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a  b  s  t  r  a  c  t

We  present  a computational  cognitive  model  that  explains  transfer  of learning  across  two  games  of
strategic  interaction  – Prisoner’s  Dilemma  and  Chicken.  We  summarize  prior  research  showing  that,
when  these  games  are  played  in  sequence,  the  experience  acquired  in the  first  game  influences  the
players’  behavior  in  the  second  game.  The  same  model  accounts  for human  data  in  both  games.  The
model  explains  transfer  effects  with  the aid of  a  trust  mechanism  that  determines  how  rewards  change
depending  on the  dynamics  of the  interaction  between  players.  We  conclude  that  factors  pertaining  to
the  game  or  the individual  are  insufficient  to  explain  the  whole  range  of  transfer  effects  and  factors
pertaining  to  the  interaction  between  players  should  be  considered  as  well.

©  2014  Society  for Applied  Research  in Memory  and  Cognition.  Published  by Elsevier  Inc.  This  is an
open  access  article  under  the  CC  BY-NC-ND  license  (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Humans have a strong tendency toward cognitive parsimony:
they tend to develop cognitive strategies that make only mini-
mal  use of the potentially relevant information in the environment
(Gigerenzer, Todd, & the ABC Research Group, 1999). In doing so,
they do not compromise their ability to adapt and thrive, quite
the contrary. For example, a trust heuristic assists us in dealing
with the complexities of interpersonal interaction (e.g., Wegwarth
& Gigerenzer, 2013). Once we have identified a trustworthy per-
son, we tend to suspend the meticulous analysis of the benefits
and risks of cooperating with that person; we  just assume (i.e.,
trust) that he or she will reciprocate in kind. Applying a heuristic
(i.e., simple rule) can speed up decision-making and reduce cog-
nitive load, releasing cognitive resources that allow us to adapt to
complex and dynamic environments. Forgoing meticulous analysis
and relying on simple rules derived from experience is one of the
characteristics of intuition (Gigerenzer, 2007). Intuitive decision
making can be very effective in handling the complexity and uncer-
tainty of social environments by exploiting evolved capacities and
environmental regularities (Hertwig & Hoffrage, 2013). Here we  use
computational cognitive modeling to investigate how the coupling
between simple heuristics, cognitive capacities, and social environ-
ments might work in strategic interpersonal interaction. We  build

∗ Corresponding author. Tel.: +1 9377753519.
E-mail addresses: ion.juvina@wright.edu (I. Juvina), cl@cmu.edu (C. Lebiere),

coty@cmu.edu (C. Gonzalez).

on previous research suggesting that cognitive architectures and
particularly instance-based learning (IBL) approaches may  provide
a general explanation of intuitive decision-making (Gonzalez, Ben-
Asher, Martin, & Dutt, 2015; Gonzalez, Lerch, & Lebiere, 2003;
Thomson, Lebiere, Anderson & Staszewski, 2015).

Games of strategic interaction have successfully been used to
model various real-world phenomena. For example, the game Pris-
oner’s Dilemma has extensively been used as a model for real-world
conflict and cooperation (Rapoport, Guyer, & Gordon, 1976). These
games are often called social dilemmas to emphasize their rele-
vance for the real world. There has been a recent tendency toward
studying ensembles of games, as most social dilemmas rarely occur
in isolation; more often they take place either concurrently or in
sequence (Bednar, Chen, Xiao Liu, & Page, 2012). This is partic-
ularly true in organizations with complex structures, roles, and
processes. For instance, when games are played in sequence (i.e.,
one after another), an effect known as “spillover of precedent” may
occur: a precedent of efficient play in a game can be transferred
to the next game (e.g., Knez & Camerer, 2000). We  refer here to
games that are repeated multiple times; the players acquire exten-
sive experience with one game before they switch to another game.
We determine the effect that the first game has on the second one
and we refer to this effect as transfer of learning in games of strate-
gic interaction. This effect has important practical implications. For
example, most organizations employ training exercises to develop
cooperation and trust among their employees. The assumption is
that what is learned in a very specific, ad-hoc exercise transfers to
organizational life once the training is over. Much of expertise is
generally of an intuitive nature (Gigerenzer, 2007), which makes it

http://dx.doi.org/10.1016/j.jarmac.2014.09.004
2211-3681/© 2014 Society for Applied Research in Memory and Cognition. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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inaccessible to conscious thought and thus hard to study with tra-
ditional methods like self-reporting. Here, we employ a cognitive
architectural approach to analyze the interplay of cognitive pro-
cesses and interaction dynamics that underlie what appears as gut
feelings or intuition.

Research in behavioral game theory attempting to explain what
causes transfer of learning in games of strategic interaction can
be summarized as follows: (1) Bednar et al. (2012) use the con-
cept of entropy or strategic uncertainty to explain when learned
behavior is likely to spillover from one game to another. They sug-
gest that prevalent strategies in games with low entropy are more
likely to be used in games with high entropy, but not vice versa
(Bednar et al., 2012). In other words, individuals develop strate-
gies for easier games and apply them to more complex games. (2)
Another explanation says that expecting others to do what they
did in the past (and expecting that they will think you will do what
you did in the past, etc.) can coordinate expectations about which
of many equilibria will happen (Devetag, 2005). In other words,
players transfer what they did in the past to the subsequent game.
(3) Finally, Knez and Camerer (2000) found that transfer of learn-
ing across games strongly depended on the presence of superficial,
surface similarity (what they call ‘descriptive’ similarity) between
the two games. When the games differed in (what we  call) surface
characteristics (e.g., actions were numbered differently in the two
games) transfer of learning from one game to another did not occur
(see a more detailed discussion in Juvina, Saleem, Martin, Gonzalez,
& Lebiere, 2013).

These approaches emphasize factors that pertain to the games
(entropy, similarity) or the individuals (expectations). We  focus
here on factors pertaining to the interaction between individuals
while not excluding factors related to the game and the individual.
We  demonstrate that the dynamics of a relational construct – recip-
rocal trust – are key to explaining transfer of learning across games
of strategic interaction. Generally, we attempt to bring cognitive-
computational and socio-cognitive perspectives into the field of
experimental economics, aiming to contribute to theory building
and unification.

In the remainder of this paper, we summarize an empirical study
on transfer of learning in strategic interaction and present a com-
putational cognitive model as an aid in our attempt to explain
the empirical results. We  also discuss some of the challenges and
opportunities that modeling transfer of learning in strategic inter-
action brings to the computational cognitive modeling field.

2. Experiment

Only a summary of the experiment is given here; a more
detailed description was presented elsewhere (Juvina et al., 2013).
We selected two of the most representative games of strategic
interaction: Prisoner’s Dilemma (PD) and the Chicken Game (CG).
They are both mixed-motive non-zero-sum games that are played
repeatedly. The individually optimal and the collectively optimal
solutions may  be different. Players can choose to maximize short-
or long-term payoffs by engaging in defection or cooperation and
coordinating their choices with each other. These features give
these games the strategic dimension that makes them so relevant to
real-world situations (Camerer, 2003). What makes PD and CG par-
ticularly suitable for this experiment is the presence of theoretically
interesting similarities and differences, providing an ideal mate-
rial for studying transfer of learning. Table 1 presents the payoff
matrices of PD and CG that were used in this experiment.

Both PD and CG have two symmetric (win-win and lose-lose)
and two asymmetric (win-lose and lose-win) outcomes. Besides
these similarities there are significant differences between the two

Table 1
Payoff matrices of prisoner’s dilemma (PD) and chicken game (CG).

