Fall 2010

CS/BIO 471/671: Algorithms for Bioinformatics

Michael L. Raymer
Wright State University - Main Campus, michael.raymer@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi
Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/277

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@wwwlibraries.wright.edu, library-corescholar@wright.edu.
CS/BIO 471/671 – ALGORITHMS FOR BIOINFORMATICS

Fall, 2010

Course Description
Theory-oriented approach to the application of contemporary algorithms to bioinformatics. Graph theory, complexity theory, dynamic programming and optimization techniques are introduced in the context of application toward solving specific computational problems in molecular genetics. 4 credit hours.

Meeting Time and Place
12:15 – 1:20 Monday and Wednesday 155 Russ Engineering Center (RC)

Textbooks


Instructors and Office Hours
Dr. Michael Raymer
391 Joshi
775-5110
michael.raymer@wright.edu
http://www.wright.edu/~michael.raymer
Office hours: Mon & Wed, 4:00 – 6:00 pm or by appointment.

Dr. Dan Krane
225B BH
775-2257
dan.krane@wright.edu
Office hours: Mon & Wed, 8:45 – 10:45 am or by appointment.

Course Web Page
The course web page will be the primary method for distributing important announcements, course material, class notes, etc. Please check the page often. Login to the campus WebCT system using your CATS username and password. The URL is: http://wisdom.wright.edu

You can find an archive of the course materials at: http://birg.cs.wright.edu/cs471

Grading
Course grades will be determined as follows:
25% Midterm Exam
40% Final Exam
35% Project/homework assignment(s)

Final grades will be based on the standard university-wide score divisions (i.e. 90%, 80%, 70%, etc.). However, the instructors may choose to curve the final grades depending on the distribution of scores at the end of the term.
Tentative Lecture Schedule

Week 1 – Review: Molecular biology and problem solving methods
- Tools and methods of molecular biology
- Exhaustive, greedy, divide-and-conquer, and other approaches

Week 2 – Paper discussion: Aerts; Paper presentation assignments

Week 3 – Sequence alignments and dynamic programming
- Recursion
- Dynamic programming
- Sub-problem optimality

Week 4 – Paper discussions and term project planning

Week 5 – Algorithm complexity, P and NP (Class notes)
- Complexity of algorithms
- Big-O notation
- Complexity classes, P and NP
- Some classic algorithms

Week 6 – Sequencing and Comparative Genomics (Ch4. Setubal & Meidanis)
- Sequence annotation
- Synteny
- Models and tools for fragment assembly

Week 7 – Mapping of DNA (Ch. 5, Setubal & Meidanis)
- Genetic mapping
- Restriction site mapping, hybridization mapping
- LOD Scores, QTLs, Sulston scores

Week 8 – Phylogenetics (Chs. 4 & 5, Krane & Raymer)
- Trees and distances
- Distance-based and character-based approaches
- Bootstrapping and confidence
- Selective forces and population size

Week 9 – Suffix tries and inverted repeats (Class notes)
- Trees, tries, and PATRICIA trees
- Inverted repeats and microRNA

Week 10 – Project results presentations/discussion

Policies & Notes

Homework assignments are due by the end of the lecture period on the assigned due date. Late homework submissions cannot be accepted.
Collaboration in learning is encouraged, as discussion of the course contents with other students is an important part of the learning process. However, it is expected that course assignments will be completed on an individual basis unless the assignment states otherwise.

Students may not, under any circumstances, work together in actual implementation of any course assignment unless the assignment specifically allows group submissions. Do not allow other students to view or copy your code or writing. Code sharing, including code from previous quarters, is strictly disallowed. Copying or significant collaboration on any graded assignment will be considered a violation of university guidelines for academic integrity and reported to the Office of Judicial Affairs. The Code of Student Conduct can be viewed at http://www.wright.edu/students/judicial/conduct.html or a hand copy can be obtained from the Office of Student Judicial Services in W035 Student Union. If you have any questions about these policies, it is your responsibility to discuss them with the instructor of the course or a representative of the Office of Judicial Affairs as soon as possible.

If the same work is turned in by two or more students, all parties will be held equally accountable for violation of academic integrity. In other words, you are responsible for ensuring that other students do not have access to your work. If you suspect that your work material has been compromised, notify an instructor immediately.