Boundary C1, α Regularity for Variational Inequalities

Fang-Hua Lin

Yi Li

Wright State University - Main Campus, yi.li@csun.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/math

Part of the Applied Mathematics Commons, Applied Statistics Commons, and the Mathematics Commons

Repository Citation

https://corescholar.libraries.wright.edu/math/143

This Article is brought to you for free and open access by the Mathematics and Statistics department at CORE Scholar. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
\textbf{BOUNDARY $C^{1,a}$ REGULARITY FOR VARIATIONAL INEQUALITIES}

Fanghua Lin
Courant Institute of Mathematical Science
New York University

Yi Li
Department of Mathematics
University of Chicago

\section{Introduction.}

In this paper we will consider the regularity problem for the following obstacle problem.

\begin{equation}
\inf_{v \in W(\varphi, \psi)} \int_{\Omega} |\nabla v|^p \, dx
\end{equation}

among the functions in $W(\varphi, \psi)$, where Ω is a bounded C^2 domain in \mathbb{R}^n ($n \geq 2$) and φ and ψ are C^2-functions defined on $\overline{\Omega}$ with $\psi \leq \varphi$, and $1 < p < \infty$ such that

$$W(\varphi, \psi) = \{ v \in W^{1,p}(\Omega) : v - \varphi \in W^{1,p}_0(\Omega) \text{ and } v \geq \psi \text{ a.e. in } \Omega \}$$

\textbf{Remark 1.1.} The C^2 assumptions on ψ and φ are purely technical to avoid complications, as the reader may find out later.

Because of the convexity of the integrand, (1.1) has a unique solution u satisfying the variational inequality (see, for example [LQ]).

\begin{equation}
\int_{\Omega} |\nabla u|^p \, dx \geq 0, \quad \forall \, v \in W(\varphi, \psi)
\end{equation}

\footnote{The author was supported in part by the Presidential Young Investigator Award and by the National Science Foundation}

\footnote{The author was supported in part by the National Science Foundation}

Typeset by \LaTeX\TeX
When $p = 2$, (1.1) reduces to the Dirichlet integral and it has been studied very extensively — for example, by Brezis, Caffarelli, Friedman, Giaquinta, Jensen, Kinderlehrer, Lewy, Lions, Stampacchia and Ural’tseva ([BK], [BS], [C], [CK], [Ch], [F], [G1,2], [J], [KD1], [KD2], [KDS], [LeS1,2,3], [LiS] and [Mo]). In particular, it is shown that solutions u can be as smooth as ψ. On the other hand, even the counterpart of (1.1) without obstacles are shown by DiBenedetto [Di], Evans [E], Lewis [L], Lieberman [LB], Lin [LN], Torkdorff [T1,2], Uhlenbeck [U] and Ural’tzeva [Ur] to have a solution at most $C^{1,\alpha}$ on Ω in general for some $\alpha > 0$. Therefore, the best regularity in general for (1.1) is $C^{1,\alpha}$ for some $\alpha > 0$.

It is the purpose of this paper to show the $C^{1,\alpha}$ regularity of solution u of (1.1) up to the boundary. Our proofs of both interior and boundary regularity are based on some ideas used in [CK] and a Krylov-type estimate for solutions of uniformly elliptic equations of non-divergent type near the boundary [K], [W]. Here are our main results.

Theorem 1.1. Let u be the solution of (1.20) in Ω with $u \in W(\varphi, \psi)$ and φ and ψ are C^2 functions on Ω. Then there exist $\tau = \tau(n, p) > 0$ and $C = C(n, p, \Omega, R)$ with $R \in (0, 1)$ such that

\[
(1.3) \quad \|u\|_{C^{1,\tau}(\Omega_R)} \leq C \left(\|\varphi\|_{C^2(\Omega)} + \|\psi\|_{C^2(\Omega)} \right).
\]

where $\Omega_R = \{x \in \Omega : \text{dist } (x, \partial \Omega) > R\}$.

Concerning the boundary regularity, we have

Theorem 1.2. Let u be the solution of (1.2) in Ω, where $u \in W(\varphi, \psi)$ and φ, ψ are C^2 functions on Ω. Then there exist $\alpha = \alpha(n, p) > 0$, $\rho = \rho(\Omega) > 0$ and $C = C(n, p, \Omega)$ such that

\[
(1.4) \quad \|u - \varphi\|_{C^{1,\alpha}(\Gamma_\rho)} \leq C \left(\|\varphi\|_{C^2(\Omega)} + \|\psi\|_{C^2(\Omega)} \right)
\]

where $\Gamma_\rho = \{x \in \Omega : \text{dist } (x, \partial \Omega) \leq \rho\}$.

