2005

Vertebrate GLD2 Poly(A) Polymerases in the Germline and the Brain

Labib Rouhana
Wright State University - Main Campus, labib.rouhana@wright.edu

Liaoteng Wang

Natascha Buter

Jae Eun Kwak

Craig A. Schiltz

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/biology

Part of the Biology Commons, Medical Sciences Commons, and the Systems Biology Commons

Repository Citation
https://corescholar.libraries.wright.edu/biology/330

This Article is brought to you for free and open access by the Biological Sciences at CORE Scholar. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Authors
Labib Rouhana, Liaoteng Wang, Natascha Buter, Jae Eun Kwak, Craig A. Schiltz, Tania Gonzalez, Ann E. Kelley, Charles F. Landry, and Marvin Wickens

This article is available at CORE Scholar: https://corescholar.libraries.wright.edu/biology/330
Vertebrate GLD2 poly(A) polymerases in the germline and the brain

LABIB ROUHANA,1,2 LIAOTENG WANG,1 NATASCHA BUTER,1 JAE EUN KWAK,1 CRAIG A. SCHILTZ,3 TANIA GONZALEZ,1,4 ANN E. KELLEY,3 CHARLES F. LANDRY,3 and MARVIN WICKENS1

1Department of Biochemistry, 2Laboratory of Genetics, and 3Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53706, USA
4Genentech, Inc., South San Francisco, California 94080-4990, USA

ABSTRACT

Cytoplasmic polyadenylation is important in the control of mRNA stability and translation, and for early animal development and synaptic plasticity. Here, we focus on vertebrate poly(A) polymerases that are members of the recently described GLD2 family. We identify and characterize two closely related GLD2 proteins in Xenopus oocytes, and show that they possess PAP activity in vivo and in vitro and that they bind known polyadenylation factors and mRNAs known to receive poly(A) during development. We propose that at least two distinct polyadenylation complexes exist in Xenopus oocytes, one of which contains GLD2; the other, maskin and Pumilio. GLD2 protein interacts with the polyadenylation factor, CPEB, in a conserved manner. mRNAs that encode GLD2 in mammals are expressed in many tissues. In the brain, mouse, and human GLD2 mRNAs are abundant in anatomical regions necessary for long-term cognitive and emotional learning. In the hippocampus, mouse GLD2 mRNA colocalizes with CPEB1 and Pumilio1 mRNAs, both of which are likely involved in synaptic plasticity. We suggest that mammalian GLD2 poly(A) polymerases are important in synaptic translation, and in polyadenylation throughout the soma.

Keywords: poly(A) polymerase; GLD2; translational control

INTRODUCTION

Control of the movement, translation and stability of mRNAs determines when, where, and how much protein an mRNA generates (for reviews, see Sonenberg 1994; Hentze 1995; Wickens et al. 2002; Kuersten and Goodwin 2003). A tract of adenosines at the 3′ end of the mRNA—the poly(A) tail—plays a key role in these events. Cytoplasmic lengthening of the tail can activate translation and stabilize the mRNA, while poly(A) removal can cause translational repression and mRNA decay. Regulated changes in the length of the poly(A) tail are critical during early development; for example, they control the meiotic and mitotic cell cycles of Xenopus oocytes and embryos by regulating specific mRNAs (for reviews, see Mendez and Richter 2001; Wickens et al. 2002). In the nervous system, repeated stimulation of synapses activates polyadenylation and local translation (Wu et al. 1998; Huang et al. 2002; Si et al. 2003a; Theis et al. 2003). These polyadenylation events are thought to be important in long-term potentiation (LTP) and learning (Wu et al. 1998; Alarcon et al. 2004).

Cytoplasmic polyadenylation in frog oocytes requires multiple protein components, including Cytoplasmic Polyadenylation Element Binding Protein (CPEB) and Cleavage and Polyadenylation Specificity Factor (CPSF) (for reviews, see Mendez and Richter 2001). CPEB binds directly to specific sequences in the 3′UTRs of target mRNAs (Hake et al. 1998). CPSF, a multiprotein complex, binds the sequence AAUAAA and is necessary for both nuclear and cytoplasmic polyadenylation (Bilger et al. 1994). CPEB binds CPSF, which is thought then to recruit the enzyme that adds the poly(A), a cytoplasmic poly(A) polymerase (PAP) (Mendez et al. 2000; Dickson et al. 2001). Although oocytes contain cytoplasmic PAPs related to the nuclear enzyme (Ballantyne et al. 1995; Gebauer and Richter 1995), their role in cytoplasmic polyadenylation is unclear.

GLD-2, a divergent cytoplasmic PAP, was identified in Caenorhabditis elegans (Wang et al. 2002), and is related to the Cid1 and Cid13 PAPs of Schizosaccharomyces pombe.
(Read et al. 2002; Saitoh et al. 2002). GLD-2 polymerization activity is stimulated by interaction with an RNA binding protein, GLD-3 (Wang et al. 2002). Together GLD-2 and GLD-3 are thought to form a novel heterodimeric PAP, in which the RNA binding component, GLD-3, recruits the catalytic subunit, GLD-2, to specific mRNAs (Wang et al. 2002; Kwak et al. 2004). Homologs of GLD-2 that possess polyadenylation activity recently were identified in mice and humans (Kwak et al. 2004). Similarly, a Xenopus protein related to GLD-2 was identified by virtue of its association with CPEB and shown to participate in cytoplasmic polyadenylation in oocytes (Barnard et al. 2004).

Repression of specific mRNAs in oocytes and embryos involves multiple RNA binding proteins. In Xenopus oocytes, maskin, Pumilio, and Nanos (Xcat-2) all appear to be bound to repressed RNAs and involved in repression (Stebbins-Boaz et al. 1999; Nakahata et al. 2001, 2003; for review, see Richter 2000). Maskin binds CPEB on the 3′UTR, and sequesters eIF4E to repress translation (Stebbins-Boaz et al. 1999; for review, see Richter 2000). Similarly, Nanos and PUF (e.g., Pumilio) proteins interact physically and assemble on specific sequences in the 3′UTR (Kraemer et al. 1999; Sonoda and Wharton 1999; Nakahata et al. 2001; for review, see Wickens et al. 2002). These multiprotein complexes are required for repression. Release from repression is accompanied by cytoplasmic polyadenylation.

