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Statistics of multicharge centers in semiconductors: Applications

D. C. Look
University Research Center, Wright State University, Dayton, Ohio 45435

(Received 21 July 1981)

A general formula is derived for the electron occupation numbers appropriate for mul-

ticharge centers in semiconductors, including excited states. The results are used to
rederive and generalize several formulas of interest in the literature, in order to show ex-

actly how the degeneracies of individual states enter in. Particular attention is paid to
certain subjects which are sometimes confusing, such as how the statistics of band states
differ from those those of localized states. Another subject of much recent interest,
negative-U centers, is dealt with in some detail. We show how the dependence of the

average occupation number on Fermi energy and the temperature dependence of the free-

carrier concentration differ between positive- and negative-U centers.

I. INTRODUCTION

It has long been known that the Fermi-Dirac
distribution function,

f( g') = 1/[1+exp( g' —5'F /kT],

which so well describes electrons in an energy
band, is, in general, inapplicable to electrons in lo-

calized states, such as those that may arise from
substitutional impurities in a semiconductor. '
For these latter cases, the distribution function is
usually modified as follows:

f ( W') = 1/[1+%exp( g' —
fthm )/kT),

where E is a constant and the other symbols have
their usual meanings. Thus, E =1 for band elec-

1

trons, and it has also been shown that K=- —, for
some shallow donors and E =4 for some shallow

acceptors. Usually, researchers use one of these
three values but often in cases for which they have
no apparent validity. In a more general sense, K is
variously given as 1/g or as go/g~, where go is
the degeneracy of the unoccupied state of a single-
charge-state impurity, and g or g& the degeneracy
of the occupied state. Since band states are spin-
degenerate, it might naively be expected that E
should be one-half, not one, in this case. The
reasons why this is not true are sometimes not
made clear.

For discussions of double-charge-state centers
(occupation by 0, 1, or 2 electrons), the starting
point is usually either the law of mass action or a
formula of Brooks. Evidently Brooks's formula
has never been explicitly derived in the literature,

only quoted; in any case, it has not appeared, to
our knowledge, with the various state degeneracies

go, g~, and g2, included in a general way. For
centers with higher-order charge states, or with ex-
cited states, the situation is even less clear, at least
for the general researcher. This problem becomes
important when dealing with, say, negative-U
centers, or with Cr in GaAs, for which four charge
states (Cr'+, Cr +, Cr +, and Cr +), along with
important excited states, evidently exist. "

Many rather diverse treatments of this subject
have appeared. Landsberg first introduced a ther-
modynamic approach based on minimizing the free
energy. ' Then Guggenheim suggested a method in
which the equilibrium distribution function was
written directly in terms of the absolute activity
(Fermi level). Guggenheim's approach was essen-
tially equivalent to formulating the problem in
terms of the grand-partition function (GPF), and
this formulation was then further developed and
used by Landsberg, Teitler and %allis, ' Clark, "
and others. Different approaches have been uti-
lized by Champness' and Shockley and Last. '

In spite of these excellent past efforts, we feel
that a unified treatment, tying together the various
results in the literature, as well as generalizing
them, is lacking. In this paper we start from the
familiar principle of maximum probability and
derive general results, which are then used to ob-
tain the following specific results: (1) free-electron
and hole concentrations, (2) the charge balance
equation, (3) the Ferini function for shallow donors
with excited states, (4) the mass-action law, (5) the
Brooks formula, (6) the Teitler-Wallis formula for
acceptors in tetrahedral semiconductors, and (7)
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the statistics of negative-U centers. In regard to
item (1), we try to show in a very natural way why

1K =1 for band electrons, and E = —, for donors in

an orbital-singlet state. Also, we will discuss item
(7), negative-U centers, in some detail since this is
a topic of much current interest.

Our approach in this paper will be to start with
the simplest problem, namely, the familiar single-
charge-state center with no degeneracy and no ex-

cited states. Then we will consider some more
complex problems of general interest and finally
derive the general result. It is felt that this ap-
proach, rather than immediately deriving the gen-

eral result, will lead to a better understanding of
the concepts involved and make them more easily
applicable by the interested researcher.

