
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2010 

The Role of Apoptosis in HeLa Cells Expressing HIV-1 Rev The Role of Apoptosis in HeLa Cells Expressing HIV-1 Rev 

Elizabeth Page 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Anatomy Commons 

Repository Citation Repository Citation 
Page, Elizabeth, "The Role of Apoptosis in HeLa Cells Expressing HIV-1 Rev" (2010). Browse all Theses 
and Dissertations. 332. 
https://corescholar.libraries.wright.edu/etd_all/332 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/903?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/332?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


 

i 

The Role of Apoptosis in HeLa Cells Expressing HIV-1 Rev 

 

 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science 

 

By 

Elizabeth Page 

B.S. Wittenberg University 2007 

 

 

2010 

Wright State University  



 

ii 

WRIGHT STATE UNIVERSITY 

 

SCHOOL OF GRADUATE STUDIES 

 

March 18, 2010  

 

I HEREBY RECOMMEND THAT THE THEIS PREPARED UNDER MY         

SUPERVISION BY Elizabeth S. Page ENTITLED The Role of Apoptosis in HeLa Cells 

Expressing HIV-1 Rev BE ACCEPTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF Master of Science. 

 

       _________________ 

       Mill W. Miller, Ph.D 

Thesis Advisor 

 

       ___________________ 

       Timothy C. Cope, Ph.D. 

       Department Chair 

 

Committee on Final Examination: 

 

 

_________________ 

Mill W. Miller, Ph.D. 

 

 

_________________ 

Scott E. Baird, Ph.D. 

 

 

_________________ 

Larry J. Ream, Ph.D. 

 

 

_________________ 

John A. Bantle, Ph.D. 

Vice President for Research and  

Graduate Studies and Interim Dean 

of Graduate Studies 



 

iii 

Abstract 

Page, Elizabeth. M.S., Department of Neuroscience, Cell Biology and Physiology, 

Wright State University, 2010. The Role of Apoptosis in HeLa Cells Expressing HIV-1 

Rev. 

 

 

 

 The HIV protein Rev is a nucleolar protein that regulates late gene expression in 

infected cells by promoting the export of under-spliced viral RNAs (Pollard and Malim, 

1998).  Its over-expression can also inhibit progression through mitosis (Miyazaki et al., 

1995), possibly through its ability to depolymerize microtubules (Watts et al., 2000).  

Consequently, Rev may activate the spindle assembly checkpoint in mitotic cells and 

increase the frequency of apoptosis.  Rev also binds the nucleolar protein B23 involved in 

ribosome maturation and centrosome duplication.  Because loss of B23 function 

stimulates apoptosis (Ahn et al., 2005), Rev expression may promote apoptosis by 

inhibiting B23. 

 Regardless of its mechanism, it is plausible to hypothesize that Rev expression 

stimulates apoptosis.  To test this hypothesis, Rev and three mutants defective in 

multimerization, nuclear import, and nuclear export (M4, M6, and M10, respectively) and 

are known to cause defects in mitosis were transiently and stably over-expressed in HeLa 

cells.  Three separate assays were then used to assay for apoptotic cell death.  Since 

apoptosis is characterized by cell shrinkage, cell rounding, chromatin condensation and 

fragmentation (Kerr et al., 1993; Lawen, 2003), Rev expressing cells were fixed with 

formaldehyde, stained with DAPI and examined for overt signs of apoptosis.  In cells 

transiently expressing Rev-GFP, there was a two-fold increase in apoptosis compared to 

YFP expressing controls.  Transient expression of Rev mutants M4, M6, and M10 
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resulted in comparable increased frequencies of apoptosis.  This visual assay is limited by 

the apparent lack of sensitivity as demonstrated by the inability to detect apoptosis 

induced by treatment with actinomycin D.   