Translational regulation of dendritic mRNAs is important in synaptic plasticity. Stimulation of synapses results in locally increased protein synthesis, which requires cytoplasmic polyadenylation and CPEB (Si et al. 2003a). This local translation is required for the late phase of LTP, an electrophysiological, cellular correlate of memory (Nguyen et al. 1994; Frey et al. 1988; Liu and Schwartz 2003; for reviews, see Wells et al. 2000; Richter 2001; Tang and Schuman 2002). Four isoforms of CPEB are found in the hippocampus (Wu et al. 1998; Theis et al. 2003). Knockout mice lacking one of these, mCPEB1, exhibit a modest deficit in LTP (Alarcon et al. 2004). After LTP induction, cytoplasmic polyadenylation regulates the translation of proteins enriched in synaptic spines, including αCaMKII (Wu et al. 1998; Miller et al. 2002; Otmakhov et al. 2004), cytoskeletal actin (Fukazawa et al. 2003; Liu and Schwartz 2003; Matsuzaki et al. 2004), Erg1 (Simon et al. 2004), and tissue plasminogen activator (TPA) (Shin et al. 2004). Both Erg1 and TPA are necessary for LTP and long-term memory formation (Jones et al. 2001; Pawlak et al. 2002; Malkani et al. 2004; Pang et al. 2004).

In this paper, we focus on GLD2 in vertebrates. We identify two Xenopus GLD-2 enzymes and analyze their interaction with known polyadenylation factors, confirming and extending the work of Barnard et al. (2004). We demonstrate that the mammalian enzymes associate with Xenopus polyadenylation factors, and that they are expressed in regions of the hippocampus associated with learning and memory. Their expression pattern in the hippocampus parallels that of CPEB1 and Pumilio1, both of which are implicated in synaptic plasticity. Based on these findings, we suggest the existence of two distinct translational control complexes in oocytes, and propose that the GLD2 PAP participates in translational activation at synapses.

RESULTS

Vertebrate GLD2 homologs: proteins and mRNAs

We recently identified *C. elegans*, murine, and human homologs of *C. elegans* GLD-2 (Wang et al. 2002; Kwak et al. 2004). To identify the enzyme that catalyzes cytoplasmic polyadenylation in frog oocytes, we designed degenerate primers directed against regions conserved among GLD2 homologs, and performed PCR to identify GLD2-related cDNAs in a *Xenopus* oocyte cDNA library. We determined the sequences of two independent isolates of *Xenopus* GLD-2 cDNA that comprised the entire ORF, and six cDNAs from the NIBB (Japan) and the IMAGE consortium. These sequences were consolidated with those of 40 fragmentary ESTs (see Materials and Methods).

Two different isoforms of *Xenopus laevis* GLD-2, termed XIGLD-2A and XIGLD-2B, were identified. The two predicted proteins are 88% identical and differ in nucleotide sequence at multiple locations throughout their length. All cDNAs and ESTs belonged to one group or the other, suggesting that XIGLD-2A and XIGLD-2B are different genes. XIGLD-2B corresponds to the protein recently shown to be involved in cytoplasmic polyadenylation (Barnard et al. 2004). XIGLD-2A and XIGLD-2B each are 62% identical to human and mouse GLD-2 (hGLD2 and mGLD2) (Kwak et al. 2004) and 42% identical to catalytic and central domains of the *C. elegans* protein. The predicted Xenopus proteins possess the hallmarks of the β-nucleotidyl transferase superfamily, including specific amino acids that participate in catalysis and bind the nucleotide (Fig. 1A, red and green residues; Aravind and Koonin 1998; Martin et al. 2004).

We analyzed by Northern blotting the mRNA produced from the XIGLD-2 genes, and compared it to the mouse and human GLD2 mRNAs. In all three species, two mRNA forms were detected, which we term GLD2(L) and GLD2(S) (Fig. 1B,C). Each apparent 3′ end was deduced from the location of poly(A) on multiple cDNAs and ESTs, and was preceded by a polyadenylation signal (Fig. 1B). The two mRNAs produced from one gene in each species are identical in the protein coding region but differ in the length of their 3′UTRs. This was deduced from multiple cDNAs and corroborated by using a probe that was predicted to detect only mGLD2(L) form (Fig 1D). In Xenopus, XIGLD-2A produces two forms;
XIGLD-2B expresses one mRNA with a long 3′UTR (data not shown). Human cDNAs representing alternatively spliced variants that lack exon 8 or exon 11 were detected among ESTs (Δ8 and Δ11; indicated in Fig. 1A). Throughout the protein coding region, each of the vertebrate genes display identical exon-intron organizations (data not shown).

We next focused on the activity and biological role of GLD2 protein in Xenopus oocytes. Antibodies raised against XIGLD-2A were used to examine the abundance and subcellular distribution of endogenous XIGLD-2 protein. The antibodies were specific: In vitro translation of an mRNA encoding HA-tagged GLD-2A yielded a single protein of ~60 kDa that was detected by α-XIGLD-2 and α-HA antibodies (Fig. 2A, lanes 2,5). This protein comigrates with the endogenous oocyte protein (Fig. 2, lanes 2,3). The antibody recognizes both XIGLD-2A and XIGLD-2B proteins (data not shown). A single prominent polypeptide was detected throughout oogenesis, oocyte maturation, and post-fertilization development (Fig. 2B; data not shown).

The factors needed to catalyze regulated polyadenylation during oocyte maturation are cytoplasmic (Fox et al. 1989). XIGLD-2 protein was detected in the oocyte cytoplasm, as well as the nucleus (Fig. 2C). α-XIPABP2 antibodies confirmed that the manual separation of nuclei and cytoplasm was successful, since nPABP2 was predominantly nuclear (Good et al. 2004).

XIGLD-2 is a PAP

To test whether the Xenopus GLD2 proteins possessed PAP activity, we tethered XIGLD-2A to an mRNA reporter using MS2 coat protein. Oocytes first were injected with mRNAs that direct the synthesis of MS2-XIGLD-2A fusion proteins. After allowing time for protein to accumulate, the same oocytes were injected with luciferase reporter mRNAs containing MS2 sites. A β-galactosidase reporter mRNA lacking MS2 sites was co-injected as a control. MS2-XIGLD-2A and MS2-XIGLD-2B proteins stimulated translation of mRNAs containing MS2 sites but did not affect translation of mRNAs lacking them (Fig. 3A–C). A putative active site mutation, D242A, abolished translational stimulation but accumulated to the same level as did the wild-type protein (Fig. 3B). To analyze polyadenylation directly, we injected 32P-labeled RNAs bearing MS2 sites. The labeled RNA was polyadenylated in oocytes containing wild-type MS2-XIGLD-2A, but not the D242A, form of fusion protein (Fig. 3D). Furthermore, we purified recombinant, full-length human GLD2 and XIGLD-2A proteins from bacteria. These enzymes added long tails to 32P-labeled RNAs in vitro, while a D242A mutant form of XIGLD-2A protein did not (Fig. 3E). The added tails were composed of poly-