Remark 1.2. Once we have (1.3) and (1.4), the global $C^{1,\alpha}$ regularity of u becomes a direct consequence.
We would like to mention some earlier results in this direction. In particular, the continuity of \(u \) was proved in [MZ], [RT]. In [LQ], the interior \(C^{1,1/p^2} \) estimate was obtained when \(n = 2 \). See also [BI], [H], and [Sa].

\[\text{§2. Some Preliminaries.} \]

Let \(u \) be the solution of problem (1.1) and define

\[K = \{ a \in \Omega : u(a) = \psi(a) \}. \]

which is a relatively closed set in \(\Omega \) by [MZ] and we have

\[\begin{cases} \text{div}(|\nabla u|^p \, 2\nabla u) = 0 & \text{in } \Omega \setminus K, \\ \text{div}(|\nabla u|^p \, 2\nabla u) \leq 0 & \text{weakly in } \Omega. \end{cases} \]

Also it is clear by a simple truncation [GT], [Lur] that

\[\|u\|_{L^\infty(\Omega)} \leq M \equiv \max \{ \|\varphi\|_{L^\infty(\Omega)}, \|\psi\|_{L^\infty(\Omega)} \} \]

For (1.1), let \(u^\varepsilon \) be the unique minimizer of the associated problem

\[\inf \int_\Omega (\varepsilon + |\nabla u^\varepsilon|^p)^{p/2} dx \text{ in } W(\varphi, \psi). \]

The advantage of (2.4) is that it is non-degenerate and furthermore

\[u^\varepsilon(x) \to u(x) \text{ in } W^{1,p}(\Omega), \quad \nabla u^\varepsilon(x) \to \nabla u(x) \text{ a.e. in } \Omega \]

as \(\varepsilon \to 0 \) (see, for example [Di] and [RT]). Therefore, to obtain \(C^{1,\alpha} \) regularity for \(u \), it is sufficient to prove these results for \(u^\varepsilon \) independently for \(\varepsilon > 0 \).

Correspondingly, we have

\[\int_\Omega \left(\varepsilon + |\nabla u^\varepsilon|^2 \right)^{p-2} \nabla u^\varepsilon \cdot \nabla (v - u^\varepsilon) \geq 0, \quad \forall \ v \in W(\varphi, \psi) \]

or

\[\begin{cases} \text{div} \left(\left(\varepsilon + |\nabla u^\varepsilon|^2 \right)^{p-2} \nabla u^\varepsilon \right) \leq 0 & \text{weakly in } \Omega, \\ \text{div} \left(\left(\varepsilon + |\nabla u^\varepsilon|^2 \right)^{p-2} \nabla u^\varepsilon \right) & \text{in } \Omega \setminus K^\varepsilon \end{cases} \]

where \(K^\varepsilon = \{ a \in \Omega : u^\varepsilon(a) = \psi(s) \} \).

Because of the non-degeneraten property of (2.4), we have that \(u^\varepsilon \) are smooth for \(\varepsilon > 0 \) ([1]) and hence \(u^\varepsilon \) satisfies

\[\begin{cases} a^{ij}_{\varepsilon} D_{ij} u^\varepsilon \leq 0 & \text{in } \Omega, \\ a^{ij}_{\varepsilon} D_{ij} u^\varepsilon = 0 & \text{in } \Omega \setminus K^\varepsilon \end{cases} \]
with \(a_{ij}^*(x) = \delta_{ij} + (p - 2)D_i u^*(x)D_j u^*(x)(\varepsilon + |\nabla u^*|^2)^{-1} \).

It is clear that \(a_{ij}^*(x) \) is uniformly elliptic in \(\Omega \) with \(\lambda = \min\{1, p - 1\} \) and \(\Lambda = \max\{1, p - 1\} \) independently of \(\varepsilon > 0 \).

Unless otherwise indicated, \(C \) and various Hölder exponents \(\alpha, \beta, \gamma \) will denote constants depending only on \(n, p, \delta \) and \(\partial \Omega \). Let

\[
M \equiv \max\{\|\varphi\|_{L^\infty(\Omega)}, \|\psi\|_{L^\infty(\Omega)}\}
\]

\[
M_1 \equiv \max\{\|\nabla \varphi\|_{L^\infty(\Omega)}\|\nabla \psi\|_{L^\infty(\Omega)}\}
\]

and

\[
M_2 \equiv \max\{\|\nabla \varphi\|_{L^\infty(\Omega)}\|\nabla \psi\|_{L^\infty(\Omega)}\}
\]

To make the presentation clean, we will omit \(\varepsilon \) in the future because all the estimates obtained will be independent of \(\varepsilon > 0 \).

Let \(a \in \Omega \) such that \(B_{4R}(a) \subset \Omega \) for some \(R > 0 \). Then we have

Lemma 2.1. Let \(v \) satisfy

\[
\begin{cases}
 a_{ij}(x)D_{ij}v \leq 0 & \text{in } B_{4R} \\
 v \geq 0 & \text{in } B_{4R}
\end{cases}
\]

with \(v(a) \leq \lambda \) and \(\sup_G v \leq \lambda \) where \(G = \text{supp } (a_{ij}(x)D_{ij}v) \). Then for each \(\alpha \in (0, 3) \) there exists \(C_\alpha > 0 \) such that

\[
0 \leq v(x) \leq C_\alpha \lambda, \quad \forall \ x \in B_{aR}(a).
\]

Proof. Let \(v_0 \) be the solution of \((2.7) \) with boundary value \(v_0 = v \), i.e.,

\[
\begin{cases}
 a_{ij}(x)D_{ij}v_0 = 0 & \text{in } B_{4R} \\
 v_0 = v & \text{on } \partial B_{4R}
\end{cases}
\]

Then we have \(v - v_0 \geq 0 \) in \(B_{4R} \) and \(v_0 \) is non-negative in \(B_{4R} \) since \(v \) is on \(\partial B_{4R} \).

