1-1-2005

Effects of Workload and Likelihood Information on Human Response to Alarm Signals

Ernesto A. Bustamante

James P. Bliss

Follow this and additional works at: https://corescholar.libraries.wright.edu/isap_2005

Part of the Other Psychiatry and Psychology Commons

Repository Citation

This Article is brought to you for free and open access by the International Symposium on Aviation Psychology at CORE Scholar. It has been accepted for inclusion in International Symposium on Aviation Psychology - 2005 by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
The purpose of this study was to examine how workload and likelihood information would affect participants’ responses to alarm signals while they performed a battery of tasks. As expected, participants’ overall response rates and false alarm response rates were significantly lower, and true alarm response rates were significantly higher when they used a likelihood alarm system. These results were particularly noticeable under high workload conditions. Results from this study suggest that although people may respond less often to alarm signals when they are provided with likelihood information, they will more likely respond to true signals rather than false alarms. Therefore, designers should incorporate likelihood information in alarm systems to maximize people’s ability to differentiate between true and false alarms and respond appropriately.

Introduction

Technological advances have made the use of automated alarm systems a common practice in aviation (Bliss, 2003). Such systems serve a crucial function in the cockpit by alerting pilots of potential or imminent dangerous conditions. Nevertheless, even the most sophisticated alarm systems emit a high number of false alarms, increasing pilots’ level of workload and jeopardizing their flight performance (Getty, Swets, Pickett, & Gonthier, 1995; Gilson & Phillips, 1996).

A possible solution to this problem is to provide pilots with additional information regarding the positive predictive value (PPV) of alarm signals through the use of a likelihood display. The PPV of a signal, which is also commonly referred to as its “alarm reliability,” is defined as the conditional probability that given an alarm, a problem actually exists. Researchers have shown that people adjust their responsiveness based on the outputs given by alarm systems (Meyer & Ballas, 1997; Robinson & Sorkin, 1985). More specifically, people’s responsiveness to alarm signals is dependent on the PPV of such signals (Bliss & Dunn, 2000; Bliss, Gilson, & Deaton, 1995; Getty et al., 1995). The purpose for using a likelihood alarm display is to provide people with information about the PPV of different signals so that they can respond more often to high-likelihood signals and less often to low-likelihood signals.

However, researchers have questioned the usefulness of such displays by pointing out that they may actually decrease pilots’ responsiveness, thereby jeopardizing flight safety (Sorkin, Kantowitz, & Kantowitz, 1988). Nonetheless, providing pilots with likelihood information may enhance their decision-making strategies such that they might respond more often to signals that signify actual problems and disregard false alarms. However, few researchers have examined how operators of complex tasks react when faced with signals generated by a likelihood alarm system. Similarly, there is little awareness of how other task variables might interact with likelihood information to influence alarm reaction patterns or primary task performance. The purpose of this study was to examine how workload and likelihood information would affect people’s responses to alarm signals.

Participants performed the tracking and resource-management tasks from the Multi-Attribute Task (MAT) Battery (Comstock & Arnegard, 1992) and an engine-monitoring task that the experimenters designed. We manipulated workload level by automating the tracking task and by increasing the difficulty of the resource-management task. While performing their tasks, participants reacted to alarms generated by either a binary alarm system (BAS) or a likelihood-alarm system (LAS).

We assessed participants’ response rates to false alarms and true signals. We expected participants to respond more often to false alarms when they interacted with the BAS, particularly during low workload (Sorkin et al., 1988). This hypothesis was consistent with previous research, which suggests that people are generally more likely to respond to alarm signals under low workload conditions (Meyer, 2002). However, we hypothesized that participants would respond more often to true signals when they interacted with the LAS compared to the BAS, and that this difference would be greater under high workload conditions. The reason for this was that we
expected the LAS would improve participants’ ability to detect alarms that were more likely to be true signals. Such an expectation is reflected by Selcon, Taylor, and Shadrake (1991), who demonstrated the benefits of redundant information on pilot reactions to displays in the cockpit.

Method

Experimental Design

We used a full within-subjects design. Preliminary analyses consisted of descriptive statistics to ensure that we did not violate any statistical assumptions. We set statistical significance for all inferential tests *a priori* at $\alpha = .05$.

Participants

An *a priori* power analysis revealed that approximately 30 participants would be necessary to obtain a power of .80, assuming a medium effect size ($f = .25$) at an alpha level of .05 (Cohen, 1988). Therefore, we used convenience sampling to select 30 (18 females, 12 males) undergraduate and graduate students from Old Dominion University to participate in this study. Participants ranged from 18 to 38 years of age ($M = 22.70$, $SD = 4.54$). All participants had normal or corrected-to-normal vision and hearing. To motivate participants, we provided them with three research credit points to apply to their class grades, and awarded a $10 prize to the person who performed best.