 To clarify these results, two additional biochemical assays were used.  The first, 

an ELISA assay that quantifies chromatin fragmentation by measuring the release of 

mono- and oligo-nucleosomes, showed there was no statistical difference in apoptotic 

frequencies between Rev-YFP and YFP expressing cells (p=0.43).  These results were 

confirmed by an immunoblot assay that was unable to detect the presence of activated 

Caspase 3 in Rev expressing cells. Thus it appears that the cell cycle defects induced by 

Rev expression are either corrected before mitosis is completed or not detected by the 

spindle assembly checkpoint.  
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Introduction 

HIV is the causative agent of acquired immunodeficiency syndrome (AIDS) 

(Fauci et al., 1988).  It is a retrovirus that encodes three regulatory genes expressed early 

in infection as well as six additional proteins including Gag, Pol, and Env that are 

expressed later (Pollard and Malim, 1998).  Rev (Regulator of Expression of Virion 

proteins) is a regulatory gene product essential for viral expression of HIV (Pollard and 

Malim, 1998).  It regulates late gene expression and a loss of Rev function through 

mutation inhibits HIV infection (Pollard and Malim, 1998).  While many Rev mutations 

are recessive and inhibit virion production, trans-dominant mutations such as M10 have 

been identified that are capable of inhibiting infections by wild-type virus (Malim et al., 

1989; Pollard and Malim, 1998; Cochrane, 2004).  Such mutations provide proof of the 

concept that Rev is an important potential target for antiviral strategies (Pollard and 

Malim, 1998; Cochrane, 2004). 

The Rev gene encodes a 116 amino acid, 13 kDa protein that predominantly 

localizes in the nucleoli of cells (Pollard and Malim, 1998).  There it promotes nuclear 

export of under-spliced viral mRNAs (Hope, 1999).  Early in infection, three classes of 

viral RNA are expressed: full-length unspliced 9 kb RNAs, partially spliced 4 kb RNAs 

and fully spliced 2 kb RNAs (Pollard and Malim, 1998).  In the absence of Rev function, 

only the 2 kb RNAs, one of which encodes Rev, are exported to the cytoplasm.  The 9 kb 

and 4 kb RNAs are degraded (Pollard and Malim, 1998).  However, when cellular 

concentrations reach a certain threshold, Rev promotes the export of the under-spliced 

RNAs (Figure 1) (Pollard and Malim, 1998; Hope, 1999).  The ability to export intron-

containing RNA requires four separate activities mediated by Rev: nuclear import, RNA  
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Figure 1. Rev function early and late infection.  Early during infection, three classes of 

viral RNAs accumulate in the nucleus: full length unspliced 9 kb RNAs, partially spliced 

4 kb RNAs and fully spliced 2 kb RNAs.  In the absence of Rev, only 2 kb RNAs, one of 

which encodes Rev, are exported to the cytoplasm.  The 9 kb and 4 kb RNAs are 

degraded.  However, when cellular concentrations reach a threshold, Rev binds the Rev 

Response Element (purple box) in the 3’ intron, multimerizes and promotes nuclear 

export (Adapted from Pollard and Malim, 1998).   
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binding, multimerization, and nuclear export (Pollard and Malim, 1998; Hope, 1999).  

The amino acids important for each activity is known and summarized in Figure 2. 

The competence for nuclear import is conferred by a nuclear localization 

sequence (NLS) located in an arginine rich motif (amino acids 34-50) (Hope, 1999).  

Whereas many nuclear localization signals are recognized by importin α transport 

receptor which then recruits importin β, Rev is targeted to nuclear pore complexes by 

directly binding importin β (Truant and Cullen, 1999).  The importin β binding sites of 

Rev and importin α overlap and therefore compete with each other (Truant and Cullen, 

1999; Hope, 1999).  Rev is released into the nucleoplasm from nuclear pore complexes 

upon binding Ran loaded with GTP.  Ran-GTP inhibits the simultaneous binding of 

importin β and Rev’s NLS (Truant and Cullen, 1999).  One mutation, M6 (RRRR→DL, 

amino acids 41-44), inhibits the ability of importin β to bind and inhibits RRE binding 

(Truant and Cullen, 1999). 

