9-11-2008

Emerging Issues in Forensic DNA Profiling: Databases and Advisory Boards

Dan E. Krane
Wright State University - Main Campus, dan.krane@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/biology

Part of the Biology Commons, Medical Sciences Commons, and the Systems Biology Commons

Repository Citation
https://corescholar.libraries.wright.edu/biology/252

This Presentation is brought to you for free and open access by the Biological Sciences at CORE Scholar. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
Emerging issues in forensic DNA profiling: Databases and advisory boards

Dan E. Krane, Wright State University, Dayton, OH
Professor of Biological Sciences; CEO of Forensic Bioinformatics, Inc.

National Conference of State Legislatures
Legal Services Staff Section
Professional Development Seminar / DNA Evidence Panel
Columbus, Ohio
September 11, 2008
Quantities of DNA

- Our bodies are made of trillions of cells
- Optimum amount for DNA profiling: 0.5 to 2.0 ng (a nanogram is one billionth of a gram)
- 6 to 7 pg of DNA in each diploid human cell (a picogram is one trillionth of a gram)
- A typical fingerprint contains hundreds of cells
Possible DNA sources

- Combs
- Knives
- Toothbrushes
- Dental floss
STRs

• **Short tandem repeat**
• Describes a type of DNA polymorphism in which:
 – a DNA sequence repeats
 – over and over again
 – and has a short (usually 4 base pair) repeat unit
• A length polymorphism -- alleles differ in their length

3 repeats: **AATG AATG AATG**
4 repeats: **AATG AATG AATG AATG**
5 repeats: **AATG AATG AATG AATG AATG**
6 repeats: **AATG AATG AATG AATG AATG AATG AATG**
Statistical estimates: the product rule

Allele Frequencies

<table>
<thead>
<tr>
<th>Locus</th>
<th>Race</th>
<th>(N = 203)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3S1358</td>
<td>Caucasian</td>
<td>203</td>
</tr>
<tr>
<td>Allele</td>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.140</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.103</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.012</td>
<td></td>
</tr>
</tbody>
</table>

Allele Frequencies

<table>
<thead>
<tr>
<th>Locus</th>
<th>Race</th>
<th>(N = 196)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vWA</td>
<td>Caucasian</td>
<td>196</td>
</tr>
<tr>
<td>Allele</td>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.102</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.082</td>
<td></td>
</tr>
</tbody>
</table>

0.222 \times 0.222 \times 2 = 0.1
Statistical estimates: the product rule

Allele Frequencies

Locus D3S1358
- **Race**: Caucasian
- **N**: 203

<table>
<thead>
<tr>
<th>Allele</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.012</td>
</tr>
<tr>
<td>13</td>
<td>0.012</td>
</tr>
<tr>
<td>14</td>
<td>0.140</td>
</tr>
<tr>
<td>15</td>
<td>0.246</td>
</tr>
<tr>
<td>16</td>
<td>0.222</td>
</tr>
<tr>
<td>17</td>
<td>0.222</td>
</tr>
<tr>
<td>18</td>
<td>0.163</td>
</tr>
<tr>
<td>19</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Locus vWA
- **Race**: Caucasian
- **N**: 196

<table>
<thead>
<tr>
<th>Allele</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.012</td>
</tr>
<tr>
<td>12</td>
<td>0.012</td>
</tr>
<tr>
<td>13</td>
<td>0.012</td>
</tr>
<tr>
<td>14</td>
<td>0.102</td>
</tr>
<tr>
<td>15</td>
<td>0.082</td>
</tr>
</tbody>
</table>

1 in 10 × 1 in 111 × 1 in 20 = 0.1

1 in 116 × 1 in 17 × 1 in 16 = 1 in 31,552

1 in 22,200

1 in 113,400

1 in 79,531,528,960,000,000,000

1 in 80 quadrillion
Two relatively new DNA tests

- Mitochondrial DNA (mtDNA) sequence
 - Sensitive but not discriminating

- Y-STRs
 - Useful with mixtures
 - Paternally inherited
The CODIS database

- **CODIS**: Combined DNA Index System
- Formalized by the DNA Identification Act of 1994
 - Maintained by the FBI
 - More than 170 law enforcement agencies participate
 - Used to generate investigative leads
- Produced more than 71,500 “cold hits” as of June, 2008
- Contains over 6,031,000 DNA profiles
The CODIS database

• DNA Fingerprint Act of 2005
 – Dramatic expansion of suitable profiles
 – If it is acceptable to a state, it is acceptable for CODIS

• Who should be included in state databases?
 – Felons
 – Arrestees?
 – Everyone?