PD A B CG A B

A −1,−1 10,−10 A −10,−10 10,−1
B  −10,10 1,1 B −1,10 1,1

games. The Nash equilibria are [−1,−1] or [1,1]1 in PD and [10,−1] or
[−1,10] in CG. The number of rounds was  not known in advance, so
the participants could not apply backward induction. In CG, either
of the asymmetric outcomes is more lucrative in terms of joint pay-
offs than the [1,1] outcome. This is not the case in PD where an
asymmetric outcome [10,−10] is inferior in terms of joint payoffs
to the [1,1] outcome. Mutual cooperation in CG can be reached by
a strongly optimal strategy (i.e., alternation of [−1,10] and [10,−1])
or a weakly optimal strategy [1,1]. The optimal strategy in PD cor-
responds to the weakly optimal strategy in CG numerically, while
the strongly optimal strategy of alternation in CG shares no surface-
level similarities with the optimal strategy in PD. Thus, although
mutual cooperation corresponds to different choices in the two
games (i.e., surface-level dissimilarity), they share a deep similarity
in the sense that mutual cooperation is, in the long run, superior to
competition in both games.

Studying these two  games in a sequential ensemble provides
a great opportunity to test the theoretical accounts summarized
above. Based on the concept of entropy (Bednar et al., 2012), one
would expect transfer of learning to only occur in one direction, that
is from PD to CG, because CG has relatively higher entropy (i.e., out-
come uncertainty) than PD. According to the “expectation account”
(Devetag, 2005), one would predict that the prevalent strategy from
the first game would transfer to the second game. For example, if
the two players settle in the [1,1] outcome in PD, they will be more
likely to settle in the [1,1] outcome in CG as well; if they alternate
between the two asymmetric outcomes in CG, they will be more
likely to alternate in PD as well. If surface similarities were essen-
tial for transfer (Knez & Camerer, 2000), one would only expect the
[1,1] outcome to drive transfer, because it is identical in the two
games.

In contrast, an account focused on interaction would predict that
players learn about each other and transfer that learning across
games, regardless of surface dissimilarities between games or the
order in which games are played.

In both Prisoner’s Dilemma and Chicken, learning must occur
not only at an individual level but also at a dyad level. If learning
occurs only in one of the players in a dyad, the outcomes may  be
disastrous for that player, because the best solution also bears the
highest risk. For example, if only one player understands that alter-
nating between the two  moves is the optimal solution in CG, the
outcome for that player can be a sequence of −1 and −10 payoffs.
Only if both players understand the value of alternation and are
willing to alternate, the result will be a sequence of 10 and −1 pay-
offs for each player, which in average gives each player a payoff of
4.5 points per round. Thus, the context of interdependence makes
unilateral individual learning not only useless but also detrimental.
The two players must jointly learn that only a solution that maxi-
mizes joint payoff is viable in the long term. However, this solution
carries the most risk and thus it is potentially unstable in the long
term. To ensure that the optimal solution is maintained from one
round to another, there must exist a mechanism that mitigates
the risk associated with this solution.2 It has been suggested that

1 According to the folk theorem (Friedman, 1971), the [1,1] outcome can be a Nash
equilibrium if the game is infinitely repeated against the same opponent.

2 We do not claim that learning occurs in the two players in the same way  or at the
same time. It is possible that only one player understands the value of alternating
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Fig. 1. Frequencies of the most relevant outcomes in PD and CG by order (PD–CG left and CG–PD right) and round averaged across all human participants. Each game was
played  for 200 rounds.

trust relations are self-sustaining once they have been developed
(Hardin, 2002). In situations where there are benefits to individuals
that can only be generated through mutual trust, each individual
has an incentive to maintain the relation. A trust relation develops
trough gradual risk-taking and reciprocation (Cook et al., 2005).
In turn, as trust develops, risk is reduced and the trust relation
becomes more stable. We  will demonstrate that the dynamics of
reciprocal trust explain specific transfer effects that would not be
predicted by the theoretical accounts summarized above.

One hundred and twenty participants were paired with anony-
mous partners (leading to 60 pairs) and were asked to play the two
games in sequence. The 60 pairs were randomly assigned to two
conditions defined by the order in which the games were played:
PD–CG and CG–PD. Participants played 200 unnumbered rounds
of each game. At the end of each game, participants completed a
five-item questionnaire assessing: how trustful they were of the
opponent; how trustful of them the opponent was; how fair they
thought the opponent’s actions were; how fair the participants’
actions were toward their opponents; and how satisfied they were
with the overall outcome of the game.

3. Results3 and discussion

To study transfer of learning across the two games, we analyzed
the outcomes of a game according to when it was played. We  also
analyzed the round-by-round dynamics of these outcomes.

The frequencies of the most relevant outcomes (i.e., the two
symmetric ones and an alternation of the two asymmetric ones

and decides to act as a strategic teacher (Camerer et al., 2002). Such a player would
alternate between the two outcomes with the hope that the other player will eventu-
ally cooperate. The second player does not need to perform any high level reasoning
for  this. As long as she recognizes that the other player is alternating, even if she only
myopically best responds to her opponent, she will fall into the optimal alternating
behavior. However, there is risk associated with strategic teaching, particularly in
Prisoner’s Dilemma.

3 Only a summary of the results is provided here as a context for understanding
the cognitive model. A more detailed presentation of the empirical results can be
found in Juvina et al. (2013).

– [−1,10] and [10,−1]) are displayed in Fig. 1 on a round-by-
round basis. Alternation was  defined as 2-round sequences of
mutual alternation, that is, the probability that either the sequence
“[−1,10] -> [10,−1]” or the sequence “[10,−1] -> [−1,10]” was
observed in any two consecutive rounds. We  also tested 3- and
4-round sequences: with longer sequences of alternation the data
are sparser but the same trends can be observed. The X-axis repre-
sents the rounds of the two  games: 200 rounds for the first game
and 200 rounds for the second game. The Y-axis represents how
frequently an outcome was selected. The represented values are
averages over 30 pairs of participants. The first thing to notice is
how different the two  games are from each other from a behavioral
perspective: the frequency of actions that lead to the [1,1] outcome
(black solid line) increases in Prisoner’s Dilemma but decreases
in Chicken; alternation (dashed red line) is prominent in CG but
almost nonexistent in PD; and the mutually destructive outcome
([−1,−1] in PD and [−10,−10] in CG, dotted green line) is more fre-
quent in PD than in CG. Mutual cooperation is achieved by different
strategies in the two  games: settling in the [1,1] outcome in PD and
alternating between the two  asymmetrical outcomes in CG, respec-
tively (see also Bornstein, Budescu, & Zamir, 1997; Rapoport et al.,
1976). However, in spite of these differences, mutual cooperation
emerges in both games as the preferred solution and it becomes
more and more stable over time (see increasing [1,1] curve in PD
and alternation curve in CG).

If transfer of learning across games were driven by surface simi-
larities (Knez & Camerer, 2000), one would expect the strategy that
is learned in the first game to be applied in the second game as well,
even though it may  not be appropriate for the second game. This
is indeed the case with regard to the [1,1] outcome in the PD–CG
order: players learn that [1,1] is long-term optimal in Prisoner’s
Dilemma and they are more likely to achieve it in the subsequent
Chicken Game, even though it is only weakly optimal in Chicken.
Fig. 2 shows the frequency of the [1,1] outcome in CG, when CG
is played before PD (black solid line) as compared to when CG is
played after PD (dashed red line).

In the CG–PD order, if transfer of learning across games were
driven by surface similarities, one would expect the strategy of
alternating between the two  asymmetrical outcomes in CG to be
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Fig. 2. Transfer of the [1,1] outcome from PD to CG. The frequency of the [1,1] out-
come is higher when CG is played after PD (dashed red line) than when CG is played
before PD (black solid line). Part of round-by-round variability was removed by
smoothing. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

attempted in PD as well, at least in the beginning of the game. This
was not the case (see Fig. 1: alternation in PD is very low regardless
of order).