FIGURE 1. XIGLD-2, mGLD2, and hGLD2 mRNAs and proteins. (A) Predicted protein sequences in the catalytic and central domains of GLD2 homologs. The sequences from five animal different species (X. laevis, X. tropicalis, mouse, human, and C. elegans) are presented. Black indicates amino acid identity; red, three carboxylate side-chains required for catalysis; green, six residues that position the nucleotide (Martin et al. 2000; Wang et al. 2002); and red asterisk, location of the active site for catalysis; green, six residues that position the nucleotide (Martin et al. 2000; Wang et al. 2002); and red asterisk, location of the active site for catalysis; green, six residues that position the nucleotide (Martin et al. 2000; Wang et al. 2002); and red asterisk, location of the active site for catalysis; green, six residues that position the nucleotide (Martin et al. 2000; Wang et al. 2002); and red asterisk, location of the active site for catalysis; green, six residues that position the nucleotide (Martin et al. 2000; Wang et al. 2002). Colored bars above the sequence indicate the central (purple) or catalytic (yellow) domains. Black lines below the sequence indicate the regions missing in Δ8 and Δ11 forms of the human protein. (B) Vertebrate GLD2 mRNAs. Approximate lengths of mRNAs, as calculated by cDNA sequencing and confirmed by Northern blotting, are shown to the left of each panel. Purple indicates PAP central domain; yellow, PAP catalytic domain (corresponding to Fig 1A). Percentage of amino acid sequence identity relative to XIGLD-2A is given (percentage similarity is in parentheses). Black circles and boxes indicate 5′ and 3′ cleavage and polyadenylation signal (AAUAAA and AAUACA). Distances from the termination codon to the poly(A) tail are indicated. (C) Two mRNA forms. RNAs from Xenopus oocytes, mouse 3T3 cells, and human spleen were analyzed by Northern blotting. T indicates total RNA; A+, RNA retained by oligo(dT) cellulose; and A−, RNA not retained by oligo (dT). Amounts of RNA and hybridization probes are described in Materials and Methods. (D) mGLD2(L) and mGLD2(S) mRNAs differ by their 3′UTRs. Total RNA from spleen was analyzed by using either a probe complementary to the entire ORF (left) or just the 3′ UTR of the long form of mRNA, mGLD2(L) (right).
and cytoplasm, respectively. N and C indicate nucleus and cytoplasm, respectively. N and C indicate nucleus and cytoplasm. N and C indicate nucleus and cytoplasm.

Western blotting with α-XlPABP-2 antibodies. A predominant protein of 60 kDa is detected by α-XlGLD-2 (lanes 1–3) and α-HA antibodies (lanes 4–6). The in vitro translated protein (lane 2) roughly comigrates with endogenous XlGLD-2 protein in oocyte extracts (lane 3).

XlGLD-2A was translated in vitro, and the products were analyzed by Western blotting. Oocytes first were injected with mRNA encoding HA-XlGLD-2A. As expected, HA-tagged XlGLD-2A was efficiently immunoprecipitated by the α-XlGLD-2 antibodies (Fig. 4B, “α-HA”). Endogenous CPSF100 and CPSF73 were immunoprecipitated by α-XlGLD-2; maskin and Pumilio were not (Fig. 4B).

In a reciprocal experiment, we used α-CPEB antibodies to immunoprecipitate complexes from oocyte lysates (Fig. 4C). α-CPEB antibodies efficiently precipitated HA-XlGLD-2A from the extracts, confirming that CPEB and XlGLD-2 interact (Fig. 4C). The coimmunoprecipitation of the two proteins was resistant to digestion with RNaseA that was sufficient to degrade the endogenous RNA (Fig. 4D; data not shown). Thus the coimmunoprecipitation of CPEB and XlGLD-2 was not due to co-occupancy of a single RNA. α-CPEB also immunoprecipitated CPSF and maskin, as reported previously (Fig. 4C; Dickson et al. 1999; Stebbins-Boaz et al. 1999; data not shown).

Together, the interaction data demonstrate that XlGLD-2 binds CPSF and CPEB, consistent with the results of Barnard et al. (2004). We conclude that XlGLD-2 interacts with CPEB and CPSF, but does not interact with maskin or Pumilio.

To test whether these interactions between GLD-2 and Xenopus polyadenylation components were conserved, we expressed wild-type human GLD2, and the Δ8 and Δ11 forms of human GLD2, in oocytes. The wild-type and Δ8 forms of hGLD2 were immunoprecipitated by α-CPEB; the Δ11 form was not (Fig. 4E). Similarly, the Δ8 form was active in polyadenylation assays, while Δ11 was inactive (data not shown).

If XlGLD-2 catalyzes cytoplasmic polyadenylation, then it must associate with mRNAs that receive poly(A). We asked whether cyclin B1 mRNA, an mRNA that is polyadenylated during oocyte maturation, was bound to XlGLD-2 in stage VI oocyte (Fig. 5). Oocyte lysates were incubated with α-XlGLD-2 antibodies, and the immunoprecipitated RNAs were extracted and analyzed by RT-PCR (Fig. 5). Cyclin B1 mRNA was readily detected in immunoprecipitates obtained with α-XlGLD-2, but not with VI oocytes. The beads were washed with buffer, and bound proteins were eluted and analyzed by Western blotting (Fig. 4A). CPEB bound to GST-XlGLD-2A but not to either GST–PUF-8 or GST alone, used as controls (Fig. 4A). A subunit of CPSF, CPSF23, also bound specifically to GST-XlGLD-2A.

Maskin and Pumilio proteins, both of which are involved in translational repression, physically interact with CPEB in resting oocytes (Stebbins-Boaz et al. 1999; Nakahata et al. 2003). In contrast, GST-XlGLD-2A binds CPEB, but it did not bind either maskin or Pumilio proteins (Fig. 4A).

To test whether endogenous XlGLD-2 interacts with CPSF, we performed coimmunoprecipitation experiments (Fig. 4B). α-XlGLD-2 antibodies were incubated with crude oocyte lysates, and the bound proteins were analyzed by Western blotting. Oocytes first were injected with mRNA encoding HA-XlGLD-2A. As expected, HA-tagged XlGLD-2A was efficiently immunoprecipitated by the α-XlGLD-2 antibodies (Fig 4B, “α-HA”). Endogenous CPSF100 and CPSF23 were immunoprecipitated by α-XlGLD-2; maskin and Pumilio were not (Fig. 4B).

