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Abstract 
 
 
Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, 
Wright State University, 2007 
Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and 
their effects on global gene expression. 
 
 
p63, a member of the p53 gene family, known to play a role in development, has more recently 

also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental 

defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and 

mammary glands. Germline missense mutations of p63 have been shown to be responsible for 

several human developmental syndromes including SHFM, EEC and ADULT syndromes and are 

associated with anomalies in the development of organs of epithelial origin. The contrasting 

phenotypes associated with the different classes of p63 mutations might be in part due to the 

differential regulation of target genes. A previous report has demonstrated that heterozygous p63 

mutations display high predisposition to tumor formation. Moreover, it has been shown that both 

p63 and p73, another member of the p53 family, are required for p53 mediated DNA damage 

induced apoptosis. Finally, differential splicing of p63 gene gives rise to p63 isoforms which can 

either act as tumor suppressors or oncogenes. The goal of this study is to determine the effects of 

naturally occurring TAp63γ mutants on regulation of p53/p63 and p63 specific target genes and 

their effects on global gene expression. Our results indicate that both TAp63γ(R227Q) and 

TAp63γ(R298Q) mutants mimic wildtype TAp63γ effects on its target genes. TAp63γ(K194E) 

and TAp63γ(R280C) significantly induced genes regulated by p63 and p53, but not those 

specific for p63. TAp63γ(R279H) and TAp63γ(R204W) were unable to induce any of the targets 

tested in this study. Co-transfection of p63 mutants along with wildtype p63 was performed to 

assess the effects of p63 mutants on ability of wildtype p63 to induce its target genes, while co-
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transfection of TAp63γ(R279H) and TAp63γ(R204W) led to a complete inhibition of the 

wildtype TAp63γ mediated induction of p63 specific target genes, they had no effect on p53/p63 

target genes. We demonstrated that the ability of these mutants to regulate wildtype activity was 

independent of their ability to either interact with wildtype TAp63γ or affect its localization. In 

addition, we demonstrated that the effects of these mutants on cell growth and survival were 

consistent with their ability to regulate the downstream targets when compared to wildtype 

TAp63γ. Furthermore, our analysis of the GeneChip data using GeneSpring led to the 

identification of several common and unique genes regulated by specific p63 mutants when 

compared to cells transfected with wildtype p63. Additionally, the specific genes regulated by 

the p63 mutants observed in EEC, SHFM and ADULT syndrome might offer unique insights in 

understanding the involvement of p63 in development, ectodermal-mesenchymal interactions 

and differentiation. In summary, we show that p63 mutants exhibit a differential effect on p63 

specific and p53/p63 specific target genes and on induction of apoptosis. This, in turn might have 

a significant impact on p63 mutation associated abnormalities of human developmental 

syndromes. Taken together, our data shows that p63 mutants differentially regulate gene 

expression and provide an insight into the molecular biology of p63. Further, these results will 

aid in better understanding of role of p63 mutants in development and cancer.  
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I. Introduction: 

 

1. Discovery of p63 and its structure: 

 

p63 is a member of the p53 tumor suppressor gene family. The p63 gene is composed of 15 

exons and is located on chromosome 3q27-29 (Mills et al., 1999; Yang et al., 1998). Although, 

p53 was considered to be different from its other family members due to absence of different 

isoforms, recent evidence supports that even p53 has many isoforms (Muller et al., 2006). p63 

exhibits high sequence and structure parallel to p53 which led to early speculations that p63 

would function as a back up tumor suppressor to p53 and could substitute p53 in promoting its 

tumor suppressive functions through transactivation of its target genes. Like p53, p63 also serves 

as a sequence specific DNA binding transcription factor that activates target genes involved in 

cell cycle arrest, DNA repair and apoptosis (Osada et al., 1998; Yang et al., 1998). The p63 gene 

with alternate promoter usage and differential C terminal splicing gives rise to six isoforms with 

remarkably diverse activities as transcription factors. TAp63α, TAp63β and TAp63γ contain the 

N terminal transactivation domain (TA), whereas the ΔNp63α, ΔNp63β and ΔNp63γ are 

transcribed from an internal promoter and lack the transactivation domain (Figure 1). Both TA 

and ΔNp63 isoforms have a  DNA-binding domain, which is approximately 65% identical to the 

DNA-binding domain of p53, and an oligomerization domain with about 35% identity to that of 

p53. The TA isoforms with the transactivation domain are more closely related to p53 because 

apart from the above mentioned two domains, they also have partially homologous TA domain 

with 25% identity to p53.  The TA isoforms are able to drive expression of the p53 target genes 

due to their ability to bind to p53 responsive elements  
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Figure 1: Schematic of p63 gene structure: Representation of the high sequence and structure 

omology of p63 with p53 protein, in dictating the amino acid identity among the different 

domains. p63 has six different variants generated due to differential promoter usage at the N 

terminal and C terminal alternate splicing. The TA isoforms contain the transactivation domain 

while the ΔN isoforms lack the TA domain. The TA isoforms are more similar to p53 in structure 

because both of them contain the Transactivation domain (TA), DNA-binding domain and 

Oligomerization domain (OD). In addition to these domains, the α-isoforms contain a sterile α 

motif (SAM) domain and a transactivation inhibitory domain (TID) at their C-termini. The 

percentage represents the amino acid identity between similar domains of p53 and p63 (adapted 

from Bokhoven et al, 2002). 

 

h
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(Westfall et al., 2003). However, the divergent outcomes of the mice knock out models of these 

two genes clearly imply that they regulate distinct subsets of target genes. This can be partially 

explained by the existence of a distinct p63 consensus DNA binding site, to which p63 proteins 

bind preferentially (Osada et al., 2005; Perez et al., 2007) as shown in Figure 2. The ΔN isoforms 

can also bind to p53 RE and exert dominant negative effects over p53, by competing for DNA 

binding sites (Murray-Zmijewski et al., 2006). Reports also showed that ΔNp63 isoforms are 

able to activate target genes which are not induced by TA isoforms (Dohn et al., 2001; Wu et al., 

2003). The carboxy terminal of the alpha isoform contains a SAM (sterile alpha motif) domain 

which is a protein-protein interaction domain also found in other developmentally important 

proteins (Ianakiev et al., 2000). SAM domain has been shown to be involved in other cellular 

processes such as chromatin remodeling, focal adhesion apoptosis and receptor kinase signaling 

(Loenen, 2006; Thanos and Bowie, 1999). Downstream from the SAM domain is a 

transcriptional inhibitory domain (TID) that can act either in cis or trans to regulate 

transcriptional activity of p63 (van Bokhoven and McKeon, 2002). Hence, six different isoforms 

of p63 are present in cells, at different levels of expression (Testoni and Mantovani, 2006). The 

molecular complexity of p63 is attributed to complex structure that gives rise to six different 

variants which either act as transcriptional activators or repressors. The differential expression of 

different p63 isoforms regulates the complex biochemical activities, implying its role during 

development and carcinogenesis. 

 

2. p63 in development: 
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p63 is expressed in basal cells of the skin, cervix, tongue, esophagus, mammary glands and 

prostate. Unlike p53 knockout mice which developed spontaneous tumors, p63 knock out mouse 

was found to have several developmental defects and died within a day of its birth owing to 

dehydration and maternal neglect (Donehower et al., 1992; Mills et al., 1999; Yang et al., 1999). 

Mice lacking p63 display severe developmental defects such as limb truncations, abnormal skin 

and absence of hair follicles, teeth and mammary glands. These defects in organs of epithelial 

origin demonstrated that p63 plays a pivotal role in embryonic development. The surface 

epithelium of p63 null mice consists of single cell layer that fails to proliferate and differentiate 

into mature epithelium (Mills et al., 1999; Yang et al., 1999). Recent studies indicate p63 as a 

critical factor for molecular switch of epithelial stratification. However, role of p63 in 

development and differentiation of epithelial stem cell still remains controversial and the center 

of debate. While some argue that p63 is essential for proliferative potential of already committed 

epithelial stem cell, but not essential for commitment of simple ectoderm to epithelial stem cell 

(Yang et al., 1999), others believe that p63 is essential for both commitment and differentiation 

of simple ectoderm to  simple epithelial lineage (Mills et al., 1999). However recent findings 

have suggested the involvement of p63 not only for commitment and differentiation of ectoderm 

to simple epithelium but also for proliferative potential (Koster et al., 2007). The argument in 

favor is that this dual role of p63 is due to the existence of six different variants which act in a 

differential manner. To further explicate the role of p63 in epidermal development, studies were 

undertaken to see the individual role of TAp63α and ΔNp63α using transgenic mice 

complementation studies (Candi et al., 2006). The TAp63α complemented mouse has a similar 

phenotype like p63 knock out mouse, with no epidermis. In  

 5 



 

 

 

 

 

 

 

 

 

 

 6 



 

 

 

 

 

 

 

 

Figure 2 :  DNA binding sites in p53 and p63 identified by different approaches. p63 binds to 

DNA binding motif with unique characteristics distinct from the p53 DNA consensus site. Osada 

et al identified that p63 has higher specificity for responsive elements containing the half site 5’-

RRRCGTGYYY-3’. p63 specific DNA consensus site is characterized by the presence of a G in 

the 5th or 6th position in the core domain and a relatively high number of mismatches in the 

purine and pyrimidine rich flanking regions (adapted from Perez et al, 2007). 
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sharp contrast, the ΔNp63α transgenic complemented mice had more epidermis. The ΔN 

complimented animals expressed greater amounts of basal layer proteins K5 and K14 than either 

the p63-/- and p63-/-; TA-/-. However, both the p63-/-; TA and p63-/-; ΔN mice died within a 

few hours of birth. This study suggested that exogenous introduction of the either of the p63 

isoform does not compensate for the absence of endogenous p63. 

 

3. Role of p63 in human diseases: 

 

Mutations in p63 have been documented in several different human developmental disorders 

(Figure 3A). These p63 related disorders observed in human beings have certain phenotypic 

characters similar to p63 knock out mice. Ectodermal dysplasia, Split foot/hand malformation 

and craniofacial defects are the hallmark features observed in p63 mutations. Ectrodactyly, 

ectodermal dysplasia and cleft-lip palate (EEC) syndrome is characterized by ectodermal 

dysplasia with developmental anomalies reflecting perturbation of skin, limbs, hair, teeth & 

apocrine glands. The severe defects that are associated with the EEC mutants are dependent on 

the nature of the mutation (Rinne et al., 2007). The amino acids in the DNA binding domain are 

very crucial for the interaction with DNA, therefore mutations of these amino acids may have an 

unfavorable effect on their DNA binding, also leading to a decrease in their transactivation 

ability (van Bokhoven et al., 2001). Strikingly most of the germline mutations observed in EEC 

mutations have similar locations as the hot spot mutation  

 

 

 8 



 

A) 
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Figure 3: p63 mutations associated with human developmental syndromes. A) Distribution of the 

p63 mutations identified in different human developmental disorders. Mutations in EEC and 

SHFM syndrome are localized to the DNA binding domain that are expected to abrogate 

interaction with DNA and lower transactivation activity. RHS and AEC are localized to the SAM 

domain. LMS mutations are frame shift mutations in exons 13 and 14. Abbreviations: EEC, 

ectrodactyly, ectodermal dysplasia, clefting; AEC, ankyloblepharon, ectodermal dysplasia, 

clefting; ADULT, acro-dermato-ungual-lacrimal-tooth; SHFM, split hand/foot malformation; 

LMS, limb-mammary syndrome; RHS, Rapp Hodgkin syndrome; NSCL, Non syndromic cleft 

palate (adapted from Rinne et al, 2007). B) The syndrome phenotype is determined by the 

position of the mutation. Strong genotype-phenotype co-relation is seen especially in LMS, EEC 

and ADULT syndrome as mutations observed in these conditions are clustered in the DNA 

binding domain. Also, AEC and RHS syndrome mutations are clustered in the same domains 

(SAM and TID) and give rise to very similar clinical phenotype. 
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sites in p53 gene. The arginine codon mutation in p63 like R204, R279H, R304, R280 

correspond to the hotspot mutations in p53 like R175, R248, R273 and R249 respectively, which 

also lead to loss of DNA binding capacity (Li and Prives, 2007). Ankyloblepharon, ectodermal 

dysplasia, clefting (AEC) or Hay Wells syndrome is characterized by ankyloblepharon or fused 

eyelids and lack of limbs. Ectodermal dysplasia is more pronounced in AEC than in EEC. 

Mutations in AEC syndrome are localized to the SAM domain so it only affects the alpha 

isoforms (Figure 3). These mutations disrupt the protein-protein interaction function leading to 

the loss of normal biological activity associated with this domain. Rapp-Hodgkin syndrome 

(RHS) is manifested with alopecia, hypodontia and dry skin. Similar to AEC syndrome, this 

syndrome lacks the orofacial clefting and limb defects.  Also the mutations in RHS are point 

mutations and deletion mutations in the SAM and TID domain. Limb-mammary syndrome 

(LMS) is characterized by mammary gland and nipple hypoplasia, no hair and skin. Acro-

dermato-ungual-lacrimal-tooth syndrome (ADULT) is distinguished by neurodermitic signs, 

excessive freckling and exfoliative dermatitis. Protein modeling data suggests that R298Q 

mutation which resides in the DNA binding domain of p63 does not lead to the loss of the 

transactivation potential. Split hand-split foot malformation (SHFM), a limb malformation is 

characterized with absence of median digital rays of the hand and feet and Syndactyly of digits 

(Czeizel et al., 1993).  NSCL (Non-syndromic cleft lip/palate) is characterized by orofacial 

clefting (Rinne et al., 2007). 

 

Combined p63 mutation data for these syndromes indicate extensive genotype-phenotype 

correlations with each of these syndromes having a distinct pattern and type of mutations (Celli 

et al., 1999; Rinne et al., 2006). For example, majority of mutations observed in EEC syndrome 
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are missense mutations generating amino-acid substitutions in the residues involved in DNA 

binding, thereby affecting all p63 isoforms (Kantaputra et al., 2003; Ying et al., 2005) . On the 

other hand, mutations causing AEC and RHS syndrome are all missense mutations coding for the 

SAM domains, thus only p63α isoforms are affected (Figure 3B). It is interesting to note that 

EEC mutations, and not AEC mutations, cause limb defects. Similarly LMS mutations cause 

mammary gland dysplasia but mutations in EEC or SHFM rarely do. The differences in part 

could be due to different sets of genes regulated by p63 and p63 mutants. Mutations in p63 could 

lead to loss of function or gain of function which results from a combination of specific protein-

protein interactions as well as activation or repression of specific target genes. Since, p63 is a 

transcription factor, the molecular targets of p63, both normal and specific to p63 mutants will 

provide insight on the mechanisms underlying its role in development.  

 

4. p63 in cancer: 

 

The role of p63 in tumorigenesis still remains unclear and controversial. Even though p63 

mutations are rarely detected in human cancers, several studies have implicated that p63 might 

play a role in cancer progression. Loss of p63 and p73 has been associated with aggressive tumor 

progression and poor prognosis (Koga et al., 2003; Park et al., 2000; *Urist et al., 2002; Urist et 

al., 2002; Wang et al., 2002). In addition, loss of p63 expression has also been correlated with 

cancer progression in various cancers including prostate and bladder cancers (Park et al., 2004; 

Parsons et al., 2001; Urist et al., 2002).  
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TAp63 isoforms have been shown to promote growth arrest by inducing anti proliferative genes 

like Insulin Growth Factor Binding Protein-3 (IGFBP-3), BAX, Vitamin D receptor (VDR) and 

Maspin (Kommagani et al., 2006; Senoo et al., 2002; Shimada et al., 1999; Spiesbach et al., 

2005; Wu et al., 2005), and inhibiting the pro proliferative genes like Vascular Endothelial 

Growth Factor (VEGF) & Heat Shock protein 70 (HSP70) (Senoo et al., 2002; Wu et al., 2005). 

Although loss of p63 co-operates with loss of p53 in tumor development, the exact mechanism 

for this action is still unclear (Flores et al., 2005). Several studies have suggested the possible 

role for p63 in several different apoptotic pathways. TAp63α protein has been shown to induce 

apoptosis by activating both mitochondrial and death receptor apoptotic pathways which 

sensitizes the cancer cells towards chemotherapy (Gressner et al., 2005b). Endogenous p63 has 

been shown to be induced by many chemotherapeutic agents and blocking this function by p63 

mutants might confer chemoresistance (Petitjean et al., 2005). In addition, TAp63 isoforms have 

been shown to be critical for mitochondrial apoptotic pathway upon NGF withdrawal in 

developing sympathetic neurons (Jacobs et al., 2005). Further, TAp63 isoforms were shown to 

accumulate upon DNA damage induced by Topoisomerase II inhibitors (Katoh et al., 2000; 

Okada et al., 2002; Petitjean et al., 2005). The role of p63 in tumorigenesis has been supported 

by studies using p63 involving heterozygous mice which were predisposed to tumor formation 

and  displayed loss of heterozygosity (LOH) for the wildtype allele (Flores et al., 2005). In 

contrast, various reports refuted the LOH for p63 in heterozygous mice, and argued against the 

notion that p63 might act as a tumor suppressor (Keyes et al., 2006; Koster et al., 2006). 

However, TAp63 isoforms have been shown to promote apoptosis during embryonic 

development possibly by coordinating with other counterparts of the p53 family (Flores et al., 

2002; Jacobs et al., 2005).  In contrast, ΔNp63α isoform, that lacks the TA domain represses the 
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expression of IGFBP-3 and induces expression of HSP70 and VEGF to promote proliferation in 

squamous carcinomas. Several studies indicate the role of ΔNp63α as an oncogene since, it is 

over expressed in various cancer types and has been shown to induce the pro survival proteins 

(Casciano et al., 2002; Choi et al., 2002; Hu et al., 2002; Park et al., 2000; Senoo et al., 2002; 

Sniezek et al., 2004; Wu et al., 2005). ΔNp63α   has also been shown to repress p21 and 14-3-3σ 

genes, thereby inhibiting the p53 mediated growth arrest and apoptosis (Westfall et al., 2003). 

Additionally, ΔNp63α isoform act in a dominant negative manner towards p53 and TAp63 

isoforms by inhibiting their target genes, to maintain the proliferative potential of epithelial stem 

cells. Together, all these studies point towards the relevance of studying the biological effects of 

p63 mutants. Even though the role of p63 in tumorigenesis remains unclear, general consensus is 

that ΔNp63α promotes proliferation hence acting as an oncogene, whereas TA isoforms 

promotes cell cycle arrest and apoptosis thereby performing tumor suppressive functions.  
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5. Rationale: 

 

Since the discovery of p63 as a p53 family member, it has been investigated as a back up tumor 

suppressor gene. The importance of p63 was demonstrated by the p63 knock out studies where it 

was shown to play an important role in development. p63 can induce cell cycle arrest and 

apoptosis by activating p53 specific target genes. Loss of p63 and p73, another member of p53 

family, results in failure of cells with functional p53 to undergo apoptosis in response to DNA 

damage (Flores et al., 2002). Due to sequence and structure homology in the oligomerization 

domain of p53 and p63, like p53, p63 also functions as a tetramer. Also, the human 

developmental syndromes associated with p63 mutations indicate genotype-phenotype 

correlations with each syndrome having a distinct pattern and type of mutation. However, little is 

known about the precise pathogenetic mechanism that underlies the phenotypic specificity 

observed in different mutational classes. In this dissertation research we tried to address two 

specific aims. Firstly, we investigated the effect of naturally occurring TAp63γ mutants on 

biological activity of wildtype TAp63γ. We chose TAp63γ as it has been shown to be the most 

potent transactivator of all other p63 isoforms (Shimada et al., 1999). Also, the mutations that we 

included in our studies are germline mutations localized in the DNA binding domain which are 

common to all isoforms of p63. Our hypothesis was that p63 mutants interact with wildtype p63, 

abolishing its DNA binding capacity and disrupting its activity. Thus, the binding of p63 mutants 

to wildtype p63 can lead to inhibition of its transcriptional activity which might potentially result 

in a subsequent loss of its biological functions like growth arrest, apoptosis and differentiation. 

Therefore, these p63 mutations can gain additional functions by regulating wildtype p63 function 

and thus actively contribute to cancer and development. Secondly, we performed gene 
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expression studies, to identify novel target genes regulated by these mutations. We hypothesized 

that the distinct phenotype observed in human developmental syndromes associated with specific 

p63 mutations is due to differences in the target genes regulated by these mutants. In this aim we 

investigated the differential regulation of target genes by each of the p63 mutants by analyzing 

the gene expression profile using DNA microarray following overexpression of these mutants in 

a mammalian cell line. 

 16 



II. Materials and Methods: 

 

1. Cell lines and plasmids: H1299, a human non-small lung carcinoma cell line (obtained 

from ATCC) and HCT 116 p53-/-, a colon epithelial cell line (a generous gift from Dr 

Steven Berberich, Wright State University) which are devoid of p53 were maintained in 

Dulbecco’s modified eagle medium (DMEM) supplemented with 10% Fetal Bovine calf 

Serum (FBS) and 1% PS (Penicillin and Streptomycin) at 37oC, in a humidified 5% CO2. 

Expression plasmids encoding GST-TAp63γ and HA-TAp63γ were constructed by 

cloning the coding sequence of TAp63γ (p51A), into pcDNA3.1myc and pcDNA3.1GST 

(Invitrogen) (Kadakia et al., 2001).  The p51A cDNA was a kind gift from Shuntaro 

Ikawa (Tohuku University, Japan). GST tagged TAp63γ mutants were created using PCR 

based site-directed mutagenesis method using sense and antisense primers. The primer 

sets for the mutants included in this study are 1) R279H sense 

(5’GGAGGGATGAACCACCGTCCAATTTTAATC3’) and antisense (5’GATTA-

AAATTGACGGTGGTTCATCCCTCC3’) 2) K194E sense (5’CATGCCTGT-

CTACAAAGAAGCTGAGCACGTCAC3’) and antisense (5’GTGACGTGCTCAG-

CTTCTTTGTAGACAGGCATG3’) 3) R204W sense (5’GGAGGTGGTGAAG-

TGGTGCCCCAACCATG3’) and antisense (5’CATGGTTGGGGCACCA-

CTTCACCACCTCC3’) 4) R227Q sense (5’CTCCTAGTCATTTGATTCAAG-

TAGAGGGGAACAGC3’) and antisense (5’GCTGTTCCCCTCTACTTGAATCAAAT-

GACTAGGAG3’) 5) R280C sense (5’GGAGGGATGAACCGCTGTCCAATTTT-

AATCATTGTTACT3’) and antisense (5’AGTAACAATGATTAAAATTGGACA-

GCGGTTCATCCCTCC3’) 6) C306R sense (5’GGCCCGGATCCGTGCTTGCCCAG3’) 
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and antisense (5’CTGGGCAAGCACGGATCCGGGCC3’) 7) R298Q sense (5’GCAAG-

TCCTGGGCCAACGCTGCTTTGAGG3’) and antisense (5’CCTCAAAGCAGCGTT-

GGCCCAGGACTTGC3’). PG13-Luc reporter plasmid containing 13 copies of p53 

binding DNA consensus sequence was obtained from Dr. Steven Berberich (Wright State 

University, USA). Other reporters, Maspin-Luc and Hdm2-Luc were kind gifts from Dr 

Lindsey Mayo (Indiana University, USA). Shh full length promoter construct was 

constructed as reported earlier (Caserta et al., 2006). Membrane bound hybrid GFP 

plasmid, PAB35 was a kind gift from Dr Lynn Enquist (Princeton University, USA). 