If transfer of learning across games were driven by deep simi-
larities, one would expect learning the optimal strategy in the first
game to increase the probability of learning the optimal strategy
in the second game, even though there is no surface similar-
ity between these strategies. These strategies ([1,1] in Prisoner’s
Dilemma and alternation in Chicken) are similar only on an abstract,
deep level: they both aim at maximizing joint payoff in a sustain-
able way, which in these two games is realistically possible only if
the two players make (approximately) equal payoffs on a long run.
On a surface level, these two strategies are very different. The [1,1]
strategy in Prisoner’s Dilemma requires that players make the same
move at each trial and they do not switch to the opposite move. In
contrast, the alternation strategy in Chicken requires that players
make opposite moves at each round and they continuously switch
between the two moves. Fig. 3 shows a higher level of alternation
when CG was played after PD (red dashed line) than when CG was
played before PD (black solid line).

The deep transfer effect can be observed in reversed order as
well (Fig. 4): Mutual cooperation in PD (the [1,1] outcome) is more
frequent when PD is played after CG (red dashed line) than when
PD is played before CG (black solid line).

Thus, learning the optimal strategy in the first game increased
the probability of learning the optimal strategy in the second game,
even though the optimal strategies were different in the two  games.
This transfer effect was significant in both directions (PD–CG Fig. 3
and CG–PD Fig. 4) contrary to the “entropy” account; if entropy
were the causing factor, transfer would have only occurred in one
direction – from lower to higher entropy (Bednar et al., 2012).

3.1. Combined effects of surface and deep similarities

In the case of deep transfer, the transfer effect was smaller
in magnitude for Chicken than for Prisoner’s Dilemma (see

Fig. 3. Transfer of mutual cooperation from PD to CG. The frequency of the alterna-
tion outcome is higher when CG is played after PD (red dashed line) than when CG is
played before PD (black solid line). Part of round-by-round variability was removed
by  smoothing. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Transfer of mutual cooperation from CG to PD. The frequency of the [1,1]
outcome is higher when PD is played after CG (red dashed line) than when PD is
played before CG (black solid line). Part of round-by-round variability was removed
by  smoothing. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Figs. 3 and 4). It seems as if CG has a stronger impact on PD than vice
versa. This result further contradicts the entropy account (Bednar
et al., 2012), which would predict weak or insignificant transfer
from CG (higher entropy) to PD (lower entropy) (CG has higher out-
come uncertainty than PD; see Bednar et al., 2012, for a definition
of their concept of entropy).
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Fig. 5. Combined effects of surface and deep similarities. The left panel shows transfer from PD to CG and the right panel shows transfer from CG to PD. In the left panel,
surface  and deep transfers are divergent from each other (i.e., they lead to different outcomes). In the right panel, surface and deep transfers are convergent with each other
(i.e.,  they lead to the same outcome). This explains why  the observed transfer effect is larger in magnitude in the CG–PD direction than in the PD–CG direction.

The explanation that we propose for this difference is based on
how surface and deep similarities combine with each other to drive
transfer of learning across games. As a reminder, surface similari-
ties are based on appearance (e.g., [1,1] looks exactly the same in
CG and PD) while deep similarities are based on meaning (e.g., [1,1]
and alternation maximize joint payoff in PD and CG, respectively).
They may  have congruent or incongruent effects (Fig. 5). Thus, in the
PD–CG order, surface and deep similarities act in a divergent, incon-
gruent way: surface similarity makes it more likely that the [1,1]
outcome is selected whereas deep similarity makes it more likely
that the alternation outcome is selected. In other words, transfer
based on surface similarity interferes with transfer based on deep
similarity. In contrast, in the CG–PD order, both types of similarities
act in a convergent, congruent way: they both increase the proba-
bility that the [1,1] outcome is selected. There is no impeding effect
of surface similarity on PD because there is no optimal strategy in
CG that is similar enough to a non-optimal or sub-optimal strategy
in PD. The impeding and/or enabling effects of surface similarities
on deep transfer are revisited in the modeling section.

3.2. Reciprocal trust

In addition to game choices, we analyzed self-reports of recip-
rocal trust administered at the end of each game. We  calculated
correlations between these trust variables and the variables indi-
cating mutual cooperation in the two games. We  found that the
more frequent mutual cooperation was in the first game the more
likely the players were to rate each other as trustworthy at the end
of the first game. In addition, the more trustworthy players rated
each other after the first game, the more likely they were to enact
mutual cooperation in the second game. Finally, mutual coopera-
tion in the second game was associated with high levels of trust
at the end of the second game. As expected, the level of reciprocal
trust increased from the first to the second game. These correlations
between trust and the frequency of mutual cooperation suggested
that development and maintenance of reciprocal trust facilitated
deep transfer of learning across the two games and motivated our
modeling approach.

4. A cognitive model of learning and transfer of learning

Modeling transfer of learning across games of strategic inter-
action provides an opportunity to address some of the ongoing
challenges of computational cognitive modeling. Three of these
challenges are particularly relevant here and are described below

as the model is introduced. The model is developed in ACT-R and it
will be made freely available to the public on the ACT-R website.4

ACT-R (Adaptive Control of Thought - Rational) is a theory
of human cognition and a cognitive architecture that is used to
develop computational models of various cognitive tasks. ACT-R
is composed of various modules. There are two memory mod-
ules that are of interest here: declarative memory and procedural
memory. Declarative memory stores facts (know-what), and pro-
cedural memory stores rules about how to do things (know-how).
The rules from procedural memory serve the purpose of coor-
dinating the operations of the asynchronous modules. ACT-R
is a hybrid cognitive architecture including both symbolic and
sub-symbolic components. The symbolic structures are memory
elements (chunks) and procedural rules. A set of sub-symbolic
equations controls the operation of the symbolic structures. For
instance, if several rules are applicable to a situation, a sub-
symbolic utility equation estimates the relative cost and benefit
associated with each rule and selects for execution the rule with
the highest utility. Similarly, whether (or how fast) a fact can be
retrieved from declarative memory depends upon sub-symbolic
retrieval equations, which take into account the context and the
history of usage of that fact. The learning processes in ACT-R control
both the acquisition of symbolic structures and the adaptation of
their sub-symbolic quantities to the statistics of the environment.
ACT-R has been used to develop cognitive models for tasks that
vary from simple reaction time experiments to driving a car, learn-
ing algebra, and playing strategic games (e.g., Lebiere, Wallach, &
West, 2000).

5. Interdependence

In games of strategic interaction, players are aware of each other
and their interdependence. In a previous study we showed that
game outcomes were influenced by players’ awareness of inter-
dependence. The more information the two players in a dyad had
about each other’s options and payoffs the more likely they were
to establish and maintain mutual cooperation (Martin, Gonzalez,
Juvina, & Lebiere, 2013). Consequently, a cognitive model playing
against another cognitive model in a simultaneous choice paradigm
needs to develop an adequate representation of the opponent. We
use instance-based learning (IBL) (Gonzalez et al., 2003; Gonzalez
et al., in press) to ensure that the opponent is dynamically rep-
resented as the game unfolds. Specifically, at each round in the
game, an instance (i.e., snapshot of the current situation) is saved

4 http://act-r.psy.cmu.edu/.
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in memory. The instance contains the previous moves of the two
players and the opponent’s current move. Saved instances are
used to develop contextualized expectations about the opponent’s
moves based on ACT-R’s memory storage and retrieval mechanisms
(Anderson, 2007). Expectations have been hypothesized to explain
some of the spillovers across games (Devetag, 2005).

