Effect of Anthropometric Adjustments on BMD and BMC Z-Scores in a Population of Prader-Willi Syndrome Pediatric Patients

Amanda E. Marker
Wright State University, amanda.marker@wright.edu

David F. Short
Wright State University - Main Campus, david.short@wright.edu

Talia Eldar-Geva

Harry J. Hirsch

Varda Gross-Tsur

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/bie

Part of the Biomedical Engineering and Bioengineering Commons, and the Industrial Engineering Commons

Repository Citation

https://corescholar.libraries.wright.edu/bie/133
Authors
Amanda E. Marker, David F. Short, Talia Eldar-Geva, Harry J. Hirsch, Varda Gross-Tsur, Maayan Tiomkin, Ari Zimran, and Thomas N. Hangartner

This abstract is available at CORE Scholar: https://corescholar.libraries.wright.edu/bie/133
Methods: Icaritin was synthesized by thin film evaporation method with extruding through polycarbonate filter membranes to obtain unilamellar vesicles with bone targeting molecules ASP8 attached. Eighty four-month-old C57/BL6 female mice were divided into 8 groups (n = 10): Baseline (BL), Sham surgery (SH), Ovariectomized (OVX), Estradiol for oral administration (O-E2), Icaritin for oral administration (O-ICT), low dose (8mg/kg, once a week) targeting delivery system with Icaritin injected via caudal vein (IV-LIP-ICT-ASP8-L), high dose (8mg/kg, twice a week) targeting delivery system with Icaritin injected via caudal vein (IV-LIP-ICT-ASP8-H), delivery system with Icaritin injected via caudal vein (IV-LIP-ICT, 8mg/kg, twice a week). Administrations of gavage and IV injection were applied respectively for 6 weeks from the day right after the OVX surgery. Lumbar spine and lower limbs were harvest 6 weeks after surgery for bone quality analysis. The 5th vertebra body of lumbar region was scanned by micro-CT (Scanco micro-CT 40). Trabecular bone was identified and parameters were analyzed for evaluation of bone quality and microarchitecture. For confirming the specificity of the targeting delivery system, Xenogen IVIS spectrum was used to semi-qualify the distribution of bone targeting system confirming the specificity of the targeting delivery system, Xenogen IVIS SM(IV-AP8+LPS+ICT-1) were analyzed for evaluation of bone quality and microarchitecture. For confirming the specificity of the targeting delivery system, Xenogen IVIS spectrum was used to semi-qualify the distribution of bone targeting system ex vivo by injecting labelled targeting delivery system.

Results: By comparing to the OVX group, bone quality in groups with IV injection were enhanced reflected in the increased BMD (p < 0.05), trabecular bone volume (p < 0.05), trabecular bone number and connectivity density (p < 0.05) and decreased in trabecular bone separation (p < 0.05). Also the efficacy of the targeting Icaritin delivery system tended to be dosage dependent (BV increased 14.16% in high dose group, Tb.N increased 10.34% and connectivity density of trabecular bone increased 19.70%). Moreover from Structure Model Index (SMI) value, we concluded that the morphology of trabecular bone in Icaritin injection groups tends more to be plat-like: SMI(OVX) = 2.19±0.30, SMI(IV-AP8+LPS-ICT-T) = 2.07±0.36, SMI (IV-AP8+LPS-ICT-H) = 2.01±0.23. More signals retain in bone 72 hours after injection by comparing to the delivery system without bone targeting molecules ASP8 shown in IVIS image.

Conclusion: The novel bone-targeting delivery system carrying osteopromotive phytomolecule(s) Icaritin was confirmed that was capable of preventing the estrogen depletion induced osteoporosis in a dose dependent manner. This study was supported by Hong Kong General Research Fund (GRF CUHK-473013).
after applying the anthropometric corrections, we can gain insight into the relevance of such adjustments. Whereas 8/31 (26%) patients cross from the non-critical to the critical region with WH corrections applied to sub-head whole-body BMD, 6/31 (19%) cross the same boundary when WHF corrections are applied. The numbers are similar for BMC, with 9/31 (29%) crossing the critical boundary with WH or WHF corrections applied. The number of patients crossing from critical to non-critical is 23% for BMC with the WH correction and 29% for BMC with the WHF correction applied. However, when BMD is considered, that change in classification is smaller for the WH correction (13%) but not for the WHF correction (19%). The patterns are similar for the other body sites.

Conclusion: Anthropometric correction for the calculation of Z-scores appears to affect a considerable fraction of patients with PWS. This is due to the large abnormality in body size, and DXA measurements, being projection measurements, are affected by body size. However, fracture risk has not yet been studied in connection with DXA parameters in individuals with PWS, and the full implication of anthropometric corrections needs to be evaluated pending such investigations.

IBDW2014-00142-F0065
MUSCLE DENSITY IS ASSOCIATED WITH FRAILTY FRACTURES IN POSTMENOPAUSAL WOMEN WHO ARE LESS FRAIL: THE CaMOS MUSCLE QUALITY STUDY
Andy Kin On Wong a, Courtney Kennedy a, George Ioannidis a, Karen A. Beattie a, Christopher Gordon a, Laura Pickard a, Alexandra Papaloannou b, David Gottzman c, Jerlynn Prior c, CaMos Research Group
aOsteoporosis Program, University Health Network, Toronto, ON, USA
bDepartment of Medicine, Hamilton Health Sciences, Hamilton, ON, USA
cDepartment of Medicine, McMaster University, Hamilton, ON, USA

department of Medical & Physiology, McGill University, Montreal, QC, Canada

Muscle is the largest source for energy production and storage and is a determinant of frailty. Muscle has been linked to bone strength and fractures previously. It is unknown how muscle relates to fractures independently of frailty.