FIGURE 2. XlGLD-2 is present throughout embryogenesis and is in the cytoplasm. (A) Antibody specificity. mRNA encoding HA-XlGLD-2A was translated in vitro, and the products were analyzed by Western blotting using α-XlGLD-2 antibodies. A predominant protein of 60 kDa is detected by α-XlGLD-2 (lanes 1–3) and α-HA antibodies (lanes 4–6). The in vitro translated protein (lane 2) roughly comigrates with endogenous XlGLD-2 protein in oocyte extracts (lane 3). (B) XlGLD-2 protein abundance. Proteins extracted from the indicated stages were analyzed by Western blotting using either α-XlGLD-2 or α-actin. (C) XlGLD-2 subcellular distribution. Nuclear and cytoplasmic fractions prepared manually from stage VI oocytes were analyzed by Western blotting with α-XlGLD-2 (lanes 1–4), α-XIPABP-2 (lanes 5–8), which detects a nuclear poly(A) binding protein (Good et al. 2004), was used to control for proper enucleation and a lack of leakage into the cytoplasm. N and C indicate nuclear and cytoplasm, respectively.

XlGLD-2A interacts with polyadenylation factors and target mRNAs

To test whether XlGLD-2 interacted with CPEB or CPSF, recombinant GST-XlGLD-2A was attached to Sepharose-glutathione beads and incubated with crude lysates of stage adenosine, as they were removed by oligo(dT)/RNAse treatment (data not shown).

We conclude that the two Xenopus proteins, XlGLD-2A and XlGLD-2B, as well as human GLD2, possess PAP activity. In the following experiments, we focus first on the interaction of XlGLD-2A with proteins involved in cytoplasmic polyadenylation and translational control, and then turn to mouse and human GLD2.

1120 RNA, Vol. 11, No. 7
GLD-2 poly(A) polymerases in germline and brain

Expression of mammalian GLD2 homologs

Our findings that mouse and human GLD2 are PAPs and that they interact with polyadenylation factors in the Xenopus oocyte cytoplasm, suggested that the mammalian proteins were involved in regulated polyadenylation. We examined the tissue distribution of GLD2 mRNAs in mouse and human tissues by Northern blotting (Fig. 6). GLD2 mRNAs are expressed in a wide range of tissues, including the ovary, brain, and testes. Both mGLD2(S) and mGLD2(L) were detected in each tissue. Their relative abundance varied: for example, in the mouse brain, mGLD2(L) mRNA was much more abundant than mGLD2(S), while the opposite is true in placenta. GLD2(L) mRNAs also were detected in RNA from human brain and in RNAs prepared from isolated human cerebellum, hippocampus, and medulla (Fig. 6B). Again, the GLD2(L) form predominated (Fig. 6B). Subcellular fractionation studies suggested that mGLD2 mRNA was enriched in synaptic fractions (data not shown).

To determine more precisely the distribution of mGLD2 mRNA within mouse brain, we performed in situ hybridization on sagittal sections by using 35S-labeled RNA probes (Fig. 7A). An antisense probe that detects both mGLD2 mRNA isoforms yielded signal throughout the brain in a pattern consistent with the presence of mGLD2 transcripts within neurons. The distribution of mGLD2(L) mRNA, detected by using an L-form–specific probe, was identical (Fig. 7, cf. A and B). As expected, a sense-strand probe yielded no significant signal (Fig. 7C).

The abundance of mGLD2 mRNA was highest in the cerebral cortex, cerebellum, hippocampus, and olfactory bulb. mGLD2 mRNA abundance paralleled neuronal density. In the hippocampus and cerebellum, for example, intense mGLD2 mRNA expression was evident in the cell-dense, granule cell layers of the dentate gyrus and cerebellar cortex. We analyzed several other mRNAs in control, preimmune antibodies (Fig. 5). Actin and ribosomal protein L1 mRNAs were not specifically immunoprecipitated by α-GLD2, as they were present at equivalent, low levels in the α-XIGLD-2 and preimmune immunoprecipitates (Fig. 5). c-mos mRNA, which also receives poly(A) during maturation, was associated with XIGLD-2 as well (data not shown).

Taken together, our findings imply that at least two complexes exist in resting, stage VI oocytes (Fig. 4F). One, which we term the G complex (for GLD-2), contains GLD-2 and CPEB. The other complex, which we term MP (for maskin and Pumilio), contains CPEB, maskin, and Pumilio. CPSF is present in one or both complexes. The finding that XIGLD-2 associates with symplekin, and is stimulated by that protein in combination with CPSF, implies that symplekin and CPSF are in the G complex (Barnard et al. 2004).
used as a control, differs substantially, and is abundant in many regions of the brain (Fig. 7G).

Since the hippocampus mediates certain types of long-term memory formation (Scoville and Milner 1957; for review, see Eichenbaum 2004), we examined the distribution of GLD2 transcripts in the hippocampus at higher resolution. After hybridization, sections were treated with radiographic emulsion and visualized by darkfield microscopy (Fig. 8). mGLD2 mRNA was specifically detected in the granule cell layer of the dentate gyrus (GCL) and the pyramidal cell layer of the hippocampus (CA1, CA2, and CA3) (Fig. 8A). The distribution of mGLD2 mRNA in the hippocampus was nearly identical to that of mCPEB1 and Pumilio1 mRNAs, which were analyzed in parallel sections (Fig. 8B,C). The distribution of mRNA for the activity-regulated protein, ARC, was also similar to mGLD2 except that fewer cells in the granule cell layer expressed ARC mRNA, compared with mGLD2 and Pumilio1 mRNAs (Fig. 8D). In contrast, the distribution of mRNA for the RNA binding protein, Quaking (Ebersole et al. 1996), differed dramatically from the other mRNAs analyzed (Fig. 8E).

We next focused on the cerebellum, where mGLD2 mRNA also is abundant (Fig. 7). mGLD2 mRNA was present at the highest levels in the granule (GCL) and Purkinje (PCL) cell layers of cerebellar cortex (Fig. 7A). mGLD2 mRNA was also present at a lower level, and in a diffuse distribution, throughout the molecular cell layer (MCL) (Fig. 7A). mCPEB1 mRNA, in contrast, was expressed almost exclusively within the large Purkinje neurons in the cerebellum (Fig. 9B). Interestingly, the pattern of mGLD2 expression in the cerebellum was more similar to mCPEB2, 3, and 4, all of which were present in the major cerebellar neuronal layers (Fig. 9C–E). These data imply regional specificity of cytoplasmic polyadenylation mechanisms in the brain.
DISCUSSION

We have focused in this paper on three vertebrate GLD2 proteins. The *Xenopus* enzyme, which exists in two closely related forms, polyadenylates RNAs to which it is tethered and enhances their translation. Furthermore, it interacts with cytoplasmic polyadenylation factors, including CPSF and CPEB, and with target mRNAs. These findings confirm and extend a recent report that a GLD2 enzyme is the long-sought PAP responsible for cytoplasmic polyadenylation in oocytes (Barnard et al. 2004). Previous work identified cytoplasmic PAPs closely related to the nuclear enzyme, but their biological roles have not been identified unambiguously (Ballantyne et al. 1995; Gebauer and Richter 1995).