 

 

2. Transactivation studies: : To measure the PG13-Luc, Hdm2-Luc, Maspin-Luc and Shh-

Luc reporter activities, cells were seeded in 24-well plates at 5 x 104 cells/well (for 

H1299) and 1 x 105 cells/well (for HCT p53-/-). At 24 hr after seeding, cells were 

transfected with 100 ng of reporter constructs and a constant amount of CMV-Renilla 

Luc plasmid, along with desired plasmids as indicated using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA). All transfections were done in duplicate. After 5 hr 

incubation the medium was replaced with DMEM medium supplemented with 10% FBS 

and 1% PS. At 24 hr post transfection, cells were washed once with 1X PBS and whole 

cell extracts were made by adding 100 μL of Passive Lysis buffer (Promega, Madison, 

WI) directly onto the plate and put on a rocker at room temperature for 30 min. The 

lysates were then transferred into 1.7 mL eppendorf tubes. Dual luciferase assay was 

performed to detect both firefly and Renilla luciferase activity using Dual-Luciferase 

Reporter 1000 Assay System as per manufacturer’s protocol (Promega, Madison, WI). 
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Briefly, to measure reporter activity 2 μL of each sample was taken in separate tube and 

50 μL of LASII reagent was added to the tube and mixed well by pipetting and 

immediately placed in a luminometer to get the reading for firefly luciferase. This was 

followed by addition of 50 μL of Stop and Glow reagent to the same tube and vortexing, 

to allow proper mixing, the sample was read again to get the Renilla luciferase reading. 

The relative luciferase activity was measured by calculating ratio of Firefly luciferase 

activity to Renilla luciferase activity. The average of the ratios from duplicate samples 

was then plotted in a graph where error bars represented standard deviations. 

 

3. Protein Isolation and Immunoblotting studies: H1299 and HCT116 p53-/- cells were 

seeded onto 6 well plates with 2.5 x 105 cells/well and 5 x 105 cells/well respectively. At 

24 hr post seeding, cells were transiently transfected with desired plasmids using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA), in serum and antibiotic free DMEM. 

After 5 hrs incubation the medium was replaced with DMEM medium supplemented with 

10% FBS and 1% PS. At 24 hr post-transfection, cells were first washed with 1X PBS 

and harvested in Radio Immunoprecipitation Assay (RIPA) buffer (0.5% sodium 

deoxycholate, 1% NP-40, 0.1% SDS, phosphate buffered saline, pH 7.4). The buffer with 

1% protease inhibitor cocktail (Sigma) was added onto the plates directly and placed on 

ice for 30 min. The cells were then scraped and transferred to 1.7 mL eppendorf tubes. 

The extracts were placed for an additional 30 min on ice, to allow complete lysis of the 

cells. The samples were then centrifuged for 5 min at 14,000 rpm at 4oC. Protein 

concentration was determined using BCA reagent (Pierce, Rockford, IL), using a 96 well 

plate. Standard curve was generated using bovine serum albumin (BSA) ranging from 1 
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μg/μL to 13 μg/μL. For each of the sample 2μL of sample and 98 μL of sterile distilled 

water were mixed properly and 100 μL of BCA reagent added to each well and incubated 

at 37oC for 15 min. The absorbance was measured using a spectrophotometer at the 

wavelength of 562 nm and the protein concentration calculated using a standard curve. 

Equal amount of protein was used from all samples and mixed with 5X SDS loading dye 

(0.5 M DTT, 0.3 M Tris (pH 6.8), 10% SDS, 50% glycerol and 0.05% bromophenol blue) 

and heated at 97oC for 5 min prior to loading. Protein extracts were run on 10% SDS-

PAGE gel using 1X SDS buffer (25 mM Tris pH 8.3, 250 mM glycine, 0.1% SDS) for 

about 4 hr at 200 constant volts and transferred onto PVDF membrane (Millipore 

Corporation, Billerica, MA) using transfer buffer (25 mM Tris, 192 mM glycine, 20% 

methanol and pH 8.3) at 1.10 Amps for 1 hr using a Transblot system (Bio-Rad) and 

blocked with 5% blocking milk solution (1M Tris pH 7.4, 5M NaCl, 0.05% Tween-20 

and 5% non fat dry milk). The membrane was then subjected to immunoblotting at room 

temperature (in 5% non fat dry milk made in 1X TTBS (Tris-Tween 20 Buffered Saline) 

using antibodies to detect specific proteins overnight. Mouse monoclonal anti-VDR D-6 

(1:2000), rabbit polyclonal anti-p21 C-19 (1:2000), rabbit polyclonal anti-Shh H160 

(1:250), mouse monoclonal anti-p63 4A4 (1:4000) (Santa Cruz Biotechnology, Santa 

Cruz, CA), mouse monoclonal anti-Mdm2 (1:500) (Calbiochem, San Diego, CA) and 

mouse monoclonal anti-β-actin (1:25,000) (Sigma, St. Louis, MO) antibodies were used 

to detect VDR, p21, Shh, p63, Hdm2 and β-actin  expression respectively. Appropriate 

IgG conjugated with horseradish peroxidase was used as secondary antibody (Promega, 

Madison, WI). The membrane was washed thrice with 1X TTBS for 15 min each and 

then exposed to Super-signal West Pico Chemiluminescent Substrate Kit (Pierce, 
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Rockford, IL) for 1 min to detect the chemiluminescent signal. The protein was 

visualized using FUJI FILM LAS3000 image reader. The antibodies were stripped from 

the membrane by incubating the blot in Western Stripping Buffer (25 mM glycine, 1% 

SDS, pH 2.0) for 30 min twice, at room temperature on a rocker. This was followed by 

washing the blot for 5 min twice with 1X PBS. The membrane was then blocked with 5% 

blocking milk followed by subsequent immunoblotting with another primary antibody 

according to the method indicated. 

 

4. RNA isolation and TaqMan based real time PCR: For RNA studies, cells were 

transfected with desired expression plasmid. At 24 hr post-transfection, cells were 

washed with 1X PBS and lysed directly on the culture plate using the RNAeasy method 

as per manufacturer’s protocol (Qiagen, Valencia, CA). The RNA was quantified by 

diluting 2μL of RNA sample with 98μL of TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 

8.0). This sample mix was then transferred into a quartz cuvette; the absorbance was 

measured using spectrophotometer at A260/A280 nm. The readings were taken relative to 

the blank TE. The RNA concentration was determined by using the following relation: 

RNAconc = (40 μg/ mL)*(A260)*(dilution factor)*(1 mL/1000 μL), assuming A260 of 1 

corresponds to 40 μg of RNA per mL. The purity of RNA was estimated by the ratio of 

A260/A280, with pure RNA having a ratio from 1.8-2.0. Each RNA sample was reverse 

transcribed individually using random hexamers to create cDNA. Briefly, 1 μg of total 

RNA was mixed with 2.5 μL of 10X TaqMan RT buffer, 5.5 μL of 25 mM MgCl2, 5.0 μL 

of deoxyNTPs, 1.25 μL of random hexamers, 0.5 μL of RNase inhibitor, 0.625 μL of 

Multiscribe reverse transcriptase, and RNase-free water for a total reaction volume of 25 
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μL to synthesize cDNA by using TaqMan reverse transcription kit (Applied Biosystems, 

Foster city, CA).The reverse transcription (RT) reaction was performed in a Perkin Elmer 

Gene Amp PCR System 2400 programmed to sequentially cycle as follows: initial 10 

min incubation at 25oC, 30 min RT step at 48oC, 5 min inactivation step at 95oC, and an 

infinite hold at 4oC. After the RT reaction was complete, cDNA was diluted 1:2 by 

adding 25 μL sterile DNAse/RNAse free water to each sample prior to storage at -20oC. 

Quantitative real-time PCR analysis was performed in a 96 well micro titer plate format 

on an ABI Prism 7900HT sequence detection system using TaqMan Universal master 

mix and Assay on Demand reagents. Briefly, a 20 μL reaction was prepared by mixing 2 

μL of cDNA sample, 10 μL of TaqMan Master Mix, 7 μL of DNAse/RNAse water and 1 

μL of AOD (Applied Biosystems) containing forward and reverse primers and a 

fluorescent TaqMan probe, designed and optimized for gene of interest for use in a 96 

well plate format. The PCR conditions used were 2 min hold at 50oC, 10 min hold at 

95oC and 40 cycles of 15 sec 95oC denaturation step and 1 min 60oC annealing and 

elongation step. Each sample was analyzed using SDS 2.0 software (ABI) in triplicate for 

target gene specific for VDR (Hs_ 0017213_m1), p21 (Hs_00355782_m1), Hdm2 (Hs_ 

00242813_m1) and Shh ((Hs_ 00179843_m1) (PE Applied Biosystems, Foster City, 

CA). GAPDH was used as an internal normalization control. These primers were 

designed by ABI, to span intron-exon junction, eliminating the possibility of detecting 

genomic DNA. Each well was monitored for fluorescent dye and signals were considered 

significant if the fluorescence intensity significantly exceeded the standard deviation of 

the basic fluorescence, defined as the threshold cycle (CT).  Relative mRNA quantitation 

was performed using the comparative ∆∆Ct method (Caserta et al., 2006).  Briefly, any 
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sample that deviated by more than half a CT was excluded from the analysis. The RQ 

value for each sample from the triplicate conditions was determined and compared to the 

average GAPDH values. The average RQ values were graphed; the error bars represent 

the standard deviation from the triplicate conditions. 

 

5. Immunoprecipitation Assay: H1299 cells were seeded at a density of 4.5 x 105 cells/6 cm 

plate. At 24 hr after plating the cells, expression plasmids encoding HA tagged wildtype 

TAp63γ and GST tagged TAp63γ mutants were transiently transfected either alone or in 

combination, as indicated. Cells were washed with 1X DPBS and then harvested for total 

protein using RIPA (radioimmunoprecipitation assay) buffer (0.5% sodium deoxycholate, 

1% NP40, 0.1% SDS, PBS, pH 7.4) mixed with 1% PIC (Sigma). Briefly, total protein 

was pre cleared with 20 μL of recombinant-protein G-sepharose beads (Invitrogen, 

Carlsbad, CA) for 1 hr at 4oC. After pre clearing beads were removed by centrifugation at 

13,000 rpm for 1 min.  The total protein was incubated with rotation for O/N at 4oC with 

1 μg of monoclonal anti-HA 12CA5 antibody (Roche Diagnostics, Indianapolis, IN). 

Next day immunoprecipitated samples were incubated with rec-protein G-sepharose 

beads for 1 hr followed by four washes with RIPA buffer to remove the unbound 

proteins.  Immunoprecipitated samples with beads were run on 10% SDS gel and 

immunoblotted with rabbit polyclonal anti-GST Z5 antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA). 

 

6. Immunofluorescence studies: H1299 cells were plated on sterilized coverslips at a density 

of 1.5 x 105cells/well of a 6 well plate. At 24 hr after seeding, expression plasmids 
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encoding HA-tagged wildtype TAp63γ or GST tagged TAp63γ mutants were transiently 

transfected either alone or in combination. For immunofluorescence staining, after 

washing with 1X DPBS, colonies were fixed for 8 min with 3% paraformaldehyde and 

permeabilized for 20 min with 1.0% Triton X-100. Cells were blocked with 0.5% normal 

goat serum (NGS) and incubated with primary antibodies for 1 hr at room temperature. 

Primary antibodies used to detect HA-TAp63γ wildtype and GST tagged mutants were 

mouse monoclonal anti-HA 12CA5 (Roche Diagnostics, Indianapolis, IN) at a dilution of 

1:100 and rabbit polyclonal anti-GST Z5 (Santa Cruz Biotechnology, Santa Cruz, CA) at 

1:200. After three washes with 0.5% (NGS), cells were incubated with secondary goat 

anti-rabbit, fluorescein isothiocyanate (FITC)-conjugated immunoglobulin G (IgG) 

antibody (Jackson Immunoresearch, West Grove, PA, USA) at a dilution of 1:250, and 

secondary donkey anti-mouse, texas red (TR) dye-conjugated IgG antibody (Jackson 

Immunoresearch, West Grove, PA, USA) at a dilution of 1:275 for 1 hr at room 

temperature. Hoechst dye 33342 (Sigma, St. Louis, MO) was used for nuclear staining. 

Preparations were examined using fluorescence microscopy. 

 

7. Flow cytometry: H1299 cells were plated at a density of 2.25 x 105 cells/6 well plate and 

co-transfected with expression plasmids encoding membrane bound hybrid-US9GFP 

(PAB35) with either TAp63γ or TAp63γ mutants or empty vector using Lipofectamine 

2000. Membrane bound GFP plasmid (PAB35) was cotransfected along with either 

TAp63γ or TAp63γ mutants, to distinguish the transfected cells from the non-transfected 

cells. Healthy cells were used as a control for this experiment. At 48 hr post transfection, 

cells were harvested for flow cytometry. Cells were collected by trypsinization using 
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0.25% Trypsin-EDTA (Gibco), pelleted by centrifugation at 12,000 rpm for 5 min and 

resuspended in phosphate-buffered saline (1X PBS). Two volumes of cold, 70% ethanol 

were added dropwise, while vortexing and the samples were stored at 20°C until the day 

of analysis. At that time, cells were pelleted as mentioned above and resuspended in 

staining solution (50 μg/mL Propidium Iodide, 32 μg/mL RNase A (Sigma, St Louis, 

MO) in PBS). Samples were moved to flow tubes and stored at 4°C for at least 1 hr in the 

dark prior to analysis.  Flow cytometric analysis for GFP and Propidium Iodide            

(PI) fluorescence was performed using CellQuest software (Becton Dickinson 

Immunocytometry Systems (BDIS), San Jose, CA). For each analysis 10,000 gated 

events were collected to permit cell cycle analysis of all cells and GFP cell 

subpopulations. The GFP and PI fluorescence signals were separated with a 560 

shortpass dichroic mirror and collected with a 530/30 bandpass (FL1, GFP) and 572/26 

bandpass (FL2, PI). Data analysis was performed using CellQuest (BDIS). The GFP 

fluorescence was collected on a logarithmic scale and the PI fluorescence was collected 

on a linear scale. 

 

8. Colony Formation Assay: H1299 cells were seeded at a density of 2.5x105 cells/well in a 

6 well plate and transfected with expression plasmids encoding TAp63γ, TAp63γ mutants 

or vector using Lipofectamine 2000 as indicated. At 24 hr post transfection, cells were 

trypsinized in 500 μL of 0.25% Trypsin-EDTA (Gibco), pelleted and resuspended in 

fresh complete media for counting. From each condition 1000 cells were counted on a 

hemocytometer and then replated in each well of a 6 well plate, media was changed after 

every 2 days. After 15 days of seeding and monitoring cell growth, the media was 
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aspirated and cells were washed with 1X DPBS and 1 mL of crystal violet dye (0.1% 

crystal violet in 10% ethanol) was added to each well for 5 min. The plates were 

subsequently washed with water twice and left to dry at room temperature for 2 days. At 

this point the pictures for each of the samples were taken. Subsequently, 1 mL of 10% 

acetic acid was added to destain the cells for 30 min at RT. 100 µL of this destained 

solution from each well was transferred to 96 well plate and read at 590 nm using 

spectrophotometer. 

 

9. RNA isolation/cRNA preparation: Cells were lysed directly in culture plate and total 

RNA was isolated using the RNAeasy method as per manufacturer’s protocol (Qiagen, 

Valencia, CA). The RNA was quantified by spectrophotometer reading at 260 nm and 

integrity of the total RNA was determined by agarose gel electrophoresis and by 

spectrophotometer reading ratio at 260/280. A ratio of 1.8-2.0 was considered optimum 

for further analysis. First strand cDNA synthesis was performed with 5 µg of total RNA, 

100 pmols of T7-oligo (dT) primer and 200 units of Superscript II enzyme (Invitrogen). 

RNase H-dependent second strand synthesis was performed using 10 units of DNA ligase 

and 40 units of DNA polymerase I. The double-stranded cDNA was purified using 

GeneChip Sample Cleanup Module (Affymetrix, Inc., Santa Clara, CA). Biotin-labeled 

cRNA was prepared employing GeneChip IVT Labeling Kit (Affymetrix) according to 

manufacturer’s protocol, using T7 RNA polymerase and biotinylated nucleotides to 

produce a labeled single stranded cRNA. The cRNA was purified using GeneChip 

Sample Cleanup Module and quantified using Agilent (PE Applied Biosystems, Foster 

City, CA) Bioanalyzer. 20 μg of cRNA was used for fragmentation utilizing GeneChip 

Sample Cleanup Module as per manufacturer’s protocol. A small portion of the 
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fragmented and non fragmented cRNA was subjected to agarose gel electrophoresis to 

assess quality of cRNA and fragmentation reaction. 

 

10. Array hybridization and scanning: 15 μg of fragmented cRNA along with non eukaryotic 

spike controls were hybridized to Affymetrix HG-U133A GeneChips containing 39,000 

transcript variants. Hybridization was performed for 16 hr in an Affymetrix GeneChip 

Hybridization oven 640 at 45oC using constant rotation at 60 rpm. GeneChips were 

subjected to washing and staining on Affymetrix GeneChip Fluidics Station 400 

according to manufacturer’s protocol. Immediately after staining, the GeneChips were 

scanned at 570 nm on an Affymetrix Scanner 3000 following protocols developed by 

Affymetrix for the HG-U133A arrays. The digitized images from the scanned chips were 

processed using Affymetrix Microarray Suite (MAS) version 5.0 and global scaling to a 

target intensity of 150 was applied to all chips prior to analysis. 

 

11. Data Mining: All analyses were performed using Affymetrix MAS5.0 and GeneSpring 

version GX7.3.1. The Affymetrix CHP files were first imported into GeneSpring. In 

GeneSpring, the chips were normalized to the fiftieth percentile and each gene 

normalized to its median relative expression. To identify the genes which were 

modulated by each of the TAp63γ mutants when compared to wildtype TAp63γ, the 

following data mining approach was employed. First, only those genes that were 

identified as being present or marginal in at least two of the three replicates in the 

condition where expression is expected using Filter on Flags were included in the lists. 

Next, gene lists containing genes that showed at least a 2 fold or greater increases or 
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decreases relative to wildtype TAp63γ using Filter on Fold Change were created. Based 

on these criteria the genes that passed through both these filters were identified using 

Venn diagrams from GeneSpring. The subset of genes that made it to both these lists 

were then passed through ANOVA statistical tool for a statistical significance of p ≤ 0.05. 

This approach made our data analysis more stringent. We also utilized NCBI PubMed 

and OMIM for getting more functional description on these genes. 

 

12. Functional pathway analysis: The list of genes with significant changes in gene 

expression (both increases and decreases) based on the microarray experiments were 

exported from GeneSpring into Ingenuity Pathways Analysis (IPA) 5.0 (Ingenuity 

Systems, Redwood City, CA) to create pathway maps of interacting genes. The core 

analysis identified the pathways from the canonical pathways that were significant to our 

data sets. Genes from the data sets that were associated with a canonical pathway in the 

Ingenuity knowledge base were considered for analysis. 
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III. Results: 

 

Differential effect of TAp63γ mutants on p53/p63 targets: We examined the effect of wildtype 

TAp63γ and naturally occurring TAp63γ mutants on PG13-Luc, Hdm2-Luc and Maspin-Luc 

reporters in H1299 (p53 -/-) and HCT116 (p53-/-) cells, all 3 targets shown to be regulated by 

both p63 and p53 (Figure 4). As expected the wildtype TAp63γ significantly upregulated the 

reporter activity of all reporters tested in both these cell lines. In addition, TAp63γ (R227Q) and 

TAp63γ (R298Q) exerted similar effects as wildtype TAp63γ and showed significant 

upregulation of all the reporters. Interestingly, TAp63γ (K194E) observed only in SHFM 

syndrome led to a significant increase in all the 3 reporters tested. On the other hand, TAp63γ 

(R280C) observed both in SHFM and EEC also upregulated PG13-Luc and Hdm2-Luc but did 

not affect the Maspin-Luc reporter activity. Finally, TAp63γ (R279H), TAp63γ (R204W) and 

TAp63γ (C306R) all observed only in EEC syndrome had little or no effect on the reporter 

activity of all reporters tested. A summary chart of the results obtained from transactivation of 

these 3 reporters in both H1299 and HCT 116 (p53-/-) cell lines indicating the fold change 

relative to vector control is included (Table 1). 