6. Generality

Before one attempts to build a model of transfer of learning
across two games, one needs to have a model that is able to account
for the human data in both games. Although by and large cognitive
models are task-specific, there is a growing need to develop more
general, task-independent models and there are a few precedents:
Lebiere, Wallach, and West (2000) developed a model of Prisoner’s
Dilemma that was able to account for human behavior in a number
of other 2 × 2 games; Lejarraga, Dutt, and Gonzalez (2012) devel-
oped an IBL model that made relatively accurate predictions for
human behavior in three different binary choice tasks; Gonzalez
et al. (in press) have recently expanded this IBL model to account
for the dynamics of cooperation in the Prisoner’s Dilemma game;
and Salvucci (2013) developed a “supermodel” that accounts for
human data in seven different tasks. We  build upon these prece-
dents of generality by developing a single model to account for
round-by-round human data in both PD and CG. We  achieve this
generality by using instance-based learning for opponent mod-
eling (as described in the previous section) and reinforcement
learning for action selection. Both instance-based learning and rein-
forcement learning are very general learning mechanisms that can
produce different results depending on their input. Specifically, at
each round in the game, the model anticipates the opponent’s move
based on the opponent’s past behavior and selects its own  move
based on the utilities of its own past moves in the current context.
The input that the model receives as it plays determines the model’s
behavior. The input is represented by opponent’s move, own  move,
and the payoffs associated with these moves.

An important question is what constitutes the reward from
which the model learns the utilities of its actions (moves). Play-
ers may  try to maximize their own payoff, the opponent’s payoff,
the sum of the two player’s payoffs, the difference, etc. (cf. Gonzalez
et al., in press). Thus, a large number of reward structures can be
imagined. A complicating assumption is that the reward structure
might change as the game unfolds depending on the dynamics
of the interaction between the two players. This indeed seems
to be the case here, as we have realized after a large number of
model explorations: no single preset reward structure is sufficient
to account for the human data. One could try to computationally
explore the space of all possible reward structures and their com-
binations to find the one that best fit the human data, but the value
of this approach is questionable, because it may  lead to a theoreti-
cally opaque solution. Instead, we chose to employ a theoretically
guided exploration that drastically reduces the number of possible
reward structures and, more importantly, gives us a principled way
to describe the dynamics of players’ motives as the game unfolds
(see its description in the next section).

7. Transfer of learning

When the model relies only on the two learning mechanisms
described above (i.e., instance-based learning – IBL and reinforce-
ment learning – RL) it is able to only account for the transfer
driven by surface similarities. Thus, according to IBL, the opponent
is expected to make the same move in a given context as in the pre-
vious game. According to RL, an action that has been rewarded in
the first game tends to be selected more often in the second game.

It is impossible in this framework to account for transfer driven by
deep similarities. For example, if the opponent used to repeat move
B when it was  reciprocated in PD, there is no reason to switch to
alternation between A and B when none of these moves are recip-
rocated in CG. Moreover, learning within a game may in fact hinder
transfer of learning across games if surface similarities are incon-
gruent with the optimal solution in the target game, as in the PD–CG
order. To find a solution to the deep transfer problem, we need to
return to a theoretical and empirical analysis of the two games.

As mentioned in the introduction, in both Prisoner’s Dilemma
and Chicken the long-term optimal solution bears the highest risk
and, thus, it is unstable in the absence of reciprocal trust. We  indeed
found that self-reported trust increases after game playing and it
positively correlates with the optimal outcome. Recent literature
on trust (e.g., Castelfranchi & Falcone, 2010) suggests that trust is
essentially a mechanism that mitigates risk and develops through
risk-taking and reciprocation. We  postulate that trust explains the
deep transfer of learning across games. Players learn to trust each
other and this affects their reward structure and subsequently
their strategies. We  added a “trust accumulator” to our model –
a variable that increases when the opponent makes a cooperative
(risky) move and decreases when the opponent makes a compet-
itive move (see next section for more detail). In addition, another
accumulator called “willingness to invest in trust” (“trust-invest
accumulator” for brevity) was necessary to overcome situations in
which both players strongly distrust each other and persist in a
mutually destructive outcome, which further erodes their recipro-
cal trust, and so on5. In such situations, the empirical data shows
that players make attempts to develop trust by gradual risk-taking.
When these attempts are reciprocated, trust starts to re-develop. In
the absence of reciprocation these attempts are discontinued. The
trust-invest accumulator increases with each mutually destructive
outcome and decreases with each attempt to cooperate that is not
reciprocated.

The two accumulators (trust and trust-invest) are used to deter-
mine the dynamics of the reward structure. They both start at
zero. When they both are zero or negative, the two players act
selfishly by trying to maximize the difference between their own
payoff and the opponent’s payoff. This quickly leads to the mutu-
ally destructive outcome, which decreases trust but increases the
willingness to invest in trust. When the latter is positive, a player
acts selflessly, trying to maximize the opponent’s payoff. This can
lead to mutual cooperation and development of trust or players
may  relapse into mutual destruction. When the trust accumula-
tor is positive, a player tries to maximize joint payoff and avoid
exploitation. Thus, the model switches between three reward func-
tions depending on the dynamics of trust between the two players.
This mechanism provides a principled solution to the problem of
selecting the right reward structure and in the same time solves the
transfer problem: due to accumulation of trust in the first game, the
model employs a reward structure that is conducive to the optimal
solution and thus better performance in the second game.

8. Model description

Two ACT-R models run simultaneously and interact with each
other. At each round, each model gets as input the game matrix
and the opponent model’s previous move (as in the human study).

5 Procedural learning does not always allow models to escape mutual defection. A
mutually destructive outcome can persist in spite of decreasing utilities. For exam-
ple,  in Prisoner’s Dilemma, the “defect” rule loses utility from mutual defection,
but  the “cooperate” rule loses 10 times more from unreciprocated cooperation. This
makes the “defect” rule retain relatively higher utility than the “cooperate” rule.
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Fig. 6. (A) Instances (snapshots) composed of contexts and decisions are stored in
memory. A context is represented by the previous moves of the two  players and
a  decision is represented as the opponent’s move in that context. (B) All possible
instances that can be used to anticipate the opponent’s move: there are four possible
contexts and two possible opponent’s moves (op-move) in each context.

The first move is random. After the two models make their moves,
payoff is assigned based on the payoff matrix.

At each round, the model tries to anticipate the opponent’s
move based on the opponent’s history of moves in similar con-
texts. In order to learn what move the opponent is likely to make
at each round, the model saves instances (snapshots) of prior con-
texts and the corresponding moves made by the opponent in those
contexts (see Fig. 6A). Fig. 6B shows all possible instances that can
be encountered during the game. The context is represented by the
model’s previous move (prev-move) and the opponent’s previous
move (prev-op-move). In a given context, the opponent can make
one of two moves (a or b). For example, the “c1a” instance (the first
one in Fig. 6B) is composed of the context “aa” and the decision “a”.
This instance may  be retrieved whenever its context matches the
current context of the game. If this instance is retrieved, then the
opponent’s expected move is “a”.

Depending on the opponent’s playing history, one of the alter-
native instances will be more active and more likely to be retrieved
from memory. Activation of an instance is a function of the fre-
quency and recency of that instance’s occurrence. For example, if
in the context “prev-move b prev-op-move a” the opponent usually
plays “a”, then the instance “c3a” will be more active in the model’s
memory and thus more likely to be retrieved. Based on retrieval,
the model expects that the opponent will play “a” in this context.
Anticipation is prone to error due to variability in activations (the
ACT-R parameter activation noise) and variability in the opponent’s
behavior. The latter can be caused by the opponent’s anticipation
uncertainty and strategy shifts (all these sources of variability are
independent of each other). Thus, the two models try to anticipate
each other’s current move based on their respective histories of
moves. These anticipations occur in conditions of high uncertainty
due to variability of individual model behavior and the context of
interdependence. After seeing the actual move of the opponent,
the model reinforces the correct instance by rehearsing it, that is,
issuing a new retrieval request with the actual opponent’s move
as a retrieval cue (retrieving an instance increases its activation).
This ensures that facts (i.e., actual opponent’s moves) are weighted
heavier than expectations (i.e., expected opponent’s moves), and
anticipation errors are not propagated in the long term. Thus, the
model leverages the principles of the ACT-R’s declarative memory
to anticipate the opponent’s move.

