Recent Advances in Integrating OWL and Rules

Matthias Knorr
David Carral Martinez
Pascal Hitzler
pascal.hitzler@wright.edu
Adila A. Krisnadhi
Frederick Maier

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation
https://corescholar.libraries.wright.edu/cse/106

This Conference Proceeding is brought to you for free and open access by Wright State University's CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Authors
Matthias Knorr, David Carral Martinez, Pascal Hitzler, Adila A. Krisnadhi, Frederick Maier, and Cong Wang
Recent Advances in Integrating OWL and Rules
(Technical Communication)

Matthias Knorr2, David Carral Martínez1, Pascal Hitzler1, Adila A. Krisnadhi1, Frederick Maier3, and Cong Wang1

1 Kno.e.sis Center, Wright State University, U.S.A.
2 CENTRIA, Universidade Nova de Lisboa, Portugal
3 Aston Business School, Aston University, UK

As part of the quest for a unifying logic for the Semantic Web Technology Stack, a central issue is finding suitable ways of integrating description logics based on the Web Ontology Language (OWL) with rule-based approaches based on logic programming. Such integration is difficult since naive approaches typically result in the violation of one or more desirable design principles. For example, while both OWL 2 DL and RIF Core (a dialect of the Rule Interchange Format RIF) are decidable, their naive union is not, unless carefully chosen syntactic restrictions are applied.

We report on recent advances and ongoing work by the authors in integrating OWL and rules. We take an OWL-centric perspective, which means that we take OWL 2 DL as a starting point and pursue the question of how features of rule-based formalisms can be added without jeopardizing decidability. We also report on incorporating the closed world assumption and on reasoning algorithms. This paper essentially serves as an entry point to the original papers, to which we will refer throughout, where detailed expositions of the results can be found.

1 Rule-Extensions of OWL

In [4], Grosof et al. describe a fragment of the description logic \mathcal{SHOIN} (a.k.a. OWL 1 DL) which, if syntactically transferred to first-order predicate logic (FOL) in a straightforward way, results in a set of function-free Horn clauses, i.e. a Datalog program under FOL semantics. This naive approach has been subsequently lifted to OWL 2 DL and given rise to the OWL 2 RL fragment [10]. This work does not, however, address the problem of identifying the rules of Datalog (under FOL semantics) expressible in OWL and its variants, and indeed recent results, including the work on description logic rules by Krötzsch et al. [7], show that OWL 2 RL can be improved significantly in this respect.

To formulate the recent findings, we first note that a directed graph G_r can be constructed from any given binary Datalog rule r, i.e. a rule containing only unary and binary predicates. The nodes of G_r are the variables occurring in the rule body of r, and there is exactly one directed edge between two variables x and y if there is at least one binary atom of the form $P(x, y)$ appearing in the

\[http://www.w3.org/2007/03/layerCake.png \]
The following results then hold, where \(z \) is the variable in the first argument of the head atom.

- If \(G_r \) is a tree with root \(z \), then \(r \) can be expressed in \(SRO\text{EL} \) (OWL 2 EL) \([7]\).
- If \(G_r \), with any edges inverted, is a tree with root \(z \), then \(r \) can be expressed in \(SRO\text{EL} \) \([7]\).
- If \(G_r \), with edges considered undirected, does not contain four nodes which are path-connected by mutually disjoint paths in such a way that they constitute a 4-clique, then \(r \) can be expressed in \(SRO\text{EL}(\sqcap) \), i.e., in \(SRO\text{EL} \) extended by role conjunction \([1]\).

The results above are based on the idea of retaining decidability by syntactically restricting the rules which are allowed to be used together with a DL knowledge base. A complementary line of work is based on the idea of weakening the semantics of rules in a suitable way. This was first voiced in the notion of DL-safe rules \([13]\), which are rules in which the variables can bind only to known individuals, i.e. to constants present in the knowledge base, resulting in so-called DL-safe SWRL. This approach was then generalized in \([9]\) in such a way that only some variables in rules—called DL-safe variables—were restricted this way. In \([8]\), Krötzsch et al. ported this concept to description logics, resulting in a new syntactic construct called nominal schemas.

Nominal schemas can be understood as variable nominals. Syntactically, this new construct \(\{x\} \) resembles a nominal, save that \(x \) is a variable rather than an individual, and it can only bind to individuals appearing in the knowledge base such that each occurrence of the nominal schema within one axiom is bound to the same individual. Semantically, this is realized by extending the interpretation with a first-order variable assignment binding variables to domain elements named by individuals in the knowledge base \([8]\).