II. DERIVATION OF OCCUPATION
PROBABILITIES

The maximum probability method of deriving
energy-distribution functions is a familiar approach
described in many textbooks on solid-state phy-
sics. ' The heart of the technique is in finding the
number of distinguishable ways that a given
number of particles can be distributed among a
given number of boxes. ' The particles in this case
are electrons and the boxes are the "elementary"
eigenstates of the system. Here a "box" could be a
band state, denoted by k„, k„, and k, quantum
numbers, or an atomic impurity state, denoted by
its own appropriate quantum numbers. Now an
important assumption is that an electron in one
box must interact only weakly with the electrons in
other boxes. If this is the case, then the total
Hamiltonian for the system will simply be the sum
of the individual Hamiltonians, and the grand
eigenstate can be written as a product of the indivi-
dual eigenstates, properly symmetrized, of course.
It should be noted here that, although the interac-
tion between boxes must be weak, the interactions
of electrons within a box may be strong indeed.
We simply require that the eigenstate and eigen-
value for the box as a whole be known.

The available electrons in the system will come
from the valence band and donor centers. These
electrons can be distributed among states in the
valence band, conduction band, donor centers, and
acceptor centers. Each distinguishable arrange-
ment of the electrons among all of these states
results in a different grand eigenstate, and it is as-
sumed that every grand eigenstate which leads to
the same total energy is equally likely to occur.

Number of ionizable EIectrons on kth Center

2
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FIG. 1. Schematic representation of the number of
ionizable electrons on the kth center. Here "ionizable"
means that the electron can be excited to the conduction
band by less than band-gap energy. See text for ex-
planation of symbols.

The maximum probability principle then states
that the electrons will distribute themselves among
the possible energy cells of the system in such a
way that the maximum number of grand eigen-
states can be formed, consistent with a given total
energy.

We will illustrate these concepts by reviewing
the common textbook problem of finding the densi-

ty of electrons in the conduction band. ' Here the
boxes are denoted by (k„,k~, k„o ), where o.

represents either spin up or spin down. Thus, each
box can hold only one electron. [See Fig. 1(a).]
We suppose that the states in the band can be split
into small energy intervals of width 58', where ES'
is large enough to envelop many states, but smaller
than our maximum energy resolution, or at least
smaller than the accuracy within which we wish to
measure energy. I.et Ek be the number of states in
energy interval k and nk be the number of elec-
trons assigned to this energy interval. The first of
these electrons can be assigned in Xk ways, the
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second in Ek —1, etc., for a total of

Nk(Nk —1)(Nk —2) (NI, n—k+1)
=Nk! /(Nk nk—)!

ways. S1ncc pcmlutat1ons of thc tlI, occup1cd states
do not result in different grand eigenstates, the to-
tal number of distinguishable ways of arranging the
electrons in the kth energy interval is

Nk!

nk!(Nk —nk )!

By taking into account states within the other en-

ergy intervals, we get the total number of distin-
guishable ways that electrons may be arranged in
the whole conduction band:

nk!(Nk nk )'—
The constraints to this problem are

tion, Eq. (5). The maximum of the Lagrange func-
tion is then found by setting dF/dnk ——0, and the
result is the well-known Fermi-Dirac distribution
functlOn:

&k

1+exp(a+ PS'k )

The constants a and P can be identified by com-
parison with a thermodynamic treatment of the
problem. The results are a = —8 F/kT and
P= 1/kT, where g'z is the chemical potential or
FCfHl1 CnCfgy.

The total density of electrons in the conduction
band (CB) is then

1 1 P, ( g'k )b, g'
n= —g nk= —gV „cn V, 1+exp[(r, —g, )/kT]

(t, (g')d 8'

1+exp[( g' —g'p)/kT]

4n(2m„') ~ ~ gi~2dg

1+exp[(g' —g', )/kT] '

where 8'k is the energy difference between the oc-
cupied and unoccupied states in the kth energy in-.

terval, n, is the total Ilumber of electrons, and 8',
is the total energy. Note that in Eqs. (2)—(4) we

have not included the contributions of electrons in
the valence band and impurity levels. This is be-
cause the final result for conduction-band states
will not explicitly depend on these other contribu-
tions, but only through a constant, a.