XIGLD-2 protein is both cytoplasmic and nuclear (Fig. 2). The role of the nuclear enzyme is unclear. However, the two GLD2 homologs in *S. cerevisiae*, TRF4 and TRF5, both are nuclear proteins (Huh et al. 2003), and have been strongly implicated in RNA quality control. They appear to polyadenylate aberrant initiator rRNA molecules, triggering their decay by the nuclear exosome (Kadaba et al. 2004). Nuclear GLD2 protein in oocytes may have an analogous role. It is unlikely that the nuclear enzyme is required for cytoplasmic polyadenylation events after nuclear breakdown during oocyte maturation, since those reactions proceed unabated in enucleated oocytes (Fox et al. 1989).

XIGLD-2 interacts with CPEB and CPSF but does not interact with maskin or Pumilio. Maskin, Pumilio, and CPEB are associated with repressed mRNAs in the oocyte (for review, see Mendez and Richter 2001; Nakahata et al. 2001). Our findings imply that at least two complexes exist in resting, stage VI oocytes (Fig. 4F). One contains GLD2, CPEB, and CPSF. We term this the G complex (for GLD2). The other complex contains CPEB, maskin, and Pumilio, and so is termed MP (for maskin and Pumilio). The finding that XIGLD-2 associates with symplekin implies that it too is in the G complex, which may contain other polyadenylation factors as well (Barnard et al. 2004).

Cyclin B1 mRNA is associated with GLD-2, and thus the G complex (the current study). It also may be present in the MP complex, since the cyclin B1 3'UTR can bind Pumilio in extracts of stage VI oocytes (Nakahata et al. 2001). Although cyclin B1 mRNA is polyadenylated and activated during oocyte maturation (Sheets et al. 1994), some cyclin B1 mRNA molecules must already be active in oocytes since oocytes contain cyclin B1 protein (Kobayashi et al. 1991). Active and inactive mRNA molecules may be partitioned differently between G and MP complexes. For example, the G complex may contain actively translated mRNAs. Alternatively, the mRNAs in G and MP complexes may be regulated differently during maturation.

FIGURE 5. XIGLD-2 interacts with target, but not nontarget, mRNAs. Oocyte extracts were incubated with α-XIGLD-2 or preimmune guinea pig serum and bound to Protein A–Sepharose. Bound material was eluted and the RNA recovered. mRNAs were detected by semiquantitative PCR, using oligo(dT)-primed reverse transcription reactions, followed by PCR using gene-specific primers. Cyclin B1 mRNA receives poly(A) during oocyte maturation, and is immunoprecipitated by α-XIGLD-2. Cytoskeletal actin and ribosomal protein L1 mRNAs do not receive poly(A) during maturation and are not immunoprecipitated.

A. *mGLD2* mRNA

![mGLD2 mRNA](image1)

B. *hGLD2* mRNA

![hGLD2 mRNA](image2)

FIGURE 6. Analysis of *mGLD2* and *hGLD2* mRNAs. (A) Tissue distribution of *mGLD2* mRNA: 10 μg of total RNA from each of the indicated tissues was analyzed by Northern blotting, using a probe directed against the entire ORF region of *mGLD2*. GAPDH mRNA served as a loading control. (B) Distribution of *hGLD2* mRNAs within human brain; 2 μg of RNA prepared from each of the indicated regions of the brain (Ambion) was analyzed by hybridization with a probe directed against a portion of the *hGLD2* ORF. 28S rRNA stained with ethidium bromide served as a loading control.
We focused on mammalian GLD2 mRNAs in the brain, because the clearest instances of regulated cytoplasmic polyadenylation in the soma occur in the nervous system (see Introduction). Three lines of evidence suggest that the mammalian GLD2 plays an important role in synaptic plasticity. First, human GLD2 protein physically interacts with Xenopus CPEB and is active in vitro (Figs. 3, 4). Further, as tethered proteins, mouse and human GLD2 potentiate translation in the oocyte via polyadenylation and are PAPs in vitro (Fig. 3; Kwak et al. 2004). Second, the spatial distribution of mGLD2 mRNA in the hippocampus strikingly parallels that of mCPEB1 and Pumilio1 (Fig. 8); in the cerebellum, mGLD2 mRNA colocalizes with those of other CPEB isofoms (Fig. 9). Proteins related to Pumilio (PUF proteins) are required for learning in Drosophila (Dubnau et al. 2003), are found in complexes with CPEB in Xenopus (Nakahata et al. 2001), and localize to dendrites in

FIGURE 7. The pattern of mGLD2 mRNA abundance in neuronal cell populations in the mouse brain is similar to those of mCPEB1 and mPumilio1 mRNAs. (A) In situ hybridization on sagittal mouse brain sections using an 35S-labeled mGLD2 RNA probe that detects total mGLD2 mRNA (i.e., mGLD2(S) plus mGLD2(L)). The detected pattern of mGLD2 mRNA is consistent with expression in the major neuronal cell layers in the olfactory bulb, cerebral cortex, cerebellum, and hippocampus, each of which is labeled. (A–G) Bar, 4 mm. (B) Same as A, but using a probe specific to the unique region of the 3’UTR of mGLD2(L). (C) Same as A, but hybridized to a probe with the same sense as mGLD2 mRNA. (D–G) Adjacent sections hybridized with the indicated probes to detect mCPEB1 (D), mCPEB4 (E); Pumilio1 (F) and Quaking (G) mRNAs.

The presence of XIGLD-2 on mRNAs destined to receive poly(A), but not yet doing so, implies that the enzyme is kept inactive in the G complex prior to the onset of meiotic maturation. Activation could involve the removal of inhibitory modifications of GLD2; recombinant, presumably unmodified GLD2, purified from bacteria, is active. Alternatively, the G complex may contain specific repressors of GLD2’s enzyme activity, whose action is relieved during oocyte maturation. In C. elegans, protein partners of GLD-2 have been identified that stimulate its activity and interact with gld-2 genetically (Wang et al. 2002). Whatever the repression mechanism, it is striking that XIGLD-2 produced in oocytes and tethered to an mRNA is active, and so must escape the inhibition.

The widespread distribution of mammalian GLD2 mRNA suggests that regulated polyadenylation occurs in many tissues. In cultured somatic cells, repressed mRNAs are deadenylated and almost certainly can be readenylated and reactivated (Muckenthaler et al. 1997). Likely examples of regulated increases in poly(A) length on cellular and viral mRNAs have been described (for example, Dehlin et al. 1996). It will be of interest to determine whether the GLD2 PAP is required for these events.