Table 2
Updating matrices for trust and trust-invest accumulators.

Trust A B Trust-invest A B

A −1,−1 10,−10 A 0.18,0.18 0,−1
B  −10,10 3,3 B −1,0 0,0

After anticipating the opponent’s move, the model must decide
on its own move. For example, if the opponent is expected to play
“a” the model could decide to play “a” or “b”. For this decision,
the model leverages the principles of the ACT-R’s procedural mem-
ory, which is composed of if-then rules. For each possible context
(recent moves) and for each possible opponent’s move (see Fig. 6),
the model contains two decision rules6: one that makes the move
“a” and one that makes the move “b” (Fig. 7). The first rule “baa-a”
can be read as follows: if the goal is to play PD and CG, an instance
has been retrieved from memory that matches the current context
“ba” and indicates the expected opponent’s move to be “a”, and the
imaginal module is free, then transfer the retrieved instance to the
imaginal buffer and make move “a”. The second rule “baa-b” can
be read as follows: if the goal is to play PD and CG, an instance
has been retrieved from memory that matches the current context
“ba” and indicates the expected opponent’s move to be “a”, and
the imaginal module is free, then transfer the retrieved instance
to the imaginal buffer and make move “b”. The retrieved instance
is maintained in working memory (imaginal buffer) so that the
expected opponent’s move (op-move) can be compared with the
actual opponent’s move.

Each of these rules can fire whenever the context is instantiated
and the opponent is expected to make the corresponding move.
For example, if the instance “c3a” was  retrieved (see the example
above), two rules can fire whenever the context is “c3” and the
opponent is expected to make move “a”: one of these rules makes
the move “a” and the other one makes the move “b”. Only one rule
can fire at a given time, that is, the rule with the higher utility. The
two rules start with the same utility, thus they are equally likely
to be selected in the beginning of the game. There is random vari-
ability in the utilities of the production rules (the ACT-R parameter
utility noise), which ensures that one of the rules has higher utility
than the other. After a move has been made, the model receives
the corresponding payoff according to the payoff matrix. The utili-
ties of production rules are updated according to the ACT-R utility
learning mechanism (a reinforcement learning algorithm). After a
number of rounds, one of the two  rules corresponding to a context
and an expectation will accrue more utility because it maximizes
the reward received by the model. The learning rate of the model
(i.e., the ACT-R parameter alpha) was  fit to match the learning rate
observed in the human data.

A key question for this model is what the reward is. If the reward
is set to the payoff received from the game matrix, the model can-
not account for the deep transfer across games found in the human
data (see the section Model validation for a discussion of alternative
models). For the reasons discussed above, the rewards are deter-
mined by the values of two accumulators: trust and trust-invest.
These accumulators are incremented or decremented at each round
according to the matrices presented in Table 2. The general trends
for the updating of the two trust accumulators are consistent with
the theory on trust (e.g., Mayer, Davis, & Schoorman, 1995). Thus, a
player’s trust increases when the other player cooperates, and more
so when the other player unilaterally cooperates, showing willing-
ness to become vulnerable. Conversely, a player’s trust decreases
when the other player defects and more so when the player’s switch
to cooperation is not reciprocated. A player’s willingness to invest in

6 There are 16 decision rules in total.
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Fig. 7. A couple of production rules can fire in a given context (prev-move = b; prev-op-move = a) and for an expected move of the opponent (op-move = a). The first rule
(baa-a)  issues move “a” while the second rule (baa-b) issues move “b”. See the text for English renditions of these rules.

trust increases as a function of the need to develop trust, consistent
with the idea that trust development activities are more prominent
in environments where trust is necessary (e.g., Gambetta & Hamill,
2005; Hardin, 2002) However, a player’s willingness to invest in
trust development decreases rapidly if a player’s switches to coop-
eration are not reciprocated by the other player, consistent with
the idea that trust develops through risk taking and reciprocation
(Cook et al., 2005). Aside from these theoretical constraints, the
exact values in the updating matrices are free parameters for this
model, they were determined by attempting to fit the human data.

At each round, a reward function is selected form a set of three
reward functions depending on the sign of the two accumula-
tors as shown in Table 3. When “trust” is positive, regardless of
“trust-invest”, the reward function is the sum of the two  players’
payoffs minus the previous payoff of the opponent. When “trust”
is negative and “trust-invest” is positive, the reward function is
the opponent’s payoff. When both “trust” and “trust-invest” are
negative, the reward is the difference between own  payoff and the
opponent’s payoff. The form of the reward functions and their asso-
ciations with specific values of the two trust accumulators were
inspired by the general theory on trust and fine-tuned with the
aid of computational exploration. Thus, when trust is positive, the
reward function subtracts the previous payoff of the opponent from
the current joint payoff. The intuition behind this reward function
comes again from the trust theory. Trust mitigates risk in strategic
interaction (Cook et al., 2005). In terms of our model, when trust
is consistently positive, the associated reward function does not
allow a player to consistently make higher payoffs than the other
player, which in turn maintains reciprocal trust. In other words, this
reward function maintains fairness while maximizing joint payoff
(see a more detailed explanation in the General Discussion sec-
tion). When a model does not trust the opponent (i.e., the trust

Table 3
The reward function depends on the signs of “trust” and “trust-invest”.

Trust Trust-invest Reward function

+ + Payoff1 + Payoff2 − Prev-Payoff2
+  − Payoff1 + Payoff2 − Prev-Payoff2
−  + Payoff2
− − Payoff1 − Payoff2

accumulator is zero or negative) and is aware of the need to invest
in trust development (i.e., the trust-invest accumulator is positive),
it tries to maximize the opponent’s payoff by unilaterally coop-
erating, which makes the player vulnerable to exploitation. This
decision is justified by the generally accepted definition of trust as a
willingness to be vulnerable to the actions of another party (Mayer,
Davis, & Schoorman, 1995). If the cooperation attempts are not
reciprocated, the trust-invest accumulator is gradually depleted.
This makes sense within the trust theory stating that trust relations
develop trough gradual risk-taking and reciprocation (Cook et al.,
2005). When both trust and trust-invest are depleted, the player
acts selfishly trying to maximize its own  payoff and minimize the
opponent’s payoff (Table 3).

The trust variables only intervene at key points in the game
when reward functions are switched. Between those points the
model is not influenced by the trust variables. In such “normal”
circumstances, the model behavior is only determined by the cur-
rent reward function, memory activations, and procedural rules.
However, the trust accumulators continue to be updated after each
round until they reach the critical values and cause the reward
functions to be switched.

One more mechanism was necessary to improve the fit of the
model to the human data. Fig. 1 shows that the outcomes in the sec-
ond game do not start at the chance level (0.25) as in the first game.
This suggests that some surface transfer occurs directly without any
mediation from the reward function. We modeled this by allowing
a third of the model pairs (i.e., 33.33%) to not reset their declara-
tive and procedural memories. This amounts to asserting that these
pairs did not notice any fundamental difference between the games
and they continued playing as they did in the first game (i.e., they
used instances and utilities from the first game to anticipate oppo-
nent moves and make moves in the second game).

9. Modeling results

The model described above was  fit to the human data presented
in Fig. 1. Fitting the model to the human data was done manually by
varying a number of parameters (of which some are standard in the
ACT-R architecture and others were introduced as part of the trust
mechanism) and trying to increase correlation (r) and decrease root
mean square deviation (RMSD) between model and human data.
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Table  4
Free parameters and their values for the best model fit.