Materials and Apparatus

To increase the realism of the experimental design, participants performed a set of complex primary tasks at the same time they performed the secondary task. The primary tasks consisted of a compensatory-tracking task and a resource-management task, both taken from the MAT (Comstock & Arnegard, 1992). We loaded the MAT on an IBM-compatible computer and displayed it to participants using a 17-inch monitor. Participants performed the MAT using a standard mouse and a QWERTY keyboard.

While performing the MAT tasks, participants also performed an engine-monitoring task that the experimenters designed. We presented this task to participants on a separate 17-inch monitor, located at 90º to the right of the primary task. This engine-monitoring task required participants to respond to a series of alarms that indicated a potential problem with two engines. As they performed the MAT, participants encountered different alarms and had to decide whether to ignore them or respond to them by searching for critical system-status information. To search for this information, participants had to divert their attention from the primary task and press the space bar on the keyboard located in front of the computer hosting the secondary task. Once they did this, the screen presented them with the system-status information regarding the current oil temperature and pressure of the two engines. Participants then assimilated this information and decided whether they needed to correct the problem by pressing the space bar again, or cancel the information by pressing the escape key and returning to the primary task. To keep participants motivated, they received a score on the engine-monitoring task, which was updated after each alarm depending on their response.

Participants received one point for searching for further information when an alarm was true and for ignoring false alarms. They lost one point for searching for further information when an alarm was false, but they lost three points for ignoring a true alarm. If they checked the status of the two engines, they received two points for correctly resetting actual problems and one point for canceling the information when there was no problem. They also lost one point for resetting the system when there was no problem, but they lost three points for canceling the information when a problem actually existed. The rationale for using this point system was to more closely simulate the payoff associated with responding to and ignoring alarm signals in a complex task situation, such as flying an airplane, where adequately responding to true alarms is crucial for flight safety.

Alarm Systems

Binary Alarm System We modeled the performance of the binary alarm system based on prior research (Bustamante, Anderson, & Bliss, 2004). The probability of a problem was .01. The system had a high sensitivity ($d’=3.98$) and a low threshold ($\beta=.23$). Based on these parameters, the system was able to detect the presence of a problem 99% of the time, while issuing a false alarm rate of 5%. The system had a sampling rate of 1s. Each experimental session lasted 30 minutes, and a problem could arise at any given second throughout each session. Based on the prior probability of the problem, a total of 18 engine malfunctions occurred throughout each session. The system was able to detect the presence of all the problems, thereby generating a total of 18 true alarms throughout each session. However, because of the low base rate of the problem and the system’s low threshold, it generated a total of 82
false alarms, resulting in an overall system reliability of 18%. The true and false alarms generated by the system looked and sounded exactly alike, to reflect real-world situations where the operator must search for additional information to ascertain alarm validity. The visual component of the alarm signal consisted of a yellow circle accompanied by the word “WARNING” written underneath it. The auditory component of the alarm signal was a simple sine wave at a frequency of 500 Hz, presented at 65 dB(A) through a set of flat-panel speakers. The ambient sound pressure level was approximately 45dB(A).

Likelihood Alarm System. The overall performance of the likelihood alarm system was the same as the binary system. However, this system generated two types of alarms depending on the likelihood that they would be true. To determine the likelihood of each alarm, the system had two simulated thresholds instead of one. We set the lowest threshold of this system at the same value as the binary system, and the highest threshold at $\beta=88.40$. Based on these two thresholds, the system generated a total of 84 low-likelihood alarms, 4 of which were true and 80 of which were false. As a result, these alarms had a 5% likelihood of being true. This system generated a total of 16 high-likelihood alarms, 14 of which were true and 2 of which were false. As a result, these alarms had an 88% likelihood of being true. The low-likelihood alarm signals consisted of the same stimuli used for the binary system. The visual component of the high-likelihood alarms consisted of a red circle accompanied by the word “DANGER” written underneath it. The auditory component of these alarms was a simple sine wave at a frequency of 2500 Hz, also presented at 65dB(A).

The rationale for using this particular design for the likelihood alarm system was to use peripheral cues such as color, signal word, and sound frequency to enable participants to easily differentiate between low- and high- likelihood alarms. Although these cues may affect the perceived urgency of such signals, prior research suggests that the effect of the PPV of alarms overshadows any effect that could be attributed to perceived urgency (Burt, Bartolome-Rull, Burdette, & Comstock, 1999).

Procedure

As part of this study, participants completed two experimental sessions during which they interacted with an alarm system and an automatic pilot. During one of these sessions, participants used a binary alarm system, and for the other session, they used a likelihood alarm system. We fully counterbalanced the order in which participants used these systems.

Participants came to the laboratory individually. When they entered the laboratory, they first read and signed an informed consent form and then completed a background information form. The purpose of the background information form was to collect information relevant to the exclusionary criteria for the experiment, such as participants’ age and whether they had any visual or auditory problems. Once participants completed this form, we provided them with the instructions about how to perform the MAT tasks. Next, participants performed a 5-min practice session.