Objectives: To determine how muscle associates with fragility fractures in postmenopausal women in the context of frailty.

Methods: A subset of women 60-85 years old participating in the Canadian Multicentre Osteoporosis Study (CaMos) completed peripheral quantitative computed tomography (pQCT) (20 mm/s, 38 kVp, 500 µm in-plane resolution) scans using XCT 2000 (Stratec Medizintechnik) at 66% of the tibial length (at year 16). Muscle density, mass, and area were derived using manufacturer’s software. Comorbidities, cognition, energy level, function and mobility questions obtained at year 10 were used to compute the CaMos frailty index (CFI). Incident fractures from baseline to year 15 were derived from the CaMos database. A binary logistic regression analysis measured odds ratios (OR) for fragility fractures per standard deviation difference in each muscle measure, adjusting for age, body mass index (BMI), lowest areal bone mineral density (aBMD) T-score of total hip or lumbar spine and having fallen within the last 12 months. The interaction of muscle outcomes and CFI was examined in a second model, exploring the effect of muscle on fractures at different values of CFI.

Results: Women (N = 525, mean age: 71.4 ± 6.4 years; BMI: 26.90 ± 4.85 kg/m²) with one or more fragility fractures since baseline had a lower muscle density than those without (p = 0.004). Muscle density and mass but not muscle area, were associated with increased odds for fractures independent of age, BMI, aBMD and falls. Further adjustment for CFI abolished the relationship between fractures and muscle mass but not muscle density (Table I). A plot of ORs and confidence intervals against CFI revealed that the significance of associations between muscle density and fractures were preserved only for CFI values less than 0.13. Above this value, confidence intervals overlapped 1.0 (Figure 1). For CFI ≤ 0.13, the association between CFI and each of muscle density (p = 0.023) and mass were significant (p < 0.001) but weak (R² < 0.03). For CFI values above 0.13, these relationships were not present.

Conclusions: Muscle density and muscle mass are associated with a history of fragility fractures independent of frailty for those who were less frail (CFI ≤ 0.13). For those who are frailer, muscle density and muscle mass did not associate with fractures.

IBDW2014-00144-F0066
STRUCTURAL AND FUNCTIONAL INVESTIGATION OF GASTROCNEMIUS MUSCLE AND LUMBAR 5 OF SENESCENCE-ACCELERATED MOUSE P8 (SAMP8) – A MUSCULOSKELETAL SENESCENCE MODEL FOR SARCOPENIA RESEARCH
An Yun Guo a, Wing Ho Cheung a,b, Kwok Sui Leung a,b
aDepartment of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
bTranslational Medicine Research & Development Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Objective: Sarcopenia is an age-related systemic syndrome characterized by a progressive loss of skeletal muscle mass and muscle strength as well as a poor physical performance. Previous studies also suggested that sarcopenia might be associated with low bone mineral density (BMD). A good animal model is needed to explore the mechanism of sarcopenia and its relationship with low BMD.

Methods: Senescence-accelerated mouse P8 (SAMP8) was selected as the animal model and the target muscle was gastrocnemius. Parameters were investigated at 6, 7, 8, 9, 10-month old (6 mice per timepoint). Functional outcomes were measured with ex vivo muscle functional test system (800A, Aurora Scientific Inc). H&E staining was performed for fiber cross-sectional area evaluation and ATPase staining for muscle fiber typing. BMD of L5 was measured with viva CT. Data analysis was done with one—way ANOVA followed by Tukey post-hoc test with p < 0.05 as significant difference.

Results: The peak of muscle mass (MM) appeared in 7-month group and significant decrease was observed in 10-month group (-12.11%, p = 0.01). Compared with 10-month group, the 8-month group showed the largest specific twitch force (SFO, 11.54%, p = 0.01) and muscle cross-sectional area (MCFA, 6.4%), while the peak of specific tetanic force (STF, 13.23%, p = 0.05) appeared in 7-month group with the largest fatigue rate (34.5%, p = 0.05). Though there was no significant change in muscle stiffness and muscle contractility in 8-month, it was still better than 10-month with a higher contraction speed (35.1%, p = 0.05). Animals in month 8 showed the largest fiber cross-sectional area of type IIA (12.1%, p < 0.05). Meanwhile, type IIB and type I showed a decreasing trend from 6-month to 10-month. From 6-month, BMD of the L5 showed a continuous decreasing trend with low BMD.

Conclusion: Sarcopenia is defined by the decline of muscle mass and muscle strength and is divided into pre-sarcopenia, sarcopenia and severe sarcopenia stages by the onset of decreased muscle mass, muscle strength and quality of life. Based on this criteria, our result suggested that sarcopenia started between 7 and 8-month in SAMP8 animals and the 8-month animals were at pre-sarcopenia stage and 10-month animals were at sarcopenia stage. The result also indicated that the bone loss occurred earlier than the reduction of skeletal muscle mass and muscle strength.