Next, we examined the effect of these mutants on endogenous transcript levels of Hdm2 and p21 

(Figure 5A). H1299 cells were transfected with TAp63γ and TAp63γ mutants or empty vector 

backbone and the relative expression of these genes was assessed using TaqMan based real time  
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Figure 4: Differential effect of TAp63γ mutants on transactivation of p53/p63 targets. H1299 and 

HCT116 p53-/- cells were transfected with PG13-Luc, Maspin-Luc and Hdm2-Luc reporter 

alone (100 ng) or along with wildtype TAp63γ or TAp63γ mutants (1 µg) and CMV-R-Luc (10 

ng) plasmids using Lipofectamine 2000. At 24 hr post transfection cells were harvested and 

subjected to dual luciferase assay as per manufacturer’s protocol. Y-axis represents RLU/R-Luc 

relative luciferase units normalized for transfection efficiency. Error bars represent standard 

deviations. 
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  PG13-Luc Hdm2 Luc Maspin Luc 
Samples H1299 HCT -/- H1299 HCT -/- H1299 HCT -/- 

Vector 1.0 ± 0.0 1.0 ± 0.1 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 

WTp63 4.7 ± 0.0 6.1 ± 0.1 23.4 ± 0.0 7.0 ± 0.0 9.0 ± 0.0 2.2 ± 0.0 

R279H 1.5 ± 0.0 2.3 ± 0.1 0.7 ± 0.0 0.6 ± 0.0 0.8 ± 0.0 1.3 ± 0.0 

K194E 6.8 ± 0.0 5.6 ± 0.1 58.6 ± 0.0 18.1 ± 0.0 3.3 ± 0.0 7.1 ± 0.0 

R204W 1.0 ± 0.0 1.4 ± 0.0 0.7 ± 0.0 0.9 ± 0.0 1.3 ± 0.0 1.5 ± 0.0 

R227Q 4.6 ± 0.0 1.3 ± 0.0 36.8 ± 0.0 9.9 ± 0.0 7.6 ± 0.0 3.5 ± 0.0 

R280C 12.8 ± 0.1 5.5 ± 0.0 4.9 ± 0.0 17.5 ± 0.0 1.2 ± 0.0 2.3 ± 0.0 

C306R 0.8 ± 0.0 1.0 ± 0.0 0.7 ± 0.0 0.9 ± 0.0 1.9 ± 0.0 2.4 ± 0.0 

R298Q 4.3 ± 0.0 1.6 ± 0.0 27.2 ± 0.0 7.2 ± 0.0 13.6 ± 0.0 3.4 ± 0.0 
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Table 1:  Summary of the transactivation data indicating the differential effect of TAp63γ 

mutants on p53/p63 target genes. The numbers in the column represent the fold change relative 

to empty vector control. The numbers in red and blue represent SHFM mutants (K194E and 

R280C) and mutants that mimic wildtype p63 (R227Q and R298Q) respectively. 
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PCR. Consistent with our results from the transactivation data (Figure 4) cells transfected with 

TAp63γ, TAp63γ(R227Q), TAp63γ(R298Q), TAp63γ(K194E) and TAp63γ(R280C) showed a 

significant increase in the Hdm2 and p21 transcript levels. Once again, TAp63γ(R279H), 

TAp63γ (R204W) and TAp63γ(C306R) had little or no effect on the transcript levels of both p21 

and Hdm2. Similar results were observed in HCT (p53-/-) (Figure 5). To correlate the increase in 

transcript level of Hdm2 and p21 to s e results demonstrate that while TAp63γ(R227Q) and 

TAp63γ(R298Q) mutants behave like wildtype p63, the mutants observed in SHFM syndrome, 

TAp63γ (K194E and R280C) also significantly induce targets specific for both p53/p63. teady 

state protein levels, we examined the effects of mutant p63 on the endogenous Hdm2 and p21 

protein levels using immunoblot analysis. We observed  a significant increase in both Hdm2 and 

p21 protein expression levels in cells transfected with wildtype TAp63γ, TAp63γ (K194E), 

TAp63γ (R227Q) and TAp63γ (R298Q) and a modest increase with TAp63γ(R280C) mutant 

(Fig 5B). As shown in Figure 5 wildtype TAp63γ is highly unstable and both TAp63γ (R227Q) 

and TAp63γ (R298Q) mutants (Figure 4) mimic wildtype TAp63γ not only in its ability to 

transactivate target genes but are as unstable as its wildtype counterpart (Figure 5B).  

 

TAp63γ(R227Q) and TAp63γ(R298Q) mimic wildtype TAp63γ in regulation of a p63 specific 

target:  Having demonstrated the differential effect of these naturally occurring mutants on gene 

targets regulated by both p53 and p63, we then tested the ability of TAp63γ and TAp63γ mutants 

to regulate Shh, previously shown by our laboratory to be a p63 specific target gene (Caserta et 

al., 2006). We examined the effects of wildtype and mutant TAp63γ on the transcripts and 

protein levels of Shh. As shown in Figure 6A and 6B, TAp63γ (R227Q) and TAp63γ (R298Q)  
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Figure 5: Differential effects of TAp63γ mutants on p53/p63 target genes at transcript and 

protein levels. A) To determine the effect of wildtype TAp63γ and TAp63γ mutants on 

endogenous target gene expression using TaqMan based real time-PCR, H1299 and HCT p53-/- 

cell lines were transfected with 3 µg of TAp63γ or TAp63γ mutants or empty vector alone.  At 

24 hr post transfection, total RNA was extracted and target gene expression was evaluated using 

RT-PCR. Y-axis represents fold change in Hdm2 and p21 transcript levels relative to vector 

transfected cells. B) Immunoblot analysis was performed to confirm overexpression of p63 and 

endogenous expression of p53 and p63 specific targets, Hdm2 and p21.  Immunoblotting for β-

actin served as the loading control.  
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Figure 6: TAp63γ(R227Q) and TAp63γ(R298Q) mimic wildtype TAp63γ in their ability to induce 

Shh. A) Shh transcript level in H1299 and HCT-/- cells transfected with TAp63γ or TAp63γ 

mutant’s expression plasmids was detected using TaqMan real time-PCR. The plasmid were 

used at a concentration of 3 µg. Y-axis represents fold change in Shh expression relative to 

vector transfected cells. B) Immunoblot analysis was performed to confirm the overexpression of 

p63 and endogenous expression of p63 specific target, Shh. Immunoblotting for β-actin served as 

the loading control. 
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along with wildtype TAp63γ led to a significant increase in the Shh transcript levels and a 

corresponding increase in the protein levels of Shh. These results further demonstrate that 

TAp63γ(R227Q) and TAp63γ(R298Q) retain the transactivation ability of wildtype TAp63γ. 

 

TAp63γ mutants do not affect TAp63γ mediated regulation of Hdm2: In order to assess the effects 

of TAp63γ mutants on wildtype TAp63γ mediated transactivation of p53 responsive genes, 

H1299 cells were transfected with Hdm2-Luc reporter along with TAp63γ alone or with 

increasing doses of TAp63γ mutants as indicated (Figure 7). As expected, TAp63γ led to a 

significant increase in Hdm2 reporter activity. Interestingly the TAp63γ(R279H), 

TAp63γ(R204W) and TAp63γ(C306R) mutants which were unable to transactivate Hdm2 by 

themselves,  did not inhibit wildtype TAp63γ mediated transactivation of Hdm2-Luc (Figure 7A, 

7C and 7F). Mutants TAp63γ(K194E), TAp63γ(R227Q) and TAp63γ(R298Q) which by 

themselves can induce Hdm2-Luc reporter activity did not result in a significant synergistic 

effect when co-transfected with wildtype TAp63γ (Figure 7B, 7D and 7G). Finally, 

TAp63γ(R280C) which induces a modest increase in Hdm2-Luc reporter activity led to a dose 

dependent synergistic increase in Hdm2-Luc reporter activity when co-transfected with wildtype 

TAp63γ (Figure 7E).  

 

Next we examined the effects of TAp63γ mutants on wildtype mediated induction of endogenous 

transcript levels of Hdm2 and p21 (Figure 8A). Consistent with our results from the 

transactivation data (Figure 7) none of the TAp63γ mutants had any affect on TAp63γ mediated  
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Figure 7: TAp63γ mutants do not affect the TAp63γ mediated transactivation of Hdm2 and p21 

(p53/p63 common target). H1299 cell lines were co-transfected with the 100 ng of Hdm2-Luc 

reporter alone or with wildtype HA-TAp63γ and GST-TAp63γ mutants alone or in combination 

(in 1:2 and 1:4 ratios, where 1 corresponds to 200 ng of plasmid) as indicated using 

Lipofectamine 2000. At 24 hr post transfection, whole cell extracts were subjected to Dual 

Luciferase Assay. Y axis represents relative luciferase units normalized to transfection 

efficiency. 
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regulation of Hdm2 and p21 transcript levels. To correlate the effects of TAp63γ mutants on 

wildtype mediated induction of transcript levels to steady state protein levels, we examined the 

effects of mutant p63 on wildtype TAp63γ mediated induction of Hdm2 and p21 protein 

expression levels. As shown in Figure 8B, none of the mutants affected wildtype p63 mediated 

induction of Hdm2 and p21. Immunoblotting confirmed the overexpression of GST-TAp63γ 

mutants and wildtype HA-TAp63γ. Immunoblotting for actin was used as a loading control. 

Altogether, our data shows that TAp63γ mutants do not inhibit the wildtype TAp63γ mediated 

induction of p53/p63 gene. 

 

 

TAp63γ mutants observed in some EEC syndrome inhibit TAp63γ mediated Shh induction: We 

examined the effects of TAp63γ mutants on wildtype TAp63γ mediated Shh-Luc reporter 

activity and Shh protein expression, a target gene regulated by p63 but not p53 (Caserta et al., 

2006). This was achieved by transfecting H1299 cells with Shh-Luc reporter, wildtype TAp63γ 

and TAp63γ mutants as indicated in Figure 8. We observed that TAp63γ induced transactivation 

of Shh reporter was significantly inhibited by TAp63γ(R279H), TAp63γ(R204W) and 

TAp63γ(R280C) mutants in a dose dependent manner (Figure 9A, 9C and 9E). Interestingly, 

once again the TAp63γ(R227Q) and TAp63γ(R298Q) mutants (Figure 9D and 9G) show only a 

modest increase in the transactivation of Shh reporter when co-transfected with wildtype 

TAp63γ. Finally, although the TAp63γ(C306R) and TAp63γ(K194E) by themselves do not 

induce Shh reporter activity, they do not affect the ability of wildtype TAp63γ to induce Shh 

reporter activity (Figure 9B and 9F).  
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Figure 8: TAp63γ mutants do not affect the TAp63γ mediated effects on its target gene expression 

at transcript and protein levels. H1299 cells were transfected with either GST-TAp63γ mutants 

alone or in combination with wildtype HA-TAp63γ in equal amounts (1.5 µg) using 

Lipofectamine 2000 as indicated. A) Hdm2 and p21 transcript levels were detected using 

TaqMan based real time PCR. Y axis represents the fold change in transcript levels relative to 

vector transfected cells. B) Immunoblot analysis of cell extracts harvested at 24 hr post 

transfection was resolved on SDS-PAGE and probed using anti-GST, anti-HA, anti-Hdm2, anti-

p21 and anti-actin. 
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Next we examined the effects of these mutants on endogenous expression of Shh and VDR 

(Figure 10A). For this H1299 cells were transfected with either GST-TAp63γ mutants alone or in 

combination with wildtype HA-TAp63γ and the relative expression of these genes was assessed 

using TaqMan based real time PCR. Consistent with our results from the transactivation data 

(Figure 9) cells transfected with TAp63γ(R279H), TAp63γ(R204W) and TAp63γ(R280C) 

significantly inhibited the wildtype TAp63γ mediated induction of Shh and VDR transcript 

levels.  

 

To correlate the decrease in the transcript level of Shh steady state protein level, we then 

examined the effect of mutant p63 on endogenous Shh protein level using immunoblot analysis. 

We observed a significant inhibition of the Shh protein expression levels in cells transfected with 

TAp63γ(R279H), TAp63γ(R204W) and TAp63γ(R280C) and a modest increase with 

TAp63γ(R227Q) and TAp63γ(R298Q) as shown in Figure 10B. Also, the mutants 

TAp63γ(K194E) and TAp63γ(C306R) as expected did not affect Shh expression both at 

transcript and protein levels. Immunoblot analysis confirmed the overexpression of HA tagged 

TAp63γ and GST tagged TAp63γ mutants. p21 was used as a positive control in immunoblot 

analysis. Taken together our data shows that TAp63γ mutants observed in EEC syndrome 

significantly inhibited the wildtype TAp63γ mediated induction of specific p63 gene (Shh). 
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Figure 9: EEC mutants inhibit the wildtype TAp63γ mediated induction of Shh. H1299 cells were 

co-transfected with the 100 ng of Shh-Luc reporter plasmid alone or with wildtype HA-

TAp63γ alone or with increasing concentration of GST-TAp63γ mutants (1:2 and 1:4 ratios, 

where 1 corresponds to 200 ng of plasmid) as indicated, using Lipofectamine 2000. At 24 hr post 

transfection, whole cell extracts were subjected to Dual Luciferase Assay. Y axis represents 

relative luciferase units normalized to transfection efficiency relative to empty vector transfected 

cells. 
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Figure 10:  EEC mutants inhibit the wildtype TAp63γ mediated induction of p63 specific target 

genes. H1299 cells were transfected with either GST-TAp63γ mutants alone or in combination 

with wildtype HA-TAp63γ in equal amounts (1.5 µg) using Lipofectamine 2000 as indicated. A) 

Shh and VDR transcript levels were detected using TaqMan based real time PCR. Y axis 

represents the fold change in transcript levels relative to vector transfected cells. B) Immunoblot 

analysis of cell extracts harvested at 24 hr post transfection was resolved on SDS-PAGE and 

probed using anti-GST, anti-HA, anti-Shh and anti-actin. 
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TAp63γ mutants do not affect the localization of wildtype TAp63γ: Having observed the 

differential effect of TAp63γ mutants on the p53/p63 and p63 specific genes and the ability of 

EEC mutants to inhibit wildtype mediated effects on p63 specific targets we next assessed 

whether the effects of p63 mutants on induction of these genes could be as a result of effects of 

these mutants on the localization of wildtype TAp63γ. For this, we co-transfected H1299 cells 

with HA tagged TAp63γ alone or along with different GST tagged TAp63γ mutants. At 24 hr 

post-transfection, immunofluorescence assays were performed to study the localization of both 

wildtype and mutant p63. TAp63γ by itself was localized in the nucleus. The EEC mutants 

TAp63γ(R279H and R204W) that lead to a dose dependent decrease in TAp63γ mediated 

induction of Shh, a p63 specific target (Caserta et al., 2006), and TAp63γ(C306R) do not affect 

the localization of wildtype TAp63γ (Figure 11). Additionally, TAp63γ(R280C) mutant which is 

observed in both SHFM and EEC syndrome and also leads to a dose dependent decrease of 

wildtype p63 mediated Shh induction, did not have any effect on the localization of wildtype 

TAp63γ. Interestingly, TAp63γ(K194E) observed specifically in the SHFM syndrome, is the 

only mutant that showed partial cytoplasmic localization, however it also did not affect the 

localization of wildtype TAp63γ (Figure 12). Furthermore, TAp63γ(R227Q and R298Q) mutants 

that mimic wildtype, when co-transfected with wildtype TAp63γ also did not affect its 

localization (Figure 13). Taken together, we show that all the TAp63γ mutants by itself localized 

to the nucleus and when co-transfected with wildtype TAp63γ did not affect the nuclear 

localization of wildtype TAp63γ. 
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Figure 11: TAp63γ mutants observed in EEC syndrome do not affect the localization of wildtype 

TAp63γ. H1299 cells were transfected with GST tagged TAp63γ mutants alone (1 µg) or along 

with HA-tagged wildtype TAp63γ (0.5 µg). At 24 hr post transfection, cells were fixed with 3% 

paraformaldehyde. HA-TAp63γ and GST-TAp63γ mutant expression was detected using mouse 

anti-HA and rabbit anti-GST primary antibodies and corresponding anti-mouse Texas Red and 

anti-rabbit FITC-conjugated secondary antibodies. The nucleus was stained with Hoechst 33342, 

and the cells were examined under fluorescence microscope. 
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Figure 12: TAp63γ mutants observed in SHFM syndrome do not affect the localization of 

wildtype TAp63γ. H1299 cells were transfected with GST tagged TAp63γ mutants alone (1 µg) 

or along with HA-tagged wildtype TAp63γ (0.5 µg). At 24 hr post transfection, cells were fixed 

with 3% paraformaldehyde. HA-TAp63γ and GST-TAp63γ mutant expression was detected 

using mouse anti-HA and rabbit anti-GST primary antibodies and corresponding anti-mouse 

Texas Red and anti-rabbit FITC-conjugated secondary antibodies. The nucleus was stained with 

Hoechst 33342, and the cells were examined under fluorescence microscope. 
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Figure 13: TAp63γ(R227Q) and TAp63γ(R298Q) mutants that mimic wildtype TAp63γ do not 

affect its localization. H1299 cells were transfected with GST tagged TAp63γ mutants alone (1 

µg) or along with HA-tagged wildtype TAp63γ (0.5 µg). At 24 hr post transfection, cells were 

fixed with 3% paraformaldehyde. HA-TAp63γ and GST-TAp63γ mutant expression was 

detected using mouse anti-HA and rabbit anti-GST primary antibodies and corresponding anti-

mouse Texas Red and anti-rabbit FITC-conjugated secondary antibodies. The nucleus was 

stained with Hoechst 33342, and the cells were examined under fluorescence microscope. 
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Wildtype TAp63γ  interacts with TAp63γ mutants: In order to confirm that the lack of effect on 

localization of wildtype p63 was not in part due to the inability of the mutant p63 to interact with 

wildtype p63, we next examined whether the mutant p63 can associate with wildtype p63. This 

will also enable us to determine whether the p63γ mutants included in our study form hetero-

tetramer complexes with wildtype p63. For this, H1299 cells were transfected with expression 

vectors encoding GST-TAp63γ mutants in the presence or absence of wildtype HA- TAp63γ as 

shown in Figure 14. Whole cell extracts were subjected to immunoprecipitation experiments 

using anti-HA antibody against wildtype HA tagged TAp63γ (panel A) and subsequently 

immunoblotted with anti-GST to detect GST tagged TAp63γ mutants. Subsequently, these blots 

were also immunoblotted with anti-HA to confirm immunoprecipitation of wildtype HA tagged 

TAp63γ. Our results clearly demonstrate that all the p63 mutants associated with wildtype p63. 

Panel B represents whole cell extracts immunoblotted with anti-HA and anti-GST antibodies to 

confirm the overexpression of the wildtype and mutant p63. In addition, we observed that 

TAp63γ(R279H), TAp63γ(R204W), TAp63γ(C306R) and TAp63γ(R298Q) stabilized wildtype 

TAp63γ (Figure 14B). Taken together, these results demonstrate that all the TAp63γ mutants 

tested in this study interact with wildtype TAp63γ.  

 

Differential effects of TAp63γ  mutants on cell growth: TAp63 isoforms have been reported to be 

involved in promoting apoptosis during development and cancer progression. In particular, p63 

has been shown to be required for p53 mediated apoptosis in mouse embryonic fibroblasts 

(Flores et al., 2002; Gressner et al., 2005a). Hence, the phenotypic features like syndactyly and 

cleft lip palate observed in p63 mutation associated developmental syndromes might be due to 

the perturbations in the apoptotic signaling pathways. To address that, we assessed the effects of  
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Figure 14: Association between TAp63γ and TAp63γ mutants. A) H1299 cell were transfected 

with either wildtype HA-TAp63γ alone (2.5 µg), GST-TAp63γ mutants alone (2.5 µg) or along 

with HA-TAp63γ. At 24 hr post transfection, whole cell lysates were made. Aliquots containing 

300 μg of protein were subjected to Immunoprecipitation using anti-HA mouse antibody. 

Immunoprecipitates were resolved by SDS-PAGE gel and immunoblotted with anti-GST rabbit 

antibody. B) To confirm the overexpression, of wildtype and mutant proteins, equivalent 

amounts of protein from each transfection was fractionated onto a SDS PAGE and 

immunoblotted with anti-HA mouse and anti-GST rabbit antibody 
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TAp63γ mutants on cell survival and apoptosis, using colony formation assay and flow 

cytometry, respectively. As expected based on transactivation data, TAp63γ(R227Q) and 

TAp63γ(K194E) led to reduced levels of cell proliferation similar to wildtype 

TAp63γ (Figure 15Α and 15Β). In contrast, TAp63γ(R279H) mutant showed an increased cell 

growth when compared to wildtype TAp63γ (Figure 13Α & 13Β). Consistent with colony 

formation assay data, TAp63γ(R227Q) and wildtype showed a significant induction of apoptosis 

relative to vector (Figure 15C). In contrast, compared to wildtype p63, mutant TAp63γ(R279H) 

showed significantly reduced levels of apoptosis, supporting our colony formation assay results 

which shows  that TAp63γ(R279H) promotes cell proliferation (Figure 15). Together, our data 

demonstrates that TAp63γ mutants exert differential effects on cell survival and growth 

inhibition, which might explain the phenotypic variations observed within p63 associated 

diseases. 

 

 

GeneChip data analysis using GeneSpring:  The precise role of p63 mutations has not been well 

defined but the distinct phenotypes observed in human developmental syndromes associated with 

p63 mutants might be due to the differences in target genes regulated by these mutants. We 

performed gene expression studies, to study if p63 missense mutations result in gain or loss of 

function. Specifically, we investigated the differential regulation of target genes by these mutants 

in H1299 cell lines by studying the gene expression profile and determining if the phenotype 

associated with a specific p63 mutant occurs as a result of its effect on gene expression.  
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Figure 15: Differential effect on TAp63γ mutants on cell growth. H1299 cells were transfected 

with either 3 µg of TAp63γ or representative TAp63γ mutants  as indicated. A) Schematic 

representation of the colonies observed in these conditions after staining with crystal violet B) 

Quantitative representation of the destained crystal violet using 1% acetic acid and absorbance 

read at 590nm from the duplicate samples. Y axis represents percentage of cell growth relative to 

wildtype TAp63γ. C) H1299 cells were co-transfected with either TAp63γ mutants or wild 

TAp63γ and membrane bound hybrid-US9GFP (PAB35). Cells were harvested at 48 hr post 

transfection, fixed in 70% ethanol and DNA stained with propidium iodide solution, as described 

in Materials and Methods. DNA distribution was analyzed using Flow cytometry using 

CellQuest Program. Graph represents fold apoptosis of the sub G1 cells positive for PI and 

PAB35 (membrane bound hybrid GFP). Y –axis represents % apoptosis relative to wildtype 

TAp63γ. 
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Treatment Induced Suppressed 
K194E_v_p63γ 29 72 
R280C_v_p63γ 141 112 
R204W_v_p63γ 31 110 
C306R_v_p63γ 41 202 
R279H_v_p63γ 117 72 
R227Q_v_p63γ 30 75 
R298Q_v_p63γ 38 90 

 

 

Table 2: Summary of the number of genes that were either upregulated or downregulated by 

TAp63γ mutants when compared to wildtype TAp63γ.   
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Data Mining was performed as described in the Materials and Methods section. The total number 

of genes that were modulated with each of TAp63γ mutants relative to wildtype p63 control is 

summarized in Table 2. The genes that made it to the decreased list are indicative of loss of 

function while the genes that made it to the increased list indicate gain of function. Interestingly, 

the EEC mutant TAp63γ(C306R) was the had approximately 200 genes suppressed when 

compared wildtype p63. In addition, more than 100 genes were induced by TAp63γ(R280C) and 

TAp63γ(R279H) mutants respectively when compared to wildtype TAp63γ. 