This implies that

\[
0 \leq v_0(a) \leq v(a) \leq \lambda
\]

and hence the Harnack inequality ([Mr], [Sf]) implies that

\[
0 \leq v_0(x) \leq C_\alpha \lambda, \quad \forall \ x \in B_{aR}(a), \text{ for } \alpha \in (0, 3).
\]
On the other hand, \(v - v_0 \) is a non-negative solution of (2.7) in \(B_{4R} \setminus G \). Therefore, the maximum principle shows that

\[
0 \leq v(x) - v_0(x) \leq \sup_{\partial(B_{4R} \setminus G)} (v - v_0) \leq \sup_G v \leq \lambda \quad \forall \ x \in B_{4R}.
\]

Therefore we have by (2.9) that

\[
0 \leq v(x) \leq v_0(x) + \lambda \leq (C_\alpha + 1)\lambda. \quad \text{Q.E.D.}
\]

Lemma 2.2. Let \(u \) be the super-solution of (2.6) and \(a \in K \cap \Omega \) such that \(B_{4R}(a) \subset \Omega \), and assume that there exists a solution \(h \) of (2.8) in \(B_{4R}(a) \) such that \(\sup_{B_{4R}(a)} |h - \psi| \leq \lambda \). Then

\[
\sup_{B_{4R}(a)} |u - \psi| \leq C\lambda. \tag{2.10}
\]

Proof. Let \(w(x) = u(x) - h(x) + \lambda \) in \(B_{4R}(a) \). Then \(w \) is a supersolution of (2.6). And since \(u(x) \geq \psi(x) \geq h(x) - \lambda \) in \(B_{4R} \) we have \(w \geq 0 \) in \(B_{4R}(a) \) with \(w(a) = \psi(a) - h(a) + \lambda \leq 2\lambda \) and

\[
w(x) = \psi(x) - h(x) + \lambda \leq 2\lambda \quad \text{in} \ K \cap B_{4R}.
\]

Now applying Lemma 2.1, we get that

\[
0 \leq w(x) \leq c\lambda \quad \text{in} \ B_{2R}(a),
\]

which implies that

\[
-\lambda \leq u(x) - h(x) \leq (c - 1)\lambda.
\]

Thus

\[
\sup_{B_{2R}} |u - \psi| \leq (C + 1)\lambda. \quad \text{Q.E.D.}
\]

Lemma 2.3. Let \(u, a \in K \) and \(R > 0 \) be the same as in Lemma 2.2.

(i) If \(\omega \) is the modulus of continuity of \(\psi \) at \(a \), then

\[
\sup_{B_r(a)} (u - \psi) \leq C_1 \omega(2r), \quad \forall \ r \leq R.
\]
If ω_1 is the modulus of continuity of gradient of ψ at a, then

\begin{equation}
\sup_{B_r(a)} (u - \psi) \leq C_2 r \omega_1(2r), \quad \forall \ r \leq R.
\end{equation}

Proof. By using Lemma 2.2, both (2.11) and (2.12) become direct consequences if we let $h(x) = \psi(a)$ and $h(x) = \psi(a) + \nabla \psi(a) \cdot (x - a)$ in $B_{4R}(a)$ respectively for case (i) and (ii). Q.E.D.

Remark 2.1. If (2.12) holds for u in B_R, and if $\omega_1 \to 0$ as $r \to 0$, then we have

\begin{align*}
|u(x) - \psi(a) - \nabla \psi(a) \cdot (x - a)| \\
\leq |u(x) - \psi(x)| + |\psi(x) - \psi(a) - \nabla \psi(a) \cdot (x - a)| \\
\leq (c + 1)r \omega_1(2r), \quad \text{for } x \in B_R(a)
\end{align*}

with $r = |x - a|$, which implies that

\[\nabla u(a) = \nabla \psi(a) \]

and hence

\begin{equation}
|u(x) - u(a) - \nabla u(a) \cdot (x - a)| \leq C_3 |x - a| \omega_1(2|x - a|), \quad \forall \ x \in B_R(a).
\end{equation}

Lemma 2.4. Let u be the solution of (1.1) (or (2.4)) and $y \in \Omega$ such that $B_{4R}(y) \subset \Omega \setminus K$. Then

\begin{equation}
\| \nabla u \|_{L^\infty(B_{2R}(y))} \leq C \| u \|_{L^p(B_{4R})} \frac{1}{R^{1+n/p}} \leq \frac{C_4 M}{R}
\end{equation}

and

\begin{equation}
|\nabla u(x) - \nabla u(z)| \leq C |x - z|^{\beta} R^{\frac{n}{p}} \nabla u \|_{L^p(B_{2R})} \leq \frac{C_5 M}{R^{\beta}} |x - z|^{\beta},
\end{equation}

for all $x, z \in B_{2R}(y)$, and for some $\beta = \beta(n, p) > 0$

Proof. See [L], [S].

§3. Interior Regularity.

Now in this section, we will prove Theorem 1.1. But first the following lemma is needed.
Lemma 3.1. Given $R_0 \in (0, 1)$ and let $\Omega_{R_0} = \{x \in \Omega : d(x) > R_0\}$, where $d(x) \equiv \text{dist} (x, \partial \Omega)$. If u satisfies (2.4), then

\begin{equation}
|\nabla u|_{L^\infty(\Omega_{R_0})} \leq C_0 \left(\frac{M}{R_0} + M_1 \right)
\end{equation}

and

\begin{equation}
|\nabla u(x) - \nabla u(a)| \leq \frac{C_7 M R_0 \gamma}{R_0^{1+\gamma}} |x - a|^{\gamma}, \quad \forall \ x \in \Omega_{R_0} \text{ and } a \in \Omega_{R_0} \cap K,
\end{equation}

where $\gamma = \delta \frac{\beta}{1+\beta}$, M_{R_0}, $\gamma = M + R_0 M_1 + R_0^{1+\gamma} M_2$.

