Wright State University

CORE Scholar

Kinesiology and Health Faculty Publications

Kinesiology and Health

5-2017

Assessment of Functional Movement Screening™ by Assessors of Three Different Skill Levels

Mackenzie Cole

Marissa McCollister

Neil Greier

Siobhan Fagan Wright State University - Main Campus, siobhan.fagan@wright.edu

Andrew W. Froehle Wright State University, andrew.froehle@wright.edu

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/kinesiology_health

Part of the Health and Physical Education Commons, and the Kinesiology Commons

Repository Citation

Cole, M., McCollister, M., Greier, N., Fagan, S., Froehle, A., Curry, N., Bradford, J., Muse, B., & Bruce, S. (2017). Assessment of Functional Movement Screening™ by Assessors of Three Different Skill Levels. . https://corescholar.libraries.wright.edu/kinesiology_health/70

This Poster is brought to you for free and open access by the Kinesiology and Health at CORE Scholar. It has been accepted for inclusion in Kinesiology and Health Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

Authors Mackenzie Cole, Marissa McCollister, Neil Greier, Siobhan Fagan, Andrew W. Froehle, Nicholas Curry, Jason Bradford, Brad Muse, and Scott Bruce							

ASSESSMENT OF FUNCTIONAL MOVEMENT SCREENING BY ASSESSORS OF THREE DIFFERENT SKILL LEVELS

Kinesiology & Health

Mackenzie Cole, ATC, Marissa McCollister, ATC, Neil Greier, ATC, Siobhan Fagan, MEd, AT, ATC, CSCS, Andrew Froehle, PhD, Nicholas Curry, DC, CCSP, ATC, CSCS, CGFI, Jason Bradford, MEd, CSCS, Brad Muse, MA, AT, ATC, Scott L. Bruce, EdD, AT, ATC

BACKGROUND AND PURPOSE

- The Functional Movement Screen[™] (FMS) is a series of 7 physical tests¹
- FMS screens fundamental movement patterns that require mobility, stability, and motor control²
- FMS is comprised of deep squat (DS), hurdle step (HS), in-line lunge (IL), shoulder mobility (ShM), active straight leg
 raise (ASLR), trunk stability push-up (TSP), and rotary stability (RS)¹ (Figures 1-4)
- Sports medicine clinicians use FMS to assess for dysfunctional movement patterns²
 - FMS is not intended to be a diagnostic tool²
- The inter-rater reliability for FMS has values ranging from 0.37 to .95^{3,6,7,8}
- The intra-rater reliability for FMS has values ranging from 0.76 to 0.98^{4,6,7,8}
- FMS was designed as a means of filling the void between pre-participation screenings and performance tests⁵
- A lack of uniform definitions for varying skill levels of FMS raters creates difficulty in the interpretation of the studies
- The purpose of this study was to examine the intra- and inter-rater reliability on the FMS by novice, intermediate, & expert level raters

PARTICIPANT CHARACTERISTICS

- 20 healthy, physically active, college students: 13 males and 7 females (Table 1)
- Subjects who had suffered a musculoskeletal injury within the last 6 months were excluded
- Six raters were used to assess subjects performing the various FMS exercises
 - Operationally defined rater skills level were as follows:
 - Expert raters had at least 5 years of experience of FMS assessment
 - Intermediate raters had ≥ 2 years, but < 5 years of experience in FMS assessment
 - Novice raters untrained in FMS assessment & had observed FMS less than 6 times

Table 1. Descriptive statistics of subjects

	All Subjects	Females	Males		
Age (years)	21.0 (± 2.05)	20.71 (±1.98)	21.15 (±2.15)		
Height (cm)	172.15 (± 7.74)	165.28 (± 6.97)	175.85 (± 5.30)		
Weight (kg)	76.96 (± 12.05)	68.67 (± 11.56)	81.43 (± 10.07)		
BMI	25.98 (± 3.83)	25.22 (± 4.55)	26.38 (± 3.51)		

Figure 1. Trunk stability push-up

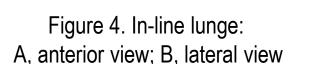
METHODS

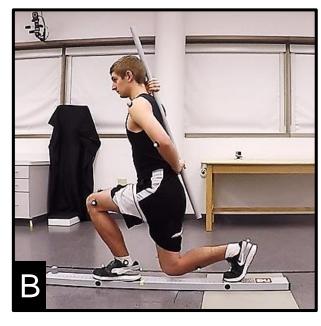
- Participants arrived at biomechanical laboratory & were briefed on the testing procedures
- Reflective markers were attached on the subjects' major joints & key anatomical landmarks
- A research team member read the FMS script instructing subjects on how to do each mvt
- Anterior & both lateral views were video taped using GoPro Cameras, (San Mateo CA)
- Exercises were performed in the order as recommended by the FMS protocol
- Videos were assessed by 2 expert raters, 2 intermediate raters and 2 novice raters
- Raters scored all 20 participants using the FMS scoring sheet on a 0-3 scale
 - 3 = performs movement correctly¹
- 2 = completes mvt with compensation¹
- 1 = not able to preform the mvt¹
- $0 = pain^{1}$
- One week later video assessment of all 20 subjects was performed again by the same raters