%e now wish to find the set of nk which will

maximize W, . (Actually it is more convenient to
maximize ln8', so that we can apply Stirlings's
formula: lnN! NlnN N for large N —)The.
method of Lagrange multipliers' requires finding

the maximum of the following function:

I'=in%, +u n, —ink +P g', —gnk8'k
k k

where a and P are undetermined constants. By use
of Stirling's approximation we get

in'', = g [NklnNi, —nklnnk

—(Nk nk )ln(Nk —nk )] . —

Although the nk are not independent, they may be
treated as such with respect to the Lagrange func-

where we have set 8', '"=0. The upper limit 8', '"
can be extended to infinity since the integrand be-

comes very small for 8' more than a few kT above
8'F. The density of states function used here is
valid for simple parabolic energy bands, i.e.,
g (k) =A k /2nlq, where k is the crystal momen-
tum.

Now an important point about the familiar for-
mula given in Eq. (8) is that both the spin-up and
spin-down states, which are degenerate, were in-

cluded among our elementary eigenstates. Howev-

er, spin degeneracy cannot be treated so easily
when the wave functions are localized, as on im-

purity atoms. To illustrate the differences, we will

consider the slightly more complicated arrange-
rnent shown in Fig. 1(b), in which each box may
hold two electrons. From the energy-band point of
view a box here may represent a given (k„,k~, k, )

eigenfunction, which can hold both spin-up and
spin-down electrons, while for localized levels a
box may represent a donor impurity atom, which
can have either one or two electrons in an s state.
The representation in Fig. 1(b) differs from that in

Fig. 1(a) in two ways. First of all, there are addi-

tional permutations possible. These arise because
the electrons in the singly occupied boxes can be in

either of two states (e.g., spin up or spin down).
S1ncc thcfc afc Pfk I double pcrmutat1ons possible,
8'k becomes
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2"k1N )

8'k ——

nko!nkl~nk2!
' (9)

Second, a new energy, 8'k2, must be assigned to the
two-electron state. Here 8'k2 is the energy diA'er-

ence between the two-electron state and the zero-
electron state. Normally, 8'k2&28'k~ because of
electron-electron repulsion, although the reverse
will be true for "negative-U" centers, to be dis-

cussed later. The constraints are now

nkp+nk i+ nk2 ——Nk, (10)

nk, +2nk2+ g l'nkI =n, ,
k'+k

nk 1 +k 1+nk2+k2+ g k'I'~k'I'= +t
k'Qk

I'

(12)

where Eq. (10) is included as a new constraint
rather than being explicitly substituted into Eq. (9)
for nk2. The summations over index k' simply
represent other electrons in the system, which will

not affect the final result. We introduce a new

Lagrange multiplier y for Eq. (10), set up a func-

tion similar to that of Eq. (5), and take derivatives

with respect to nkp, nki, and nk2, respectively. The
results are

—1 —lnnk, —y=o,
ln2 —1 lnnk

& y—a p—S'k,—=0—,
—1 —lnnk2 —y —2a —pS'k2 ——0 .

(13)

(14)

nk2=
1+e k2 F~~ ( k2 k1 F~~+2e

Here, all energies are referenced to the valence
band, and this will be true in the rest of the paper
unless otherwise noted. Thus, for example, 5'k2 is

(Note that by taking second derivatives it is easily
seen that this extremum corresponds to a max-
imum. ) These equations may be solved, by use of
Eq. (10), to give

Nk

1+2e ( —&k1+@'F~l~kT ( —&k2+2&F ~~kT+e
(16)

Nk
nki=

1+—,e kl F~~ 1 ( k1 +k2+ F~~+ 2e

(17)

2Nk
k )+2nk2 ——

(8' —8' )/kTkl F
(19)

This is exactly the same result as before [Eq. (7)]
because we started with twice as many boxes in

that case; i.e., each spin state led to a separate box
in the previous example. We might note here, for
later reference, that the number of holes in the kth
cell (or center) is given by

2Nk
Ik =2nkp+nk i = (@ —@' )IkT1+e F k1

(20)

(Note the transposition of the energy argument. )

Equation (20) will be of use later, when dealing
with the valence band.