Proof. By Lemma 2.3 and Remark 2.1, we have that if $a \in K \cap \Omega$, then $\nabla u(a) = \nabla \psi(a)$ and therefore

\begin{equation}
\|\nabla u\|_{L^\infty(K \cap \Omega)} \leq M_1
\end{equation}

and furthermore, we have that for all $a \in K \cap \Omega_{R_0}$$$

\begin{align}
\begin{cases}
|u(x) - u(a)| \leq 2C_1 M_1 |x - a| & \text{by (2.11)} \\
|u(x) - u(a) - \nabla u(a) \cdot (x - a)| \leq 2C_3 M_2 |x - a|^{1+\delta} & \text{by (2.13)}
\end{cases}
\end{align}

for $x \in B_{R_0/4}(a)$. Let $x \in \Omega_{R_0}$ be fixed. Then we have either $B_{R_0/4}(x) \cap K = \emptyset$ in which case we have

\begin{equation}
|\nabla u(x)| \leq C_4 M/R_0
\end{equation}

by Lemma 2.4, or $0 < \text{dist} (x, K) < R_0/4$. Let $d_x = \text{dist} (x, K)$, then there exists some $a \in K \cap \Omega_{R_0}$ such that $R_0/4 > d_x = |x - a|$. Now let

$$w(y) = \frac{u(d_x y + a) - u(a)}{d_x} \text{ for } y \in B_1 \left(\frac{x - a}{|x - a|} \right).$$

Then w satisfies equation (2.5) (with a different $\varepsilon > 0$ after this scaling). Hence by the estimate (3.4) we have

$$\|w\|_{L^\infty(B_1)} \leq 4C_1 M_1$$

which implies by Lemma 2.4 that

$$\|\nabla w\|_{L^\infty(B_{1/2})} \leq 4C_1 C_4 M_1.$$
In particular, by letting \(y = \frac{x - a}{|x - a|} \), we have

\[
|\nabla u(x)| \leq 4C_1C_4M_1
\]

Therefore, we have by (3.3), (3.5) and (3.6) that (3.1) is valid.

To prove (3.2), let \(x \in \Omega_{R_0} \) and \(a \in K \cap \Omega_{R_0} \) with \(0 < |x - a| < R_0/8 \). For otherwise, (3.2) is implied by (3.1) already.

First assume that \(|x - a| \leq 4d_e \equiv 4 \text{dist}(x, K) \). As before, let \(v(y) = w(y) - \nabla u(a)y, \quad y \in B_1\left(\frac{x - a}{|x - a|}\right) \).

If we have

\[
|\nabla u(a)| \leq 4C_3M_2d_x^\delta
\]

then

\[
|w(z)| \leq 12C_3M_2d_x^\delta
\]
in \(B_1\left(\frac{x - a}{|x - a|}\right) \) because \(\|v\|_{L^\infty(B_1)} \leq 4C_3M_2d_x^\delta \) by (3.4).

But once we have (3.8), we conclude that

\[
|\nabla u(x)| = |\nabla w(\frac{x - a}{|x - a|})| \leq 12C_3M_2d_x^\delta
\]
by the same reason as we derived (3.6). Therefore, we have

\[
|\nabla u(x) - \nabla u(a)| \leq (1 + 12C_4)C_3M_2d_x^\delta \leq (1 + 12C_4)C_3M_2|x - a|^\delta.
\]

Now suppose (3.7) is false. Then we have that

\[
\left\| \frac{v}{|\nabla u(a)|} \right\|_{L^\infty(B_1)} \leq \frac{4C_3M_2d_x^\delta}{|\nabla u(a)|} = \sigma \leq 1.
\]

In particular, we have

\[
\left| \frac{1}{|\nabla u(a)|} \right| w(\frac{x - a}{|x - a|}) - \nabla u(a) \frac{x - a}{|x - a|} \right| \leq \sigma
\]

Therefore, we have

\[
\left| \frac{v(y)}{|\nabla u(a)|} - \frac{1}{|\nabla u(a)|}v(\frac{x - a}{x - a}) \right| \leq 2\sigma \quad \forall \ y \in B_1\left(\frac{x - a}{|x - a|}\right)
\]
But
\[
\begin{aligned}
&\left| \frac{v(y)}{|\nabla u(a)|} - \frac{1}{|\nabla u(a)|} v\left(\frac{x-a}{|x-a|} \right) \right| \\
&= \left| \frac{1}{|\nabla u(a)|} [w(y) - w\left(\frac{x-a}{|x-a|} \right)] - \frac{\nabla u(a)}{|\nabla u(a)|} (y - \frac{x-a}{|x-a|}) \right| \\
&\geq \left| \frac{1}{|\nabla u(a)|} \nabla w\left(\frac{x-a}{|x-a|} \right) : (y - \frac{x-a}{|x-a|}) - \frac{\nabla u(a)}{|\nabla u(a)|} (y - \frac{x-a}{|x-a|}) \right| \\
&\quad - C_4 C_5 (2 + \sigma) |y - \frac{x-a}{|x-a|}|^{1+\beta}.
\end{aligned}
\]

by Lemma 2.4 (2.15) because from (3.10) we have that $\frac{w}{|\nabla u(a)|}$ is bounded by $(2 + \sigma)$ and satisfies equation (2.5) (with a different $\varepsilon > 0$ after scaling) in $B_1(\frac{x-a}{|x-a|})$.