Figure 3. Hurdle step:

A, anterior view; B, lateral view

Statistical analysis included ICC and Cohen's Kappa


Figure 2. Deep squat: A, anterior view; B, lateral view


VALUE

RESULTS

- "Intermediate" raters had slightly better ICC mean than the "expert" raters (Table 2)
- Mean inter-rater reliability across all exercises was best for the intermediate pairing (Table 3)
- Best mean of mixed pairings of raters were Int1-Exp1 (0.70); Int1-Exp2 (0.64); Int2-Exp2 (0.57)

Table 2. Pooled ICCs

Rater	Pooled ICC: 1st trial vs. 2nd trial	High ICC	Low ICC			
Nov1	0.773	TSP = 0.923	HS = 0.503			
Nov2	0.602	TSP = 0.905	DS = -0.053			
Int1	0.983	6 mvts = 1.000 ea	TPS = 0.878			
Int2	0.805	DS = 1.000	IL = 0.516			
Exp1	0.959	6 mvts = 1.000 ea	ShM = 0.713			
Exp2	0.818	HS & ASLR = 1.000	RS = 0.622			
T 0 0						

Table 3. Cohen's Kappa

	DS	HS	IL	ShM	ASLR	TCD	RS	Mean	Combo Mean
	DS	пэ	IL	Shivi	ASLK	136	KO	wean	wean
Nov1 - Nov2	0.123	0.583	0.375	0.294	0.103	0.583	0.342	0.343	0.290
Nov1 - Nov2	0.076	0.494	0.268	0.219	0.054	0.494	0.048	0.236	0.290
Int1-Int2	1.000	0.242	0.604	0.542	0.771	0.242	0.510	0.559	0.523
Int1-Int2	1.000	0.174	0.406	0.538	0.768	0.174	0.355	0.488	0.525
Exp1-Exp2	0.706	0.020	0.425	0.844	0.464	0.020	0.412	0.413	0.380
Exp1-Exp2	0.630	-0.033	0.416	0.700	0.439	-0.033	0.313	0.347	0.500

EVIDENCE-BASED RECOMMENDATIONS / CLINICAL RELEVANCE

- Our results show that raters with experience assessing the FMS seem to score more consistently throughout
- Novice raters appear to be able to successfully assess the FMS, but lack of experience leads to inconsistent scores
- Lack of consistency for both intra- & inter-rater reliability across the 7 movements regardless of raters' skill is concern

REFERENCES

- 1. Beardsley C, Contreras B. The Functional Movement Screen: A review. Strength Cond J October 2014; 36(5):72-80.
- 2. Cook G, Burton L, Hoogenboom B, Voight M. Functional Movement Screening: The use of fundamental movements as an assessment of function part-2. *Int J Sports Phys Ther.* August 2014; 9(4):549-563
- 3. Gulgin H, Hoogenboom B. The Functional Movement Screening™ (FMS): An inter-rater reliability study between raters of varied experience. *Int J Sports Phy Ther.* 2014; 9(1):14-20.
- 4. Gribble P, Brigle J, Pietrosimone B, Pfile K, Webster K. Intrarater reliability of the Functional Movement Screening. *J Strength Cond Res* April 2013; 27(4):978-981
- 5. Minick KI, Kiesel KB, Burton L, Taylor A, Plisky P, Butler RJ. Interrater reliability of the Functional Movement Screen. J Strength & Cond Res 2010; 24(2):479-486.
- 6. Onate JA, Dewey T, Kollock RO, et al. Real-time intersession and interrater reliability of the Functional Movement Screen. *J of Strength & Cond Res.* 2012; 26(2):408-415.
- 7. Shultz R, Anderson SC, Matheson GO, Marcello B, Besier T. Test-retest and interrater reliability of the functional movement screen. J Athlet Training. 2013; 48(3):331-336.
- 8. Smith CA, Chimera NJ, Wright NJ, Warren M. Interrater and intrarater reliability of the functional movement screen. *J Strength & Cond Res.* 2013; 27(4):982-987.

 9. Stobierski LM, Fayson SD, Minthorn LM, Valovich McLeod TC, Welch CE. Reliability of clinician scoring of the Functional Movement Screen to assess movement patterns. *J*
- 9. Stobierski LM, Fayson SD, Minthorn LM, Valovich McLeod TC, Welch CE. Reliability of clinician scoring of the Functional Movement Screen to assess movement patters of Sport Rehab. 2015; 24(2):219-222.