increase of permeability in endothelial cells. Hypoxia/OGD induces the
increase of permeability. Citicoline decreases the permeability in HUVECs (A) and bEnd.3s (B) under hypoxia/OGD. High-dose is more effective when

compared to low dose. "P<<0.01, ""P<<0.001 vs. control; *P<<0.05, **P<<0.01, ***P<<0.001 vs. model; ##p<0.01,
P<0.001 vs. hypoxia, n=3/group. Papp: apparent permeability coefficient.

doi:10.1371/journal.pone.0082604.9001

Endothelial Barrier Breakdown Models and Citicoline

Treatments

After reaching confluent, cultured HUVECs and bEnd.3s were
used to build endothelial barrier breakdown models. In the
hypoxia model, HUVECs and bEnd.3s were exposed to hypoxic
(1% O2) condition for 24h using a hypoxic chamber as previously
described [17]. In the oxygen and glucose deprivation (OGD)
model, HUVECs were cultured in glucose-free DMEM medium
and hypoxic (1% O2) condition for 6 h [18]. OGD was not
produced in bEnd.3s. For evaluating the treatment effect of
citicoline on these models, citicoline (pharmaceutical factory
affiliated to Guangdong Medical College, Zhan Jiang, China)
was applied to cells during the period of hypoxia or OGD at low
dose (0.1 mmol/L) or high dose (1 mmol/L) [19,20].

Real-time RT-PCR Analysis

Total RNA was extracted with TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). cDNA was synthesized using RevertAid First
Strand ¢cDNA Synthesis Kit (Thermo Scientific) according to the
manufacturer’s protocol. Real-time PCR was carried out on a
LightCycer480-1I System (Roche Diagnostics, Penzberg, Ger-
many) using SYBR® Premix Ex TaqTM (TAKARA). Gene-
specific oligonucleotides were obtained from sangon (QuantiTect
Primer Assay). PCR primers were: 5- GCA CAT GCA GTG
CAA GGT GTA TGA-3 and 5- AAG GTA ACA AAG AGT
GCC ACC AGC-3 for claudin-5; 5-TAC AGC AAT GGA AAA
CCA CAC T-3 and 5-CAA AGG AAT GGG AAA CGA CTA A-
3 for occludin; 5-TCC GTG TTG TGG ATA CCT TGT A-3
and 5-GCC TCG TTC TAC CTC CTT ATG A-3 for ZO-1; 5-
GAA GGG CTC ATG ACC ACA GTC CAT-3 and 5-TCA
TTG TCG TAC CAG GAA ATG AGC TT-3 for GAPDH.
GAPDH was chosen for housekeeping gene for normalizing the
data of gene expression. Each experiment was repeated at least
three times. The relative quantification of the gene was
determined using the comparative CT method (2~ PP,

Western Blot Analysis
After different treatments, cells were lysed in ice-cold RIPA
(Applygen Technologies Company, Beijing) containing protease
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##p<0.001 vs. low citicoline;

inhibitor PMSF. Protein concentration was determined using the
BCA protein assay kit (Eppendorf-Bio photometer, Germany).
The western blot was performed as described in a previous study
[21]. The following primary antibodies were used: claudin-5
(1:400), occludin (1:400), ZO-1(1:400) (Invitrogen, Carlsbad, CA,
USA) and B-actin (1:1000, Abcam, Cambridge, MA, USA). The
appropriate  secondary anti-rabbit/mouse IgG  antibodies
(1:10,000, Abcam, Cambridge, MA, USA) were used. B-actin
was chosen for housekeeping gene for normalizing the data of
protein expression. The bands were visualized by Western
Lighting chemiluminiscence reagent (ProteinSimple, USA) and
quantified by densitometry using Quantity One software.

Immunofluorescence Assay

After treatment, immunofluorescence was performed as previ-
ously described [22]. HUVECs and bEnd.3 were incubated with
fluorescein isothiocyanate (FITC)-conjugated primary antibodies
(occludin, 1:200; claudin-1/3/4/5/7, 1:200; ZO-1, 1:200) over
night at 4°C. Then, cells were washed triple using wash buffer and
incubated with dye for F-actin (Rhodamine Phalloidin, 1:1000) for
1 hr at room temperature. DAPI (1:1000) was used for staining
cellular nuclear. The cells were washed for three times and
observed under a fluorescence microscope (Laica, TCS SP3II,
Germany).

Paracellular Permeability Assay

Flux of FITC-conjugated dextran (FITC-dextran, 10 kDa,
Sigma) across HUVECs and bEnd.3s monolayers was used to
measure the paracellular permeability [23]. Briefly, HUVECs and
bEnd.3s were seeded at a density of 2x10* cells/well in 300 pL
medium onto polycarbonate 24-well transwell chambers with a
0.4 um mean pore size and a 0.3 cm® surface area (Millicell
Hanging Cell Culture Inserts, USA). Cells were incubated with
FITC-dextran (1 mg/mL) in HBSS buffer for 90 min. Thereafter,
relative fluorescence passed through the chamber (in the lower
chambers) was determined by using EnSpire Manager (PerkinEl-
mer Company, USA) multimode plate reader at an excitation
wavelength of 485 nm and an emission wavelength of 535 nm.