• How do you get out once you are in a database?
Database expansion

• Advantages
 – Obvious societal benefit
 – Removal of existing disparities in database composition
 – Individuals only accrue benefit when databases are very large

• Disadvantages
 – False leads due to innocent contact
 – A new kind of frame-up
Familial searches

- Database search yields a close but imperfect DNA match
- Can suggest a relative is the true perpetrator
- Great Britain performs them routinely
- Reluctance to perform them in US since 1992
- NRC report
- Can they be done? Should they be done?
Relatedness does make a difference

- Randomized Individuals
- Simulated Cousins
- Simulated Siblings

Number of pairwise shared alleles vs. Percent of total (%)
Is the true DNA match a sibling or a random individual?

• Given a closely matching profile, who is more likely to match, a sibling or a randomly chosen, unrelated individual?

• Use a likelihood ratio

\[LR = \frac{P(E \mid \text{relative})}{P(E \mid \text{random})} \]
Probabilities of siblings matching at 0, 1 or 2 alleles

- Numbers can be generated but guidance is needed on:
 - Tolerance for false positives
 - The size of the pool of alternative suspects

\[
P(E \mid \text{sib}) = \begin{cases}
\frac{P_a \cdot P_b \cdot HF}{4}, & \text{if shared} = 0 \\
\frac{P_b + P_a \cdot P_b \cdot HF}{4}, & \text{if shared} = 1 \\
\frac{1 + P_a + P_b + P_a \cdot P_b \cdot HF}{4}, & \text{if shared} = 2
\end{cases}
\]

HF = 1 for homozygous loci and 2 for heterozygous loci
Laboratory advisory boards and committees

- Virginia’s Scientific Advisory Committee
 - Statute requires approval of all protocols and procedures
 - What level of review is appropriate?

- Virginia’s Forensic Science Board
 - Responsible for policy decisions
 - Can request investigations/analyses

- Overall cost: approximately $100,000 per year
Laboratory advisory boards and committees

• Independent voice to ensure proper staffing, resources and quality
• Efficient venue for improving protocols and procedures
• Tangible deliverables to date:
 - Gun shot residue reporting, mtDNA testing, breath alcohol instrumentation, analytical equipment platforms, familial searches, Y-STR testing, minimizing examiner bias in protocols
Potential problems with existing internal reviews

• Bias
 – Internal reviewers may favor superficial solutions because they identify with the organization and believe in it

• Blame
 – Internal reviewers may therefore overlook root causes and find someone to blame
Are advisory boards and commissions cost effective?

- Costs of incarceration for one false felony conviction exceeds $105,000.

- State legislated restitution for five years (an average felony sentence) in prison:
 - Ohio: $201,650
 - Texas: $250,000
 - Wisconsin: $125,000
 - Tennessee: $1,000,000
 - Missouri: $91,312
Are advisory boards and commissions cost effective?

- Median annual budget for publicly funded crime labs in 2005 was $1.7 million.

- *Post hoc* investigation can be costly.
 - Houston: cost of Bromwich report *alone* was $5.1 million.

- What is the cost of the public’s loss of confidence in local law enforcement?

- $100,000 of prevention is worth millions of cure.
For more information:

- Internet
 - **Forensic Bioinformatics Website:** http://www.bioforensics.com/

- Dan E. Krane, Biological Sciences, Wright State University, Dayton, OH, 45435; (937) 775-2257

- Dan.Krane@wright.edu