Parameter Description Value

Activation noise Variability in activation of
declarative knowledge

0.05

Retrieval threshold Minimum activation of a
retrievable chunk

−5

Latency factor Determines duration of memory
retrievals

0.5

Utility noise Variability in utility of procedural
knowledge

0.02

Learning rate The rate of learning for procedural
knowledge

0.08

Trust increment 1 Trust increment when mutual
cooperation

3

Trust increment 2 Trust increment when opponent
unilaterally cooperates

10

Trust decrement 1 Trust decrement when mutual
defection

−1

Trust decrement 2 Trust increment when opponent
unilaterally defects

−10

Invest increment Trust invest increment when
mutual defection

0.18

Invest decrement Trust invest decrement when
opponent unilaterally defects

−1

Most of the ACT-R parameters were left at their default values and
a few were changed from their default but they were maintained
fixed across games and rounds. For example, the three parameters
mentioned above (activation noise, utility noise, and learning rate)
were set at lower values than their defaults. Most important for the
model fit were the reward functions and the parameters added as
part of the trust mechanism that allowed dynamic changes of the
reward function.

The results of the current best model (r = 0.89, RMSD = 0.09) are
presented in Fig. 8. The model was run 200 times (i.e., 100 pairs).

Overall, the model matches the trends in the human data rea-
sonably well (compare Fig. 8 with Fig. 1). More importantly, the
transfer effects are also accounted for. Fig. 9 shows that the [1,1]
outcome is more frequent in CG after PD, particularly in the first
rounds. The model accounts for this surface transfer by reusing the
strategy from the first game. Since this strategy is not the optimal
strategy in CG, it is adopted less frequently as the game unfolds.

Fig. 10 shows that alternation is more frequent in CG after PD.
The model accounts for this deep transfer by making use of the trust
mechanism. The trust accumulated during the first game causes a
more cooperative reward function to be used in the second game.
Cooperation leads to increased trust, which allows it to continue in
spite of being risky.

Fig. 11 shows that the [1,1] outcome is more frequent in PD after
CG. This is a case in which deep and surface transfers are congruent
with each other (see Fig. 5) and converge to causing a larger trans-
fer effect. The model produces a larger effect (though not quite as
large as in the human data) by combining instance based learning,
reinforcement learning, and the trust mechanism.

10. Model validation

Since this is a post hoc model (i.e., the model vas developed
after seeing the human data), model validation can only be incom-
plete at this moment. We  present here three analyses aimed at
model validation: split-half cross-validation, model comparison,
and individual differences analysis.

We randomly divided the human dataset in two  halves and used
only the first half to fit the model (training sample). The parameter
values for the best model fit are presented in Table 4. Subsequently,
the model was  compared against the second half of the human data
set (testing sample), while maintaining the same parameter values.

Table 5
Model comparison.

Model Training sample Testing sample

Correlation RMSD Correlation RMSD

Trust 0.87 0.09 0.81 0.11
P1n 0.66 0.19 0.65 0.19
P1n − P2n 0.01 0.46 −0.001 0.46
P1n + P2n 0.65 0.29 0.61 0.30
P1n + P2n − P2n−1 0.66 0.25 0.59 0.27
P2n 0.62 0.34 0.62 0.34

The fit statistics for the training sample are Correlation = 0.87 and
Root Mean Square Deviation = 0.09. The prediction statistics for the
testing sample are Correlation = 0.81 and Root Mean Square Devi-
ation = 0.11.

To demonstrate that the trust mechanism is necessary to
account for the human data we  compare the model that includes
the trust mechanism (described above) with a number of mod-
els that lack such a mechanism. The critical difference between
the trust model and the alternative models is the reward func-
tion that is used for strategy learning: the trust model dynamically
switches between three reward functions depending on trust and
trust-invest, whereas each of the alternative models uses only one
static reward function. The results of the model comparison are
presented in Table 5. The alternative models that are compared
against the trust model are labeled according to the reward func-
tion from which they learn. P1n is a model that learns from its
own reward. P1n − P2n learns to maximize its own payoff and min-
imize the opponent’s payoff. P1n + P2n learns to maximize the joint
(sum) payoff of the two players, regardless of how the joint payoff
is distributed between the two  players. P1n + P2n − P2n−1 subtracts
the previous payoff of the opponent from the current joint payoff.
This reward function allows the models to learn different cooper-
ation strategies in the two  different games (i.e., [1,1] in Prisoner’s
Dilemma and alternation in Chicken). If the opponent makes the
same payoff across consecutive trials, this function defaults to the
player’s own payoff. However, if the players alternate between low
and high payoffs, this function defaults to the opponent’s payoff,
thus incentivizing the players to continue to alternate. An alter-
nation strategy is learned in games where it is lucrative (e.g., in
Chicken, alternating between 10 and −1 yields an average joint
payoff of 9) and is not learned in games where it is not lucrative
(e.g., in Prisoner’s Dilemma, alternating between 10 an -10 yields
an average joint payoff of 0). This reward function allowed us to
develop one model that reasonably accounts for human behavior
is two different games.

As shown in Table 5 the model that includes the trust mecha-
nism outperforms the alternative models for both the training and
testing samples. However, the numbers do not tell the whole story.
From a qualitative perspective, the difference between the trust
model and the alternative models is even clearer. For illustration,
Fig. 12 presents the results of a simulation using the best of the
alternative models, that is, the model that uses only its own payoff
as reward signal (P1n). The outcomes of this model are qualitatively
different than the outcomes of the trust model. For example, the
most frequent outcome in Prisoner’s Dilemma is [1,1] according to
the trust model (and the human data) and [−1,−1] according to the
alternative model (See Fig. 12 and compare to Figs. 8 and 1).

The model was developed to fit the average human data. How-
ever, the human data were spread over a wide range. For example,
the level of alternation in Chicken was  about 40% by the end of the
game. This was  the result of averaging the outcomes of pairs that
never reached alternation, pairs that alternated only toward the
second half of the game, and pairs that alternated throughout the
whole game. An analysis of how the model accounts for individual
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Fig. 8. Results of model simulation. The model reproduces the main trends in the human data (compare to Fig. 1).

differences in the human data can provide additional evidence for
model validation. Fig. 13 shows how the human and model results
distribute across pairs of individuals. The unit of analysis here is not
an individual but a pair of two individuals, because of the interde-
pendence between the two individuals playing a game. The upper
row shows Prisoner’s Dilemma and the lower row Chicken. The X-
axis represents 30 pairs of participants (human and model) and the
Y-axis shows the frequency of a particular outcome for each pair.
The pairs are ordered according to their frequencies. The human
data are represented with solid lines and the model simulations
with dashed lines. About 15 pairs achieved the [1,1] outcome in
Prisoner’s Dilemma (upper left corner) with very low frequency
(less than 10%), while other pairs achieved it with higher frequen-
cies (up to 100%). About 5 pairs achieved very high frequencies of
the [1,1] outcome (over 90%). The model generates about the same

range of variability, but does not show the polarization seen in the
human data, that is, fewer pairs achieve either very low or very
high frequencies of the [1,1] outcome. Notwithstanding these lim-
itations, the model reproduces the general pattern of variability in
the human data (see all graphs in Fig. 13). This behavior is remark-
able, considering that the model was only fit to the average human
data. The ability of the model to reproduce this range of individual
differences can be attributed to the ACT-R architecture (variabil-
ity in processing of declarative and procedural knowledge) and the
dynamics of the trust mechanism that we introduced here.

These preliminary model validation analyses seem encouraging:
the model that we  propose here predicts out-of-sample human data
reasonably well and capture the qualitative trends in the human
data better than alternative models. For model validation to be
complete, we  will run the model in different conditions and make

Fig. 9. Comparison of model (right) with human data (left) with regard to the [1,1] outcome in CG.
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Fig. 10. Comparison of model (right) with human data (left) with regard to alternation.

predictions for a new study. This work will be presented in another
paper.