FIGURE 8. The distribution of mGLD2 in hippocampus is nearly identical to those of mCPEB1, mPumilio1, and ARC. Darkfield microscopy of 35S-labeled RNA probes on radiographic emulsion-coated sections. (A–G) Bar, 200 μm. (A–E) mGLD2 mRNA was detected in the pyramidal cell layers (CA1 through CA3) of the hippocampus and granule cell layers (GCL) of the dentate gyrus (A). Nearly identical distributions were detected in adjacent sections hybridized with probes complementary to mCPEB1 (B), Pumilio1 (C), or ARC (D). The mRNA for the RNA binding protein Quaking, which is expressed primarily in glial cells, was more abundant and distributed differently than mGLD2 (E). (F, G) Three hours of seizure activity induced by pentylentetrazole (PTZ; 50 mg/kg intraperitoneal), increased ARC expression in dendritic and cellular layers of the dentate gyrus (F). (The dark area over the granule cell layer is overexposed silver grains). In contrast, PTZ treatment did not change the abundance or distribution of mGLD2 mRNA (G).
mGLD2 mRNA is expressed in mouse cerebellum. Darkfield microscopy of 35S-labeled RNA probes on emulsion-coated sections. (A–E) Bar, 100 μm. (A) mGLD2 mRNA is found in the major neuronal cell populations in the cerebellum, including the granule cell layer (GCL) and the Purkinje cell layer (PCL), with less prominent expression in the cell-sparse molecular cell layer (MCL). (B) mCPEB1 expression was confined to Purkinje neurons (arrows). (C) mCPEB2 was expressed in a similar pattern to mGLD-2. (D) mCPEB3 was expressed in a similar pattern to mGLD-2 except that more prominent labeling was evident in cells of the MCL. (E) mCPEB4 was expressed in a similar pattern to mGLD-2 except that more prominent labeling was present in cells within the PCL.

mGLD2 is required for the late phase of long-term potentiation in GLD2/CPEB complexes. Region-specific interactions colocalize in the cerebellum, implies regional differences in GLD2/CPEB complexes. Region-specific interactions of the multiple CPEBs with GLD2 may yield special properties. For example, mCPEB3 mRNA increases dramatically in abundance after drug-induced seizures (Theis et al. 2003) and resembles the Aplysia neuronal CPEB, which possesses prion-like properties (Si et al. 2003b). We suggest that GLD2 is required for regulated polyadenylation and sustained translation of dendritic mRNAs.

MATERIALS AND METHODS

Cloning Xenopus GLD-2

Degenerate primers for Xenopus GLD-2 were designed based on multiple sequence alignment of C. elegans GLD-2 and known homologs (Wang et al. 2002). The template used for PCR was DNA from an oligo(dT)-primed, Xenopus oocyte cDNA library (Romanowski et al. 1996). Seminested PCR was performed using primers DG1 and DG3, and then DG2 and DG3, at 50°C (for primer sequences, see Table 1). A single prominent DNA product was obtained, cloned into pT7Blue (Novagen), and sequenced. Two clones sequenced in their entirety were identical and showed extensive similarity to C. elegans and mammalian GLD-2 proteins (Kwak et al. 2004), but little similarity to conventional PAPs. To identify the 5’ and 3’ ends of the cDNA, PCR was performed with primer pairs that anneal to the 5’ end of the cDNA (XGLD-2-5) and 5’ flanking vector (pVP16-1); or to 3’ end of the cDNA (xgld-10) and to 3’ flanking vector sequences (pVP16-2). The full-length ORF was then amplified by high-fidelity PCR from the cDNA library, using primers xgldSmnaN and xgldSmnaC, and inserted into the Smal site of pGEX6P1, to generate pLV071. The cDNA XIGLD-2 sequence was used as a reference sequence in BLAST to search databases from National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/BLAST), the National Institute for Basic Biology (NIBB), and the X. laevis EST project (http://xenopus.nibb.ac.jp/). These searches yielded multiple ESTs that were members of either Contig026310 (11 EST sequences) or Contig029930 (six EST sequences) from the NIBB database; UniGene cluster XL1354 (42 EST sequences) or XL15643 (19 EST sequences) from the NCBI database. ESTs of each group were obtained from NIBB, purchased for the IMAGE consortium (Open Biosystems), and fully sequenced. Clones NIBB:XL084ap08, NIBB:XL080a08, IMAGE:5084876, and IMAGE:6638921 are representative of NIBB Contig026310 and UniGene cluster XL1354, which represent our original clone, and whose gene was called XIGLD-2A. Clones NIBB:XL074e24, IMAGE:5077998, and IMAGE:6643643 are representative of NIBB Contig029930 and UniGene cluster XL15643, whose gene was called XIGLD-2B. XIGLD-2B corresponds to the clone described in Barnard et al. (2004). ESTs represent short and long 3’UTRs also were identified. These include XL009c13 and XL050d09 (XIGLD-2(S)), and XL084p08 and IMAGE:35492925 (XIGLD-2(L)). Both XIGLD-2A and XIGLD-2B encode a 509-amino-acid-long protein.

XIGLD-2A and XIGLD-2B ORFs were tested for sequence similarity to Xenopus tropicalis cDNA and ESTs via BLAST searching against the Sanger X. tropicalis EST database (www.sanger.ac.uk/cgi-bin/blast/submitblast/x-tropicalis), Both X. laevis proteins were related to NCBI Unigene XP–342174.1 (i.e., TEgg044c10, TEgg130h16, and TEgg037n22).

www.rnajournal.org 1125

GLD-2 poly(A) polymerases in germline and brain
Cloning mGLD2 and hGLD2

Clones corresponding to full-length mGLD2 and hGLD2 proteins have been described (Kwak et al. 2004). hGLD2 cDNAs were obtained by reverse transcription and PCR from total RNA, using hGLD2 gene-specific primers. mRNA and EST sequences representative of mGLD2 are represented in UniGene cluster Mm.242865, with polyadenylated representatives for mGLD2(S) (IMAGE:3595512 and NM–133905), and for mGLD2(L) (BB787817). mRNA and EST sequences representative of hGLD2 are represented in UniGene cluster Hs.418198, with polyadenylated representatives for hGLD2(S) (GenBank entry NM–173797), and for hGLD2(L) (IMAGE:4824607 and GenBank entry BC047581.1).

DNA constructs

pLW071

To express GST-XIGLD-2A in bacteria, the entire XlLD-2A ORF was inserted into SmaI-digested pGEX6P-1.
To generate the active site mutant of GST-XlGLD-2A, site-directed mutagenesis was performed on pLW071 and primers xD242f and xD242r.

