Fall 2012

CS 1200: Introduction to Discrete Structures

Pascal Hitzler
Wright State University - Main Campus, pascal.hitzler@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi
Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/353

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
Course Syllabus Guidelines

I. College/School/Department – Teacher
 College of Engineering and Computer Science
 Department of Computer Science and Engineering
 Prof. Pascal Hitzler, 389 Joshi
 pascal@pascal-hitzler.de; office hours: Tuesdays 4pm to 5pm

II. Course Information
 Course Title: Introduction to Discrete Structures
 Course Abbreviation and Number: CS1200
 Course Cross Listing(s) Abbreviation and Number:
 Check (“x”) all applicable:
 General Education Course_____ Writing Intensive Course_____ Service Learning Course_____
 Laboratory Course__x__ Ohio TAG (Transfer Assurance Guide) Course ______
 Ohio Transfer Module Course______ Others (specify)_____

III. Course Registration
 Prerequisites: MPL 3
 Corequisites: none
 Restrictions: none
 Other: none

IV. Learning Outcomes
 • Basic understanding of discrete structures as relevant for computer science
 • Working knowledge of basic mathematical notation and manipulation with discrete structures

V. Course Materials
 Required: none

VI. Method of Instruction: Lecture + Recitations

VII. Evaluation and Policy
 Weekly homework: 50% score required to qualify for participation in final exam.
 Two exams during term (30% each), final exam (40%) towards class grade.

VIII. Grading Policy
 Grading will follow a standard scale (A: 100-90, B: 89-80, C: 79-70, D: 69-60, F: 59-0)

IX. Course Outline
 1 The Language of Sets and Relations
 2 Logical Connectives
 3 Sets
 4 Functions
 5 Relations
 6 Natural Induction

X. Further Particulars
 Physical presence required in class and recitation sessions.