Restriction of paracellular transport was determined by
analyzing the apparent permeability coefficient (Papp) for

December 2013 | Volume 8 | Issue 12 | e82604
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Figure 2. The effects of citicoline on Hypoxia/OGD-induced disruption of TJPs expression in endothelial cells. Representative images
of TJP staining on endothelial cells. Green: ZO-1/occluding/claudin-5; Red: F-actin; Blue: nuclear. Scale bars: 50 um. Hypoxia/OGD decreases the
expression and results in a discontinuous distribution of ZO-1 and occludin on the membrane of HUVECs (A). Exposure to hypoxia causes a decreased
expression and discontinuous distribution of ZO-1 and claudin-5 on the membrane of bEnd.3s (B). Treatment of citicoline restores the linear
distribution of ZO-1, occludin and claudin-5.

doi:10.1371/journal.pone.0082604.g002

FITC-dextran across the cells.
following equation

Papp was calculated by the We detected the permeability of HUVECs and bEnd.3s daily
for continuous 8 or 11 days after cells seeded to determine the
timing of EC barrier formation. In our experimental conditions,

dQ the time of EC barrier formation was day 4 and maintained for 4—
Popp= PTAVE C 60 ———=(cm/s) 6 days as reported by Horiuchi T et al and Koto T et al [24,25].
Thus, we chose to expose HUVECs and bEnd.3s to hypoxia/
OGD with/without citicoline on the fourth day after cells seeded,
the data were obtained 24 h (for hypoxia) or 6 h (for OGD) after

the different treatments.

where dQ /dt is the amount of FITC transported per minute
(ng/min), A is the surface area of the filter (cm?), Cy is the initial
concentration of FITC(ng/ml) and 60 is the conversion from
minutes to seconds.
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Figure 3. The effects of citicoline on Hypoxia/OGD induced changes in the mRNA level of TJPs in endothelial cells. (A) mRNA level of
Z0-1 and occludin in HUVECs. (B) mRNA levels of claudin-5 and ZO-1 in bEnd.3s. Both high and low dose of citicoline increase the expression, while
high-dose is more effective when compared to low dose.P<0.01,”*"P<0.001 vs. control; *P<0.05, **P<0.01, ***P<0.001 vs. model; #*#P<0.01,

#7#p<0.001 vs. low citicoline; ~~~P<0.001 vs. hypoxia, n = 3/group.
doi:10.1371/journal.pone.0082604.g003

Statistical Analysis

Data were all expressed as the mean®=SD. Comparisons for two
groups were performed by using a Student’s t-test (GraphPad
Prism 5 software). P-values of <0.05 were considered to be
significant.

Results

Citicoline Ameliorates Hypoxia/OGD-induced Increase in
the Permeability of Endothelial Cells

As shown in Fig. 1A, the permeability increased dramatically
after hypoxia (0.25+0.01x10% cm/s and 0.53+0.02x10~ % cm/
s, control vs. hypoxia P<0.001) and OGD (0.08£0.001x
1073 cm/s and 0.99%0.04x107° cm/s, control zs. OGD
P<0.001) in HUVEGs. OGD induced more severe disruption in
barrier function than hypoxia (P<<0.001). Both low and high dose
of citicoline decreased FITC permeability (P<0.001). High dose
had more effectives than low dose (P<<0.001).

As shown in Fig. 1B, the permeability increased dramatically
after hypoxia (0.15+0.005x10° em/s and  0.41%0.02x
107 em/s, control vs. hypoxia P<0.01) in bEnd.3s. Both low
dose and high dose of citicoline decreased FITC permeability
(P<0.05 or 0.01). High dose had more effectives than low dose
(P<0.01).

Citicoline Improves the Linear Distribution of TJPs in the
Membrane of Endothelial Cells Disrupted by Hypoxia/
OoGD

In HUVECs under normoxia condition, cells exhibited
continuous membranous staining of ZO-1 and occludin (Fig.
2A). While claudin-5 scarcely expressed on the membrane, and the
trace of claudin-1,3,4,7 failed to be found (data not shown). After
hypoxia or OGD, HUVEC showed a discontinuous staining of
7Z0-1 and occludin (Fig. 2A). Disrupted expression of TJPs under
hypoxia or OGD conditions corresponded to an increased
paracellular permeability for FITC-dextran which determined
above. Interestingly, citicoline treatment restored the linear
distribution of ZO-1 and occludin (Fig. 2A).

In normoxia condition, bEnd.3s showed well-defined mem-
brane staining signal of ZO-1 and claudin-5 (Fig. 2B). Exposure to

PLOS ONE | www.plosone.org

hypoxia resulted in a loss of the continuous staining pattern of both
70-1 and claudin-5. After citicoline treatment, bEnd.3s showed
continuous staining of ZO-1 and claudin-5 (Fig. 2B).