To express MS2/XlGLD-2A in *Xenopus* oocytes, the XlGLD-2A ORF was amplified with Xlgld-2aNhel and Xlgld-2aXhoI, and inserted into the Nhel and XhoI sites of p3HA-MSP-CeGLD-2 (Kwak et al. 2004). This replaces CeGLD-2 with XlGLD-2A. Transcripts were produced by using a T7 promoter.

To express MS2-XlGLD-2B in *Xenopus* oocytes, the XlGLD-2B ORF was amplified with Xlgld-2bNheI and Xlgld-2bXhoI primers, and inserted into the NheI and XhoI sites of p3HA-MSP-CeGLD2 (Kwak et al. 2004). This replaces CeGLD-2 with XlGLD-2B. The mRNA was transcribed from a T7 promoter.

To express HA-XlGLD-2A in *Xenopus* oocytes, the XlGLD-2A ORF preceded by two HA epitope tag sequences, was inserted into EcoRI digested pCS2+, and can be transcribed from a SP6 promoter.

To express MS2-hGLD2 in *Xenopus* oocytes, a PCR fragment from p3HA-hGLD2 (Kwak et al. 2004), which contained MS2/hGLD2 ORF, was inserted into BamH1 and Xho1 sites of pCS2+ and can be transcribed from SP6 promoter.

To detect the expression of MS2-hGLD2 protein in *Xenopus* oocytes, triple HA tags were inserted into pCS2+/MS2/hGLD2 at the BamH1 site.

To express alternative splicing variants of hGLD2 in *Xenopus* oocytes, hGLD2 ORF in pCSMS2-hGLD2 was replaced with spliced variants hGLD2Δ8 and hGLD2Δ11 ORFs, using Nhel1 and Xho1, and can be transcribed from a SP6 promoter.

Constructs for tethered assay reporters are pLG-MS2, pLGMS2-LucHS, and pJK350, which have been previously described (Kwak et al. 2004).

In vitro transcription

pCS2+ based constructs were linearized with Not1 and transcribed with Megascript SP6 transcription kit (Ambion).

pLW073, pLR073, and pLW078 were linearized with EcoR1 and transcribed with Megascript T7 transcription kit (Ambion).

Oocyte manipulations, injections, and tethered assays

Oocyte injection and progesterone treatment were performed as described previously (Ballantyne et al. 1997), as were tethered function assays (Kwak et al. 2004). mRNAs were injected at 0.7 μg/μL. Enucleations were performed under mineral oil (Lund and Paine 1990; Dickson et al. 2001).

Northern blotting

One microgram of total RNA (unless otherwise stated) was electrophoresed in individual lanes on a 1.2% agarose/formaldehyde/1× MOPS gel. The gel was transferred to GeneScreen plus (Perkin Elmer Life Sciences, Inc.) using Stratagene's PosiBlotter (Stratagene, Inc.). 32P-labeled cDNA (2 × 10^6 c.p.m./mL) was hybridized to the membrane in Hybrisol I (Intergen, Inc.). Northern blots were washed and exposed to a phosphorimager screen for 1 d. Screens were scanned on a Storm phosphorimager (Molecular Dynamics Inc.).

XLGld-2

Northern blotting was performed using 25 μg of total RNA, 25 μg of nonpolyadenylated RNA, and 800 ng of oligo(dt)-purified oocyte RNA. The 32P-dCTP–labeled DNA probe comprised the entire XIGLD-2A ORF.

mGLD2

Northern blotting was performed by using 20 μg of total RNA or oligo(dt)-purified RNA from NIH-3T3 cells, 10 μg of total RNA from various mouse tissues, and on 1 μg of total RNA from mouse brain, cerebellum, P1, and synaptosomal preps.

hGLD2

Northern blotting was performed by using 2 μg of total RNA from various human tissues (Ambion), and a 32P-UTP–labeled probe anti-sense to the entire hGLD2 ORF.

In vitro PAP assay

One hundred nanograms of purified recombinant GST-XIGLD-2A, GST/XIGLD-2A(D242A), or GST/hGLD2 proteins, were incubated with 32P-end–labeled L1 RNA substrate (sequence UUAUCUCAU GUUCAGCACUUUGGAUUUACUCAAUAAAUUCUGUU (Integrated DNA Technologies), 20 U RNAsin (Promega), and 1 mM rNTPs, in PAP buffer (25 mM Tris-HCl at pH 7.0, 40 mM KCl, 0.5 mM MnCl2, 0.05 mM EDTA, 0.5 mM DTT, and 0.2 mg/mL BSA; USB). Reactions were stopped by with 2× RNA loading dye (Ambion).

α-XGLDLD-2A antibodies

Recombinant GST-XIGLD-2A was purified as described for GST-FBF-1 in Bernstein et al. (2005). Purified protein was injected into guinea pigs (Cocalico Biologicals). Antibody specificity was tested

www.rnajournal.org 1127
by using the TnT T7-Quick couple transcription/translation system (Promega). This antibody is referred to in the text as αXIGLD-2.

Interactions with GST fusion proteins

All steps were performed at 4°C. 4µg of GST-XIGLD-2A, GST-PUF-8, or GST was bound to glutathione-Sepharose 4B (Amersham Pharmacia Biotech) and equilibrated with MSB. Twenty stage VI oocytes were homogenized in 200µL MSB and centrifuged at 3000 rpm in a Eppendorf 5415C microcentrifuge for 10 min. The soluble fraction was incubated overnight with recombinant protein bound to 20µL of glutathione beads. Samples were then centrifuged at 3000 rpm for 5 min and washed thrice with 500µL of MSB, and the fraction associated with glutathione beads was eluted by boiling in 50µL of SDS-PAGE loading dye for 5 min.

Westerns

The presence of XIGLD-2 protein in stage VI oocytes, eggs, and different stages of embryogenesis was monitored by lysing groups of 10 oocytes, eggs, or embryos in 100µL of MSB; centrifuging 3000 rpm in an eppendorf 5415C microcentrifuge for 10 min at 4°C; and mixing the soluble fraction with 2 × SDS loading dye. Westerns were done for protein representative of one oocyte/egg/embryo. αXIGLD-2 antibody was used at 1:1000 dilution in blotto. HRP-conjugated anti-Guinea pig secondary antibody (Sigma) was used at 1:10,000 dilution. Western blotting with other antibodies were done following the providers’ protocol.

Immunoprecipitations

For immunoprecipitations, antibodies were purified and bound on Protein A-Sepharose (Sigma). 15µL of serum was incubated with 25µL of Protein A-Sepharose following in 150 µL of PBS, for 4 h at 4°C. Sepharose was then centrifuged at 3000 rpm and washed three times with PBS.