 

Common gene alterations associated with TAp63γ mutants relative to wildtype TAp63γ: Analysis 

of the gene targets clearly demonstrated that TAp63γ mutants induced numerous genes that are 

known to play an important role in cell cycle control, apoptosis, differentiation, development, 

proliferation, transcription control and signaling. Our data clearly shows that TAp63γ mutants 

are involved in multiple signaling pathways. We first identified target genes that were regulated 

by at least 4-7/7 TAp63γ mutants included in our study. By comparing genes that were 

suppressed by TAp63γ mutants, we identified approximately 40 overlapping genes that were 

suppressed in at least 4/7 when compared to wildtype TAp63γ (Tables 3, 4, 6 and 7). 

Approximately, 20% of the genes that made it to our list are identified p63 targets - Cyclin 

dependent kinase inhibitor 1C (CDKN1C), Insulin growth factor binding protein 3 (IGFBP3), 

Ferredoxin reductase (FDXR) and Aquaporin3 (AQP3) (Perez and Pietenpol, 2007; Trink et al., 

2007). Of the genes not identified as p63 targets: Chemokine (C-X-C motif) receptor 4 (CXCR4), 

Distal-less homeo box 5 (DLX5) and Nuclear receptor subfamily 2, group F, member 1 (NR2F1) 

were of particular interest, since they are involved in different development processes (Chin et 

al., 2007; Zhou et al., 2000; Zou et al., 1998). Our analysis of the genes that were regulated by all 



 

 

      Fold Change relative to wildtype TAp63γ     

Gene 
Name 

Gene 
Symbol Description K194E R280C R204W C306R R279H R227Q R298Q

Identified 
as p63 
targets Functions 

207768_at EGR4 
early growth 
response 4 0.0922 0.185 0.174 0.329 0.212 0.11 0.155 

-  apoptosis, atrophy, 
proliferation 

213348_at CDKN1C 

Cyclin-dependent 
kinase inhibitor 1C 

(p57, Kip2) 0.249 0.32 0.241 0.417 0.134 0.386 0.45 

+ 

apoptosis, G1 
phase, growth, 
proliferation, S 

phase, cell cycle 
progression, 

transformation, cell 
viability, 

morphology, 
senescence 

219750_at TMEM144 
transmembrane 

protein 144 0.476 0.312 0.343 0.16 0.409 0.401 0.382 
- integral to 

membrane 

39248_at AQP3 aquaporin 3 0.22 0.207 0.173 0.198 0.184 0.199 0.168 

+ 

osmotic water 
permeability, 

survival, glycerol 
permeability, water 

permeability, 
permeability 

 
 
Table 3: Genes that were downregulated in all 7 mutants compared to wildtype TAp63γ 
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      Fold Change relative to wildtype TAp63γ     

Gene Name 
Gene 

Symbol Description K194E R280C R204W C306R R279H R227Q R298Q

Identified 
as p63 
targets Functions 

204249_s_at LMO2 

LIM domain only 
2 (rhombotin-like 

1) 0.376 0.184 0.265 0.225 0.239 NR  0.491 
- differentiation, 

sprouting 

204364_s_at REEP1 

receptor 
accessory protein 

1 0.0676 0.202 0.0791 0.255 0.178 NR  0.467 
- protein insertion 

into membrane 

209569_x_at D4S234E 

DNA segment on 
chromosome 4 
(unique) 234 
expressed 
sequence 0.44 0.437 0.345 0.497 0.262 NR  0.342 

- dopamine receptor 
signaling pathway 

216248_s_at NR4A2 

nuclear receptor 
subfamily 4, 

group A, member 
2 0.416 0.358 0.245 0.38 0.332 NR  0.345 

- 

apoptosis, 
differentiation, 

anoikis, growth, 
maturation,  cell 

cycle progression 

217028_at CXCR4 

chemokine (C-X-
C motif) receptor 

4 0.102 0.147 0.115 0.268 NR  0.218 0.44 

- 

migration, 
chemotaxis, 

development, 
homing, fusion, 

proliferation, 
apoptosis, retention 
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Table 4: Genes that were downregulated in at least 6/7 mutants compared to wildtype TAp63γ.  Abbreviation NR stands for ‘not 
regulated’. 
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7 TAp63γ mutants relative to wildtype TAp63γ identified 4 genes (Early growth response 4 

(EGR4), CDKN1C, Transmembrane protein 144 (TMEM144) and AQP3) of which 2 genes 

(AQP3 and CDKN1C) are identified p63 targets while EGR4 and TMEM144 are not known to 

be regulated by p63 (Table 3). Furthermore, we identified 5 genes (LIM domain only 3 (LMO2), 

receptor accessory protein 1 (REEP1), DNA segment on chromosome 4 234 expressed sequence 

(D4S234E), nuclear receptor subfamily 4, group A, member 2 (NR4A2) and CXCR4) to be 

downregulated by at least 6/7 p63 mutants in comparison to wildtype, none of these genes have 

been shown to be regulated by p63 (Table 4). Analysis of genes that were induced by at least 4 of 

7 TAp63γ mutants led to the identification of only 7 overlapping genes (Protein tyrosine 

phosphatase, non receptor type 11 (PTPN11), zinc finger protein 37B (ZNF37B), Chac cation 

transport regulator homolog 1 (CHAC2), zinc finger protein 236 (ZNF236), BCL2 binding 

component 3 (BBC3), erythropoietin receptor (EPOR) and coiled-coil domain containing 71 

(CCDC71)) when compared to wildtype TAp63γ (Appendix Table 8).  In particular, the only 

gene identified  to be induced by 6/7 mutants was PTPN11, a bonafide oncogene that is mutated 

in several cancer types ; is hyperactivated in solid tumors and is also required for Ras-Erk 

cascade (Chan and Feng, 2007; Mohi and Neel, 2007) (Table 5). Additionally, BBC3(PUMA), a 

known p63 target gene that can modulate cellular apoptosis through intrinsic pathway via 

binding to Bcl-2 on mitochondria was induced by 4/7 TAp63γ mutants (Rocco et al., 2006). 

EPOR another gene induced by 4 TAp63γ mutants, is a regulator of RBC formation and is 

present on tumor cells (Udupa, 2006). EPO signaling inhibits apoptosis and promote cell 

proliferation, differentiation and cell survival (Sytkowski, 2007). Taken together our analysis 

suggested that the TAp63γ mutants significantly suppress gene involved in cell cycle arrest and 

induce the genes involved in proliferation. The greater number of overlapping genes in the 



 

 

 

 
      Fold Change relative to wildtype TAp63γ     

Gene 
Name 

Gene 
Symbol Description K194E R280C R204W C306R R279H R227Q R298Q

Identified 
as p63 
targets 

Functions 

205867_at PTPN11 

protein tyrosine 
phosphatase, 
non-receptor 

type 11 
(Noonan 

syndrome 1) 

3.997 2.035 3.834 NR  2.616 2.324 4.172 - 

apoptosis, 
differentiation, 

morphology, growth, 
proliferation, adhesion, 

G2 phase, 
transformation, 

chemotaxis 
 
 
Table 5: Genes that were upregulated by at least 6/7 mutants compared to wildtype TAp63γ 
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decreased list when compared to wildtype TAp63γ is indicative of a loss of function being more 

predominant with the p63 mutations. 

 

Mutant specific alteration of genes regulated by TAp63γ mutants: To understand the mechanisms 

of p63 related disorders, we generated a list of genes that were regulated by each of these 

mutants specifically compared to wildtype TAp63γ using GeneSpring. Focusing on these genes 

will help us identify the different genes that might be specifically regulated by these mutants 

which would give us insight into the differential effect of these mutants exerted towards p53 

and/or p63 target genes. We manually assigned functional categories to each gene using 

information available at NCBI, Affymetrix (Netaffx), Gene Ontology browser from GeneSpring 

and Ingenuity Pathway Analysis. The manual classification allowed us to uncover some new 

potential targets of p63 mutants.  

 

SHFM syndrome mutants:  

 

K194E mutant: Our analysis of specific genes regulated by TAp63γ(K194E) mutant, observed 

only in SHFM syndrome, stressed the role of K194E in regulation of genes involved in 

apoptosis, cell proliferation, differentiation and development. We identified a total of 21 genes, 

of which 9 were induced while the remaining suppressed compared to wildtype p63. Some of the 

striking genes identified to be downregulated by K194E were T-box 2 (TBX2) and fibroblast 

growth factor receptor 1 (FGFR1) (Appendix Table 9). The T-box of transcription factor, 

Fibroblast Growth factor (FGFs) and its receptor, FGFR play an important role in embryogenesis 

and limb development (King et al., 2006; Li et al., 2005; Xu et al., 1999). Tbx2 is expressed in 

69 



the forelimb and the hindlimb in the mouse and involved in cell-type specification and 

morphogenesis of mammary gland (Gibson-Brown et al., 1998; King et al., 2006; Naiche et al., 

2005; Rowley et al., 2004). Fgfr1 is primarily expressed in the mesenchyme of developing limb 

buds, craniofacial bone and mammary gland development (Dillon et al., 2004; Li et al., 2005; 

Rice et al., 2003; Xu et al., 1999). Overall, our analysis provides an insight into some target 

genes that might play a pivotal role in the developmental deformities associated with the SHFM 

mutants. 

 

R280C (SHFM/EEC) mutant: This p63 mutation is observed in two different developmental 

syndromes EEC and SHFM. We identified approximately 135 genes specifically regulated by 

this mutant; almost 100 of these genes were induced while the remaining genes were suppressed 

when compared to wildtype TAp63γ (Appendix Table 10).  The more number of increases 

suggest that this mutant has a gain of function effect. Analysis of these gene targets demonstrated 

the role of R280C in regulating genes implicated in metabolic processes, apoptosis, 

development, immune response, differentiation, cell viability and signaling. Although pro 

apoptotic genes: Interferon gamma-inducible protein 16 (IFI16), protein tyrosine phosphatase 

receptor type, O (PTPRO), Calpain 5 (CAPN5), Septin 4 (SEPT4) (Lee et al., 2006), etc were 

induced in the screening for genes regulated by TAp63γ(R280C), genes related to cell viability 

like Thyroid hormone receptor alpha (THRA), matrix metallopeptidase 7 protein (MMP7), etc 

also increased when compared to wildtype TAp63γ. However, it should be noted that the pro-

apoptotic genes are more abundant in the list of TAp63γ(R280C) regulated genes (Appendix 

Table 9). Interestingly, most of these genes are also involved in development. IFI16 is a gene 

known to modulate apoptosis and inhibit cell cycle progression and loss of  this gene results in 
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deregulation of p53-mediated apoptosis, leading to tumor disposition (Alimirah et al., 2007; 

Kwak et al., 2003; Zhang et al., 2007).  CAPN5, SEPT5 and PTPRO are highly expressed during 

embryogenesis and have tumor suppressor like ability (Beltran et al., 2003; Dear and Boehm, 

1999; Larisch, 2004; Motiwala et al., 2004). MMP7 is expressed in epithelial cells and has been 

implicated in mammary gland tumorigenesis (Lynch et al., 2007; Sorrell et al., 2005). Thyroid 

hormone receptors play a role in brain development, inhibition of cell death and stimulation of 

cell growth which imparts oncogenic potential to this gene (Bernal, 2007; Thormeyer and 

Baniahmad, 1999; Yoshioka et al., 2006). In addition to these, we also observed other 

developmental genes like Transcription factor 3 (TCF3) (Kim et al., 2007) and laminin, alpha 4 

(LAMA4) (Salmivirta and Ekblom, 1998) also upregulated by TAp63γ(R280C). The genes that 

stood out amongst those downregulated when compared to wildtype TAp63γ were anti apoptotic 

genes (V-yes Yamaguchi sarcoma viral oncogene homolog 1 (YES1), Ras guanyl releasing 

protein 1 (RASGRP1) and FYN oncogene related YES (FYN)) and pro-apoptotic genes (S100 

calcium binding protein A2 (S100A2), Cbp/p300 interacting transactivator, with Glu/Asp rich 

carboxy-terminal domain, 2 (CITED2) and TNF receptor superfamily, member 6 (FAS)) 

(Arnaud et al., 2003; Feng et al., 2001; Oki-Idouchi and Lorenzo, 2007; Wang et al., 2007). 

S100A2 and CITED2 are both known targets of p63 and have been shown to play a role in 

keratinocyte differentiation (Lapi et al., 2006; Vigano et al., 2006). Taken together our analysis 

classified R280C as a gain of function mutant involved in regulation of genes involved in 

different cellular processes.  

 

EEC syndrome mutants:  
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R204W mutant: TAp63γ(R204W) mutant which is observed in EEC syndrome regulates about 

40 genes, 31 of which are downregulated while 9 are upregulated when compared to wildtype 

TAp63γ (Appendix Table 11). Many genes involved in regulation of transcription factors (ELK4 

ETS domain protein (ELK4), Regulatory factor X,3 (RFX3), TEA domain family member 1 

(TEAD1), Amyotrophic lateral sclerosis 2 chromosome region, candidate 8 (ALS2CR8), etc) 

and metabolic processes (Matrix metallopeptidase 1 (MMP1), Iduronate 2-sulphatase (IDS), 

Glycine amidinotransferase (GATM), Dehydrogenase E1 and transketolase domain containing 1 

(DHTKD1), ABO blood group transferase A alpha 1-3 galactosyltranferase (ABO), 

Dehydrogenase/reductase SDR family, member 9 (DHRS9), etc) are downregulated specifically 

by TAp63γ(R204W).  Jagged 2 (JAG2) which is a ligand for NOTCH signaling, involved in 

apoptosis, proliferation and differentiation in many different tissues and is a known target of p63 

is also downregulated by R204W (Sasaki et al., 2001). JAG2, plays a primary role in cleft palate, 

oral differentiation and craniofacial development observed in EEC patients (Casey et al., 2006). 

MMP1 is a zinc dependent protease, involved in invasiveness, proliferation and malignancy by 

degrading extracellular matrix (Seiki, 2003). Moreover, Tumor necrosis factor receptor 

superfamily member 11B (TNFRSF11B), that plays a role in cell viability, anoikis and 

differentiation is the gene positively regulated by TAp63γ(R204W) (Holen and Shipman, 2006).   

 

C306R mutant: TAp63γ(C306R) observed in EEC syndrome is the most dominant negative 

mutant with approximately 120 genes downregulated and only about 20 genes upregulated when 

compared to wildtype TAp63γ, suggesting that it is a loss of function mutant (Appendix Table 

12). Amongst the other developmentally related genes the most prominent genes downregulated 

by this mutant are Folate receptor 1 (FOLR1), Transforming growth factor, beta 2 (TGFB2) and 
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UDP-glucose ceramide glucosyltransferase (UGCG), which are involved in early embryonic 

development with cleft palate and cleft lip with or without cleft palate and hypodontia (Bianchi 

et al., 2000; Piedrahita et al., 1999; Slayton et al., 2003). The suppression of TGFB2 and FOLR1 

is particularly intriguing, since p63 knock out mice also shows craniofacial and limb defects, as 

well as corneal epithelial abnormalities similar to the knock out phenotype of these two genes. 

Many receptors (FOLR1, Coagulation factor 2 (F2R), RPA interacting protein olfactory 

receptor, family 5, subfamily T, member 2 (RPAIN) and Nuclear factor receptor subfamily 2, 

group F, member 2 (NR2F2), etc) and kinases (G protein coupled receptor 6 (GRK6), 

Adrenergic beta receptor kinase 2 (ADRBK2) , PI3 kinase regulatory subunit 3 (PIK3R3), etc) 

are downregulated by TAp63γ(C306R) mutant. There were almost similar number of decreases 

in genes involved in survival (FOLR1, Growth differentiation factor 15 (GDF15), Integrin alpha 

V (ITGAV), etc) and apoptosis (Fibronectin 1 (FN1), Mixed lineage leukemia (MLL), Activating 

transcription factor 2 (ATF2), Cullin2 (CUL2), Cyclin dependent kinase 6 (CDK6), etc). In 

addition to these genes, other genes involved in metabolic processes, transport and immune 

response were also downregulated by C306R mutant. Taken together our data suggests that 

C306R mutant downregulates more genes than any other mutant making it a loss of function 

mutation, involved in multiple signaling pathways. 

 

R279H mutant: TAp63γ(R279H) which is observed exclusively in EEC related disorders and is 

known for its dominant negative effects on wildtype mediated TAp63γ mediated induction of its 

target genes, surprisingly had more number of genes induced than repressed, suggesting it is a 

gain of function mutant. We identified approximately 80 genes that increased and only 6 genes 

that decreased when compared to wildtype TAp63γ (Appendix Table 13). The most striking gene 
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upregulated by this mutant was GLI- Kruppel family member 2 (GLI2), which is involved in 

development of cleft palate, hair follicles, mammary gland and limbs (Slayton et al., 2003). The 

knock out phenotype of GLI2 mice is similar to the phenotype observed with p63 knock out. 

Another gene that was induced by R279H mutant specifically was Bcl2 related protein A1 

(BCL2A1), an anti-apoptotic gene which has been shown to suppress apoptosis induced by p53 

tumor suppressor gene (D'Sa-Eipper et al., 1996). The genes involved in cell cycle progression 

and cell viability (Thioredoxin interacting protein (TXNIP), Calbindin 1 (CALB1), Androgen 

receptor (AR), etc) were also induced in our analysis in comparison to wildtype TAp63γ 

supporting or results from cell proliferation assays where TAp63γ(R279H) had enhanced cell 

survival and decreased cell death when compared to wildtype TAp63γ. The genes that were 

downregulated by R279H mutant when compared to wildtype TAp63γ included Matrix 

metallopeptidase 12 (MMP12), Inhibin alpha (INHA), Bone morphogenetic protein 1 (BMP1), 

etc which are involved in cellular processes like invasiveness, proliferation and differentiation. 

Overall, our data indicates that the R279H mutant is not simply a dominant negative, but also 

upregulates numerous genes when compared to wildtype p63, making it a gain of function 

mutant. 

 

R227Q mutant: TAp63γ(R227Q) is localized to the DNA binding domain and belongs to the 

EEC syndrome category. However, it is different from the other EEC mutants observed within 

this syndrome owing to its ability to exert similar effects are wildtype TAp63γ. Also, it lacks 

some distinctive phenotypic characters like orofacial clefting, observed in other EEC mutation 

phenotype. About 24 genes were downregulated and 19 genes were upregulated specifically by 

TAp63γ(R227Q) when compared to wildtype TAp63γ (Appendix Table 14).  The genes 
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suppressed by this mutant are involved in development, regulation of transcription, metabolite 

transport and differentiation. The key functional categories among the genes that were 

upregulated by TAp63γ(R227Q) compared to wildtype TAp63γ, involved those playing a role in 

signal transduction, apoptosis and cell cycle arrest. It is interesting to note that the genes 

involved in development (Retinoic acid receptor, alpha (RARA), Acrosomal vesicle protein 1 

(ACRV1), Laminin alpha 5 (LAMA5), etc) were suppressed by this mutant, suggesting the 

impact of this regulation in relation with the developmental defects associated with the p63 

mutant phenotype. The most interesting gene identified is RARA  due to its involvement in 

craniofacial development which is a hallmark feature observed in EEC syndrome patients 

(Houdayer and Bahuau, 1998). Furthermore, LAMA5 has been shown to play a crucial role in 

kidney and dental embryonic development and hair morphogenesis (Fukumoto et al., 2006; 

Kikkawa and Miner, 2006; Li et al., 2003). In agreement with our results from cell proliferation 

and cell death assays wherein TAp63γ(R227Q) mutant behave like wildtype TAp63γ  in its 

ability to induce apoptosis, we  identified genes with tumor suppressive abilities (Glucocorticoid 

receptor DNA binding factor 1 (GRLF1) and Mitochondrial tumor suppressor 1 (MTUS1)) to be 

induced by this mutant when compared to its wildtype counterpart (Yu et al., 2005). Both 

GRLF1 and MTUS1 have been shown to restrict the growth of malignant glioma and pancreatic 

tumors respectively (Seibold et al., 2003; Tikoo et al., 2000).  

 

ADULT syndrome mutant R298Q: TAp63γ(R298Q) mutation is observed only in ADULT 

syndrome. We identified approximately 25 genes which were downregulated and 10 genes 

upregulated when compared to wildtype TAp63γ (Appendix Table 15). In addition to anti-

apoptotic genes (Deoxyribonuclease I-like 3 (DNASE1L3), Interleukin 1, alpha (IL1A) and 
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protein phosphatase 2, regulatory subunit B, beta isoform (PPP2R2B), etc) and pro-apoptotic 

genes (Sin3-associated polypeptide, 18kDa (SAP18) and Phospholipase A2, group VII 

(PLA2G7), etc), we also identified genes involved in development (B cell CLL/lymphoma 11A 

(BCL11A) and Lysyl oxidase-like 1 (LOXL1)) in the decreased lists. Interestingly, although both 

pro apoptotic and anti apoptotic genes are repressed by R298Q mutant when compared to 

wildtype TAp63γ, the former is more abundant than the later. BCL11A, a kruppel like zinc 

finger transcription factor, is not only required for normal skeletal and lymphoid development 

but is a proto-oncogene involved in different malignancies (Ganss and Jheon, 2004; Liu et al., 

2003; Satterwhite et al., 2001). LOXL1 acts as a tumor suppressor gene owing to its ability to 

antagonize the ability of Ras-Erk to promote cell survival and is also involved in notochord 

development (Gansner et al., 2007; Wu et al., 2007). Amongst the genes that was identified to be 

induced, Plexin domain containing 1 (PLXDC1) plays a role in development and tumor 

invasiveness and poor survival of osteogenic sarcoma patients (Fuchs et al., 2007).  

 

Ingenuity pathway analysis: Furthermore, the combined list of genes that were regulated by at 

least 4/7 TAp63γ mutants when compared to wildtype TAp63γ with GeneSpring was analyzed 

using Ingenuity Pathway Analysis (IPA) software to identify unique networks involving these 

genes. These networks represented relationships between the genes identified in our analysis and 

other genes thereby giving us information on possible genes upstream or downstream of the 

targets identified in this study. Several different pathway maps were created from this gene list 

which helped us identify unique interactions between genes and proteins that they might encode. 