Citicoline Increases the Expression of TJPs at Both mRNA
and Protein Levels in Endothelial Cells

As shown in Fig. 3A and 4A, both hypoxia and OGD induced
significant decrease on the expressions of ZO-1 and occludin (at
mRNA and protein levels) in HUVECs (P<<0.01). OGD caused
more obvious changes when compared to hypoxia (ZO-1 at mRNA
level, occludin at mRNA and protein levels). Both high-dose
and low-dose of citicoline increased the expression of ZO-1 and
occludin under hypoxia or OGD (P<<0.01), while the high-dose of
citicoline had more efficiency in up-regulating the expression.

In bEnd.3s, hypoxia induced dramatically decrease of ZO-1
and claudin-5 in both mRNA and protein levels (P<0.01). After
citicoline treatment, the expression of ZO-1 and claudin-5 were
increased (P<<0.01), and high-dose of citicoline had more efficiency
(Fig. 3B and 4B).

Discussion

In our present study, we demonstrate for the first time that
citicoline improves the endothelial barrier function impaired by
hypoxia/OGD via upregulating the expression of T]JPs.

Hypoxia or OGD has been demonstrated to cause endothelial
cell barrier dysfunction [18,25,26]. HUVECs and bEnd.3s are
suitable cells for studying endothelial barrier function because of
their defined TJPs and adheren junction characteristics [22,27].
Thus, we used hypoxia and OGD conditions to establish i vitro
endothelial barrier breakdown models in these two endothelial cell
lines. There are experiments reporting that 24 h/6 h OGD or
24 h hypoxia destroys endothelial barrier function [18,25]. We
tested these conditions in our pilot study and found out that 24 h
OGD caused significant cell death while 6 h OGD did not (data
not shown). Thus, for avoiding the influence of cell death on
functional study, we chose 24 h hypoxia and 6 h OGD to build
endothelial barrier disruption models. Consistently with previous
studies, our results showed that hypoxia/OGD induces the
increase of paracellular permeability in HUVECs and bEnd.3s.

4 December 2013 | Volume 8 | Issue 12 | 82604
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Figure 4. The effects of citicoline on Hypoxia/OGD induced changes in the protein expression of TJPs in endothelial cells. (A) Protein
levels of ZO-1and occludin in HUVECs. (B) Protein levels of ZO-1 and claudin-5 in bEnd.3s. Both high and low dose of citicoline increase the
expression, while high-dose is more effective when compared to low dose.”P<<0.01,""P<<0.001 vs. control; *P<<0.05, **P<<0.01, ***P<<0.001 vs. model;
##p<0.01, ###P<0.001 vs. low citicoline; =~ P<<0.01 vs. hypoxia, n = 3/group.

doi:10.1371/journal.pone.0082604.g004

Citicoline has been widely accepted to be effective for treating
neurodegenerative diseases, such as PD and AD [1]. Recent
animal experiments suggest its therapeutic effects on ischemic
stroke [28]. In the present study, we reveal that citicoline dose-
dependently ameliorates the endothelial barrier dysfunction in
HUVECs and bEnd.3s. This is in agreement with a previous study
reporting that citicoline reduces ischemia-induced brain edema in
gerbils [29]. And also it is consistent with a clinical research
showing that the acute ischemic stroke patients who received high
dose of citicoline get better neurological and functional outcomes
than those who received the low dose [30]. Since endothelial cells
play an important role in the barrier function, our data suggests
that citicoline could be an effective therapeutic drug for treating
diseases characterized by endothelial barrier disruption.

Furthermore, the molecular basis of citicoline in improving
endothelial cell barrier function was investigated. The expression
of TJPs has been reported to contribute to barrier function
[14,15]. Tight junction is constituted by different kinds of T]JPs
such as claudin family, junctional adhesion molecules and ZO
family. ZO-1 and claudin-5 are the most important components

PLOS ONE | www.plosone.org

for cell barrier integrity. Claudin-5 can greatly reduce dextran
permeability and improve transendothelial electrical resistance
[31], and plays an essential role in the earliest stage of CNS
angiogenesis [32]. ZO-1 serves as a bridge between transmem-
brane proteins and skeleton proteins, and this interaction is
important to the stability and function of endothelial barrier
[33,34]. Occludin has also been suggested to play a key role in the
barrier function of the TJPs [35]. Therefore, we focused on these
TJPs in this study. We found that hypoxia/OGD resulted in
claudin-5, occludin and ZO-1 down-regulation and their linear
distribution on the membrane of endothelial cells. Citicoline
treatment was effective in restoring their expression and linear
distribution in a dose-dependent manner. Our data reveal a novel
pharmacological effect of citicoline on endothelial barrier, which
could offer a new approach for treating ischemic diseases,
although the results from clinical trials are controversy [36]. The
mechanism by which citicoline regulates TJPs was not explored in
this study and deserves further investigation. Finally, we recognize
the potential role of inflammatory cytokines in mediating EC

December 2013 | Volume 8 | Issue 12 | 82604



barrier dysfunction. We will include this consideration in our
future study in animal models.

Overall, the present results demonstrate that citicoline could
restore the endothelial barrier function compromised by hypoxia/
OGD through its ability to upregulate the expression of TJPs
including ZO-1, occludin and claudin-5. Further iz vivo studies are
needed for the proof of conception.
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