We next apply Eqs. (16)—(18) to a localized
wave-function situation, e.g., a donor impurity in
an s state. Here there will be a strong repulsive
term from having two electrons on the same atom.
Thus, we might expect 8'k2&& 8'k&, giving

Nk
kl

1 @kl I F kT1+—e k1 F
(21)

These considerations explain the origin of the
well-known degeneracy factor of one-half. It arises
simply from the much higher energy normally re-
quired to place two electrons in localized orbits
near each other. This point has sometimes been
confused in the literature. It should also be noted
here that in some cases lattice relaxation efFects can
overcome the repulsion effects to actually give
8'k2 & 28'k &. This situation will be discussed later.

The above results can be easily generalized to in-

clude arbitrary degeneracy. We first note that gp is
not always equal to unity. Consider, for example,
the neutral anion vacancy in a III-V compound.
In an unrelaxed state, this defect presumably has
two paired electrons in a filled a~ state, and, at a

the energy necessary to place two electrons from
the top of the valence band onto a center of group
k. We have chosen 8'kp ——0, since this level is
presumed degenerate with the valence band. Later,
if we wish to refer energies to the conduction-band
edge, they will be designated by a superscript C.

We first apply these results to the previous prob-
lem, i.e., electrons in a conduction band. In this
case, the wave functions are spread throughout the
whole crystal so that the electron-electron repulsion

energy, due to having two electrons (spin up and

spin down) in the same (k„,k~, k, ) box, is small.

Thus, 8'k2 ——28'k~ and, with a little algebra, we can
show that
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higher energy, one electron in a t2 state. The t2
state is threefold orbitally degenerate and twofold
spin degenerate. If the single t2 electron were
resonant with the valence band, and if this center
could accept up to two more t2 electrons with en-

ergies in the band gap, then the situation would be
described by the example in Fig. 1(c), in which

gp =6!/5! 1!=6 g 1
=6!/4!2!= 15, and

g2
——6!/3!3!=20. Therefore, go+1 in this case.

The number of extra distinguishable permutations
for a double-charge-state system in general is sim-

ko kl k2 ~ ~

ply gko gk1gk2 g1»ng

ko kl k2
gko gk1 gk2 +k

nko!nk1!nk2
(22)

The constraints in this problem are the same as be-

fore [Eqs. (10)—(12)], and the final result is

separate box in this problem, and from the above
considerations it should be clear that

(26)

The constraints are

g nktm =Nk for each k,
I, m

ittktm Ne
k, l, m

ttklm g klm if t
k, l, m

(27)

(28)

(29)

Let the Lagrange multipliers be yk, k =1,2, . . . for
Eq. (27), a for Eq. (28), and P for Eq. (29). Then
the derivative with respect to nkl of the total
Lagrange function will give

nkp ——

nk1=

1+ e + e
'QF —'9k ] gk 2 29F—'Ilk 2

Sko gko

Nk

1+ e + e
gko '9k] —'9F gk2 'Qk) —'Qk2+'9F

gk1

(23)

(24)

ingkl 1 innkl 1k io' P+kl

When l =0 and m =0 we get

lngkoo —1 1nnko—o yk —P@koo= 0—.

Thus, by combining Eqs. (30) and (31) we get

gklm @~ kit ~ k Oo]
nkl nk ooe

gkoo

(30)

(31)

1+ e + e
gkp Ik2

—2 I& gk1 Ik2 —
Ik )

—Ip

gk2 gk2

(25)

gklm IrlF —'9kIm '9k oo
nkooe

where, again, i)—:g'/kT. Equation (27) can be
written

(32)

where gkI ——8'kI/kT. Here, as before, all energies
are referenced to the valence band. Equations
(23) —(25), of course, revert to Eqs. (16)—(18),
respectively, when gkp

——1, gk1 ——2, and gk2 ——1.
We now consider the most general case, includ-

ing excited states [Fig. 1(e)]. Let nkt denote the
mth excited state of the lth charge state of the kth
impurity, or defect, or energy cell in a band. Here
we are assuming that the zeroth charge state is
resonant with the valence band so that an energy
greater than the band gap would be required to ex-
cite an electron from a center in this charge state
into the conduction band. Let lk be the number of
charge states within the band gap for the kth
center; then I =0, 1,2, . . . , lk. The (lk+1)th
charge state is presumed to be resonant with the
conduction band, and thus unstable. For a given I,
assume that there are mkl excited states, i.e.,
ml ——0, 1,2, . . . , mkl. Finally, let the degeneracy of
klmth state be gkl . Each excited state is now a