A DL extended with nominal schemas not only completely covers DL-safe SWRL, it also makes it possible to completely express any Datalog program under the Herbrand semantics—without any restriction on arities of predicates or on forms of rules \([5, 8]\). Furthermore, \(SROIQ \) extended with nominal schemas, called \(SROIQV \), is of the same computational complexity as \(SROIQ \) \([8]\).

So far, only monotonic rules are considered, despite the fact that the closed world assumption is often requested in order to be able to model defaults, exceptions, and integrity constraints. Following the spirit of description logics of minimal knowledge and negation as failure (MKNF) \([3]\), two modal operators \(K \) and \(A \) are added to \(SROIQV \), yielding a more expressive yet still uniform formalism \([5]\). The two operators allow the inspection of the knowledge base, i.e. \(K \) represents minimal knowledge, while \(A \) is interpreted as autoepistemic assumption and corresponds to \(\neg \text{not} \), where \text{not} \ is identical with default negation in non-monotonic rules. As is common in MKNF semantics, a set of interpretations is used instead of one interpretation, and the non-monotonic semantics

\[\text{Some of these statements can be improved, as detailed in the indicated papers.} \]
is defined based on a preference relation among such sets, minimizing derivable knowledge.

This language trivially covers \textit{SROIQV} (hence \textit{SROIQ}, the tractable OWL 2 profiles, and arbitrary Datalog rules as pointed out above), and $\textit{ALCK}_\textit{NF}$ [3]. Thus, default reasoning, epistemic queries, closure of roles and concepts, and integrity constraints are available in the language. It also covers Hybrid MKNF [12], a tight integration of DLs and non-monotonic rules based on MKNF logics. Indeed, it is the first approach that covers the two distinct MKNF-based formalisms, [3] and [12]. Moreover, a decidable fragment of the full language is identified in [5], which contains most of the covered languages.

2 Algorithms for Reasoning with Nominal Schemas

There is a naive way of algorithmizing reasoning with nominal schemas, which we call full grounding: Replace each axiom with all grounded axioms, where nominal schemas are replaced by nominals, in all possible combinations which respect variable bindings. This yields a semantically equivalent knowledge base without nominal schemas, and a traditional reasoning algorithm can then be used. While this approach permits reasoning with nominal schemas, it is problematic in the sense that it is combinatorially explosive in cases involving axioms having many nominal schemas [2]. We have therefore started to investigate alternative approaches which ground nominal schemas in a dynamic fashion, thus reducing the overhead of full grounding. We briefly report on the preliminary findings of this ongoing work.

An alternative method of algorithmizing reasoning with nominal schemas is to extend standard tableau algorithms with grounding rules [6]. The aim of such rules is to delay grounding until required in the execution of the algorithm. As with standard tableau rules, grounding rules operate on concepts occurring in the label of nodes in a tableau. Grounding is required for a concept C in a node label if a nominal schema occurs at the depth at most one within the expression tree of C. E.g., $\exists R. (\{x\} \cap D)$ needs grounding whereas $\forall R. \exists S. (A \cap \{y\})$ does not. If grounding is required for concept C, then the application of standard tableau rules to C is prevented until C is grounded. It is left to be specified in an actual implementation when grounding is performed, which variables to ground, and to which individual names they are grounded. However, this idea turned out to have a rather severe limitation—namely, if the concept C is in the form of a disjunction and C contains different disjuncts sharing the same occurrence of some nominal schema, then it has to be grounded before the disjunction rule can be applied. We are still working on ways to overcome this limitation.

In addition to intelligent grounding as in the tableau approach just described, can we avoid grounding from the beginning? In pursuit of this idea, we have also started to investigate the resolution calculus for algorithmization, where grounding is handled on the fly via unification. Previous work on general resolution for DLs [11] was unable to deal with role chains, as it introduces further complications with termination. We solved this problem by using ordered chaining rules
such that the inferred clauses will not be longer than the premises. Nominal schemas add yet another complication to the termination issue as normal forms of globally limited size are no longer readily available. We successfully addressed this by using a lifting lemma to show that resolution on nominal schema axioms takes fewer resolution steps than performing resolution on fully grounded knowledge bases. Details can be found in [14].

References