The arginine rich region is also responsible for binding viral RNA.  Rev binds 

these RNAs at the Rev Response Element (RRE) rich with stems and loops (Pollard and 

Malim, 1998; Hope, 1999).  The RRE is approximately 300-350 nucleotides long and is 

located in the 3’ intron (Pollard and Malim, 1998; Hope, 1999).  Using NMR 

spectroscopy, Battiste et al. (1996) found the arginine rich α helix of Rev binds the 

major groove of the RRE (Battiste et al., 1996).  Curiously, the NLS and the RRE 

binding motif overlap one another which apparently prevents re-import of Rev bound to 

the RRE.  
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Figure 2.   Rev domain Structure.  The relative locations of the two multimerization 

domains (M1 and M2), the arginine-rich motif (ARM) important for RRE binding and its 

nuclear localization signal (NLS) and the nuclear export signal (NES) are depicted 

relative to amino acid location 1-116 (modified from Pollard and Malim, 1998; Hope, 

1999; and Watts et al., 2000). 
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The RRE has one high affinity binding site for Rev but the binding of one Rev 

monomer is insufficient to stimulate RRE export (Pollard and Malim, 1998).  Once one 

Rev monomer binds, multiple Rev molecules bind with partial cooperativity (Pollard and  

Malim, 1998).  Malim et al. (1989) identified two domains important for Rev 

multimerization by mutagenesis (amino acids 11-32 and 52-67).  Many mutations 

including M4 (YSN→DDL, amino acids 23, 25, and 26, respectively) could bind the 

RRE but none multimerized on the RRE nor were able to trans-activate HIV gene 

expression and produce progeny virions (Brice et al., 1999; Trikha and Brighty, 2005).  

M4 inhibits the formation of high molecular weight complexes on the RRE (Malim and 

Cullen, 1991; Auer et al., 1994; Thomas et al., 1997).  The M4 mutation is recessive and 

is unable to inhibit wild type Rev activity.   

A third mutation denoted M10 (LE→DL, amino acids 78 and 79) is a trans-

dominant inhibitor of HIV infection (Malim et al., 1989).  The M10 mutation inactivates 

a nuclear export signal (NES) located at positions 75-83 towards the C-terminus (Pollard 

and Malim, 1998; Suhasini and Reddy, 2009).  The NES is leucine rich and interacts with 

CRM-1, also called exportin 1 (Hope, 1999; Suhasini and Reddy, 2009).  CRM-1 is a 

member of the importin β family of transport factors and accumulates in the nucleoli of 

cells when Rev is present (Hope, 1999; Cao et al., 2009).  In the presence of Ran-GTP, 

CRM-1 binds to the NES of Rev laden with RRE-containing messages and targets this 

transport complex to nuclear pore complexes triggering export (Fornerad et al., 1997; 

Hope, 1999; Suhasini and Reddy, 2009; Cao et al., 2009).  Rev with its bound RNA is 

released into the cytoplasm following the hydrolysis of GTP.  Multiple Rev monomers 



 

6 

bound to the RRE are required for export such that Rev multimerization is required for 

the trans-dominant effects (Malim et al., 1989). 

Given the importance of Rev to HIV infection, many labs have attempted to 

determine the three-dimensional structure of Rev.  Auer et al. (1994) used circular 

dichroism (CD) spectroscopy of deletion mutants and found α helices at amino acids 8-

26 and 35-50.  Both of these regions contain residues important for multimerization and 

many are hydrophobic.  These regions are separated from each other by a short loop rich 

in proline, an amino acid known to disrupt -helices.  Thomas et al. (1997) used 

functional assays to measure the functionality of point mutations to develop a model for 

Rev structure.  Their data suggested that the two helices folded back upon each other to 

create a hydrophobic patch that was important for multimerization.  This model was 

supported by the work of Blanco et al. (2001) who used NMR to detect resonances 

between amino acids between these α helices within the intact Rev protein.  Overall, 

50% of Rev assumes an α helical conformation. 

Rev/Microtubule Interactions 

 Early structural studies were confounded by Rev’s propensity to form fibrils that 

associate laterally and form insoluble aggregates (Wingfield et al., 1991; Watts et al., 

1998).  In an attempt to find solution conditions suitable for crystallography, Watts et al. 

(2000) discovered a unique interaction between Rev and the cytoskeletal protein tubulin.  