I, m

nklm

koo ~~ gklme
gkoo I m

(33)

so that the final result is

nklm

1+ ~ e
gkl'm '

'ttIkltrt
—'gkl. ttt

—( I —I' jqF

I', m'Ql, m gklm

(34)

The restriction on the summation is that 1'Ql and
m'Qm at the same time Here tf'kt is th. e energy
required to place l electrons from the valence band
into the mth excited state on one of the centers in

group k.
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III. APPLICATIONS

In this section me mill use ihe above results to derive, and in certain cases generalize, a number of formu-
las mhich exist in the literature. One purpose is to enhance the applicability of some of these well-known

results for the general researcher. Also, we will consider negative-U centers in some detail.

A. Conduction and valence bands

The total density of electrons in the conduction band was already derived [Eq. (8)]. Similarly, the total
density of holes in the valence band (VB) may be obtained from Eq. (20):

1 1 2/kp= —gsk= —gV kvi) V k 1+exp[(w p gk)/kT]

gm» 2y ( gl)dg 4 (2 «)$/2 gm»
( g + gtmax)1/2dg

V J~ '" 1+exp[(S'F —8')/kT] li' I- 1+exp[(S'F —g')/kT]

4n(2m& }. / X'"dX
li 0 1+exp[(x+ 5'p —5'„'")/kT]

where, again, non-parabolic-band effects are ig-
nored. When 8'~ is more than a few kT from ei-

ther band edge, me obtain the mell-known results'

l

follows:

n+ Q ink( =a+ g lkN) g«k(—
k l, m

2(2nm„*kT) / I /kT pc/kr
pg = e =Pe

h3

2(2irmp kT) (g ~» g~)/kr — ( (( ~)/kT—
3

(37)

(40)

Equation (40) is simply a statement of charge bal-
ance since the left-hand side is the total density of
negative charges and the right-hand side, positive
charges. For single donors and acceptors (I =0, 1),
with no excited states, Eq. (40) attains the familiar
form

B. Charge balance equation

The left-hand side of Eq. (28} is

g ink( n+(N. ~
P)—— —

k, l, m

+ g ink)m+ g lnklm ~

k, l, m

n+ ink ——p+ g(Nk nk) . —

where, according to Eq. (34),

1+ e
gkO (.rI, &

—rF)/kT

gk&

C. Excited states of shallow donors

(41)

(42)

N, =N„,+ g lkNk .
k

(39)

Equation (28) can, therefore, be rearranged as

where X„, is the total density of states in the
valence band, & denotes donors, and M denotes
acceptors. (All nuinbers now are normalized to
unit volume to give densities. ) The right-hand side
of Eq. (28), N, is just tile total llllnlbef (delisity) of
electrons available for distribution among the vari-
ous electronic states. Thus,

In dealing with the detailed electrical properties
of shallow donors in GaAs, it is sometimes neces-
sary to take account of excited states. ' For the
Fermi level near the conduction band, me can ig-
nore p and assume that all acceptors are ionized,
with total negative charge Xz. Then, if there is
only one dominant donor species, mhich can bind
one electron, Eq. (40) becomes

n+Ng =Nii —gni)im = gnDO =nDO (43)
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nDO
g1~' ( —~, .+&~)/»1+

m

g 1o r+~/kT —e'+to/kT1+ e e
goo

g1~ (&C10 +~1 ')/kT
X I+ e

gpss '~0 g 10

where we have assumed that the unoccupied state
nDo has no excited states within the band gap.
From Eq. (34) we now get

was assumed that goo
——I. This assumption is

correct for a simple donor in an s state, such as
that illustrated in Fig. 1(b). It must also be as-
sumed that the tao-electron state lies at a much
higher energy.

