Fall 2008

CS 705: Introduction to Data Mining

Guozhu Dong
Wright State University - Main Campus, guozhu.dong@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/219

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
CS 705 Introduction to Data Mining
Fall Quarter, 2008

Description: Data mining is concerned with the extraction of novel and useful knowledge from large amounts of data. This course introduces and studies the fundamental concepts, issues, tasks and techniques of data mining. Topics include data preparation and feature selection, association rules, classification, clustering, evaluation and validation, scalability, spatial and sequence mining, privacy, and data mining applications. 3 hours lecture, 2 hours lab.

Prerequisite: CS 605 (Introduction to Database Systems), or CS 609 (Introduction to AI), or equivalent, or consent of the instructor. Implicitly, CS 600 (Data Structures) is also required.

Instructor: Dr. Guozhu Dong 383 Joshi.

Phone & Email: (937)-775-5066, guozhu.dong@wright.edu

Class details: 4:20-5:25 MW, Millet 301

Office hours: 2:50 - 3:40, MW. Use e-mail for short questions. The instructor will also be available (in the class room) for a short period after the classes.

Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison Wesley.

Resources: Up to date slides will be provided at WebCT.

Students may find this webpage useful: http://www.kdnuggets.com/, especially its pointers to datasets.

Many Java programs for data mining are available at www.cs.waikato.ac.nz/ml/weka, which you may want to install and experiment with.

Grading: Homeworks: 10%, Midterm: 25%; Final: 35%; Projects 30%.

Final grade: A=[90,100], B=[80,90), C=[70,80), D=[60,70), F=[0,60).

The projects require extensive programming. Submissions that do not compile or that do not address project requirements will receive zero or very low marks.

Handouts: Handouts, and other course material will be distributed in class. It is the students' responsibility to collect them.

Important dates:

4:10-5:25, Monday, 10/6, in-class midterm exam.

5:45-7:45, Monday, 11/17, final exam.