The network represented in Figure 16 includes the genes which not only includes the greatest 

number of the gene targets identified by our data mining strategy but also showed greatest fold 
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changes of gene expression in either direction. We also ran the list of genes that were specifically 

regulated by each mutant to get an idea of the signaling pathways important for the role of p63 in 

development. Here, we represent a map from R279H, a gain of function mutation (Figure 17). It 

is interesting to see the network is coded red for the most part suggesting the gain of function. 

Also, the network contains numerous genes that are involved in different developmental 

signaling pathways.  
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Figure 16: IPA of the relationships between the genes that were both upregulated and 

downregulated by TAp63γ mutants when compared to wildtype p63. The network shown here is a 

graphical representation of the molecular relationships between genes/gene products.  The color 

scheme represents green (decreases) and red (increases). The higher intensity of color represents 

a greater fold change. The lines connecting the nodes are curated from the literature. Solid lines 

are direct relationships and the dashes lines are indirect relationships. 
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Figure 17: IPA of the relationships between the genes that were both upregulated and 

downregulated by R279H mutant when compared to wildtype p63. The network shown here is a 

graphical representation of the molecular relationships between genes/gene products.  The color 

scheme represents green (decreases) and red (increases). The color intensity is proportional to the 

fold change. The greater the fold changes the higher the color intensity. The more number of reds 

indicate a gain of function. The lines connecting the nodes are curated from the literature. Solid 

lines are direct relationships and the dashes lines are indirect relationships. 
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IV. Discussion:  

 

p63 plays an indispensable role in epithelial morphogenesis and cancer progression (Yang et al., 

1999). Pathogenic mutations of p63 are shown to be responsible for several human syndromes 

exhibiting developmental defects. Although distinct p63 mutational patterns are observed   with 

each developmental syndrome suggesting a genotype-phenotype relationship, the impact of these 

p63 mutations on gene expression and physiology of cell during development and cancer 

progression are still not clear.  

 

It has previously been reported that arginine codons 204, 227, 279 and 280 of p63 are important 

for specific and nonspecific interactions with DNA target sequences, and mutations within those 

residues are highly detrimental to DNA binding and transactivation activity (Celli et al., 1999). 

Our studies also demonstrate that arginine mutants TAp63γ (R279H), TAp63γ (R204W) and 

TAp63γ (C306R) lack the transactivation activity based on their inability to induce the 

expression of Hdm2 and p21. Interestingly, p63 heterozygous mutant mice are more predisposed 

to tumor formation (Flores, 2007; Flores et al., 2005). It is therefore possible that the inability of 

TAp63γ (R279H), TAp63γ (R204W) and TAp63γ (C306R) mutant to induce cell cycle arrest 

genes might predispose the patients harboring these mutations to a greater incidence of tumor 

formation. Interestingly,  many of these p63 mutations observed in EEC syndrome correspond 

exactly to the hotspot mutations in p53 genes: p63 R204, R279, R280 are analogous to p53 

R175, R248 and R249 respectively (Li and Prives, 2007) an exception being R227, which is 

exclusive to p63. Alternatively, TAp63γ(R227Q) and TAp63γ(R298Q) mutants mimic its 

wildtype counterpart in their ability to transactivate both p63/p53 and p63 specific targets, and 
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therefore is less likely to increase the risk of these patients towards cancer development. The 

apparent distinguishable transcriptional activity of TAp63γ(R227Q) is also supported by the fact 

that, TAp63γ(R227Q) is a rare EEC mutation observed in only 1/227 EEC patients, lacks 

orofacial clefting and has fewer limb defects than typically observed in EEC syndrome (Rinne et 

al., 2006). Similarly, in spite of missense mutation in the DNA binding domain, the ability of 

ADULT syndrome specific TAp63γ(R298Q) mutant to retain wildtype activity might be due to 

presence of a second transactivation domain (Duijf et al., 2002; Propping et al., 2000; Reisler et 

al., 2006). Additionally, a distinct phenotypic overlap between ADULT (R298Q) and EEC 

(R227Q) syndromes has been reported (Reisler et al., 2006), which might reflect their ability to 

retain the transcriptional potential of the wildtype TAp63γ.     

 

Differential regulation of p53/p63 and p63 specific target genes by mutants associated with EEC 

syndrome demonstrates that the molecular basis of phenotypic variation observed within the 

EEC syndrome could be as a result of perturbation of different signaling pathways normally 

regulated by p63. Our results showed that, while R279H mutant was unable to affect the TAp63γ 

mediated induction of p53/p63 target genes; it significantly inhibited the wildtype p63 mediated 

induction of p63 specific genes. This suggests that EEC mutant TAp63γ(R279H) may not always 

act in a dominant negative fashion towards all target genes. Adding to this complexity, our 

results showed that, while TAp63γ(R280C) and TAp63γ (K194E) mutants significantly induced 

the p53/p63 responsive genes, these mutants did not induce the p63 specific target genes. Our 

results are consistent with the observation that Arg 280 and Lys 194 amino acid residues 

although involved in the maintenance of the overall structure of the DNA binding domain, when 

mutated only has subtle effects on DNA-binding capacity of p63 (Ianakiev et al., 2000). It is 
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therefore possible that subtle differences in the transactivation ability of these mutants might be 

critical not only for the clinical variability observed in the same syndrome, but also other 

pathogenic conditions observed with p53 and p63.  

 

Furthermore, we demonstrated that TAp63γ(R279H), TAp63γ(R204W) and TAp63γ(R280C) 

mutants act in dominant negative manner to inhibit the wildtype TAp63γ mediated 

transactivation of p63 specific target genes. In contrast, TAp63γ(R227Q) and TAp63γ(R298Q) 

significantly enhanced the wildtype p63 mediated transactivation. Wildtype p63 interacts with all 

the mutants tested and localization of wildtype was not affected by any of the mutant which 

suggests that the ability of mutants to inhibit wildtype activity might not be simply forming 

heterotetramers, but could be due to the ability of dominant negative mutants to compete with 

wildtype to bind to p63 specific responsive elements. Additionally, results from our interaction 

studies (Figure 14) indicate that the mutants may be responsible in stabilizing the wildtype p63 

which thereby leads to increased effects of wildtype p63 on its target genes when co-transfected 

with p63 mutants. 

 

 

Previous reports indicated that, exogenous TAp63 can activate genes involved in cell cycle arrest 

and apoptosis (Fan et al., 2007b; Yang and McKeon, 2000). Consistent with transactivation 

results, we demonstrated the differential ability of p63 mutants in promoting apoptosis. While 

TAp63γ(R227Q) and TAp63γ(K194E) mutants significantly promoted cell death, 

TAp63γ(R279H) mutant significantly promoted the proliferation. The differential effect of 
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mutants on cell survival may also dictate the complex phenotypic variation in p63 associated 

diseases.  

 

In order to understand the developmental program managed by p63 and the different p63 

mutations observed in patients, the identification of transcriptional target genes is indispensable. 

We performed GeneChip experiments in H1299 cells by overexpressing TAp63γ mutants to 

identify genes that are commonly and specifically regulated by the mutants. H1299 cells were 

used for these experiments because they lack endogenous p53 and any detectable levels of p63 

isoforms. However, there is a limitation due to potentially non-physiologic amount of 

overexpresssed protein that might positively influence genes that might not be activated by lower 

levels of p63, or also repress genes by indirect mechanism.  To date very little information is 

available on the genes that are regulated by p63 in epithelial cells or ectodermal signaling, but 

there is a good chance that there might be overlapping network of genes governing the various 

phenotypic outcomes associated with p63 related syndrome. Our goal was to identify if the 

distinct phenotype associated with the p63 mutations are due to regulation of some common and 

different target genes by these mutants. In addition to the identification of some new potential 

targets, our analysis confirmed some previously described targets as expected.  

 

The mutation patterns observed in developmental syndrome associated with p63 have a 

remarkable specificity. All these syndromes are associated with point mutations in the single p63 

allele and are not a result of haploinsufficiency, as indicated from the knock out mouse model. 

Our analysis of genes that were regulated by all mutants identified many genes suppressed by 

p63 mutants when compared to wildtype p63 while only few genes were induced. Among the 
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master regulators that were identified in the decreases compared to wildtype p63 were known 

targets like CDKN1C (p57, Kip2), AQP3 and IGFBP3. Studies show that AQP3 is highly 

expressed in the keratinocyte plasma membrane (Sougrat et al., 2002; Trink et al., 2007). The 

downregulation of this gene by overexpression of the p63 mutants could lead to the gross 

epithelial abnormalities observed in patients harboring p63 mutations. One particular observation 

amongst the gene that were suppressed by at least 6/7 mutants (LMO2, REEP1, D4S234E, 

NR4A2 and CXCR4) was that R227Q did not have any effect on these gene compared to 

wildtype, once again supporting the previous reports, categorizing it as a rare mutation with 

slightly  different phenotype than the other EEC syndrome mutants. Additionally, FOXF1 and 

CITED1 genes involved in proliferation were downregulated by SHFM and all EEC mutants 

except R227Q and ADULT mutation R298Q. Interestingly, IGFBP3, another known target of 

both p53 and p63 was downregulated by all mutants except R227Q and R298Q once again 

suggesting that these two mutants retain the wildtype’s ability to induce its target gene and 

supporting the observation that R227Q could be a ADULT syndrome mutant due to its 

phenotypic overlap with R298Q (Reisler et al., 2006).  

 

The rare patients with heterozygous deletion of single allele of p63, display no characteristic 

signs of EEC syndrome (van Bokhoven et al., 2001), thereby suggesting that EEC syndrome 

mutations could have a gain of function or loss of function effect. Our analysis identified EEC 

syndrome mutations R279H and R280C as gain of function with greater number of genes 

increased. IPA analysis of R279H mutant identified a network of genes that were all increased by 

this mutant, thereby providing us with target genes that are already known to play a role in 

development and provides information on the network of genes regulated by this p63 mutant. 
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The other mutation identified to have a gain of function effect is R280C which is observed in 

both EEC and SHFM having more genes induced than suppressed when compared to wildtype 

p63. We identified genes involved in various metabolic processes, transport, development and 

apoptosis to be regulated by this mutant. The unexpected functional category identified here was 

immunity. It will be interesting to further investigate the role of p63 in this field, since p63 has 

been shown to be expressed in the immune system (Yang et al., 1998). In agreement with our 

earlier observation of R280C being able to induce p21, a cell death kinase inhibitor, we 

identified various genes involved in cell cycle control to be specifically upregulated by R280C.  

 

The most striking contribution of p63 relates to its importance in squamous cell differentiation, 

skin renewal and development. Studies with p63 null mice clearly suggested the role of p63 is 

epithelial morphogenesis. Our analysis showed C306R belonging to EEC syndrome as a loss of 

function of mutant downregulating genes involved in different cellular processes like 

development, cell death, differentiation and metabolic processes. Although the suppression of 

these genes doesn’t necessarily indicate a complete blockade in the downstream signaling 

cascade, it does result in some defective outcomes as observed in the EEC syndrome patients. 

The NOTCH signaling is a critical regulator of differentiation and proliferation. Given the role of 

JAG2 in cleft palate, oral differentiation and craniofacial development, an interesting observation 

was that R204W mutation classified as a specific EEC syndrome downregulated this gene. One 

of the reasons for the gross abnormalities observed in this particular mutant phenotype could be 

the suppression of this signaling pathway. R204W suppresses multiple transcription factors; the 

repression of these genes could be a basic event in the deregulation of developmental program 

regulated by wildtype p63. 
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NSCLP is one of the most congenital anomalies associated with p63 mutations. Retinoic acid 

which is a derivative of Vitamin A is known to play an important role in development during 

embryogenesis (Fan et al., 2007a). The dominant negative mutations of RA result in 

developmental abnormalities including craniofacial defects (Houdayer and Bahuau, 1998). RA 

interacts with RARA (Retinoic acid receptor, alpha) or RXR, therefore the regulation of this 

gene by R227Q mutant observed in EEC syndrome suggests that it might be one of the critical 

regulators of p63 signaling and the repression of this signaling pathway leads to the defective 

phenotype observed in EEC syndrome. Furthermore, LAMA5 which was also downregulated by 

R227Q has also been shown to play a crucial role in development of dental placodes and in hair 

morphogenesis (Fukumoto et al., 2006; Kikkawa and Miner, 2006; Li et al., 2003). R298Q 

observed in ADULT syndrome also regulated genes involved in various processes involved in 

development, immune response, transport, apoptosis and cell viability. We identified Tbx2 as 

one the genes downregulated by K194E, a SHFM syndrome mutant. Tbx2 has been shown to 

play a role in limb morphogenesis (Manning et al., 2006); (Nissim et al., 2007). The suppression 

of Tbx2 by K194E might lead to defects in limb development, a characteristic of SHFM 

syndrome. Understanding the molecular biology of K194E mutant in regulating genes which are 

important for normal limb and mammary gland development will aid in our understanding of the 

phenotype observed in SHFM related developmental anomaly. 

 

In conclusion, our data demonstrates that the different TAp63γ mutants vary in their ability to 

transactivate p53/p63 and p63 target genes. Our analysis confirms that p63 plays a central role in 

development by impinging on multiple pathways at the cross roads of development and 
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apoptosis. Taken together our analysis provides information on the network of genes that are 

regulated by the p63 mutants. Future direction will aim at validation of the target genes identified 

by GeneChip analysis using real-time PCR and immunoblotting. The phenotypic variations 

observed within p63 related syndromes could in part be due to the differential effects of these 

mutants on canonical and non-canonical downstream signaling pathways of p63. Molecular 

description of these developmental syndromes involving p63 will aid in finding strategies for 

their recognition and alleviation. The identification of genes regulated by specific p63 mutants 

will help in the linking of p63 into signaling pathways involved in limb morphogenesis, 

differentiation and apoptosis. Undoubtedly, a better understanding of the effects exerted by these 

mutants may improve our comprehension of developmental and cancer biology and aid in better 

therapeutic strategies at least in cancers wherein over expression of ΔNp63α has been reported.  



V. Appendix 

   Fold Change relative to wildtype TAp63γ   

Gene Name 
Gene 

Symbol Description K194E R280C R204W C306R R279H R227Q R298Q 

Identified 
as p63 
targets Functions 

200974_at ACTA2 

actin, alpha 2, 
smooth muscle, 

aorta NR 0.437 0.359 0.45 0.382 NR 0.483 + 

morphology, adhesion, 
polarization, 

disassembly, cell 
spreading, expansion, 

morphogenesis, 
maturation 

203304_at BAMBI 

BMP and activin 
membrane-

bound inhibitor 
homolog 

(Xenopus laevis) 0.434 NR 0.44 NR 0.435 0.377 0.157 - colony formation 

204529_s_at TOX 

thymus high 
mobility group 

box protein TOX 0.102 0.341 NR 0.327 0.474 NR 0.137 - expansion, commitment 

205935_at FOXF1 forkhead box F1 0.125 0.427 0.233 0.491 0.0996 NR NR + Proliferation 

206752_s_at DFFB 

DNA 
fragmentation 
factor, 40kDa, 

beta polypeptide 
(caspase-

activated DNase) NR 0.411 0.404 0.121 NR 0.471 0.46 + 

condensation, 
degradation, instability, 

cell death, transformation 

207144_s_at CITED1 

Cbp/p300-
interacting 

transactivator, 
with Glu/Asp-rich 
carboxy-terminal 

domain, 1 0.185 0.35 0.398 0.428 0.362 NR NR - 
aggregation, growth, 

differentiation, cell death 

207813_s_at FDXR 
ferredoxin 
reductase  NR 0.296 0.268 0.234 0.312 NR  0.478 + 

apoptosis, survival, 
growth, permeabilization 

208054_at HERC4 
hect domain and 

RLD 4 0.464 0.486 0.14  NR 0.266 0.427  NR - 
ubiquitin protein ligase 

activity 
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      Fold Change relative to wildtype TAp63γ     

Gene Name 
Gene 

Symbol Description K194E R280C R204W C306R R279H R227Q R298Q

Identified 
as p63 
targets Functions 

213707_s_at DLX5 
distal-less 

homeo box 5 0.238  NR 0.409 0.353 0.38 NR  0.126 + 

production, 
morphogenesis, 

development, 
differentiation 

214984_at SMG1 

PI-3-kinase-
related kinase 

SMG-1 NR  0.215 0.464 0.191 0.333 0.203 NR  - 
DNA repair, amino 

acid transport 

215957_at UBE2D1 

ubiquitin-
conjugating 

enzyme E2D 1 
(UBC4/5 

homolog, yeast)  NR 0.154 0.449  NR 0.275 0.254 0.0897 - 

protein modification 
process; ubiquitin-
dependent protein 
catabolic process 

216657_at ATXN3 ataxin 3 0.37 0.376  NR 0.478 NR  0.474 0.276 - 

cell death, 
endoplasmic 

reticulum stress 
response 

217904_s_at BACE1 

beta-site APP-
cleaving 

enzyme 1 0.392  NR 0.369 0.339 NR  0.459 0.464 - 

regulation, cell 
death, degeneration, 

deposition 

217983_s_at RNASET2 ribonuclease T2  NR 0.371 0.477 0.379 0.484  NR 0.461 - unknown  
 
Table 6: Genes that were downregulated in at least 5/7 mutants compared to wildtype TAp63γ 
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      Fold Change relative to wildtype TAp63γ     

Gene Name Gene 
Symbol Description K194E R280C R204W C306R R279H R227Q R298Q

Identified 
as p63 
targets 

Functions 

200878_at EPAS1 endothelial PAS 
domain protein 1 0.196 0.423 0.393  NR NR  0.244  NR - 

ciliogenesis, colony 
formation, 

morphology, 
accumulation, 

adhesion, 
differentiation 

204039_at CEBPA 
CCAAT/enhancer 

binding protein 
(C/EBP), alpha 

 NR NR  0.378 0.333 0.379 NR  0.434 - 

differentiation, 
proliferation, 

adipogenesis, cell 
cycle progression, 

maturation, 
apoptosis, 
expansion, 
morphology 

205156_s_at ACCN2 

amiloride-
sensitive cation 

channel 2, 
neuronal 

0.139 0.212 0.444 NR  0.396 NR  NR  - damage response 

205535_s_at PCDH7 BH-protocadherin 
(brain-heart) NR  0.288 0.474  NR NR  0.459 0.414 - interaction 

207038_at SLC16A6 

solute carrier 
family 16 

(monocarboxylic 
acid 

transporters), 
member 6 

0.458  NR 0.395 0.474 NR  NR  0.424 - monocarboxylic 
acid transport 
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      Fold Change relative to wildtype TAp63γ     

Gene Name Gene 
Symbol Description K194E R280C R204W C306R R279H R227Q R298Q

Identified 
as p63 
targets 

Functions 

207141_s_at KCNJ3 

potassium 
inwardly-
rectifying 
channel, 

subfamily J, 
member 3 

 NR 0.433 NR  0.449 0.35 0.468 NR  - potassium ion 
transport 

209505_at NR2F1 

Nuclear receptor 
subfamily 2, 

group F, member 
1 

 NR 0.442 0.443 0.342  NR  NR 0.484 - 

apoptosis, 
development, 

migration, 
projection, 
innervation, 
cytostasis, 
extension, 

differentiation 

209771_x_at CD24 

CD24 antigen 
(small cell lung 

carcinoma 
cluster 4 antigen) 

0.309 NR  0.465 NR  0.223 0.373  NR + 

binding, apoptosis, 
adhesion, 

proliferation, 
motility, 

invasiveness, 
rolling, expansion 

210239_at IRX5 
iroquois 

homeobox 
protein 5 

NR  0.444 0.449 0.447 0.471 NR  NR  - development and 
cell death 

210387_at HIST1H2BG histone 1, H2bg 0.418 0.466  NR 0.49  NR 0.467 NR  - 

nucleosome 
assembly, 

chromosome 
organization and 

biogenesis  

210609_s_at TP53I3 
tumor protein 
p53 inducible 

protein 3 
NR  0.419 0.417 0.411 0.349 NR  NR  + 

induction of 
apoptosis by 

oxidative stress 
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      Fold Change relative to wildtype TAp63γ     

Gene Name Gene 
Symbol Description K194E R280C R204W C306R R279H R227Q R298Q

Identified 
as p63 
targets 

Functions 

210925_at CIITA 

class II, major 
histocompatibility 

complex, 
transactivator 

0.495 0.47 0.417  NR 0.5  NR  NR - activation-induced 
cell death 

214586_at GPR37 

G protein-
coupled receptor 

37 (endothelin 
receptor type B-

like) 

0.492 0.313 NR  NR  0.453 0.386 NR  - 

cell death, 
endoplasmic 

reticulum stress 
response, 

hyperpolarization 

214850_at GUSBP1 
glucourinidase, 

beta 
pseudogene 1 

 NR NR  0.44 0.37  NR 0.484 0.261 - carbohydrate 
metabolic process 

215342_s_at RABGAP1L 
RAB GTPase 

activating protein 
1-like 

 NR 0.255  NR 0.47 0.115 NR  0.284 - regulation of Rab 
GTPase activity 

216379_x_at CD24 

CD24 antigen 
(small cell lung 

carcinoma 
cluster 4 
antigen) 

0.479 0.437 0.463 NR  0.369  NR NR  + 

binding, apoptosis 
adhesion, 

proliferation, 
motility, cell 
spreading, 

invasiveness, 
rolling, expansion 

217551_at LOC441453 

similar to 
olfactory 

receptor, family 
7, subfamily A, 

member 17 

0.439 NR  0.219 0.388 0.212 NR  NR  - 

signal 
transduction, 
GPCR protein 

signaling 
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      Fold Change relative to wildtype TAp63γ     

Gene Name Gene 
Symbol Description K194E R280C R204W C306R R279H R227Q R298Q

Identified 
as p63 
targets 

Functions 

218706_s_at NS3TP2 
HCV NS3-

transactivated 
protein 2 

NR  0.398 0.253 0.483 NR   NR 0.388 - Unknown 

219179_at DACT1 

dapper, 
antagonist of 
beta-catenin, 

homolog 1 
(Xenopus 

laevis) 