Knowing that Rev filaments could be depolymerized by polyanions such as 

polyglutamate (Wingfield et al., 1991; Watts et al., 1998), they reasoned that the 

polyglutamate tails of α and β tubulin would interact with the arginine rich region of 

Rev and promote filament disassembly.  However, upon mixing tubulin with Rev, an 
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entirely new complex was formed: Rev-tubulin toroids (RTTs) (Watts et al., 2000).  

RTTs are large 3.8 MDa, bilayered rings with tubulin exposed circumferentially and Rev 

lining the inner ring.  RTTs result from specific interactions between Rev and tubulin.  

Their formation requires Mg
2+

 and is not inhibited by moderate NaCl concentrations, 

changes in pH, or the microtubule drugs Taxol or colchicine.  RTTs do not form however 

when the anti-mitotic drug maytansine is added indicating Rev must bind at or near the 

vinca site.  Surprisingly, RTT formation does not require tubulin’s polyglutamic acid tails.   

Based on a limited sequence similarity shared with kinesin-13 proteins, (Figure 3) 

Watts et al. (2000) posited that Rev binds and depolymerizes microtubules by a 

mechanism shared with these proteins.  The vast majority of the proteins in the kinesin 

superfamily are microtubule motor proteins (Lawrence et al., 2004; Wozniak et al., 2004).  

However, kinesin-13 proteins are distinguished by their lack of microtubule motility and 

their potent ability to depolymerize microtubules. Kinesin 13 family members include 

orthologs of MCAK (Mitotic Centromeric-Associated Kinesin) (Desai et al., 1999; 

Maney et al., 2001; Hertzer et al., 2003).  MCAK abundantly localizes to mitotic spindles 

but also accumulates to kinetochores via an N-terminal targeting sequence (Walczak et 

al., 1996; Desai et al., 1999; and Maney et al., 2001).  Walczak et al. (1996) found that 

MCAK destabilizes microtubules and causes depolymerization of the spindle during 

mitosis.  Desai et al. (1999) confirmed that MCAK depolymerizes microtubules and 

suggested these kinesins bind microtubule ends and cause a conformational change 

leading to catastrophes.  Catastrophes are the rapid transitions from microtubule growth 

to shrinkage (Desai et al., 1999; Tournebize et al., 2000).  MCAK was also found to 
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depolymerize microtubules.  Maney et al. (2001) found that overexpression of MCAK in 

vivo resulted in fewer and shorter mitotic spindle microtubules in mitosis.  

 Like MCAK, Rev triggers microtubule depolymerization from both ends (Watts 

et al., 2000; Maney et al., 2001).  Part of the Rev sequence, in the second α helix, amino 

acids 34-70 were compared to MCAK sequence 506-543, in the loop 11-α4-loop12 

region,  and some of the amino acids were identical while still others were similar (Watts 

et al., 2000).  This is the region important for microtubule binding in motile kinesins 

(Woelke et al., 1997).  However, residues present in MCAK and absent from motile 

kinesins are thought to be important for microtubule depolymerization.  Intriguingly, Rev 

possesses many amino acids that are present in MCAK and absent in motile kinesins 

(Watts et al., 2000, Figure 3).   

Cellular Effects of Rev Expression 

 Because the experimental and essentially artificial conditions in which Rev-

tubulin interactions were discovered, it became important to determine whether Rev 

could bind tubulin in living cells. Immunoprecipitation experiments that can detect 

physical interactions between proteins provide supportive evidence. Rev is precipitated 

from cell extracts prepared from HeLa cells transiently or stably expressing Rev using 

tubulin-specific antisera (Middaugh, 2005; Kotha, 2010). Tubulin is reciprocally 

precipitated using Rev-specific antibodies (Kotha, 2010). Co-immunoprecipitations are 

not affected by mutations in the NLS, NES and multimerization motifs (M6, M10, and 

M4 respectively) (Kotha, 2010).   
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Figure 3. Sequence similarities between Rev and MCAK, a Kinesin 13 family 

member, and KIF1A (a motile kinesin). Identical amino acids are colored in red and 

conservative substitutions are in green.  Adapted from Ogawa et al., 2004 and Watts et 

al., 2000. 
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Substantial evidence suggests cellular expression of Rev can interfere with 

microtubule behavior.  Rev inhibits the formation of mitotic asters formed in vitro from 

