Fall 2009

CS 466/666: Introduction to Formal Languages

Guozhu Dong
Wright State University - Main Campus, guozhu.dong@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/286

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
CS 466/666
Introduction to Formal Languages
Syllabus: Fall 2009

Class Time: 6:05-7:45 MW
Room: Oelmun 345
Instructor: Professor Dong
Office: 383 Joshi
email: guozhu.dong@wright.edu
phone: 775-5066

CS 466/666 is an introduction to formal language and automata theory. In this course we will examine methods for defining syntax of languages and recognizing patterns: the syntax of languages can be defined using grammars and patterns accepted by finite state machines. Along with presenting the fundamentals of these two topics, the course will develop and investigate the relationships between language definition and pattern recognition. The text will be the third edition of *Languages and Machines: An Introduction to the Theory of Computer Science*, by Thomas Sudkamp.

The prerequisites for this course are (i) Math 257 (discrete mathematics) and CS 400, or (ii) Math 257 and a 400 level mathematics or statistics course. In particular, it is assumed that you have seen and mastered the material in Chapter I of the text that is listed below.

Topics: The topics to be covered include
- Review: naive set theory, recursive definitions, and proofs by induction. Sections 1.1, 1.2, 1.6-1.7.
- String operations, regular sets and languages. Chapter 2.
- Context-free grammars, derivations, derivation trees, and regular and context-free languages, ambiguous grammars. Chapter 3.
- Introduction to top-down and bottom-up parsing. Chapter 18.
- Deterministic finite automata (DFA). Nondeterministic finite automata. DFA minimization. Chapter 5.

Office Hours: My office is 383 Joshi and my office hours for this quarter are 2:50-3:40 MW. I will be pleased to make appointments with you at other times if you need to see me but cannot make my office hours.

Email and the phone may be used to obtain the answers to simple questions, such as "what did we cover in class?" or "what was today's homework assignment?" Email and the phone, however, are not appropriate for obtaining help on the topics of the course. Technical assistance needs to be given in a face-to-face manner so I can see where you are having difficulties and then help you to overcome them.

Exams: There will be five exams given during the quarter. Each of the first four exams will be 50 minutes long and given during the second half of alternating Wednesday classes. The last exam will be at the scheduled time for the final exam.

There will be no make-up exams except for documented emergencies. Examples of acceptable documentation are a letter from a doctor (on his/her letterhead) indicating that you were unable to take the exam due to illness or a letter from an employer indicating that you will be out of town on company business at the scheduled exam time.

In all exams you can use the textbook plus one extra sheet of hand written notes. It is not the objective of this course to be an exercise in memorization. Materials, including copies of old exams, other than the text book and one sheet of notes, are not allowed.

The exams for graduate students will contain more problems than the undergraduate exams. These additional problems will be more theoretic in nature, reflecting the added sophistication expected of graduate students. They may also cover material in the readings that is not represented in any of the assigned homework.

The exam dates are:
Monday, Sept 21
Monday, Oct 5
Monday, Oct 19
Grading: Two methods will be used to calculate grades; your grade will be the highest obtained through either of the two methods.

Method 1: The lowest score on the first four exams will be dropped. The grade for the course will be determined by the scores of the four exams (best three out of the first four and the final). Each of the four exams used to determine the grade will make up 25% of the total score. Grades will be assigned using the following scale:

A - 90% or above
B - 80% - 89%
C - 70% - 79%
D - 60% - 69%
F - below 60%

Method 2: All five exams are used to determine the grade, and each will make up 20% of the total score. Grades will be assigned using the following scale:

A - 87.5% or above
B - 75% - 87.5%
C - 62.5% - 75%
D - 50% - 62.5%
F - below 50%

The instructor may curve the final grades in such a way that they deviate from these standards at his/her discretion.

A missed exam counts as a 0. Method 1 allows you to miss or do poorly on one of the first four exams and not have it affect your grade.

The grade A indicates excellence: To receive an A, you must demonstrate a thorough knowledge of the material throughout the course. There will be no grades of incomplete given except when documented emergencies have prevented the student from finishing the course.

Study Guides: There are old exams online on the library website. There is also a solutions manual that contains worked-out solutions for about one third of the exercise in the text, which is also available online. To access the online material:

a) Go to http://www.libraries.wright.edu/
b) click on Course Reserves, then click on Electronic Reserves & Reserves Pages
c) enter Computer Science in the select a department box and click go
d) select the course (either CS 466 or CS 666, they are cross listed)
e) enter the password that you have been given in class
f) click on the item that you want

Slides: Slides will be available at WebCT.

Homework: Homework problems will be assigned. You should try to work on the homework problems soon after the corresponding materials have been covered in class. The problems are assigned to prepare you for the exams. If you are able to master the homework, you will also do well on the exams. Time will be spent in class reviewing the homework. The answers will be provided by the students. Student participation in discussing the answers, as well as the quality of the answers, will be rewarded for up to 2 bonus (percentage) points towards the final grades. The students are also expected to read the parts of the text book corresponding to the materials covered in class. The Topics section above describes the correspondence.

I urge you to work together on the homework problems. This makes the entire process more enjoyable and fruitful. Most of the homework problems have more than one solution. Sharing your ideas and listening to those of others will increase your understanding and facilitate the solution of the problem. The absolute (as opposed to relative) grading scale is designed to encourage students to work together. The results of the other students in the class will not affect your grade: thus help others and get help from others yourself.

Attendance: Attendance at classes is strongly recommended. If you miss a class, it is your responsibility to obtain class notes and assignments from other students and to be prepared for subsequent topics. As stated above, there will be no make-up exams except for documented emergencies. No grades of incomplete will be given except in the case of documented emergency that precludes a student from completing the course. The determination of the sufficiency of the emergency and the documentation will be made by me.