0.445  NR 0.141 0.473 NR  0.403 NR  - 

Wnt signaling 
pathway, multicellular 

organism 
development 

219358_s_at CENTA2 centaurin, 
alpha 2 NR  0.439 0.37 0.445 0.468 NR  NR  - GTPase activator 

activity 

220860_at PURG 

purine-rich 
element 

binding protein 
G 

0.366 0.323 0.357 0.292 NR   NR  NR - DNA binding 

221805_at NEFL 

neurofilament, 
light 

polypeptide 
68kDa 

0.286 0.371 0.334  NR  NR 0.174  NR - 

organization, 
biogenesis, assembly, 

dissociation, 
clustering, apoptosis, 

size 
 
Table 7: Genes that were downregulated in at least 4/7 mutants compared to wildtype TAp63γ 
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      Fold Change relative to wildtype TAp63γ       

Gene Name Gene 
Symbol Description K194E R280C R204W C306R R279H R227Q R298Q

No. of 
mutants in 
which the 

gene 
expression 
increased 

Identified 
as p63 
targets 

Functions 

215358_x_at ZNF37B 
zinc finger 
protein 37b 
(KOX 21) 

2.946 2.959  NR NR  2.436 3.146 3.7 5 - unknown 

219270_at CHAC2 

Chac, cation 
tranport 
regulator 

homolog 1 
(E.coli) 

2.32 NR  2.571 2.713 3.383 NR  2.543 5 - protein binding 

222227_at ZNF236 zinc finger 
protein 236 2.049 2.474 2.576 3.38 2.513 NR  NR  5 - 

DNA dependent 
regulation of 
transcription 

211692_s_at BBC3 

BCL2 binding 
component 3 ; 
BCL2 binding 
component 3 

2.697 NR  2.963 NR  2.065 NR  2.393 4 + 

apoptosis, DNA 
damage response, 
permeabilization, 

survival, cell death 

215054_at EPOR erythropoietin 
receptor 2.51  NR 2.489 NR   NR 2.026 2.242 4 - 

proliferation, 
differentiation, 

mitogenesis, growth, 
development, G1 

phase, morphology, 
apoptosis, G2/M phase 

transition, 

219893_at CCDC71 
coiled-coil 

domain 
containing 71 

2.04 NR  2.574 NR  2.064 2.068 NR  4 - unknown 

 
Table 8: Genes that were upregulated by at least 4/7 mutants when compared to wildtype TAp63γ



 

Gene Name Gene 
Symbol 

K194E 
Fold 

Change 
Description Functions 

207901_at IL12B 2.901 

interleukin 12B (natural killer 
cell stimulatory factor 2, 

cytotoxic lymphocyte 
maturation factor 2, p40) 

proliferation, activation, 
differentiation, cytotoxicity, 
stimulation, development, 

polarization, apoptosis 

205655_at MDM4 2.446 
Mdm4, transformed 3T3 cell 
double minute 4, p53 binding 

protein (mouse) 

proliferation, apoptosis, growth, cell 
death, cell cycle progression, 

transformation, colony formation 
219503_s_at TMEM40 3.123 transmembrane protein 40 integral to membrane 

206385_s_at ANK3 2.314 ankyrin 3, node of Ranvier 
(ankyrin G) 

biogenesis, stability, fragmentation, 
deformability, length, activation, 

loss, contraction, anchoring 

209689_at CCDC93 2.442 coiled-coil domain containing 
93 Unknown 

213496_at LPPR4 2.296 plasticity related gene 1 Development 

216519_s_at PROSC 2.408 Proline synthetase co-
transcribed homolog Enzyme 

219080_s_at CTPS2 2.017 CTP synthase II pyrimidine nucleotide biosynthetic 
process 

221915_s_at RANBP1 2.101 RAN binding protein 1 biogenesis, association, growth 

40560_at TBX2 0.472 T-box 2 
immortalization, proliferation, 

aging, growth, senescence, fate 
determination 

204036_at EDG2 0.411 
endothelial differentiation, 
lysophosphatidic acid G-

protein-coupled receptor, 2 

apoptosis, morphology, proliferation, 
formation, migration, motility, cell 

spreading, chemotaxis 

201069_at MMP2 0.454 matrix metallopeptidase 2 

invasion, migration, growth, 
proliferation, apoptosis, 

invasiveness, differentiation, 
chemotaxis, tubulogenesis, 

malignancy 
204483_at ENO3 0.474 enolase 3 (beta, muscle) Glycolysis 

205841_at JAK2 0.222 Janus Kinase 2 

proliferation, apoptosis, growth, 
transformation, differentiation, 

mitogenesis, cell viability, binding, 
G1 phase, survival 

206508_at CD70 0.445 CD70 molecule 

differentiation, apoptosis, 
proliferation, depletion, necrosis, 
signaling, interaction, cell cycle 

progression 

206615_s_at ADAM22 0.477 ADAM metalopeptidase 
domain 22 proliferation, migration 

210803_at TXNRD2 0.328 Thioredoxin reductase 2 cell death, hematopoiesis 
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Gene Name Gene 
Symbol 

K194E 
Fold 

Change 
Deascription Functions 

214337_at COPA 0.455 coatomer protein complex, 
subunit alpha Phagocytosis 

215404_x_at FGFR1 0.445 fibroblast growth factor 
receptor 1 

proliferation, outgrowth, 
mitogenesis, growth, survival, 

apoptosis, maturation, migration, 
cell death, cell movement 

215783_s_at ALPL 0.309 Alkaline phosphatase, 
liver/bone/kidney Mineralization 

217632_at GNL3L 0.496 guanine nucleotide binding 
protein-like 3 (nucleolar)-like nucleotide binding 

 

Table 9: Genes that were specifically regulated by TAp63γ(K194E) mutant alone when 

compared to wildtype TAp63γ. The fold change values above 2.0 indicate increases; while the 

values less than 0.5 indicate decreases with K194E mutant when compared to wildtype p63. The 

highlighted genes are the genes discussed in the result section. 

98 



 

Gene Name Gene Symbol 
R280C 

Fold 
Change 

Description Function 

208596_s_at UGT1A10  5.069 UDP glucuronosyltransferase 
1 family, polypeptide A10 metabolic process 

202342_s_at TRIM2 5.485 tripartite motif-containing 2 protein binding 

203399_x_at PSG3 4.065 Pregnancy specific beta-1-
glycoprotein 3 defense response 

208966_x_at IFI16 3.98 interferon, gamma-inducible 
protein 16 

differentiation, proliferation, 
cell cycle progression, 

apoptosis, contact growth 
inhibition, morphology, 

accumulation, DNA damage 
response, G1/S phase 

transition, osteogenesis 

217578_at XPO1 4.738 Exportin 1 (CRM1 homolog, 
yeast) intracellular protein transport 

221778_at JHDM1D 2.336 
jumonji C domain-containing 

histone demethylase 1 
homolog D (S. cerevisiae) 

Unknown 

207142_at KCNJ3 3.223 
potassium inwardly-rectifying 
channel, subfamily J, member 

3 
potassium ion transport 

222005_s_at GNG3 3.664 Guanine nucleotide binding 
protein (G protein), gamma 3 aggregation, growth, adhesion 

207051_at SLC17A4 2.063 
solute carrier family 17 

(sodium phosphate), member 
4 

Transport 

219761_at CLEC1A 2.746 C-type lectin domain family 1, 
member A 

cell surface receptor linked 
signal transduction 

207602_at TMPRSS11D 2.946 transmembrane protease, 
serine 11D 

proteolysis; respiratory 
gaseous exchange 

216415_at DNAH3 2.191 Dynein, axonemal, heavy 
polypeptide 3 

ciliary or flagellar motility; 
microtubule-based movement 

219172_at UBTD1 2.014 ubiquitin domain containing 1 protein modification 

216818_s_at OR2J2 6.463 olfactory receptor, family 2, 
subfamily J, member 2 signal transduction 

215671_at PDE4B 2.928 

Phosphodiesterase 4B, cAMP-
specific (phosphodiesterase 

E4 dunce homolog, 
Drosophila) 

catalytic activity 

220735_s_at SENP7 2.208 SUMO1/sentrin specific 
peptidase 7 proteolysis, ubiquitin cycle 

217319_x_at CYP4A11 ; 
CYP4A22 4.097 

cytochrome P450, family 4, 
subfamily A, polypeptide 11 ; 
cytochrome P450, family 4, 
subfamily A, polypeptide 22 

electron transport; fatty acid 
metabolic process 
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Gene Name Gene 
Symbol 

R280C 
Fold 

Change
Description Function 

220047_at SIRT4 2.396 
sirtuin (silent mating type 
information regulation 2 

homolog) 4 (S. cerevisiae) 
chromatin silencing 

1316_at THRA 2.339 
thyroid hormone receptor, 

alpha (erythroblastic 
leukemia viral (v-erb-a) 

oncogene homolog, avian) 

differentiation, proliferation, 
fusion, morphology, 

transformation, production, 
activity, size, apoptosis 

205552_s_at OAS1 6.225 2',5'-oligoadenylate synthetase 
1, 40/46kDa Apoptosis 

219938_s_at PSTPIP2 4.91 
proline-serine-threonine 
phosphatase interacting 

protein 2 
Unknown 

216647_at TCF3 2.282 
Transcription factor 3 (E2A 
immunoglobulin enhancer 
binding factors E12/E47) 

apoptosis, development, 
proliferation, differentiation, 

growth, cell cycle 
progression, lymphopoiesis, 

morphology, G1 phase 

210198_s_at PLP1 13.8 

proteolipid protein 1 
(Pelizaeus-Merzbacher 

disease, spastic paraplegia 2, 
uncomplicated) 

proliferation, differentiation, 
hyperproliferation, antiviral 

response, activation, survival, 
degeneration, apoptosis, 

damage 

210772_at FPRL1 3.528 formyl peptide receptor-like 1 ; 
formyl peptide receptor-like 1 

chemotaxis, migration, 
adhesion, infiltration, cell 
movement, proliferation 

215231_at PRKAG2 3.821 Protein kinase, AMP-activated, 
gamma 2 non-catalytic subunit fatty acid metabolism 

216402_at SEC14L4 2.693 SEC14-like 4 (S. cerevisiae) Transport 

202202_s_at LAMA4 3.506 laminin, alpha 4 

migration, branching, 
adhesion, binding, 

alignment, development, 
elongation, degeneration, 

proliferation 

203961_at NEBL 2.194 nebulette ion transport; regulation of 
actin filament length 

204259_at MMP7 2.161 matrix metallopeptidase 7 
(matrilysin, uterine) 

apoptosis, invasion, 
proliferation, aggregation, 
migration, malignancy, cell 
movement, invasiveness, 
differentiation, survival 

205092_x_at ZBTB1 2.828 zinc finger and BTB domain 
containing 1 

differentiation, proliferation, 
fusion, morphology, 

transformation, production, 
activity, size, apoptosis 
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Gene Name Gene 
Symbol 

R280C 
Fold 

Change
Description Function 

205166_at CAPN5 2.693 calpain 5 

apoptosis, invasion, cell 
death, adhesion, motility, 
proliferation, migration, 
formation, chemotaxis, 

chemokinesis 

205355_at ACADSB 2.242 
acyl-Coenzyme A 
dehydrogenase, 

short/branched chain 
metabolic process 

205513_at TCN1 2.866 
transcobalamin I (vitamin B12 

binding protein, R binder 
family) 

cobalt ion transport 

205552_s_at OAS1 6.225 2',5'-oligoadenylate synthetase 
1, 40/46kDa immune response 

205636_at SH3GL3 2.63 SH3-domain GRB2-like 3 formation, detachment, 
endocytosis, migration 

206826_at PMP2 2.229 peripheral myelin protein 2 activation, transport 

206830_at SLC4A10 5.34 
solute carrier family 4, sodium 
bicarbonate transporter-like, 

member 10 
Transport 

207096_at SAA4 2.841 serum amyloid A4, constitutive acute-phase response 
207128_s_at ZNF223 2.08 Zinc finger protein 223 regulation of transcription 

207362_at SLC30A4 2.264 solute carrier family 30 (zinc 
transporter), member 4 Transport 

207449_s_at POFUT2 2.2 protein O-fucosyltransferase 2 metabolic process 
207815_at PF4V1 2.933 platelet factor 4 variant 1 immune response 
208026_at HIST1H4F 2.664 histone 1, H4f Unknown 

208121_s_at PTPRO 2.059 
protein tyrosine 

phosphatase, receptor type, 
O  

apoptosis, growth, cell cycle 
progression, survival, 

proliferation, presence, cell 
movement 

208261_x_at IFNA10 2.258 interferon, alpha 10 defense response 

209244_s_at KIF1C 2.28 kinesin family member 1C 
transport, dynamics, depletion, 

redistribution, cell viability, 
motility 

209483_s_at NSL1 2.049 
NSL1, MIND kinetochore 

complex component, homolog 
(S. cerevisiae) 

cell cycle; chromosome 
segregation; mitosis; 

methylation; cell division 

210198_s_at PLP1 13.8 

proteolipid protein 1 
(Pelizaeus-Merzbacher 

disease, spastic paraplegia 2, 
uncomplicated) 

synaptic transmission, 
depolarization, damage, 

proliferation 

210272_at CYP2B7P1 2.092 
cytochrome P450, family 2, 
subfamily B, polypeptide 7 

pseudogene 1 
electron transport 
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Gene Name Gene 
Symbol 

R280C 
Fold 

Change
Description Function 

210302_s_at MAB21L2 9.488 mab-21-like 2 (C. elegans) nervous system development 

210583_at POLDIP3 2.745 polymerase (DNA-directed), 
delta interacting protein 3 Unknown 

210657_s_at SEPT4 3.748 septin 4 cell death, development, 
capacitation, apoptosis 

210661_at GLRA3 6.111 glycine receptor, alpha 3 Unknown 

210680_s_at MASP1 2.002 

mannan-binding lectin serine 
peptidase 1 (C4/C2 activating 

component of Ra-reactive 
factor) 

complement activation, 
classical pathway; innate 

immune response 

211141_s_at CNOT3 2.213 CCR4-NOT transcription 
complex, subunit 3 

DNA-dependent; regulation of 
transcription  

211144_x_at TRGC2 2.723 T cell receptor gamma 
constant 2 immune response 

211479_s_at HTR2C 2.833 5-hydroxytryptamine 
(serotonin) receptor 2C 

transformation, aggregation, 
formation 

211718_at MGC2889 2.439 hypothetical protein MGC2889 Unknown 

211907_s_at PARD6B 5.744 par-6 partitioning defective 6 
homolog beta (C. elegans)  

 reassembly, polarization, 
assembly, structure, 

development, transformation, 
migration 

212354_at SULF1 2.079 sulfatase 1 Apoptosis 

213113_s_at SLC43A3 2.538 solute carrier family 43, 
member 3 Transport 

213421_x_at PRSS3 2.204 protease, serine, 3 
(mesotrypsin) migration, desensitization 

213802_at PRSS12 2.106 Protease, serine, 12 
(neurotrypsin, motopsin) migration, desensitization 

214411_x_at CTRB2 2.349 chymotrypsinogen B2 Proteolysis 
214587_at COL8A1 2.64 collagen, type VIII, alpha 1 Proliferation 

214945_at NY-REN-7 ; 
LOC389347 3.941 NY-REN-7 antigen ; similar to 

KIAA0752 protein Translation 

215199_at CALD1 2.716 caldesmon 1 

formation, assembly, 
cytokinesis, morphology, 
translocation, cell cycle 

progression, G2/M phase 
transition, size, cell movement 

215231_at PRKAG2 3.821 Protein kinase, AMP-activated, 
gamma 2 non-catalytic subunit fatty acid synthesis 

215417_at EXOC6B 2.249 exocyst complex component 
6B protein transport 
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Gene Name Gene 
Symbol 

R280C 
Fold 

Change
Description Function 

215430_at GK2 3.697 glycerol kinase 2 glycerol-3-phosphate metabolic 
process 

215659_at GSDML 2.154 Gasdermin-like Unknown 

215671_at PDE4B 2.928 

Phosphodiesterase 4B, cAMP-
specific (phosphodiesterase 

E4 dunce homolog, 
Drosophila) 

migration, growth, apoptosis, 
G1 phase, G2/M phase 
transition, chemotaxis, 

proliferation, differentiation 
215674_at KIAA1659 6.587 KIAA1659 protein Unknown 

215771_x_at RET 4.334 

ret proto-oncogene (multiple 
endocrine neoplasia and 

medullary thyroid carcinoma 1, 
Hirschsprung disease) 

transformation, proliferation, 
survival, apoptosis, 

differentiation, colony 
formation, migration, growth, 

scattering, mitogenesis 

216170_at EEF1G 4.255 Eukaryotic translation 
elongation factor 1 gamma translational elongation 

216197_at ATF7IP 3.027 activating transcription factor 7 
interacting protein regulation of transcription 

216545_at LOC441886 2.842 

similar to Aspartate 
aminotransferase, 

mitochondrial precursor 
(Transaminase A) (Glutamate 
oxaloacetate transaminase-2) 

Unknown 

216557_x_at IGHA1  2.742 immunoglobulin heavy 
constant alpha 1 

proliferation, apoptosis, 
phagocytosis, binding, growth, 

cytolysis, differentiation, 
mitogenesis, infiltration 

216566_at IGLC2 5.48 Immunoglobulin lambda 
joining 3 Unknown 

216639_at SRPX2 2.201 sushi-repeat-containing 
protein, X-linked 2 Unknown 

216722_at VENTXP1 2.21 VENT homeobox (Xenopus 
laevis) pseudogene 1 Unknown 

216895_at GABRG3 2.018 gamma-aminobutyric acid 
(GABA) A receptor, gamma 3 ion transport 

219115_s_at IL20RA 3.102 interleukin 20 receptor, alpha blood coagulation 

219671_at HPCAL4 2.066 hippocalcin like 4 central nervous system 
development 

219761_at CLEC1A 2.746 C-type lectin domain family 1, 
member A defense response 

219841_at AICDA 4.321 activation-induced cytidine 
deaminase 

accumulation, proliferation, 
activation 

219898_at GPR85 4.489 G protein-coupled receptor 85 signal transduction 
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Gene 
Symbol 

R280C 
Fold 

Change
Description Function Gene Name 

219938_s_at PSTPIP2 4.91 
proline-serine-threonine 
phosphatase interacting 

protein 2 
Cytokinesis 

220035_at NUP210 3.291 nucleoporin 210kDa protein targeting 

220210_at CHRNA10 2.188 cholinergic receptor, nicotinic, 
alpha polypeptide 10 

synaptic transmission, 
depolarization, damage, 

proliferation 
220290_at AIM1L 4.425 absent in melanoma 1-like Unknown 
220327_at VGL-3 2.237 vestigial-like 3 regulation of transcription 

220623_s_at TSGA10 2.215 testis specific, 10 Spermatogenesis 
221136_at GDF2 2.269 Growth differentiation factor 2 Proliferation 

221491_x_at HLA-DRB1 2.001 major histocompatibility 
complex, class II, DR beta 1 

cell death, proliferation, 
apoptosis, adhesion, binding, 

activation, inhibition 

221633_at NCAPH2 2.051 Non-SMC condensin II 
complex, subunit H2 Segregation 

Tight junction associated 
protein 1 (peripheral) 221857_s_at TJAP1 2.292 Growth 

222137_at CC2D1A 2.083 Coiled-coil and C2 domain 
containing 1A regulation of transcription 

222196_at LOC286434 2.616 hypothetical protein 
LOC286434 Unknown 

222293_at IGSF4C 2.034 immunoglobulin superfamily, 
member 4C immune response 

220673_s_at KIAA1622 0.372 KIAA1622 Unknown 

212486_s_at FYN 0.498 FYN oncogene related to 
SRC, FGR, YES 

proliferation, morphology, 
apoptosis, adhesion, 

myelination, activation, 
migration, development, 

degranulation 
219263_at RNF128 0.257 Ring finger protein 128 regulation of transcription 

204268_at S100A2 0.488 S100 calcium binding protein 
A2 

endothelial cell migration, 
tumor suppressor, 

differentiation 

219985_at HS3ST3A1 0.491 
Heparin sulfate 

(glucosamine) 3-O-
sulfotransferase 3A1 

transferase activity 

205590_at RASGRP1 0.449 
RAS guanyl releasing 

protein 1 (calcium and DAG-
regulated) 

proliferation, maturation, 
transformation, migration, 
differentiation, apoptosis 
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Gene Name Gene 
Symbol 

R280C 
Fold 

Change
Description Function 

215719_x_at FAS 0.444 Fas (TNF receptor 
superfamily, member 6) 

apoptosis, immune 
response, signal 

transduction 

203066_at GALNAC4S-
6ST 0.363 B cell RAG associated protein hexose biosynthetic process 

219262_at SUV39H2 0.378 suppressor of variegation 3-9 
homolog 2 (Drosophila) 

cell differentiation, chromatin 
assembly, regulation of 
transcription, cell cycle, 
chromatin modification 

202783_at NNT 0.46 nicotinamide nucleotide 
transhydrogenase electron transport 

204841_s_at EEA1 0.474 early endosome antigen 1, 
162kD vesicle fusion 

207029_at KITLG 0.442 KIT ligand 

proliferation, colony formation, 
apoptosis, differentiation, 

growth, survival, migration, 
degranulation, chemotaxis 

208384_s_at MID2 0.484 midline 2 Unknown 

209357_at CITED2 0.415 
Cbp/p300-interacting 

transactivator, with Glu/Asp-
rich carboxy-terminal 

domain, 2 

proliferation, morphology, 
apoptosis 

209802_at PHLDA2 0.445 pleckstrin homology-like 
domain, family A, member 2 Growth 

209910_at SLC25A16 0.47 

solute carrier family 25 
(mitochondrial carrier; Graves 
disease autoantigen), member 

16 

Transport 

210985_s_at SP100 0.34 nuclear antigen Sp100 invasion, migration 

213297_at RMND5B 0.451 
equired for meiotic nuclear 
division 5 homolog B (S. 

cerevisiae) 
Meiosis 

213307_at SHANK2 0.5 SH3 and multiple ankyrin 
repeat domains 2 intracellular signaling cascade 

213935_at ABHD5 0.392 abhydrolase domain 
containing 5 

proteolysis; aromatic 
compound metabolic process 

214230_at CDC42 0.499 cell division cycle 42 (GTP 
binding protein, 25kDa) 

 transformation, apoptosis, cell 
cycle progression, growth, cell 

spreading, morphology, 
migration, outgrowth 

215095_at ESD 0.493 Esterase D/formylglutathione 
hydrolase Unknown 

215118_s_at IGHA1 0.444 
Translocation associated 

fusion protein IRTA1/IGA1 
(IRTA1/IGHA1) 

immune response 

215470_at GTF2H2 0.498 General transcription factor 
IIH, polypeptide 2, 44kDa regulation of transcription 