Xenopus egg extracts that faithfully recapitulate microtubule dynamics seen during cell 

cycle progression (Watts et al., 2000).  This shows that Rev can perturb microtubule 

function in cellular environments. Transient over-expression of Rev in Cos7 cells also 

leads to an accumulation of cells in G2/M (Miyazaki et al., 1995).  Many of these cells 

had an abnormal DNA content and mitotic abnormalities were common.  HeLa cells 

transiently or stably expressing Rev similarly exhibit slower doubling times in culture, 

have altered mitotic indices and there is an accumulation of mitotic cells before the 

spindle assembly checkpoint (N. Smith, personal communication; Lore, 2005). These 

same defects are also seen when Rev mutants M4, M6 and M10 are expressed. Since 

purified M6 and M4 can bind tubulin heterodimers in vitro (Sharma, 2009) but are unable 

to depolymerize microtubules, the cell cycle defects resulting from Rev expression are 

hypothesized to be due to Rev sequestering tubulin heterodimers.   

 Taken together, these data suggest that Rev expression may activate the spindle 

assembly checkpoint, a biochemical pathway that monitors the movement and ultimate 

positioning of chromosomes at the metaphase plate.  The checkpoint is often activated 

when chromosomes are misaligned and progression into anaphase is prevented.   Proteins 

such as Bub and BubR1 are localized to the kinetochores where the spindle assembly 

checkpoint is located.  Bub and BubR1 bind to other proteins in the kinetochore to inhibit 

the anaphase-promoting complex (APC) which halts the progression of mitosis.  If there 

is a weakened checkpoint and misalignment still occurs, apoptosis can ensue (Musacchio 
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and Hardwick, 2002; Weaver and Cleveland, 2005; Tanaka and Hirota, 2009).  Thus, it is 

formally possible that Rev expression may activate apoptosis. 

 The exact pathway from the spindle assembly checkpoint leading to apoptosis is 

unclear (Weaver and Cleveland, 2005).  However, when the spindle assembly checkpoint 

is activated, mitotic progression is stopped and the cell will either correct the defect or die.   

There are three possible outcomes that lead to apoptosis when mitotic cells are treated 

with antimitotic drugs (Weaver and Cleveland, 2005).  The first is that the cell can exit to 

G1 from mitosis without dividing and can go into senescence or become apoptotic.  The 

second is that with a weakened mitotic checkpoint the cell can exit from mitosis into G1 

and is apoptotic.  Third, without the cell exiting into G1 and staying in mitosis, the cell 

becomes apoptotic (Weaver and Cleveland, 2005). 

 Since antimitotic drugs such as taxol and paclitaxel activate the spindle assembly 

checkpoint by interfering with microtubules and because Rev also has the ability to 

interfere with microtubles and disrupt mitosis, Rev may activate the spindle assembly 

checkpoint.  If the checkpoint is activated, it is possible the cell becomes apoptotic by 

one of these three possible ways. 

 There are other explanations for the cell cycle defects that result from Rev 

expression.  Since the work of Miyazaki et al. (1995) predated the discovery of Rev-

tubulin interactions, these authors suggested that Rev was exerting its cell cycle effects 

through its interactions with ribosomal protein B23. B23 is a member of the 

nucleoplasmin protein family (Okuwaki, 2007) and is involved in ribosome biogenesis 

possibly acting either as a chaperone (Okuwaki et al., 2001) or facilitating ribosome 

transport (Borer et al., 1989).  Because Rev is able to bind B23 through its arginine rich 
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motif (Fankhauser et al., 1991) and because Rev over-expression deforms nucleoli 

(Nosaka et al., 1993), Miyazaki et al. speculated that the cell cycle defects they observed 

following Rev expression was due to an inhibition of ribosome synthesis. 

More recently, B23 has been shown to be involved in centrosome duplication 

(Okuwaki, 2007).  Centrosomes consist of two centrioles and promote microtubule 

nucleation during interphase of the cell cycle.  During G1, single centrosomes duplicate 

under the control of B23.  B23 acts as a licensing factor that allows duplication.  