Therefore (3.11) and (3.12) imply that
\[
\begin{aligned}
&\left| \frac{1}{|\nabla u(a)|} \nabla w\left(\frac{x-a}{|x-a|} \right) : (y - \frac{x-a}{|x-a|}) - \frac{\nabla u(a)}{|\nabla u(a)|} (y - \frac{x-a}{|x-a|}) \right| \\
&\leq 2\sigma + C_4 C_5 (2 + \sigma) |y - \frac{x-a}{|x-a|}|^{1+\beta}.
\end{aligned}
\]

Since $\sigma \leq 1$, we can choose an appropriate $y \in B_1$ such that $2\sigma = C_4 C_5 (2 + \sigma)|y - \frac{x-a}{|x-a|}|^{1+\beta}$ and furthermore $\nabla w\left(\frac{x-a}{|x-a|} \right) - \nabla u(a)$ is parallel to $y - \frac{x-a}{|x-a|}$. Now for such a choice, we have
\[
\begin{aligned}
&\left| \frac{1}{|\nabla u(a)|} \left(\nabla w\left(\frac{x-a}{|x-a|} \right) - \nabla u(a) \right) \right| \\
&\leq 4C_8 |y - \frac{x-a}{|x-a|}|^\beta.
\end{aligned}
\]

Noticing that $\nabla w\left(\frac{x-a}{|x-a|} \right) = \nabla u(x)$, we obtain by (3.3) that
\[
|\nabla u(x) - \nabla u(a)| \leq C_8 M_2^{\frac{\beta}{1+\beta}} M_1^{\frac{\beta}{1+\beta}} d_x^{\frac{\beta}{1+\beta}} |
\]
\[
\leq C_9 M_1^{\frac{\beta}{1+\beta}} M_2^{\frac{\beta}{1+\beta}} d_x^{\frac{\beta}{1+\beta}} |
\]
\[
\leq C_9 M_1^{\frac{\beta}{1+\beta}} M_2^{\frac{\beta}{1+\beta}} |x-a|^{\frac{\beta}{1+\beta}}
\]
\[
\leq C_9 C_7 (M_1 + M_2) |x-y|^{\frac{\beta}{1+\beta}}
\]

The case when $|x-a| > 4d_x$ can be handled similarly, because when $R_0/8 > |x-a| \geq 4d_x$, we have that $d_x < R_0/32$. And hence there exists some $b \in B_{R_0/32}(x) \cap K$ with $|x-b| \leq d_x < R_0/32$. Therefore (3.13) implies that
\[
|\nabla u(x) - \nabla u(a)| \leq |\nabla u(x) - \nabla u(b)| + |\nabla u(b) - \nabla u(a)|
\]
\[
\leq C_9 M_1^{\frac{\beta}{1+\beta}} M_2^{\frac{\beta}{1+\beta}} |x-b|^{\frac{\beta}{1+\beta}} + |\nabla \psi(b) - \nabla \psi(a)|
\]
\[
\leq C_9 M_1^{\frac{\beta}{1+\beta}} M_2^{\frac{\beta}{1+\beta}} |x-b|^{\frac{\beta}{1+\beta}} + M_2 b - a|^{\beta}.
\]
This completes the proof. Q.E.D.

Now we are ready to prove Theorem 1.1. Let \(\tau = \delta \frac{\beta}{1 + \beta + \gamma} \) as in Lemma 3.1. We will prove that

\[
|\nabla u(x) - \nabla u(y)| \leq \frac{C_{11} M_{R_0, \gamma}}{R_0^{1+\gamma}} |x - y|^{\tau}, \quad \text{for } x, y \in \Omega_{R_0}
\]

Assume that \(d_x \) and \(d_y \) are strictly positive and \(0 < |x - y| < R_0/(12+2^{1+\frac{1+\beta}{\beta}}) \), for otherwise, (3.1) and (3.2) would imply (3.14).

Case 1. \(\max\{d_x, d_y\} \geq R_0/(6 + 2^{1+\frac{1+\beta}{\beta}}) \), say without loss of generality that \(d_x \geq R_0/(6 + 2^{1+\frac{1+\beta}{\beta}}) \). Then \(u \) becomes a solution of (2.5) in \(B_{R_0/(6 + 2^{1+\frac{1+\beta}{\beta}})}(x) \) and \(y \in B_{R_0/(12 + 2^{1+\frac{1+\beta}{\beta}})}(x) \) because \(|x - y| < R_0/(12+2^{1+\frac{1+\beta}{\beta}}) \). Therefore, (2.15) implies that

\[
|\nabla u(x) - \nabla u(y)| \leq \frac{C_{12} M}{R_0^{\beta}} |x - y|^\beta \leq \frac{C_{13} M}{R_0^{\beta}} |x - y|^{\tau}.
\]