Antibodies directed against the following proteins have been described previously and were gifts of the indicated laboratories: α-CPEB (Dickson et al. 2001), αCPSF100 (Jenny et al. 1994); α-CPSF73 (gift of Dr. D.L. Bentley, University of Colorado HSC), αXenopus Pumilio (Nakahata et al. 2003), α-XIPABP2 (Good et al. 2004), and α-maskin (gift of Dr. C. Wiese).

Protein A-Sepharose bound antibodies were equilibrated with MSB (150 mM NaCl, 0.1% NP-40, 50 mM Tris-Cl at pH 8) and a protease inhibitor cocktail (Boehringer Manneheim) (Dickson et al. 2001) and incubated overnight at 4°C with oocyte extract (0.1 oocyte/µL). Samples were centrifuged at 3000 rpm in an Eppendorf 5415C microcentrifuge for 5 min and washed three times with 500µL modified MSB, and the bound fraction was eluted by boiling in 50µL of SDS loading dye for 5 min.

For RNA coimmunoprecipitations and RNA dependence analysis of the CPEB-XIGLD2 interaction, modified MSB was made with DEPC-treated water, 1 mM DTT, and 1 U/µL RNAsin, with or without 1 µL RNaseA/T1 mix (Ambion) per 10 µL of lysate. The Protein A-Sepharose bound antibodies were incubated with oocyte lysate (0.04 oocytes/µL) 5 h at 4°C and washed three times with 200µL of DEPC-based MSB. RNA was eluted from beads by extraction with TRI reagent (Sigma) and solubilized in 20 µL of DEPC water.

Where indicated, oocytes were injected with mRNAs coding for tagged forms of GLD2 and incubated at room temperature for 6 h, prior to preparation of extracts.

RT-PCR

Reverse transcriptase reactions were performed using one third of the total coimmunoprecipitated sample or 1 µg of total oocyte RNA. Oligo(dT)-primed reverse transcription reactions were performed by using the GeneRacer Superscript II reverse transcription module (Invitrogen), as described by manufacturer. Three microliters of the Reverse transcription reaction was used for PCR with gene-specific primers for 35 cycles with annealing temperatures of 55°C (c-mos and actin), 65°C (cyclinB1), and 45°C (L1).

In situ hybridizations

Sections on slides were fixed in 4% paraformaldehyde in PBS for 2 h at 4°C. Slides were then washed for 5 min in 2× SSC three times, and incubated in 0.2 µg/mL Proteinase K (Qiagen) in 0.1 M Tris base and 50 mM EDTA (pH 8.1) for 10 min at 37°C. Slides were washed in 2× SSC at room temperature for 2 min and incubated in 0.1 M TEA at room temperature with rapid stirring, and acetic anhydride was added to a final concentration of 0.25% (v/v) with rapid stirring for 10 min. Slides were then washed in 2× SSC for 5 min. Finally, sections were dehydrated in an ascending ethanol series and air-dried for 15 min.

Templates for generating 35S-labeled RNA probes were generated by PCR of a mouse brain cDNA library using T7 anchored primer pairs (Table 1). In vitro transcription was carried out in 1× Transcription Optimized Buffer, 10 mM DTT; 1 U/mL RNasin; 0.375 mM ATP, CTP, and GTP; 1 U/mL T7 RNA polymerase (all Promega); 3.5 mCi/mL [α-35S]UTP (PerkinElmer); and 100 ng template DNA and incubated for 2 h at 37°C. RQ1 RNase free DNase (Promega) was added at a concentration of 0.15 U/µL and incubated for an additional 15 min at 37°C. The labeled probes were purified using ProbeQuant G-50 Micro columns (Amersham Biosciences). Probes were diluted in hybridization solution (3× SSC, 10% dextran sulfate, 1× Denhardt’s solution, 0.2 mg/mL tRNA, 50 mM NaPO4 buffer, and freshly added DTT to 50 mM final concentration) to ~106 cpm/100 µL. One hundred microliters of the hybridization solution at 55°C with labeled probe was applied to each slide. Slides were then covered with coverlips and incubated at 55°C in a hybridization chamber saturated with 75% formamide for 16 h.

After hybridization, coverslips were removed and slides were washed three times in 2× SSC with 2 mM DTT at room temperature for 10 min. Slides were incubated in 1.5 U/mL RNase A (Qiagen) in RNase buffer (10 mM Tris-HCl and 0.5 M NaCl at pH 8.0) at 37°C for 1 h followed by washes in 1× SSC with 1 mM DTT at room temperature for 5 min, 0.5× SSC with 1 mM DTT at room temperature for 5 min, and 0.1× SSC with 2 mM DTT at 70°C for 1 h. The sections were then dehydrated in an ascending series of ethanol and then were air-dried. Sections were exposed to a phosphorimager screen and were subsequently scanned on a Storm phosphorimager. Slides were then covered with NTB2 emulsion (Eastman Kodak Co.) and exposed for 28 d for analysis of silver grain distribution. After development, slides were
counterstained with Nissl stain and dehydrated through a graded series of ethanol and xylene. A coverslip was then applied. Images were taken with a Leica DC 300F digital camera linked to Image Pro-Plus software on a PC through a Leica DMRX microscope.

ACKNOWLEDGMENTS

We thank Judith Kimble for suggestions on the manuscript and the work, and we thank members of the Wickens and Kimble laboratory for advice and assistance. We also appreciate Jerry Yin’s insights and suggestions. We are grateful to Dr. Steve Liebhaber (University of Pennsylvania School of Medicine) for mouse RNAs and blots, and to Drs. W. Keller (Biozentrum, Basel, Switzerland), D. Bentley (University of Colorado Health Sciences Center), M. Yamashita (Hokkaido University, Sapporo, Japan), M. Sheets (University of Wisconsin, Madison), and C. Wise (University of Wisconsin-Madison) for antibodies. This work was supported by an NIH fellowship to C.S. (DA016503), and by NIH grants to M.W. (GM50942) and C.L. (DA019153).

Received March 16, 2005; accepted April 17, 2005.

REFERENCES

Aravind, L. and Koonin, E.V. 1998. Phosphoesterase domains asso-

Barnard, D.C., Ryan, K., Manley, J.L., and Richter, J.D. 2004. Sym-

Good, P.J., Abler, L., Herring, D., and Sheets, M.D. 2004. Xenopus embryonic poly(A) binding protein 2 (ePABP2) defines a new family of cytoplasmic poly(A) binding proteins expressed during the early stages of vertebrate development. Genesis 38: 166–175.

Vertebrate GLD2 poly(A) polymerases in the germline and the brain

LABIB ROUHANA, LIAOTENG WANG, NATASCHA BUTER, et al.

RNA 2005 11: 1117-1130

References
This article cites 65 articles, 31 of which can be accessed free at:
http://rnajournal.cshlp.org/content/11/7/1117.full.html#ref-list-1

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.