Fall 2012

CS 2160: Visual Basic Programming

Eric Saunders

Wright State University - Main Campus, eric.saunders@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/351

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
Computer Science 2160  
Visual Basic Programming  
Fall 2012  

Monday, Wednesday, Friday (3:35 p.m. to 4:30 p.m.)  

Instructor: Mr. Eric Saunders, MS, OCP, Security+  
Department Office and Phone 303 Russ Engineering Center  
(937) 775-5131  
E-mail: eric.saunders@wright.edu  

Course Description: This course will cover the fundamentals of object-oriented computer programming; with an emphasis on design, structure, debugging, and testing. Visual Basic 2010 will be used for developing programs.  

Textbook and Web Resources: Visual Basic 2010: How To Program, Fifth Edition, Paul Deitel & Harvey Deitel, Pearson/Addison Wesley, ISBN-13: 978-0-215213-6. There is a single CD within the text. The CD contains the Integrated Development Environment (IDE) used in this course. The IDE supplied is Microsoft Visual Basic 2010 Express Edition. Or, you can download the Visual Basic 2010 through the Cats website: http://www.wright.edu/cats/software/. For additional student resources, please visit the publisher’s website. Both the Visual Basic software and the source code the text should be loaded and installed on the computer that will be used while studying the text. On the student support webpage there are self-assessment quizzes, Power Point slides, source code files, and the answer to the odd numbered review questions.  

PILOT: http://pilot.wright.edu will be used for submitting projects and for accessing course materials and grades. The PILOT website is powered by Desire2Learn.  

PILOT Training: http://www.wright.edu/ctl  

Lab Facilities: Open labs are available for your use in the library annex. Russ labs are available during specific times. For more information, visit the following URL: http://www.wright.edu/cats/labs. Although you may find it convenient to work at home, make a note of these lab locations in the event that experience problems with your personal computer (hard drive failure, inability to print, connectivity issues, etc.). Because of lab facilities are so widely available at Wright State, personal computer issues are no an acceptable excuse for tardy assignments.  

Projects: All projects are due the day before the final exam (by 11:59 p.m.). From personal experience, do not procrastinate; submit a project every two weeks. The student will have fourteen weeks to complete all of the course projects. The instructor does award partial credit for incomplete assignments. Late projects will not be graded.
Exams: Two "midterms" and one final exam will be given. Normally, makeup exams will not be given. However, there are two exceptions: (1) The student has extremely important, binding engagement the same time as the exam. In this case, the student must make arrangement with the instructor to take the exam before the scheduled time. (2) The student has an extreme illness or emergency that prevents him/her from taking the exam. In this case, the student must contact the instructor with 24 hours of the exam time to arrange a make-up, and the student must be able to provide documentation of the illness/emergency. The final exam will be cumulative.

Quizzes: There will be unannounced quizzes. Quiz material will come directly from the lecture chapter. The student is responsible for reading the chapter prior to coming to class.

Attendance: Counts for 10% of your final grade and is highly encouraged. At the beginning of class, please sign-in.

Grading: The course grade will be calculated by weighing the various graded components of the course as given below. **Lecture will be a two way discussion between students and instructor.** The grading scale is as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
<th>Projects:</th>
<th>Mid-term Exams:</th>
<th>Attendance:</th>
<th>Quizzes:</th>
<th>Final Exam:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 to 100%</td>
<td>30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>80 to 89.9%</td>
<td></td>
<td>25%</td>
<td></td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>70 to 79.9%</td>
<td></td>
<td></td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>60 to 69.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>F</td>
<td>0 to 59%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students will disabilities: Any student with a disability must inform the instructor of the special accommodations needed as soon as possible. The Office of Disability Service can provide an evaluation to determine what accommodations are appropriate.

Academic Misconduct: All work in this class is to be completed individually. While you may find it helpful to discuss the homework assignments with other student in the class, be careful that your work is your own. Also, do not "share" your work with other students. Credit will not be given for work that duplicates another student's work or that was completed as a team effort. In addition, the University policy on academic misconduct will be followed in cases where academic dishonesty is suspected. This policy can be found at [http://www.wright.edu/students/judicial/integrity.html](http://www.wright.edu/students/judicial/integrity.html).
## Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Reminders</th>
</tr>
</thead>
</table>
| 1        | Introduction  
Chapter 1 And 2                           |                    |
| 2        | Chapter 3  
Chapter 15, section 15.1-15.5                |                    |
| 3        | Chapter 12                                       |                    |
| 4        | Chapter 4                                       |                    |
| 5        | Chapter 5                                       | Exam 1 - TBD       |
| 6        | Chapter 6, sections 6.1-6.12                    |                    |
| 7        | Chapter 6, sections 6.14-6.16                   |                    |
| 8        | Chapter 11 And Appendix D                       |                    |
| 9        | Chapter 7                                       |                    |
| 10       | Chapter 13, sections 13.4-13.5                  | Exam 2 - TBD       |
| 11       | Handouts provided by instructor – sequential files & file dialog boxes |                    |
| 12 - 13  | Chapters 9 And 10                              |                    |
| 14       | Chapter 13                                      |                    |
| Final Exam Week | Final Exam*         | Time TBD          |

* Exam dates/times are subject to change.
CS2210: Logic for Computer Scientists

Prof. Dr. Pascal Hitzler

Knossis Center, Wright State University, Dayton, Ohio

Fall Semester 2012

Logic is a fundamental organizing principle in nearly all areas in Computer Science. It runs a multifaceted gamut from the foundational to the applied. At one extreme, it is in computability and complexity theory and the formal semantics of programming languages. At the other extreme, it drives billions of gates every day in the digital circuits of kinds. Logic is in itself a powerful programming paradigm, but it is also the quintessential specification language for anything ranging from real-time critical systems to net infrastructures. Logical techniques link implementation and specification through formal methods such as automated theorem proving and model checking. Logic is also the knowledge representation and artificial intelligence. Because of its ubiquity, logic has acquired a central role in Computer Science education.

Logic is often called the Calculus of Computer Science. Indeed, logic permeates most areas of Computer Science in one way or the other, sometimes more prominently, and sometimes in a more essential, but less formal underpinning. Examples are database schema, program verification, semantics of programming languages, computer security, artificial intelligence, cognitive robotics, Web info computer hardware circuitry, or modeling in software engineering.

In this course, we convey the foundations of logic for Computer Science, covering the central topics about which every Computer Scientist should have a basic knowledge. The course will help to prepare you to obtain a better understanding of topics which have a logical underpinning and which you are bound to encounter in your future studies or work.

The course will cover propositional logic and predicate logic as knowledge representation languages, which are the central and most fundamental logical formalisms. We will deal with knowledge, and with algorithms for logical reasoning.

Assistants: Chris Lamp, lamp.4@wright.edu, and David Carra Martinez, dcmartinez@gmail.com. Help desk hours: Thursdays 4-5pm and Fridays 2:30-3:30pm, room 150. (Or more or needed, please contact the assistants.

Meeting Times

- Tuesdays and Thursdays 9:30am to 10:50am, Russ 150.
- Lab days: Wednesdays 2-3pm in Joshi 409 and Thursdays 4-5pm in Joshi 399.
- Office hours: Tuesdays 4:00pm to 5:00pm, Joshi 389. Email contact is preferred.
- Two in-term exams: The first is on September 27th, in class.
- Final exam: Tuesday December 11, 8:00am to 10:00am, Russ 150

Course Materials

- Required: Uwe Schöning, Logic for Computer Scientists, Birkhäuser, 2008