Case 2. Assume that \(\max\{d_x, d_y\} = d_x < R_0/(6 + 2^{1+\frac{1+\beta}{\beta}}) \). First, let us consider the possibility

\[
0 < |x - y| \leq \max\{d_x^\gamma, d_y^\gamma\} = d_x^\gamma
\]

Then again \(u \) is a solution of (2.50) in \(B_{d_x}(x) \) such that \(y \in B_{d_x/2}(x) \) because of (3.15). Then (2.15) implies that

\[
|\nabla u(x) - \nabla u(y)| \leq \frac{C_{14} M}{d_x^\gamma} |x - y|^\beta \leq C_{14} M |x - y|^{\tau}.
\]

Second, if \(|x - y| > \max\{d_x^\gamma, d_y^\gamma\} \), then we have \(d_x = |x - a|, d_y = |y - b| \) for some \(a, b \in K \cap \Omega_{R_0} \).

Thus we have by (3.2)

\[
|\nabla u(x) - \nabla u(y)| \leq |\nabla u(x) - \nabla u(a)| + |\nabla u(a) - \nabla u(b)| + |\nabla u(b) - \nabla u(y)|
\]

\[
\leq \frac{C_7 M_{R_0, \gamma}}{R_0^{1+\gamma}} |x - a|^\gamma + |\nabla \psi(a) - \nabla \psi(b)| + \frac{C_7 M_{R_0, \gamma}}{R_0^{1+\gamma}} |b - y|^\gamma
\]

\[
\leq \frac{C_7 M_{R_0, \gamma}}{R_0^{1+\gamma}} d_x^\gamma + M_2 |a - b|^{\delta} + \frac{C_7 M_{R_0, \gamma}}{R_0^{1+\gamma}} d_y^\gamma
\]

\[
\leq \frac{2C_7 M_{R_0, \gamma}}{R_0^{1+\gamma}} |x - y|^\gamma + 3^\delta M_2 |x - y|^\delta
\]

because \(|a - b| \leq |a - x| + |x - y| + |y - b| \leq 3|x - y|^{\frac{\delta}{\gamma}} \).

Thus the proof of Theorem 1.1 is completed with \(\tau = \frac{\delta \beta}{1 + \beta + \gamma} \). Q.E.D.

In this section, we establish a boundary estimate analogous to Lemma 2.3. And for that purpose we need the following version of a Krylov-type boundary estimate for solutions of boundary value problems for elliptic equations of non-divergent form. (See e.g., [K] and [W] for a proof of it.)

Let $p \in \partial \Omega \subset C^2$, $\Omega_{p,\epsilon} = \{ x \in \Omega : |x - p| < \epsilon \}$ and $\Delta_{p,\epsilon} = \partial \Omega \cap B_\epsilon(p)$.

Recall that if $\partial \Omega \subset C^2$, then there exists $\rho \in (0,1)$ such that $d(x) \in C^2(\Gamma_\rho)$ where $\Gamma_\rho \equiv \{ x \in \overline{\Omega} : \text{dist} (x, \partial \Omega) \leq \rho \}$

Lemma 4.1. Let w be a solution of the following equation.

$$
\begin{cases}
 a_{ij} D_{ij} w = f & \text{in } \Omega_{p,\rho'} \\
 \lambda I \leq (a_{ij}(x)) \leq \lambda^{-1} I, & \lambda > 0 \text{ fixed, for a.e } x \in \Omega_{p,\rho} \\
 w = \varphi & \text{on } \Delta_{p,\rho'}
\end{cases}
$$

where $\varphi \in C^{1,\delta}$ and $f \in L^t(\Omega_{p,\rho'})$ for some $t > n$ and $\rho' \in (0, \rho)$. Then there exist $\mu = \mu(n, \lambda, \delta, t, \rho')$, $C_{15} = C(n, \lambda, \delta, t, \rho')$ and $A(q)$ defined on $\Delta_{p,\rho'}$ such that

$$
|w(x) - \varphi(x) - A(q)\nu(q)(x - q)| \leq C_{15}(M_2 + \|f\|_{L^t(\Omega_{p,\rho'})}) |x - q|^{1+\mu}
$$

for any pair $(x, q) \in \Omega_{p,\rho'} \times \Delta_{p,\rho'}$, where $\nu(q)$ is the unit inner normal of $\partial \Omega$ at q, and

$$
|A(q)| \leq C_{15} [|w - \varphi|_{L^\infty(\Omega_{p,\rho'})} + M_2] \quad \text{for } q \in \Delta_{p,\rho'}.
$$

Remark 4.1. If w satisfies (4.2), then it is easy to see that

$$
\nabla w(q) = \nabla \varphi(q) + A(q)\nu(q), \quad \forall q \in \Delta_{p,\rho'}
$$

and furthermore, if $q, s \in \Delta_{p,\rho'}$ and $x \in \Omega_{p,\rho'}$, we have by applying (4.2) for x at points q and then subtracting that

$$
|A(q)\nu(q)(x - q) - A(s)\nu(s)(x - s)| \leq C_{15}(M_2 + \|f\|_{L^t}) (|x - q|^{1+\mu} + |x - s|^{1+\mu})
$$