11. General discussion

We  employed a cognitive architectural approach to analyze
the interplay of different cognitive processes that underlie human
behavior in two games of strategic interaction. We  developed a
single cognitive model to explain human behavior in both games
and the transfer of learning from one game to another. We  sug-
gest here that a cognitive architectural approach can shed light on
phenomena such as gut feelings or intuition, and trust is consid-
ered to be one of these phenomena (Gigerenzer, 2007). Much work
on intuition and trust remains at an empirical level. Good empirical
research is definitely necessary and we contribute to the expanding

area of experimental games. We  take a step further and develop a
computational cognitive model that has potential theoretical value.
We integrate a set of interesting empirical findings in a theoretical
and computational framework – ACT-R – that has been developed
for decades and applied widely to a variety of paradigms (Anderson,
2007). Cognitive modeling has much to offer to the investigation of
strategic decision-making. Pruitt and Kimmel (1977) characterized
the field of experimental games as lacking in theory and with little
concern for validity. Erev and Roth (1998) argued for the neces-
sity of a Cognitive Game Theory that focuses on players’ thought
processes and develops simple general models that can be appro-
priately adapted to specific circumstances, as opposed to building
or estimating specific models for each game of interest. In line
with this approach, we  propose a model that leverages basic cog-
nitive abilities such as anticipating the opponent’s move based on

Fig. 11. Comparison of model (right) with human data (left) with regard to the [1,1] outcome in PD.
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Fig. 12. Results of an alternative model. The alternative model does not reproduce the main trends in the human data as well as the trust model (compare to Figs. 1 and 8).

records of previous moves stored in long-term memory. Memory
records include only directly experienced information such as one’s
own move and the opponent’s move. The decision is accomplished
by rules that fire depending on their learned utilities. The model

behavior is strongly constrained by learning mechanisms occur-
ring at the sub-symbolic level of the ACT-R cognitive architecture.
Our model explains how people make strategic decisions given
their experiences and cognitive constraints, without the need for

Fig. 13. Distribution of human and model results across pairs of human participants in Prisoner’s Dilemma (upper row) and Chicken (lower row). The model reproduces
the  general pattern of variability in the human data. Some pairs (almost) never achieve mutual cooperation (frequency = 0) while others cooperate for all 200 rounds
(frequency = 1).
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ad-hoc assumptions. A cognitive architectural approach is some-
times perceived as adding unnecessary complexity. We  claim that
it adds constraints, generality, and cognitive plausibility. We  did
not have to reinvent memory, declarative, and procedural learning
with all their parameters. Most parameters of the ACT-R architec-
ture were left at their defaults. However, we did have to introduce a
trust mechanism to account for the full range of transfer effects with
a single model, and this is the main contribution of this work. This
mechanism consists of two accumulators, three reward functions,
and a set of rules to update the accumulators and switch between
reward functions (Tables 2 and 3). This addition was  guided by
computational exploration and by theory and research on trust and
strategic decision-making (Hardin, 2002). Some of our design deci-
sions may  seem unusual but they make sense within the established
theory on trust. For instance, when a model does not trust the oppo-
nent (i.e., the trust accumulator is zero or negative) and is aware
of the need to invest in trust development (i.e., the trust-invest
accumulator is positive), it tries to maximize the opponent’s pay-
off by unilaterally cooperating, which makes the player vulnerable
to exploitation. This decision is justified by the generally accepted
definition of trust as a willingness to be vulnerable to the actions of
another party (Mayer, Davis, & Schoorman, 1995). If the coopera-
tion attempts are not reciprocated, the trust-invest accumulator
is gradually depleted. This makes sense within the trust theory
stating that trust relations develop trough gradual risk-taking and
reciprocation (Cook et al., 2005). Unilateral cooperation with the
purpose of achieving mutual cooperation can also be explained by
the strategic teaching concept (Camerer, Ho, & Chong, 2002).

Another innovation of our model is the reward function that
is used when trust is positive (P1n + P2n − P2n−1, see Table 3). It
subtracts the previous payoff of the opponent from the current
joint payoff. This reward function allows the models to learn dif-
ferent cooperation strategies in the two different games (i.e., [1,1]
in Prisoner’s Dilemma and alternation in Chicken). If the oppo-
nent makes the same payoff across consecutive trials, this function
defaults to the player’s own payoff. However, if the players alter-
nate between low and high payoffs, this function defaults to the
opponent’s payoff, thus incentivizing the players to continue to
alternate. An alternation strategy is learned in games where it is
lucrative (e.g., in Chicken, alternating between 10 and −1 yields an
average joint payoff of 9) and is not learned in games where it is
not lucrative (e.g., in Prisoner’s Dilemma, alternating between 10
an −10 yields an average joint payoff of 0). The intuition behind
this reward function comes again from the trust theory. Trust miti-
gates risk in strategic interaction (Cook et al., 2005). In terms of our
model, when trust is consistently positive, the associated reward
function does not allow a player to consistently make higher pay-
offs than the other player, which in turn maintains reciprocal trust.
In other words, this reward function maintains fairness while max-
imizing joint payoff. This is a simple way to combine fairness and
joint payoff in one criterion, demonstrating how a simple model
can learn to exhibit complex behavior.

Could even simpler models explain the behavioral results?
The folk theorem postulates that mutual cooperation can be sus-
tained indefinitely in repeated games against the same opponent
(Friedman, 1971). Axelrod (1984) showed that cooperation in
Iterated Prisoner’s Dilemma and other repeated games can be sus-
tained using simple strategies such as tit-for-tat without the need
for trust. Simpler models can definitely explain the main trends of
the behavioral results, but they say little about the cognitive mecha-
nisms that underlie behavior, such as how people learn the optimal
strategies and transfer them to different games. For example, tit-
for-tat is insensitive to payoffs and would not be able to switch
between [1,1] in Prisoner’s Dilemma to alternation in Chicken or
vice versa. A more detailed discussion of the necessity of trust was
included in the model validation section.

As we  wrote this article, we  become aware of a number of
theoretical and computational approaches that are somewhat sim-
ilar to our approach. We briefly discuss them here to establish
areas of intersection and to highlight the unique contribution of
our approach. Rick and Weber (2010) argue that explicit learning
of game equilibria is more meaningful and more likely to trans-
fer to similar games than implicit strategy learning that occurs in
the presence of feedback. They suggest that limiting or removing
feedback altogether promotes explicit learning and deep transfer,
whereas providing feedback after each move promotes implicit
context-specific learning that fails to transfer. This is perhaps why
many studies fail to find deep transfer of learning (as we have
also shown in the introduction). We find their argument con-
vincing although in need of refinement and generalization. In our
paradigm, the participants learn the games from both description
(payoff matrix) and experience (moves they make and payoffs they
receive at each round). It would be interesting to disentangle the
two sources of learning. Rick and Weber’s account would predict
that deep transfer would increase in a description-only condition
and decrease or disappear in an experience-only condition. We
have suggestive evidence that the latter might be true: in a previ-
ous study, we found that cooperation decreases in experience-only
conditions, where the game matrix is not presented and the partici-
pants learn only from feedback (Martin, Gonzalez, Juvina, & Lebiere,
2013). In Rick and Weber’s terms, less cooperation implies less
meaningful learning available to transfer to other games. Future
studies should verify that the descriptive-only condition is indeed
more conducive to meaningful learning and deep transfer.

A second approach that is somewhat similar to ours is what
Haruvy and Stahl (2012) call “rule learning”. They argue that action-
based learning cannot account for learning between dissimilar
games. “Rule learning entails (1) a specification of behavioral rules,
(2) a process for selecting among rules, and (3) a process for updat-
ing the likelihood of using these rules” (Haruvy & Stahl, 2012, p.
210). Their rule learning is very similar to some aspects of ACT-R’s
procedural learning, which entails (1) condition-action pairs (i.e.,
production rules), (2) conflict resolution, and (3) utility learning. In
addition, ACT-R specifies how rules are learned and more generally
how procedural learning interacts with declarative learning (belief-
learning). In our model, declarative learning is used to develop
beliefs about the opponent’s moves and procedural learning binds
together contexts, beliefs, and actions.