105 



 

Gene Name Gene 
Symbol 

R280C 
Fold 

Change
Description Function 

218309_at CAMK2N1 0.307 
Calcium/calmodulin-

dependent protein kinase II 
inhibitor 1 

adhesion, survival 

219262_at SUV39H2 0.378 suppressor of variegation 3-9 
homolog 2 (Drosophila) 

remodeling, length, assembly, 
binding, mitosis 

219263_at RNF128 0.257 Ring finger protein 128 
ubiquitin cycle; negative 

regulation of cytokine 
biosynthetic process 

219973_at ARSJ 0.485 arylsulfatase J Unknown 

219985_at HS3ST3A1 0.491 Heparin sulfate (glucosamine) 
3-O-sulfotransferase 3A1 transferase activity 

219999_at MAN2A2 0.491 mannosidase, alpha, class 2A, 
member 2 metabolic process 

220216_at C8orf44 0.425 chromosome 8 open reading 
frame 44 Unknown 

220321_s_at CCDC121 0.458 coiled coil domain containing 
21 Unknown 

221350_at HOXC8 0.367 homeo box C8 regulation of transcription 

222180_at YES1 0.478 V-yes-1 Yamaguchi sarcoma 
viral oncogene homolog 1 

neuritogenesis, assembly, 
disassembly, invasion, 
anoikis, transformation, 

apoptosis 
 
Table 10: Genes that were specifically regulated by TAp63γ(R280C) mutant alone when 

compared to wildtype TAp63γ 
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209784_s_at JAG2 0.453 jagged 2 
differentiation, proliferation, 

apoptosis, adhesion, survival, 
selection 

214156_at MYRIP 0.376 myosin VIIA and Rab 
interacting protein intracellular protein transport 

204475_at MMP1 0.358 
matrix metallopeptidase 

1 (interstitial 
collagenase) 

invasion, invasiveness, 
aggregation, proliferation, 
migration, differentiation, 
apoptosis, malignancy, 
growth, cell movement 

201843_s_at EFEMP1 0.285 
EGF-containing fibulin-
like extracellular matrix 

protein 1 

endoplasmic reticulum stress 
response 

202438_x_at IDS 0.382 iduronate 2-sulfatase 
(Hunter syndrome) metabolic process 

202871_at TRAF4 0.387 TNF receptor-associated 
factor 4 

colony formation, apoptosis, 
growth 

202895_s_at SIRPA 0.399 signal-regulatory protein 
alpha 

adhesion, phagocytosis, cell 
spreading, migration, apoptosis, 

survival, polarization, 
attachment 

203178_at GATM 0.493 
glycine 

amidinotransferase (L-
arginine:glycine 

amidinotransferase) 
creatine biosynthetic process 

203563_at AFAP1 0.284 actin filament associated 
protein cross-linkage, organization 

204840_s_at EEA1 0.477 early endosome antigen 
1, 162kD vesicle fusion 

204845_s_at ENPEP 0.434 glutamyl aminopeptidase 
(aminopeptidase A) signaling, proliferation, activity 

206268_at LEFTY1 0.415 left-right determination 
factor 1 migration, proliferation 

206919_at ELK4 0.148 
ELK4, ETS-domain 

protein (SRF accessory 
protein 1) 

regulation of transcription 

209312_x_at HLA-DRB1 0.483 
major histocompatibility 
complex, class II, DR 

beta 1 

activation, proliferation, 
apoptosis, interaction, inhibition, 

binding, negative selection, 
positive selection, conversion 
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209916_at DHTKD1 0.499 dehydrogenase E1 and 
transketolase domain containing 1 metabolic process 

210218_s_at SP100 0.465 nuclear antigen Sp100 invasion, migration 

210675_s_at PTPRR 0.382 protein tyrosine phosphatase, 
receptor type, R Proliferation 

211440_x_at CYP3A43 0.425 cytochrome P450, family 3, 
subfamily A, polypeptide 43 electron transport 

212394_at KIAA0090 0.494 KIAA0090 protein binding 
212991_at FBXO9 0.153 F-box protein 9 protein ubiquitination 

214600_at TEAD1 0.404 
TEA domain family member 1 

(SV40 transcriptional enhancer 
factor) 

regulation of 
transcription 

214934_at ATP9B 0.329 ATPase, Class II, type 9B Transport 

216716_at ABO 0.493 

ABO blood group (transferase A, 
alpha 1-3-N-

acetylgalactosaminyltransferase; 
transferase B, alpha 1-3-
galactosyltransferase) 

metabolic process 

217020_at RARB 0.407 retinoic acid receptor, beta 

differentiation, growth, 
apoptosis, cell cycle 

progression, cytostasis, 
morphology, 
proliferation 

217671_at RFX3 0.268 Regulatory factor X, 3 (influences 
HLA class II expression) 

regulation of 
transcription 

218174_s_at C10orf57 0.297 chromosome 10 open reading frame 
57 Unknown 

219334_s_at OBFC2A 0.5 oligonucleotide/oligosaccharide-
binding fold containing 2A Unknown 

219799_s_at DHRS9 0.479 dehydrogenase/reductase (SDR 
family) member 9 metabolic process 

219834_at ALS2CR8 0.441 
amyotrophic lateral sclerosis 2 
(juvenile) chromosome region, 

candidate 8 
regulation of 
transcription 

221874_at KIAA1324 0.45 KIAA1324 Unknown 
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117_at HSPA6 5.087 heat shock 70kDa protein 
6 (HSP70B') 

apoptosis, cell death, growth, 
cell viability, proliferation, 

colony, differentiation, 
endoplasmic reticulum stress 

response, survival, 
condensation 

200795_at SPARCL1 5.095 SPARC-like 1 (mast9, 
hevin) Apoptosis 

213418_at HSPA6 11.85 heat shock 70kDa protein 
6 (HSP70B') Chaperone 

222153_at MYEF2 2.056 myelin expression factor 
2 Commitment 

204932_at TNFRSF11B 2.434 
tumor necrosis factor 
receptor superfamily, 

member 11b 
(osteoprotegerin) 

apoptosis, differentiation, 
osteoclastogenesis, 
proliferation, activity, 

activation, anoikis, cell 
viability 

211513_s_at OGFR 2.628 opioid growth factor 
receptor Growth 

211753_s_at RLN1 2.313 relaxin 1 signal transduction; female 
pregnancy 

212523_s_at KIAA0146 2.284 KIAA0146 protein Unknown 

222121_at SGEF 2.202 

Src homology 3 domain-
containing guanine 

nucleotide exchange 
factor 

signal transduction 

 
Table 11: Genes that were specifically regulated by TAp63γ(R204W) mutant alone when 

compared to wildtype TAp63γ 
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203989_x_at F2R 0.45 coagulation factor II 
(thrombin) receptor 

aggregation, proliferation, 
activation, invasion, 

morphology, shape change, 
transformation, cell cycle 

progression, cell movement 

209250_at DEGS1 0.476 
degenerative spermatocyte 
homolog 1, lipid desaturase 

(Drosophila) 
growth, sub-G1 phase 

215407_s_at ASTN2 0.183 astrotactin 2 Unknown 

203634_s_at CPT1A 0.333 carnitine palmitoyltransferase 1A 
(liver) cell death 

212815_at ASCC3 0.495 Activating signal cointegrator 1 
complex subunit 3 Unknown 

214764_at RRP15 0.467 ribosomal RNA processing 15 
homolog (S. cerevisiae) protein binding 

211074_at FOLR1 0.492 folate receptor 1 (adult) ; 
folate receptor 1 (adult) 

growth, colony formation, 
proliferation, cell viability 

209277_at TFPI2 0.435 Tissue factor pathway inhibitor 2 proliferation, invasion, 
attachment 

222235_s_at GALNACT-
2 0.483 chondroitin sulfate GalNAcT-2 Unknown 

203049_s_at KIAA0372 0.496 KIAA0372 Unknown 

210495_x_at FN1 0.467 fibronectin 1 
migration, adhesion, cell 

spreading, apoptosis,  
proliferation, attachment, 

assembly, survival 

221765_at UGCG 0.468 UDP-glucose ceramide 
glucosyltransferase 

epidermis development, 
biosynthetic process 

221841_s_at KLF4 0.452 Kruppel-like factor 4 (gut) 

proliferation, migration, colony 
formation, invasion, cell cycle 

progression, growth, size, 
morphology, amplification 

204925_at CTNS 0.441 cystinosis, nephropathic Transport 

212538_at DOCK9 0.468 dedicator of cytokinesis 9 Unknown 

221577_x_at GDF15 0.377 growth differentiation factor 
15 

growth, apoptosis, signaling, 
rotation, survival, 

invasiveness, cell viability, 
morphology, G1 phase 

210466_s_at SERBP1 0.469 SERPINE1 mRNA binding 
protein 1 Binding, apoptosis 
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209676_at TFPI 0.349 
tissue factor pathway inhibitor 

(lipoprotein-associated 
coagulation inhibitor) 

blood coagulation 

201213_at PPP1R7 0.351 protein phosphatase 1, 
regulatory subunit 7 Unknown 

202848_s_at GRK6 0.467 G protein-coupled receptor 
kinase 6 chemotaxis, influx, migration 

203875_at SMARCA1 0.354 

SWI/SNF related, matrix 
associated, actin dependent 

regulator of chromatin, subfamily 
a, member 1 

remodeling, differentiation, 
outgrowth 

208661_s_at TTC3 0.479 tetratricopeptide repeat domain 
3 Unknown 

221766_s_at FAM46A 0.492 family with sequence similarity 
46, member A Unknown 

212079_s_at MLL 0.462 
Myeloid/lymphoid or mixed-
lineage leukemia (trithorax 

homolog, Drosophila) 

transformation, growth, 
differentiation, colony 

formation, immortalization, 
apoptosis, maturation, self-

renewal, development, 
proliferation 

60474_at C20orf42 0.394 chromosome 20 open reading 
frame 42 Unknown 

209712_at SLC35D1 0.445 

solute carrier family 35 (UDP-
glucuronic acid/UDP-N-

acetylgalactosamine dual 
transporter), member D1 

Transport 

203216_s_at MYO6 0.344 myosin VI 

differentiation, apoptosis, 
plasticity, morphogenesis, 

integrity, DNA damage 
response 

212984_at ATF2 0.432 Activating transcription factor 
2 

growth, differentiation, 
colony formation, cell death, 

G2/M phase transition, 
survival, synaptic 

transmission, recovery, 
double-stranded DNA break 

repair 

202284_s_at CDKN1A 0.469 cyclin-dependent kinase inhibitor 
1A (p21, Cip1) 

apoptosis, growth, proliferation, 
cell cycle progression, G1 

phase, cell death, senescence, 
differentiation, S phase, G2 

phase 

205370_x_at DBT 0.466 dihydrolipoamide branched 
chain transacylase E2 metabolic process 

201141_at GPNMB 0.415 glycoprotein (transmembrane) 
nmb adhesion, proliferation 

201200_at CREG1 0.398 Cellular repressor of E1A-
stimulated genes 1 

growth, differentiation, G1/S 
phase transition, proliferation 
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201299_s_at MOBK1B 0.478 MOB1, Mps One Binder kinase 
activator-like 1B (yeast) Telophase 

201534_s_at UBL3 0.447 ubiquitin-like 3 protein modification process 

201617_x_at CALD1 0.457 caldesmon 1 

assembly, cytokinesis, 
morphology, translocation, cell 
cycle progression, G2/M phase 
transition, size, cell movement 

201939_at PLK2 0.486 polo-like kinase 2 (Drosophila) apoptosis, growth, S phase, 
survival 

202127_at PRPF4B 0.351 PRP4 pre-mRNA processing 
factor 4 homolog B (yeast) mRNA processing 

202351_at ITGAV 0.476 
integrin, alpha V (vitronectin 
receptor, alpha polypeptide, 

antigen CD51) 

adhesion, binding, migration, 
invasion, proliferation, 

apoptosis, growth, motility, 
survival, cell spreading 

202890_at MAP7 0.425 microtubule-associated protein 7 binding, deformation, 
morphology, biogenesis 

203049_s_at KIAA0372 0.496 KIAA0372 Unknown 

203078_at CUL2 0.327 cullin 2 
G1/S phase transition, 
proliferation, cell cycle 
progression, growth, 

apoptosis 

203455_s_at SAT1 0.458 spermidine/spermine N1-
acetyltransferase growth, cytostasis, apoptosis 

203671_at TPMT 0.423 Thiopurine S-methyltransferase Proliferation 

203710_at ITPR1 0.339 Inositol 1,4,5-triphosphate 
receptor, type 1 

apoptosis, release, leakage, 
cell death, calcium oscillation, 
depolarization, extension, long 

term depression 

204056_s_at MVK 0.44 mevalonate kinase (mevalonic 
aciduria) biosynthetic process 

204184_s_at ADRBK2 0.491 Adrenergic, beta, receptor 
kinase 2 Mitogenesis 

204545_at PEX6 0.343 peroxisomal biogenesis factor 6 Biogenesis 

204761_at USP6NL 0.496 USP6 N-terminal like regulation of Rab GTPase 
activity 

204793_at GPRASP1 0.414 G protein-coupled receptor 
associated sorting protein 1 Unknown 

204821_at BTN3A3 0.373 butyrophilin, subfamily 3, 
member A3 Unknown 

204970_s_at MAFG 0.436 
v-maf musculoaponeurotic 

fibrosarcoma oncogene homolog 
G (avian) 

proliferation, dysfunction, 
differentiation 
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205575_at C1QL1 0.432 complement component 1, q 
subcomponent-like 1 Unknown 

206141_at MOCS3 0.288 molybdenum cofactor synthesis 3 Unknown 
206440_at LIN7A 0.487 lin-7 homolog A (C. elegans) Transport 
206526_at RIBC2 0.488 RIB43A domain with coiled-coils 2 Unknown 

206613_s_at TAF1A 0.454 
TATA box binding protein (TBP)-

associated factor, RNA polymerase 
I, A, 48kDa 

regulation of transcription 

206857_s_at FKBP1B 0.36 FK506 binding protein 1B, 12.6 
kDa proliferation, cell viability 

206942_s_at PMCH 0.451 pro-melanin-concentrating 
hormone hyperpolarization, plasticity 

207143_at CDK6 0.417 Cyclin-dependent kinase 6 

cell cycle progression, G1 
phase, G1/S phase 

transition, proliferation, 
growth, transformation, 
apoptosis, checkpoint 

control, lifespan 

207455_at P2RY1 0.259 Purinergic receptor P2Y, G-protein 
coupled, 1 aggregation, binding 

207565_s_at MR1 0.483 Major histocompatibility complex, 
class I-related antigen processing 

207598_x_at XRCC2 0.489 
X-ray repair complementing 

defective repair in Chinese hamster 
cells 2 

stability, sister chromatid 
exchange, exchange, 
aberration, cell death, 

aneuploid, growth, apoptosis, 
survival

208325_s_at AKAP13 0.397 A kinase (PRKA) anchor protein 13 

cell rounding, survival, 
apoptosis, growth, 

decondensation, assembly, 
transformation, proliferation 

208806_at CHD3 0.337 chromodomain helicase DNA 
binding protein 3 

remodeling, assembly, 
biogenesis 

209016_s_at KRT7 0.467 keratin 7 cytoskeleton organization 
and biogenesis 

209040_s_at PSMB8 0.399 
proteasome (prosome, macropain) 

subunit, beta type, 8 (large 
multifunctional peptidase 7) 

transmembrane potential, 
endoplasmic reticulum stress 

response, lysis, activation, 
replication 

209119_x_at NR2F2 0.5 Nuclear receptor subfamily 2, 
group F, member 2 Migration 

209909_s_at TGFB2 0.486 transforming growth factor, beta 
2 

proliferation, apoptosis, 
growth, differentiation, 
cytostasis, cell cycle 

progression, cell death, 
colony formation, 

adhesion, stimulation 
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210268_at NFX1 0.38 nuclear transcription factor, 
X-box binding 1 Unknown 

210655_s_at FOXO3A 0.414 forkhead box O3A 

apoptosis, cell cycle 
progression, proliferation, 
survival, cell death, DNA 

damage response, 
checkpoint control, 

accumulation, morphology, 
transformation 

210867_at CNOT4 0.347 CCR4-NOT transcription 
complex, subunit 4 regulation of transcription 

211580_s_at PIK3R3 0.343 
phosphoinositide-3-kinase, 
regulatory subunit 3 (p55, 

gamma) 

apoptosis, survival, 
proliferation, growth, 

morphology, chemotaxis, 
cell spreading, cell cycle 

progression, S phase, 
haptotaxis 

211673_s_at MOCS1 0.472 molybdenum cofactor 
synthesis 1 metabolic process 

211828_s_at TNIK 0.464 TRAF2 and NCK interacting 
kinase cell spreading 

211965_at ZFP36L1 0.444 zinc finger protein 36, C3H 
type-like 1 Proliferation 

212310_at MIA3 0.339 melanoma inhibitory activity 
family, member 3 Unknown 

212315_s_at NUP210 0.276 nucleoporin 210kDa cell viability 

212325_at DKFZP686A01247 0.283 hypothetical protein Unknown 

212930_at ATP2B1 0.328 ATPase, Ca++ transporting, 
plasma membrane 1 

proliferation, cell cycle 
progression, extension, cell 

death 

213353_at ABCA5 0.445 ATP-binding cassette, sub-
family A (ABC1), member 5 Transport 

213572_s_at SERPINB1 0.384 
serpin peptidase inhibitor, 

clade B (ovalbumin), member 
1 

Unknown 

213900_at C9orf61 0.466 chromosome 9 open reading 
frame 61 Unknown 

214130_s_at PDE4DIP 0.375 
phosphodiesterase 4D 

interacting protein 
(myomegalin) 

cytoskeleton organization 
and biogenesis 

214330_at ATPAF2 0.468 
ATP synthase mitochondrial 
F1 complex assembly factor 

2 
protein folding 
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214724_at DIXDC1 0.443 DIX domain containing 1 multicellular organismal 
development 

214993_at ASPHD1 0.471 aspartate beta-hydroxylase 
domain containing 1 

peptidyl-amino acid 
modification 

215030_at GRSF1 0.437 G-rich RNA sequence binding 
factor 1 

morphogenesis of embryonic 
epithelium 

215069_at NMT2 0.429 N-myristoyltransferase 2 Binding 

215150_at YOD1 0.485 YOD1 OTU deubiquinating 
enzyme 1 homolog ( yeast) ubiquitin cycle 

215646_s_at VCAN 0.246 versican 

adhesion, apoptosis, 
recognition, attachment, cell 

movement, growth, 
proliferation, elastogenesis, 

differentiation, outgrowth 
215886_x_at USP12 0.47 ubiquitin specific peptidase 12 Unknown 

216218_s_at PLCL2 0.409 phospholipase C-like 2 

binding, activation, 
hyperproliferation, migration, 

development, signaling, 
apoptosis 

216531_at MBTPS2 ; 
YY2 0.355 

membrane-bound transcription 
factor peptidase, site 2 ; YY2 

transcription factor 
Unknown 

216841_s_at SOD2 0.392 superoxide dismutase 2, 
mitochondrial 

apoptosis, cell death, 
proliferation, transmembrane 

potential, survival, growth, 
mitogenesis, response, 

migration 

216962_at OR5T2 
RPAIN 0.399 

RPA interacting protein 
olfactory receptor, family 5, 

subfamily T, member 2 
signal transduction 

217607_x_at EIF4G2 0.433 eukaryotic translation initiation 
factor 4 gamma, 2 

growth, apoptosis, 
transformation, cell death, cell 

cycle progression, binding, 
shunting, morphology, 

differentiation 
218031_s_at FOXN3 0.495 forkhead box N3 G2/M phase 

218166_s_at RSF1 0.5 remodeling and spacing factor 1 positioning, assembly, 
remodeling 

218183_at C16orf5 0.44 chromosome 16 open reading 
frame 5 Unknown 

218502_s_at TRPS1 0.388 trichorhinophalangeal syndrome 
I Apoptosis 

218935_at EHD3 0.455 EH-domain containing 3 Unknown 

219012_s_at C11orf30 0.318 chromosome 11 open reading 
frame 30 DNA repair 
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219094_at ARMC8 0.437 armadillo repeat containing 8 Unknown 

219174_at IFT74 0.414 ntraflagellar transport 74 homolog 
(Chlamydomonas) Unknown 

219274_at TSPAN12 0.413 tetraspanin 12 Unknown 

219346_at LRFN3 0.428 leucine rich repeat and fibronectin 
type III domain containing 3 Unknown 

219387_at CCDC88A 0.465 coiled-coil domain containing 88A 
proliferation, migration, 

replication, phosphorylation, 
biogenesis 

219460_s_at TMEM127 0.307 transmembrane protein 127 Unknown 

219499_at SEC61A2 0.466 Sec61 alpha 2 subunit (S. 
cerevisiae) protein transport 

220039_s_at CDKAL1 0.496 CDK5 regulatory subunit 
associated protein 1-like 1 metabolic process 

220474_at SLC25A21 0.286 
solute carrier family 25 

(mitochondrial oxodicarboxylate 
carrier), member 21 

Transport 

220764_at PPP4R2 0.347 protein phosphatase 4, regulatory 
subunit 2 protein modification process 

220776_at KCNJ14 0.344 potassium inwardly-rectifying 
channel, subfamily J, member 14 hyperpolarization, plasticity 

220940_at KIAA1641 0.421 KIAA1641 Unknown 
221683_s_at Cep290 0.386 centrosome protein cep290 Unknown 
221276_s_at SYNC1 0.431 Syncoilin, intermediate filament 1 Unknown 

222018_at NACA ; 
NACAP1 0.394 Nascent-polypeptide-associated 

complex alpha polypeptide  
transport, transcription, 

translation 

222031_at LOC286434 0.449 

hypothetical protein LOC286434 ; 
similar to Serine/threonine-protein 

kinase PRKX (Protein kinase 
PKX1) 

Unknown 

222263_at SLC35E1 0.49 solute carrier family 35, member 
E1 Transport 

51228_at RBM12B 0.475 RNA binding motif protein 12B Unknown 

204697_s_at CHGA 3.233 chromogranin A (parathyroid 
secretory protein 1) Activation, injury, biogenesis 