Now define $\Pi_c = \{ x \in \Omega : \text{dist} (x, \partial \Omega) = c \}$ for $c \in (0, \rho)$. Then there exists $x \in \Pi_{|x - q|} \cap \Delta_{p,\rho'}$ such that

$$
\nu(q)(x - q) = \nu(t)(x - t) \approx |q - t|
$$
with $|x - q|$ and $|x - s| \approx |q - t|$. Therefore, for such choice of x, we have from the above inequality that

$$|A(q) - A(s)| \leq C_{10} (M_2 + \|f\|_{L^p(\Omega_{\rho,\theta})})|q - s|^\alpha. \quad (4.5)$$

From now on we will let r_0 be fixed in $(0, \rho]$ and $\theta \in (0, 2/3]$. Assume $0 \in \partial \Omega$, $r_k = \theta^k r_0$ and $\Omega_k = \Omega_{0, r_k}$ and $\Delta_k = \Delta_{0, r_k}$. Define h_k to be the solution of the following boundary value problem

$$\begin{cases}
 a_{ij} D_{ij} h_k = 0 & \text{in } \Omega_k \\
 h_k = u & \text{on } \partial \Omega_k
\end{cases} \quad (4.6)$$

First, by the maximum principle we have

$$u(x) \geq h_k(x) \quad \text{for } x \in \Omega_k \quad (4.7)$$

But then $u - h_k$ is a positive super solution vanishing on $\partial \Omega_k$ and becoming a solution in $\Omega_k \setminus K$. Therefore, we have

$$\sup_{\Omega_k} (u - h_k) = \sup_{\partial (\Omega_k \setminus K)} (u - h_k) \leq \sup_{x \in K \cap \Omega_k} (u - h_k) = \sup_{x \in K \cap \Omega_k} (\psi - h_k)^+ \quad (4.8)$$

Combining (4.6) and (4.7) together, we have

$$0 \leq u(x) - h_k(x) \leq \sup_{x \in K \cap \Omega_k} (\psi - h_k) \quad \text{in } \Omega_k. \quad (4.9)$$

On the other hand, we have

$$|\psi(x) - \psi(0) - \nabla \psi(0) \cdot x| \leq M_2 |x|^{1+\delta} \quad \text{for } x \in \Omega_k$$

Therefore, it is clear that

$$h_k(x) \geq \psi(0) + \nabla \psi(0) \cdot x - M_2 r_k^{1+\delta} \quad \text{in } \Omega_k \quad (4.10)$$

because the latter is itself a solution of (4.6) and is less than or equal to h_k on $\partial \Omega_k$.

Hence, we obtain by (4.10) that

$$\sup_{\Omega_k} (\psi - h_k)^+ \leq 2 M_2 r_k^{1+\delta}$$
and combining it with (4.9), we obtain

\begin{equation}
0 \leq u(x) - h_k(x) \leq 2M_2r_k^{1+\varepsilon} \text{ in } \Omega_k.
\end{equation}

However, we have \(h_k \) satisfies equation (4.6) with smooth boundary value \(\varphi \). Hence we apply Lemma 4.1 and Remark 4.1 to obtain the following

\begin{equation}
\begin{cases}
| h_k(x) - \varphi(x) - A_k(q)\nu(q)(x - q) | \leq C_15M_2|x - q|^{1+\mu} \\
\text{for any pair } (x, q) \in \Omega_{k+1} \times \Delta_{k+1}, \\
| A_k |_{L^\infty(\Delta_{k+1})} \leq C_{16}\left[\frac{1}{r_k}|h_k - \varphi(x)||_{L^\infty(\Omega_{k+1})} + M_2r_k^\varepsilon \right] \\
| A_k(q) - A_k(p) | \leq C_{16}M_2|q - p|\mu^\nu \text{ in } \Delta_{k+1} \times \Delta_{k+1}
\end{cases}
\end{equation}

Now we need to estimate the difference \(h_{k+1} - h_k \). As in (4.7), we first conclude that

\begin{equation}
h_{k+1}(x) - h_k(x) \geq 0 \text{ in } \Omega_{k+1}.
\end{equation}

On the other hand since \(u(x) \geq h_{k+1}(x) \) in \(\Omega_{k+1} \) and (4.11) holds, we have

\begin{equation}
0 \leq h_k(x) - h_{k+1}(x) \leq 2M_2r_k^{1+\varepsilon} \text{ in } \Omega_{k+1}.
\end{equation}

Also, we have for \(h_{k+1} \) the following

\begin{equation}
\begin{cases}
| h_{k+1}(x) - \varphi(x) - A_{k+1}(q)\nu(q)(x - q) | \leq C_{15}M_2|x - q|^{1+\mu} \\
\text{for any pair } (x, q) \in \Omega_{k+2} \times \Delta_{k+2}, \\
| A_{k+1} |_{L^\infty(\Delta_{k+2})} \leq C_{16}\left[\frac{1}{r_{k+1}}|h_{k+1} - \varphi(x)||_{L^\infty(\Omega_{k+1})} + M_2r_k^\varepsilon \right] \\
| A_{k+1}(q) - A_{k+1}(p) | \leq C_{16}M_2|q - p|\mu^\nu \text{ in } \Delta_{k+2} \times \Delta_{k+2}
\end{cases}
\end{equation}

By (4.13) and (4.14), we have

\begin{equation}
| (A_{k+1}(q) - A_k(q))\nu(q)(x - q) | \leq 2C_{15}M_2|x - q|^{1+\mu} + 2M_2r_k^{1+\varepsilon}
\end{equation}

for any \((x, q) \in \Omega_{k+2} \times \Delta_{k+2} \).