D. Mass-action 1am

The mass-action law has often been used as a
starting point in the discussion of multivalence im-

purities or defects. ' This law can be derived im-

mediately from Eqs. (32) and (36). If the k and m

indices are suppressed, we get

gl+1 &F—(yI+) —gl) gl+1 n q +gI —qI

nl gl gl A-

g10 Eg&/kT n

goo

where energies have been referenced to the conduc-
tion band, as is common when dealing with shal-
low donors. Here we have set 8'10———E» and
have assumed the nondegenerate (Boltzmann) form
of n [Eq. (36)]. By combining Eqs. (43) and (44), it
can be shown that

—E~/kTn(n+Xz) goo N, e

&D —&z —n g1o 1+~
where

(~cio ~cim')/
e

m'~0
(46)

If there are no excited states, then, of course, I' =0.
Equation (45) is a form which has often been used
in the analysis of temperature-dependent Hall-effect
measurements, ' except that in these applications it

OI

as gl II+ t ll 4 (n)
~c e =~1 l+1

where g, denotes the conduction-band edge. The
right-hand side of Eq. (47) is simply the equilibri-
um constant for the reaction n +nl ~ nl+1 ~ For
holes we can use Eq. (37) to get

'4+1 "J—~~@)ve = jj+1
gj+1

which describes the reaction p+pj~pj+~. (Here
the subscripts j and j+ I refer to hole occupation
numbers. ) Equation (48) was the starting point for
a recent discussion of negative-U centers by HoA-

mann, ' except that his degeneracy factors were

given as unknown constants. It should be remem-
bered that these mass-action formulas are valid

only in the nondegenerate limit since we have used
Eqs. (36) and (37).

E. A formula derived by Brooks

Centers with two charge states are often discussed in terms of a formula derived by Brooks. * The
derivation, however, was not published. The two-charge-state system is described by Eqs. (23) —(25). Let
~ —= (go/g~ )exp(g& —ri~), and b =(g2/g~ )exp(q~ —gq+qp). The average number of electrons per center is
then given by

n1+2n2
nav = 1 2 1 2b

1+a +b I+ab —'+b ' 1+a +b 1+a +b—1 —1 +

2

1+2(go/g, )exp(g, —g~)1+---
1+2(gz/gi )exp(ni —n2+n~)

1
1

2+a
—,'+ '

1+2b

(49)
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For an impurity in an s state (or a state with a
~

orbital symmetry), go ——gq ——1, g&
——2, so that

2
nav— 1+exp(g i

—gF )
1+ 1+exp(g )

—g2+ rl F )

(50)

Brooks did not write his formula in terms of the
gI' s, but only for two specific situations, one of
which gave Eq. (50), and the other of which gave
factors of four in front of the exponential terms.
In this latter case we would need go ——g2, and

g& ——go/2; a possible state which would lead to this
result is shown in Fig. 1(d).

F. Acceptors in tetrahedral semiconductors

Teitler and Wallis' have used the grand-
partition-function scheme to analyze acceptors in
semiconductors with tetrahedral coordination. In
such semiconductors the valence bands at k =0

may often be described in terms of two degenerate
p-like bands at an energy

~

g's
~

below the
conduction-band edge: one spin-orbit-split p-like
band lying below the two degenerate bands, and an
s-like band lying much lower. Each of these four
bands is spin degenerate. We assume that an ac-
ceptor can be described in a similar manner, i.e., of
the eight possible electrons in its outer (valence)
shell, the four highest lying electrons are degen-
erate, and the other four electrons are paired off
and lie at much lower energies. Thus, in this
model our box has four compartments, containing
from zero to four electrons. As an example, neu-
tral gold in silicon would have one electron in this
box (and four in the lower levels), and gold in its
triple-acceptor state would have four electrons in
the box. The degeneracies in this problem are easi-

ly calculated: go=4!/4!=1 gi =4!/3!1!=4,
g2 ——4!/2!2!=6, g3 ——4, and g4 ——1. Consider the
doubly occupied state (1 =2). Then from Eq. (34),

n2= 1V

1+ 'gF +-gI ~ ~ +t I 2)~ 1
I2 IO ~F, 2 12 11 &F, 2 I2 —13+ IF, 'g2 —I4+ IF

3+—e

1~2 g2

(51)

where we have suppressed the k and m indices. It is sometimes more convenient to work with "ionization"
energies, i.e., EI —pI —@'I „since these are the experimentally measured quantities. Then it is easily seen
that g'4 —Ã0 E4+E3+E——2+E~, g'3 —I'0 E3+E2—+—E~, etc., and Eq. (51) becomes

n2 2 2= [1+ 6 exp[(E~+E2 2E~)lkT]+—, exp[(—E2 E~)l—kT]+ —,exp[( E3+Ep)lkT]—

+ —,exp[( —E3 E4+2Ep) lk—T]]