204777_s_at MAL 3.067 mal, T-cell differentiation protein polarization, development, 
differentiation 

214974_x_at CXCL5 17.62 chemokine (C-X-C motif) ligand 5 
chemotaxis, transmigration, 

signaling, stimulation, 
proliferation, activation 

219080_s_at CTPS2 2.818 CTP synthase II Unknown 

204770_at TAP2 2.569 
transporter 2, ATP-binding 

cassette, sub-family B 
(MDR/TAP) 

Segregation 

212806_at KIAA0367 6.454 KIAA0367 Apoptosis 
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202987_at TRAF3IP2 2.297 TRAF3 interacting protein 2 Apoptosis 

203741_s_at ADCY7 2.294 adenylate cyclase 7 growth, apoptosis, G1 phase, 
G2/M phase transition 

204276_at TK2 2.35 thymidine kinase 2, 
mitochondrial Transformation 

205110_s_at FGF13 2.036 fibroblast growth factor 13 

proliferation, migration, 
angiogenesis, invasion, 

signaling, volume, cell death, 
differentiation 

205669_at NCAM2 3.577 neural cell adhesion molecule 2 

fasciculation, lamination, long-
term potentiation, 

development, adhesion, 
morphology 

206094_x_at UGT1A6 2.377 UDP glucuronosyltransferase 1 
family, polypeptide A6 metabolic process 

206181_at SLAMF1 2.467 Signaling lymphocytic activation 
molecule family member 1 

proliferation, co-stimulation, 
activation, polarization 

210176_at TLR1 2.256 toll-like receptor 1 inflammatory response 

210969_at PKN2 3.023 protein kinase N2 apoptosis, cell-cell adhesion, 
differentiation, reorganization 

210999_s_at GRB10 2.262 growth factor receptor-bound 
protein 10 

growth, apoptosis, 
transformation, G2 phase, S 

phase, signaling 

211315_s_at CACNA1G 2.372 calcium channel, voltage-
dependent, alpha 1G subunit 

proliferation, neuritogenesis, 
cell death 

212425_at SCAMP1 2.024 Secretory carrier membrane 
protein 1 Transport 

213382_at MST1 12.32 macrophage stimulating 1 
(hepatocyte growth factor-like) 

migration, growth, morphology, 
scattering, stimulation, motility,  

activation, atrophy 

215783_s_at ALPL 2.163 alkaline phosphatase, 
liver/bone/kidney Mineralization 

215844_at TNPO2 3.063 transportin 2 (importin 3, 
karyopherin beta 2b) Transport 

216077_s_at L3MBTL 2.029 l(3)mbt-like (Drosophila) Cytokinesis 

216565_x_at LOC391020 2.054 

similar to Interferon-induced 
transmembrane protein 3 

(Interferon-inducible protein 1-
8U) 

Unknown 

218468_s_at GREM1 2.552 
gremlin 1, cysteine knot 

superfamily, homolog (Xenopus 
laevis) 

signaling, growth, migration 

219501_at ENOX1 2.191 ecto-NOX disulfide-thiol 
exchanger 1 Unknown 
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220115_s_at CDH10 2.817 cadherin 10, type 2 (T2-
cadherin) cell-cell adhesion 

220591_s_at EFHC2 2.039 EF-hand domain (C-terminal) 
containing 2 Unknown 

220686_s_at PIWIL2 3.347 piwi-like 2 (Drosophila) zygotene, prophase, early 
pachytene stage, development 

221169_s_at HRH4 2.246 histamine receptor H4 binding, chemotaxis 
 
Table 12: Genes that were specifically regulated by TAp63γ(C306R) mutant alone when 

compared to wildtype TAp63γ 
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206763_at FKBP6 2.303 FK506 binding protein 6, 36kDa  misalignment, 
homologous pairing 

222313_at CNOT2 2.197 CCR4-NOT transcription 
complex, subunit 2 Growth 

201884_at CEACAM5 2.381 carcinoembryonic antigen-related 
cell adhesion molecule 5 

aggregation, binding, 
colony formation, 

cytotoxicity, stimulation, 
differentiation, activation, 

anoikis 

202311_s_at COL1A1 3.253 collagen, type I, alpha 1 

aggregation, migration, 
proliferation, binding, 

adhesion, morphology, 
invasion, cell spreading, 
degranulation, growth 

208142_at FAM12A 3.16 family with sequence similarity 
12, member A Unknown 

219945_at DDX25 2.455 DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 25 Spermatogenesis 

215457_at ARPC1A 3.09 Actin related protein 2/3 complex, 
subunit 1A, 41kDa 

polymerization, assembly, 
nucleation, organization, 
stabilization, polarization, 

rearrangement, biogenesis 

205625_s_at CALB1 6.805 calbindin 1, 28kDa 

apoptosis, cytotoxic 
reaction, survival, 

paired-pulse facilitation, 
function, fragmentation, 

plasticity 

215723_s_at PLD1 2.306 phospholipase D1, 
phophatidylcholine-specific 

fusion, migration, invasion, 
size, attachment, 

elongation, cell flattening, 
morphology, budding 

201010_s_at TXNIP 2.03 thioredoxin interacting protein 

proliferation, apoptosis, 
survival, sub-G1 phase, 
development, growth, 

activity, response, 
differentiation 

202157_s_at CUGBP2 2.115 CUG triplet repeat, RNA binding 
protein 2 Unknown 

202546_at VAMP8 2.237 vesicle-associated membrane 
protein 8 (endobrevin) 

exocytosis, secretion, 
fusion, growth 
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202751_at TFIP11 2.292 tuftelin interacting protein 11 Unknown 

203231_s_at ATXN1 5.369 ataxin 1 
vacuolation, loss, synaptic 
transmission, morphology, 

apoptosis 

203240_at FCGBP 2.114 Fc fragment of IgG binding 
protein immune response 

203698_s_at FRZB 3.597 frizzled-related protein Growth 

203962_s_at NEBL 2.875 nebulette ion transport; regulation of 
actin filament length 

203969_at LOC153914 2.326 hypothetical protein LOC153914 Unknown 

204008_at DNAL4 2.011 dynein, axonemal, light 
polypeptide 4 microtubule motor activity 

204124_at SLC34A2 3.131 solute carrier family 34 (sodium 
phosphate), member 2 transmembrane potential 

204310_s_at NPR2 2.654 natriuretic peptide receptor B intracellular signaling 
cascade 

204719_at ABCA8 2.811 ATP-binding cassette, sub-family 
A (ABC1), member 8 Transport 

205285_s_at FYB 2.742 FYN binding protein (FYB-
120/130) 

proliferation, binding, 
adhesion, migration, 

activation 

205431_s_at BMP5 3.23 bone morphogenetic protein 5 
differentiation, 

neurogenesis, apoptosis, 
cell viability 

205668_at LY75 2.073 lymphocyte antigen 75 immune response 

205681_at BCL2A1 2.288 BCL2-related protein A1 

apoptosis, survival, 
transformation, cell 

death, growth, cell cycle 
progression, necrosis, 

proliferation, cell 
viability 

205923_at RELN 2.515 reelin 

migration, positioning, 
morphogenesis, positive 
selection, compaction, 

detachment, branching, 
binding 

206198_s_at CEACAM7 2.422 carcinoembryonic antigen-
related cell adhesion molecule 7 Unknown 

206331_at CALCRL 2.55 calcitonin receptor-like 
proliferation, migration, 

activation, binding, 
apoptosis 
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206420_at IGSF6 2.981 immunoglobulin superfamily, 
member 6 immune response 

206609_at MAGEC1 2.372 melanoma antigen family C, 1 unknown 
206733_at TULP2 2.086 tubby like protein 2 visual perception 

207056_s_at SLC4A8 3.099 
solute carrier family 4, sodium 

bicarbonate cotransporter, 
member 8 

ion transport 

207175_at ADIPOQ 2.693 adiponectin, C1Q and collagen 
domain containing 

proliferation, migration, 
differentiation, colony 

formation, binding, 
apoptosis, generation, size 

207526_s_at IL1RL1 3.556 interleukin 1 receptor-like 1 

activation, differentiation, 
proliferation, volume, 

infiltration, growth, 
recruitment, apoptosis 

207638_at PRSS7 2.75 protease, serine, 7 
(enterokinase) proteolysis 

207820_at ADH1A 2.069 alcohol dehydrogenase 1A (class 
I), alpha polypeptide metabolic process 

208057_s_at GLI2 3.3 GLI-Kruppel family member 
GLI2 

proliferation, 
differentiation, 
transformation, 

development, clustering, 
projection, cell death, 

branching 
morphogenesis 

208154_at LOC51336 2.276 mesenchymal stem cell protein 
DSCD28 unknown 

208245_at RAB9P1 2.351 RAB9, member RAS oncogene 
family, pseudogene 1 unknown 

209696_at FBP1 2.877 fructose-1,6-bisphosphatase 1 metabolic process 

209763_at CHRDL1 2.387 chordin-like 1 differentiation, commitment

210602_s_at CDH6 3.193 cadherin 6, type 2, K-cadherin 
(fetal kidney) 

adhesion, interaction, 
organization, dissociation, 

shape change, 
segregation, binding, 
outgrowth, assembly 
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210814_at TRPC3 2.332 
transient receptor potential 

cation channel, subfamily C, 
member 3 

transmembrane 
potential, binding 

211184_s_at USH1C 2.121 Usher syndrome 1C 
(autosomal recessive, severe) function, differentiation 

211239_s_at ADAM7 8.023 ADAM metallopeptidase 
domain 7 Proteolysis 

211349_at SLC15A1 2.524 
solute carrier family 15 

(oligopeptide transporter), 
member 1 

oligopeptide transport 

211621_at AR 2.075 

androgen receptor 
(dihydrotestosterone 
receptor; testicular 

feminization; spinal and 
bulbar muscular atrophy; 

Kennedy disease)  

growth, proliferation, 
apoptosis, migration, 
binding, invasion, cell 
death, mitogenesis, 

cell cycle progression 

211825_s_at FLI1 2.638 Friend leukemia virus 
integration 1 

growth, apoptosis, 
colony formation, 

differentiation, 
transformation, 

morphology, proliferation

212705_x_at PNPLA2 2.349 patatin-like phospholipase 
domain containing 2 metabolic process 

213130_at ZNF473 2.235 zinc finger protein 473 regulation of 
transcription 

213725_x_at XYLTI1 4.039 xylosyltransferase I glycosaminoglycan 
biosynthetic process 

213866_at SAMD14 2.416 sterile alpha motif domain 
containing 14 Unknown 

215151_at DOCK10 6.949 dedicator of cytokinesis 10 Unknown 

215591_at SATB2 2.327 SATB family member 2 regulation of 
transcription 

215754_at SCARB2 2.192 scavenger receptor class B, 
member 2 cell adhesion 

216489_at TRPM3 2.368 
transient receptor potential 

cation channel, subfamily M, 
member 3 

ion transport 

216874_at DKFZp686O1327 2.049 Homo sapiens, clone 
IMAGE:5538654, mRNA Unknown 

217315_s_at KLK13 2.055 kallikrein 13 Proteolysis 
217525_at OLFML1 5.858 olfactomedin-like 1 Unknown 

218029_at FAM65A 2.08 family with sequence 
similarity 65, member A 

DNA directed RNA 
polymerase activity 
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218747_s_at TAPBPL 2.456 TAP binding protein-like antigen processing 
219044_at FLJ10916 2.108 hypothetical protein FLJ10916 metabolic process 

219278_at MAP3K6 3.279 mitogen-activated protein kinase 
kinase kinase 6 Unknown 

219945_at DDX25 2.455 DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 25 Spermatogenesis 

220002_at KIF26B 4.157 kinesin family member 26B microtubule-based 
movement 

220336_s_at GP6 2.021 glycoprotein VI (platelet) 
aggregation, activation, 

adhesion, binding, 
inhibition, secretion 

220803_at AMSH-LP 5.725 
Associated molecule with the 

SH3 domain of STAM (AMSH) 
like protein 

ubiquitin cycle 

221304_at UGT1A10 2.264 UDP glucuronosyltransferase 1 
family, polypeptide A10 metabolic process 

221319_at PCDHB8 3.59 protocadherin beta 8 cell adhesion 

222128_at NSUN6 3.023 NOL1/NOP2/Sun domain family, 
member 6 Unknown 

222168_at ALDH1A3 2.991 Aldehyde dehydrogenase 1 
family, member A3 Apoptosis 

48031_r_at C5orf4 2.279 chromosome 5 open reading 
frame 4 metabolic process 

56748_at TRIM10 2.169 tripartite motif-containing 10 Hemopoiesis 
61297_at CASKIN2 2.304 CASK interacting protein 2 Unknown 

204580_at MMP12 0.359 matrix metallopeptidase 12 
(macrophage elastase) 

invasion, proliferation, 
binding, growth, 

recovery, migration, 
malignancy 

206650_at IQCC 0.355 IQ motif containing C Unknown 

207595_s_at BMP1 0.448 bone morphogenetic protein 1 differentiation, 
neurogenesis, growth 

210141_s_at INHA 0.484 inhibin, alpha 
proliferation, necrosis, 

stimulation, 
differentiation, growth, 

signaling 

218589_at P2RY5 0.18 purinergic receptor P2Y, G-
protein coupled, 5 signal transduction 

37802_r_at FAM63B 0.246 family with sequence similarity 
63, member B Transport 

 

Table 13: Genes that were regulated specifically by TAp63γ(R279H) mutant alone when 

compared to wildtype TAp63γ 
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220149_at FLJ22671 0.448 hypothetical protein FLJ22671 unknown 

220119_at EPB41L4A 0.241 erythrocyte membrane protein 
band 4.1 like 4A unknown 

220073_s_at PLEKHG6 0.434 
pleckstrin homology domain 

containing, family G (with 
RhoGef domain) member 6 

regulation of transcription 

202057_at KPNA1 0.476 karyopherin alpha 1 (importin 
alpha 5) binding, apoptosis 

202463_s_at MBD3 0.462 methyl-CpG binding domain 
protein 3 growth 

203749_s_at RARA 0.488 retinoic acid receptor, alpha 

differentiation, apoptosis, 
maturation, growth, 

proliferation, expansion, 
endoplasmic reticulum 

stress response 

204182_s_at ZBTB43 0.199 zinc finger and BTB domain 
containing 43 regulation of transcription 

204230_s_at SLC17A7 0.4 

solute carrier family 17 
(sodium-dependent inorganic 

phosphate cotransporter), 
member 7 

neurotransmission 

205547_s_at TAGLN 0.256 transgelin invasiveness, biogenesis 

206776_x_at ACRV1 0.434 acrosomal vesicle protein 1 multicellular organismal 
development 

206971_at GPR161 0.287 G protein-coupled receptor 161 proliferation, migration 

207101_at VAMP1 0.467 vesicle-associated membrane 
protein 1 (synaptobrevin 1) Exocytosis, transport 

207597_at ADAM18 0.37 ADAM metallopeptidase 
domain 18 proliferation, migration 

208349_at TRPA1 0.483 
transient receptor potential 

cation channel, subfamily A, 
member 1 

ion transport 

209293_x_at ID4 0.349 
inhibitor of DNA binding 4, 

dominant negative helix-loop-
helix protein 

proliferation, differentiation, 
colony formation, survival 

209859_at TRIM9 0.428 tripartite motif-containing 9 unknown 

210150_s_at LAMA5 0.475 laminin, alpha 5 

migration, proliferation, 
growth, adhesion, 

elongation, apoptosis, cell 
spreading, invasion, 

morphology 
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210876_at ANXA2P1 0.337 Annexin A2 pseudogene 1 unknown 

212636_at QKI 0.359 quaking homolog, KH domain 
RNA binding (mouse) apoptosis, differentiation 

214664_at PAICS 0.335 phosphoribosylaminoimidazole 
succinocarboxamide synthetase purine biosynthesis 

215512_at MARCH6 0.418 membrane-associated ring 
finger (C3HC4) 6 ubiquitin cycle 

215930_s_at CTAGE5 0.498 CTAGE family, member 5 enzyme activator activity 

216180_s_at SYNJ2 0.473 synaptojanin 2 Clustering 

218800_at SRD5A2L 0.447 steroid 5 alpha-reductase 2-like Unknown 

221978_at HLA-F 0.431 major histocompatibility 
complex, class I, F immune response 

207754_at RASSF8 2.013 Ras association (RalGDS/AF-6) 
domain family 8 signal transduction 

215855_s_at TMF1 2.382 TATA element modulatory 
factor 1 regulation of transcription 

217519_at MACF1 3.232 Glycine-rich protein (GRP3S) depolymerization, stabilization, 
stability, cell movement 

201187_s_at ITPR3 2.515 inositol 1,4,5-triphosphate 
receptor, type 3 

depolarization, extension, 
apoptosis, release 

201667_at GJA1 2.141 gap junction protein, alpha 1, 
43kDa (connexin 43) 

signaling, proliferation, growth, 
apoptosis, assembly, contact 
growth inhibition, response 

202046_s_at GRLF1 2.235 glucocorticoid receptor DNA 
binding factor 1 

neuritogenesis, shape 
change, morphology, 

development 

204530_s_at TOX 3.08 thymus high mobility group box 
protein TOX regulation of transcription 

204920_at CPS1 2.197 carbamoyl-phosphate 
synthetase 1, mitochondrial metabolic process 

209936_at RBM5 3.167 RNA binding motif protein 5 apoptosis, proliferation, growth 

210755_at HGF 2.519 hepatocyte growth factor 
(hepapoietin A; scatter factor) 

migration, proliferation, 
apoptosis, invasion, growth, 

morphogenesis 
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212093_s_at MTUS1 2.199 mitochondrial tumor 
suppressor 1 Proliferation 

213056_at FRMD4B 2.007 FERM domain containing 4B Unknown 

215064_at SC5DL 2.23 
Sterol-C5-desaturase (ERG3 
delta-5-desaturase homolog, 

fungal)-like 
metabolic process 

215538_at LARGE 4.537 like-glycosyltransferase Unknown 

216740_at TRERF1 2.644 Transcriptional regulating factor 
1 regulation of transcription 

 
Table 14: Genes that were specifically regulated by TAp63γ(R227Q) mutant alone when 

compared to wildtype TAp63γ 
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205060_at PARG 0.496 poly (ADP-ribose) 
glycohydrolase 

single-stranded DNA break 
repair, cytostasis, DNA 

damage response, 
recognition 

212392_s_at PDE4DIP 0.401 phosphodiesterase 4D 
interacting protein (myomegalin)

cytoskeleton organization 
and biogenesis 

214152_at CCPG1 0.453 cell cycle progression 1 Unknown 
222227_at ZNF236 0.488 zinc finger protein 236 regulation of transcription 

203570_at LOXL1 0.349 lysyl oxidase-like 1 colony formation, cell 
death, development 

204909_at DDX6 0.473 DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 6 Unknown 

205554_s_at DNASE1L3 0.396 deoxyribonuclease I-like 3 Survival 

205647_at RAD52 0.33 RAD52 homolog (S. cerevisiae) homologous recombination 
repair, development 

206214_at PLA2G7 0.42 
phospholipase A2, group VII 

(platelet-activating factor 
acetylhydrolase, plasma)  

fertilization, motility, 
infiltration, apoptosis 

206573_at KCNQ3 0.346 
potassium voltage-gated 

channel, KQT-like subfamily, 
member 3 

Hyperpolarization 

207323_s_at MBP 0.451 myelin basic protein 

activation, proliferation, 
stimulation, outgrowth, 

priming, infiltration, 
myelination, development, 

organization, stability 

207401_at PROX1 0.489 prospero-related homeobox 1 

budding, tubulation, motility, 
differentiation, sprouting, 
migration, commitment, 
proliferation, chemotaxis 

208200_at IL1A 0.498 interleukin 1, alpha 

activation, apoptosis, 
proliferation, stimulation, 

differentiation, growth, 
survival, adhesion, 

response 

208741_at SAP18 0.481 sin3-associated polypeptide, 
18kDa cell death 

210347_s_at BCL11A 0.499 B-cell CLL/lymphoma 11A 
(zinc finger protein) 

apoptosis, transformation, 
cell death, differentiation, 

growth 
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212477_at CENTB2 0.486 centaurin, beta 2 regulation of GTPase activity 

213849_s_at PPP2R2B 0.493 
protein phosphatase 2, 

regulatory subunit B , beta 
isoform 

apoptosis, survival 

214291_at RPL17 0.469 ribosomal protein L17 regulation of translation 

214668_at C13orf1 0.469 chromosome 13 open reading 
frame 1 Unknown 

217127_at CTH 0.464 cystathionase (cystathionine 
gamma-lyase) proliferation, apoptosis 

218901_at PLSCR4 0.495 phospholipid scramblase 4 blood coagulation 
219509_at MYOZ1 0.424 myozenin 1 Assembly 

219694_at FAM105A 0.486 family with sequence similarity 
105, member A Unknown 

219747_at C4orf31 0.34 chromosome 11 open reading 
frame 1 Unknown 

221016_s_at TCF7L1 0.31 transcription factor 7-like 1 (T-
cell specific, HMG-box)  differentiation, survival 

36612_at KIAA0280 0.471 KIAA0280 protein Unknown 

205817_at SIX1 2.828 sine oculis homeobox homolog 
1 (Drosophila) 

proliferation, apoptosis, 
differentiation, 

disorganization, migration 

219996_at ASB7 2.06 Ankyrin repeat and SOCS box-
containing 7 intracellular signaling 

214081_at PLXDC1 2.759 plexin domain containing 1 multicellular organism 
development 

202665_s_at WIPF1 2.953 WAS/WASL interacting protein 
family, member 1 

morphology, proliferation, 
endocytosis, degranulation, 

cytostasis, polarization 

204667_at FOXA1 2.054 forkhead box A1 development,  differentiation 

206112_at ANKRD7 2.128 ankyrin repeat domain 7 intracellular signaling 

211207_s_at ACSL6 2.312 acyl-CoA synthetase long-chain 
family member 6 length, proliferation 

213206_at GOSR2 2.099 golgi SNAP receptor complex 
member 2 transport, fusion 

214814_at YT521 2.23 Splicing factor YT521-B Unknown 
216683_at TBCA 2.822 Tubulin-specific chaperone a Unknown 

218925_s_at C11orf1 5.29 chromosome 11 open reading 
frame 1 Unknown 

 
Table 15: Genes that are specifically regulated by TAp63γ(R298Q) mutant alone when compared 
to wildtype TAp63γ
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