From (4.15) we achieve the following by choosing \(x = q + \rho r_{k+2}\nu(q) \)

\begin{align*}
| A_{k+1}(q) - A_k(q) | &\leq C_{17}M_2\max\{\mu^\nu, r_k^{1+\varepsilon}/r_{k+2}\}
\end{align*}
i.e.,

\(|A_{k+1}(q) - A_k(q)| \leq C_{18} M_2 \theta^k \mu r_0^\mu, \quad q \in \Delta_{k+2} \)

And hence in particular, we have

\(|A_{k+1}(0) - A_k(0)| \leq C_{17} M_2 \theta^k \mu r_0^\mu, \quad k = 0, 1, 2, \ldots \)

which implies from (4.17) that

\[
\begin{aligned}
\lim_{k \to \infty} A_k(0) &= A(0) \quad \text{exists and} \\
|A(0)| &\leq C_{18} (M_2 r_0^\mu \frac{1}{1 - \theta^\mu} + \frac{M}{r_0}) \quad \text{and} \\
|A_k(0) - A(0)| &\leq C_{18} M_2 \theta^k \mu r_0^\mu = \frac{C_{18} M_2}{1 - \theta^\mu} \mu
\end{aligned}
\]

Now (4.11), (4.12) and (4.18) imply that

\[
|u(x) - \varphi(x) - A(0)\nu(0) \cdot x| \leq C_{19} M_2 (|x|^{1+\mu} + r_k^{1+\mu})
\]

or simply

\[
|u(x) - \varphi(x) - A(0)\nu(0) \cdot x| \leq C_{20} M_2 r_k^{1+\mu} \quad \text{in } \Omega_{k+1}.
\]

Now it is standard to derive from (4.19) the following

\[
|u(x) - \varphi(x) - A(0)\nu(0) \cdot x| \leq C_{21} M_2 |x|^{1+\mu} \quad \text{in } \Omega_k
\]

for some \(k_0 = k_0(\rho) \). We have from (4.20) that

\[
\nabla u(0) = \nabla \varphi(0) + A(0)\nu(0)
\]

and hence

\[
|u(x) - u(0) - \nabla u(0) \cdot x| \leq C_2 1 M_2 |x|^{1+\mu}
\]

with

\[
|\nabla u(0)| \leq M_1 + C_{18} (\frac{M}{r_0} + \frac{1}{1 - \theta^\mu} r_0^\mu M_2)
\]

by (4.18). This gives the following theorem
Theorem 4.2. Let \(u \) be the solution of (2.4). Then there exist \(0 < \mu = \mu(n, p, \rho) \), \(C_{22} = C(n, p, \rho) \) and \(r_0 = r_0(\rho) > 0 \) such that
\[
|u(x) - \varphi(x) - A(p)\nu(p)(x - p)| \leq C_{22}M_2|x - p|^{1+\mu}
\]
(4.22)
if \(x \in \Omega_{p, r_0} \) and \(p \in \partial \Omega \)
and
\[
\nabla u(p) = \nabla \varphi(p) + A(p)\nu(p)
\]
which satisfies
\[
|\nabla u(p)| \leq \frac{C_{22}}{r_0}(M + r_0M_1 + r_0^{1+\mu}M_2), \quad p \in \partial \Omega.
\]
Remark 4.2. From (4.22) and the fact that \(\partial \Omega \in C^2 \), we obtain again the following (see Remark 4.1).

\[
|A(q) - A(p)| \leq C_{23}M_2|q - p|^{\mu}.
\]
(4.23)
Noticing that \(Dd(p) = \nu(p) \), we have

Corollary 4.3. Let \(u \) be as in Theorem 4.2. Then we have
\[
u(x) = \varphi(x) + d(x)A(x) \quad \text{in } \Gamma_{r_0}
\]
such that
\[
\begin{align*}
\|A\|_{L^\infty(\Gamma_{r_0})} & \leq C_{24}(M + r_0M_1 + r_0^{1+\mu}M_2)/r_0 \\
[A]_{n, \Gamma_{r_0}} & \leq C_{24}M_2.
\end{align*}
\]
(4.24)
Once we have obtained the crucial estimates (4.24) we can prove the following theorem on the boundary regularity of solutions of (2.4), using methods of proof similar to that for Theorem 1 in §3. We therefore omit the proof here.

Theorem 4.4. Let \(u \) be the solution of (2.4). Then \(u \in C^{1,\alpha}(\Gamma_{r_0}) \) such that
\[
\begin{align*}
|\nabla u|_{L^\infty(\Gamma_{r_0})} & \leq C_{25}(M + r_0M_1 + r_0^{1+\alpha}M_2)/r_0 \\
[\nabla u]_{n, \Gamma_{r_0}} & \leq C_{25}M_2
\end{align*}
\]
(4.25)
where \(\alpha = \frac{\mu\beta}{(1+\beta+\mu)} \) and \(C = C(n, p, \rho) \).

Proof of Theorem 1.2. Since the estimate (4.25) is independent of \(\varepsilon > 0 \) and since \(\nabla u^\varepsilon(x) \to \nabla u(x) \) a.e. \(x \in \Omega \), the result follows immediately from Theorem 1.1 and (4.25). Hence, the proof of Theorem 1.2 is complete. Q.E.D.
References