This result agrees with the corresponding formula
in the Teitler-Wallis paper. ' Fofmulas for

no, n&, n3, and n4 may be derived similarly. In
dealing with ionization energies, we must be care-
ful not to assign more meaning to them than is
due. For example, in the four-electron state we do
not have four different orbitals, corresponding to
energies E&, E2, E3, and E4, respectively. That is,
we cannot assign these electrons individual posi-
tions in energy space, say with respect to the band

edges. As a group, however, we can assign an en-

ergy, and that is what our script notation 8' stands
for. For example, the energy required to place four
electrons from the valence band onto a previously
unoccupied center is just 8'4 —8'0.

G. Negative- U centers

In general, we would expect that a two-electron
state would have more than twice the energy of a

(52)

I

one-electron state, because of electron-electron
repulsion. However, in order to explain certain
electronic and magnetic properties of chalcogenide
glasses, Anderson ' introduced the concept of
"negative-U" centers in which this condition does
not hold. Recently, Baraff, Kane, and Schluter
predicted that the Jahn-Teller relaxation energy for
the Si vacancy in the two-electron state might be
large enough to overcome the repulsive energy be-
tween the electrons, and thus lead to a negative-U
center. Indeed, Watkins and Troxell confirmed
this prediction experimentally. Hoffmann' has
discussed some of the expected electrical properties
of negative-U centers. Our treatment is an im-

provement in that degeneracy factors are explicitly
taken into account and their effects are noted in
particular cases.

Consider a center which can bind either one or
two electrons with energy states in the bandgap.



The occupational probabilities for this system have
already been given in Eqs. (23)—(25), and the aver-

age number of electrons is found from the general-
ized Brooks formula, Eq. (49). Suppose we rewrite
Eq. (49) as

the requirements to have an n,„=1 state, i.c., ei-

ther W'F ——(g'l+kTIngo/gl)/2, or g'l —8'l & g'F

& g'l (at T =0). The first condition here is ir-

relevant since it occurs at only one value of 8'~.
Thc second coIld1t1on gives 8 2 & 28 ). Thus, thc
condition for a negatiue Uc-enter is just the oppo-
site, i.e., 8'2 g28'~, again at T =0. The condition
at fllllte T ls 8 2 (20 l+kT 111(4gpg2/gl ). For tile
cases shown in Figs. 1(b), 1(c), and 1(d), the last
term adds 0, 0.76kT, and 2.8kT, respectively. The
physics here is quite clear: At T =0, if it takes
less energy to place two electrons on one center
than one electron each on two centers, the one-

electron state will not exist. At finite T, an. entro-

py factor, shown as a function of the various

charge-state dcgcncracics, must also bc taken 1Ilto

account. This phenomenon is illustrated in Fig. 2.
The various parameters for the curves in Fig. 2 are
given in Table II. Note that for curve (a), n,„
goes directly from zero to two as 8'F is raised; this
is the prime characteristic of a negative-U center.
The effects of different degeneracy factors are also
shown. The temperature dependences of the free
hole concentrations in GaAs for the same sets of
parameters are shown in Fig. 3, To obtain p the
following charge-balance equation was solved [cf.
Eq. (40)7:

2 = 2

1+2$„ /ln I+2P /P~,1+ " 1+1+2n /p„z 1+ 2' l/P

go
N, e ',

g1
(54a)

~2C+n p~—n~)

Y n2= ~&ee
g2

Ape
g'0

g2
%ye (54d)

Here, all of the subscripts refer to electron occupa-
tion numbers. Then it is easy to see that the rela-
tive values of p„l/n and nip„z (orp//pl and
(() 2/ ) will determine n . The conditions neces-

1

n~
+Kgb =p +Xag+2ND—

p
(55)

p p av

sary to get n,„=0, 1, and 2, respectively, are given D

n Table I. Now the dcf1nition of a positive-U 1+2P/pP l

center becomes immediately obvious by glancing at 1+2/ /pp2

TABLE I. Requirements to obtain n =0, 1, and 2 respectively. The zero of energy is at the valence-band maximum.
It is assumed that exp8'/kT &g l if 8' ~ 2kT.