Once participants completed this practice session, the experimenter provided them with the instructions about how to complete the engine-monitoring task. Participants then went through another 5-min practice session, performing all tasks at the same time. Next, the experimenter informed participants of the overall reliability of the system and the likelihood of each type of alarm. Then, participants performed the two experimental sessions, taking a 5-min break between them. Before participants began the second session, we provided them with information about the other alarm system. Then, participants went through another 5-min practice session, using the other alarm system. After this practice session was over, participants performed the second experimental session using the other alarm system.

Each experimental session lasted 30 min. During the first and last 7.5 min, participants performed the tracking task manually, and they experienced a series of random pump malfunctions in the resource-management task. At other times, the autopilot performed the tracking task, and participants did not experience any pump malfunctions in the resource-management task. The rationale for doing this was to more closely simulate the distribution of workload levels found in applied settings, such as in aviation, where the take-off and landing phases of flight are associated with higher levels of workload than the cruising phase.

Dependent Measures

We assessed participants’ overall response rates (ORR), which was the proportion of alarms that participants responded to in a given session. We also assessed participants’ false alarm response rates (FARR), which was the proportion of false alarms that participants responded to in a given session. Last, we assessed participants’ true alarm response
rate (TARR), which was the proportion of true alarms that participants responded to in a given session.

Results

We conducted three 2 x 2 repeated-measures ANOVAS. We used workload (Low, High) and system (BAS, LAS) as independent variables. We used ORR, FARR, and TARR as dependent measures. Results from the first ANOVA showed a statistically significant main effect of workload on ORR, $F(1,29) = 46.25$, $p < .001$, partial $\eta^2 = .62$. Participants’ ORR was significantly higher during low workload ($M = .51$, $SD = .24$) than during high workload ($M = .40$, $SD = .23$). Results from this first analysis also showed a statistically significant main effect of system on ORR, $F(1,29) = 28.04$, $p < .001$, partial $\eta^2 = .49$. Participants’ ORR was significantly higher when they interacted with the BAS ($M = .54$, $SD = .26$) than when they interacted with the LAS ($M = .37$, $SD = .19$). These results are shown in Figure 1.

![Figure 1. Overall response rate as a function of workload and system.](image1)

Results from the second ANOVA showed a statistically significant main effect of workload on FARR, $F(1,29) = 35.67$, $p < .001$, partial $\eta^2 = .55$. Participants’ FARR was significantly higher during low workload ($M = .46$, $SD = .27$) than during high workload ($M = .34$, $SD = .26$). Results from this second analysis also showed a statistically significant main effect of system on FARR, $F(1,29) = 57.93$, $p < .001$, partial $\eta^2 = .67$. Participants’ FARR was significantly higher when they interacted with the BAS ($M = .54$, $SD = .25$) than when they interacted with the LAS ($M = .27$, $SD = .22$). These results are shown in Figure 2.

![Figure 2. False alarm response rate as a function of workload and system.](image2)

Last, results from the third ANOVA showed a statistically significant workload by system interaction effect, $F(1,29) = 7.20$, $p < .05$, partial $\eta^2 = .20$, and statistically significant main effects of workload, $F(1,29) = 14.10$, $p < .01$, partial $\eta^2 = .33$, and system, $F(1,29) = 30.22$, $p < .001$, partial $\eta^2 = .51$, on TARR. Participants’ TARR was significantly higher when they interacted with the LAS ($M = .80$, $SD = .13$) than when they interacted with the BAS ($M = .56$, $SD = .31$), but this difference was greater during high workload. These results are shown in Figure 3.

![Figure 3. True alarm response rate as a function of workload and system.](image3)

Discussion

Results supported our hypotheses. As expected, participants responded significantly more often to false alarms when they interacted with the BAS, particularly under low-workload conditions. However, participants responded significantly more often to true signals when they interacted with the LAS, especially during high-workload conditions.

In general, the results of this experiment support the use of redundant information to signify alarm validity, or lack thereof. As noted by Selcon, et al. (1991), the presence of such information can improve pilot reactions to displayed information in the
cockpit. Bliss, Jeans, and Prioux (1996) showed similar results; when participants were faced with an unreliable alarm system, they benefited most from the presence of additional information upon which to base their judgments of individual alarm validity.

Results from this study have potential applications for designing alarm systems in the field of aviation. These results suggest that although pilots may respond less often to alarm signals when they are provided with likelihood information, they are more likely to respond to true signals rather than false alarms. Therefore, designers should incorporate likelihood information in alarm systems to maximize pilots’ ability to differentiate between true and false alarms and respond appropriately. This, in turn, may increase safety by directing pilots’ attention to actual problems without jeopardizing flight performance by minimizing responsiveness to false alarms.

References