A third approach that resembles ours in some key aspects is the
mimicry and relative similarity (MaRS) theory (Fischer et al., 2013).
MaRS is a strategy that switches among three states of mimicry –
enacted, expected, and excluded – allowing it to select an opti-
mal  response for every opponent and stage of the game. Enacted
mimicry resembles Tit-For-Tat, expected mimicry resembles Win-
Stay-Lose-Shift, and excluded mimicry turns off all cooperative
tendencies and transforms MaRS into a defector. The transitions
from one state of mimicry to another are guided by the current
extent of similarity between the opponent and itself. MaRS moni-
tors two types of similarity by updating two respective registries
in a first-in-first-out manner: (i) the passive similarity registry that
reflects the proportion of similar choices, regardless of whether
they were cooperative or hostile; and (ii) the reactive similarity reg-
istry that reflects the opponent’s propensity to reciprocate switches
toward cooperation that were initiated by MaRS. The former is
updated by using values of 1 and 0 for similar and dissimilar choices,
respectively. The latter is updated by values of 1 and 0 for recipro-
cated and non-reciprocated switches, respectively. To assure the
genuine nature of reciprocated cooperative switches, MaRS con-
tinues to monitor the succeeding moves. If the opponent switches
back to defection, the reactive registry is updated with −1, thus can-
celing out the 1 earned for the previous reciprocation. Continuously
monitoring both similarity types allows computing two indices and
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applying them as criteria for the selection and transition among
the states of mimicry (Fischer et al., 2013). The resemblance of the
MaRS strategy to our trust mechanism is remarkable given that they
have been developed independently: a first version of our model
was presented at a conference in 2012 (Juvina, Lebiere, Gonzalez,
& Saleem, 2012). The main point of overlap is the idea of dynamic
switches between three strategies depending on the values of two
variables that continuously monitor the interaction. Specific to our
model is the integration of this mechanism in a cognitive archi-
tecture and attempting to fit actual human data. We  do not just
switch strategies but allow models to learn these strategies in cog-
nitively plausible ways. In addition, we use the exact same model
to account for human behavior in two different games and explain
transfer of learning between them. We  challenge the authors of the
MaRS strategy to test it on Chicken without making any changes and
more generally to attempt to fit human data in a variety of games.

Lastly, a number of connections can be drawn between our
model and the classic social-psychology theories of strategic inter-
action. Our model’s choice is influenced by its expectation about the
opponent’s choice, although our model’s expectations are based
on the opponent’s past behavior and not on projecting its self-
knowledge onto others, as in the social projection theory (Krueger,
DiDonato, & Freestone, 2012; Evans & Krueger, 2014). Our model’s
assumption is that trust is not independent of trustworthiness
(Hardin, 2002). Conceivably, in the absence of information about
the opponent’s past behavior (when trustworthiness cannot be
assessed), our model could project its own action tendencies
onto the other player. This would be a natural extension to our
model that would make it able to fit one-shot social dilemmas.
More generally, the interaction between a player’s goal and their
expectation about the other player’s behavior (as in Pruitt and Kim-
mel’s goal/expectation theory, 1977) is analogs to the interaction
between declarative and procedural learning in our model. Declara-
tive learning produces contextualized expectations about the other
player’s behavior and reward functions determine whether the
player adopts the goal of maximizing joint payoff or individual
payoff. Lastly, our model generates the whole range of individual
differences observed in empirical studies; some pairs never achieve
mutual cooperation while others cooperate all the time (see Fig. 13).
Pair differences arise from variability in the player’s cognitive pro-
cesses and the dynamics of the interaction between players. All
models are created equals and they evolve to become cooperators
or non-cooperators. They all have the potential to learn to coop-
erate, but whether their potential is actualized or not depends on
the opponent’s behavior. In other words, our models are condi-
tional cooperators (Fischbacher, Gächter, & Fehr, 2001). Currently,
our model does not assume any a priori differences between play-
ers, as in some psychological models that assume, for example, that
people are inherently pro-self vs. pro-social (e.g., Bogaert, Boone, &
Declerck, 2008). However, our model can easily accommodate such
results. For example, individual models can be initialized with dif-
ferent values of the trust variables, reflecting inherent propensities
to trust others or be willing to invest in trust development.

Future work should address a number of points. On the empir-
ical side, the trust hypothesis put forth in this paper should be
further investigated. For example, in a new experiment, we can
randomly rematch the players after the first game. Comparing this
treatment to the existing data could provide further empirical evi-
dence in favor of the trust hypothesis. On the modeling side, a
validation study is necessary to further test the new set of assump-
tions about trust that were introduced here. In addition, the model
can be further improved by addressing some of its current limita-
tions. For example, the current model does not account for decision
time patterns in the human data. It starts with all the necessary
declarative and procedural knowledge and only learns the associ-
ated sub-symbolic quantities, which is not sufficient to account for

the full range of decision time patters. However, the ACT-R archi-
tecture has a good track record of fitting decision time patterns in a
variety of tasks (Anderson, 2007) and we are confident that this can
be achieved for the current games as well, by modeling the gradual
transition from declarative to procedural knowledge.

12. Conclusion

We  developed a computational cognitive model to explain
transfer of learning across two  games of strategic interaction. One
important constraint of our modeling approach was to account for
both games with the exact same model. We  proposed a simple
model that did not have pre-programmed strategies but learned
them as it played. The model did not know the specific strategies of
the two  games; it learned them from experience by making moves
and receiving payoffs.

The model explains the observed transfer effects with the aid of
a trust mechanism that determines how rewards change depend-
ing on the dynamics of the interaction between players. It provides
a cognitive and computational account to the human data that chal-
lenges the existing theoretical accounts of transfer across games:
it demonstrates that transfer occurs in both directions, contrary to
what the “entropy account” (Bednar et al., 2012) would predict;
it changes its strategy when the game changes, contrary to what
the “expectation account” (Devetag, 2005) would predict; and it
produces transfer in spite of clear surface dissimilarities, contrary
to what the “surface similarity account” (Knez & Camerer, 2000)
would predict. We  demonstrate that the addition of a relational
mechanism – trust – significantly improves the model’s match to
the human data. We  can conclude that factors pertaining to the
game or the individual are insufficient to explain the whole range
of transfer effects and factors pertaining to the interaction between
players should be considered as well.

13. Practical implications

Nowadays, success is increasingly defined based on ability to
build cooperating networks and environments, rather than in terms
of a win-lose strategy. In particular, in the fields of war and peace-
keeping, a strategy of trust development (“winning hearts and
minds”) is gaining popularity.

The current research on trust is mostly concerned with the
general dispositions toward trust and trustworthiness of the
actors involved. People are classified as high or low trusters (e.g.,
Yamagishi, Kikuchi, & Kosugi, 1999) depending on whether they
are prone to trust most other people in generic contexts. Trustwor-
thiness is defined as a property of a trusted in relation to an average,
generic truster or across a variety of trusters. The trustworthiness
of a trusted is assumed to depend more on the ability, benevolence,
and integrity of the trusted than on the behavior or the truster
(Mayer, Davis, & Schoorman, 1995). However, for many practical
purposes it is important to know why  and how people become
trusting and trustworthy. There is a significant need for studying
trust as it develops, erodes, or reemerges in strategic interaction.

Our computational cognitive model of trust dynamics in strate-
gic interaction is a first step toward building a comprehensive
theory of trust dynamics grounded in general principles of human
cognition. Computational models of this sort can be used to provide
insight and specific guidance to decision makers who are interested
in trust development within and between organizations. An exam-
ple of such insight is the need to temporarily focus on maximizing
the opponent’s payoff in order to restart the trust development
process. Based on this insight, service organizations could decide
to temporarily focus entirely on their customers’ interests in order
to gain their trust and loyalty.
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