General
requirements

8 F requIrement 1f
8'2 & 28')+kT ln(4gpg2/g ) )

(positive U)

8'„requirement if
8'2 (28')+kT ln(4gpg2/g i )

(negative U)

(A) 2P/P~l»1
and

P/0p»&Apl/P

(B) 2P/p l»2$ l/p»1 not applicable

8'F g 8'2/2 —kT(2+lng2/gp)/2

8'( —kT{2+lng)/2gp) y 8'F
8'F ~ 8' —8'&+kT(2+lng&/2g2)

(B) 2P/p~l &(1
and

2/i l/p «1
2/~i/P && 1

and

0&z/P»P/0»

8'F——( 8'2+ lngp/g2) /2

8'2 —8'~ —kT(2+ln2g2/g~ ) g O' F

8'F ~ 8')+kT(2+ln2gp/g j )

8'F p 8'2 —8'I+kT(2+Ing) /2g2)

8'F ——(8',+ lng, /g, )/2

not applicable

8'F g 8"2/2+kT(2+lngp/g2)/2
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(eV)
g2

(eV)
n,„ Low-temperature

(296 K) Arrhenius slope(&~s—&&s )/&8go g& g2

(a)
(a')
(a")

(b)
(b')
(b")

Negative U

Positive U

0.3
0.3
0.3

0.3
0.3
0.3

0.5
0.5
0.5

0.9
0.9
0.9

2 1

15 20
2 1

2 1

15 20
2 1

0.5
0.5
1.5

0.5
0.5
1.5

1.54
1.56
0.59

1.51
1.50
0.52

—@,/2k
—K,/2k
—@',/2k

—(@,—e, )/k
—{e,—a, )/k
—8')/k
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that one must be quite careful in interpreting Ar-
rhenius plots of Hall-effect data for cases in which
a multicharge center may exist, and especially, if
this center might be of the negative-U type. If,
however, the negative-U nature can be indepen-

dently established by some other means, say by
deep level transient spectroscopy or magnetic sus-

ceptibility, then the Hall-effect data, fitted to Eq.
(55), can be quite useful in determining the two-

electron energy level and the concentration of the
center involved. Although in Eq. (55) the dom-
inant center was considered to be a donor, accep-
tors may be treated similarly.

It is useful to relate the present discussion of
negative-U centers to that of Baraff, Kane, and
Schluter (BKS). Their center of interest is the
vacancy in p-type Si. The undistorted vacancy has
two electrons in a sixfold degenerate state of t2-
orbital symmetry, such as that shown in Fig. 1(c).
However, a Jahn-Teller distortion splits off an orbi-
tal singlet (spin doublet) of b2 symmetry, so that
the final picture is like that of Fig. 1(b). Thus,

go( V++ ) = 1, gi ( V+ )=2, and gz( V ) = 1. At their
respective minima in configuration-coordinate
space, the following potential energies are obtained:
8'p=O 8'] = 8'L —8'Jy —8'F and 8'2 =28'L + U
—48'Jf 28F where 8'L is the energy of the
undistorted one-electron state above the valence
band, 8'Jz is the one-electron Jahn-Teller relaxation

energy, 8'F is the Fermi energy, and U is the
electron-electron repulsion energy. The various as-

sumptions employed may be found in the BKS pa-

per, but our condition for a negative-U center at
T=O, 8'2~28'&, gives U' =U —2E»gO, in

agreement with the BKS result. Thus, the termi-
nology "negative-U" really refers to "negative-
U' " in which U' includes the Jahn-Teller stabili-
zation energy as well as the electron-electron repul-
sion energy.
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