However, when it is phosphorylated by the cyclin-dependent protein kinase, 

CDK2/cyclin E, B23 dissociates and duplication ensues (Shinmura et al., 2005).  

Duplicated centrosomes remain associated with each other until the onset of mitosis 

where they separate and nucleate microtubule spindles.  B23 has also been shown to 

inhibit apoptosis in cells and prevent DNA fragmentation (Han et al., 2008; Choi et al., 

2008).  When B23 levels are knocked down by RNAi, synthesis of ribosomal DNA is 

inhibited and this leads to cell death (Ahn et al., 2005).  If the ribosomal defects lead to 

cell cycle defects and Rev is forming a complex with B23 (Fankhauser et al., 1991), by 

Rev inhibiting B23’s function of centrosomal duplication and causing cell cycle defects, 

this could ultimately lead to apoptosis.  Thus, Rev expression may stimulate mitotic 

defects by interfering with centrosome duplication, inhibiting ribosome synthesis, or by 

altering microtubule dynamics. 

Apoptosis 

 Apoptosis is a type of cell death characterized by cell shrinkage, cell rounding, 

chromatin condensation and fragmentation (Kerr et al., 1993; Lawen, 2003).  In 

particular, the first overt sign of apoptosis is when the cells start getting smaller and 
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rounder and start to lose contact with other cells.  Chromatin then condenses fragments 

due to endonucleolytic activity (Kerr et al,. 1993; Lawen, 2003).  The plasma membrane 

then becomes convoluted and swells and the cell dies (Lawen, 2003).   

 Apoptosis can be triggered extrinsically and intrinsically (Okada and Mak, 2004).  

The extrinsic pathway occurs when receptors on the cell membrane are activated by 

extracellular ligands such as TNF and FAS which initiate signals to the cell to undergo 

apoptosis (Lawen, 2003; Okada and Mak, 2004; Riedl and Shi, 2004).  When TNF and 

FAS bind to specific receptors on the cell formation of a Death Inducing Signaling 

Complex or DISC ensues (Grütter, 2000; Lawen, 2003; Riedl and Shi, 2004).  DISC 

leads to activation of the initiator caspases 8 or 10.  Caspases are proteases specific to 

apoptosis. Once the initiator caspases are activated, they activate the effector caspases 3, 

7, and/or 6 by a conformational change of the active site produced by proteolytic 

cleavage (Grütter, 2000; Lawen, 2003; Riedl and Shi, 2004).  Activated effector caspases 

stimulate protein release from the mitochondria.  These proteins are degraded and the 

chromatin starts to fragment which ultimately leads to apoptosis (Grütter, 2000; Riedl 

and Shi, 2004).   

 The intrinsic pathway occurs when extracellular and intracellular stresses such as 

hypoxia and DNA damage trigger cytochrome c release from mitochondria (Lawen, 2003; 

Okada and Mak, 2004).  The intrinsic pathway is also called the mitochondrial pathway 

(Lawen, 2003).  The outer mitochondrial membrane becomes permeabilized and 

molecules like cytochrome c are released and bind to the Apoptotic Protease Activating 

Factor-1 (Apaf-1) (Green and Kroemer, 2004).  Apaf-1 stimulates formation of the 

apoptosome.  The apoptosome is a complex made of multiple monomers of cytochrome c, 
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and Apaf-1 and requires ATP (Riedl and Shi, 2004).  The apoptosome recruits the 

initiator caspase Procaspase 9 to the complex and becomes activated (Okada and Mak, 

2004).  Activated caspase 9 activates effector caspases such as caspase 3 by cleaving a 

peptide from the N-terminal region of the caspase.  In turn, activated caspase 3 cleaves a 

variety of substrates including proteins involved in cytoskeleton, nucleus, and DNA 

repair which accounts for the DNA fragmentation and cell swelling seen during the 

terminal stages of death (Grütter, 2000; Lawen, 2003; Riedl and Shi, 2004).     

Specific Aims 

 Because of Rev’s ability to depolymerize microtubules, alter microtubule 

expression and create mitotic defects in cells, it is possible Rev may activate the spindle 

checkpoint and promote apoptosis.  It is possible that Rev inhibiting B23 function alters 

ribosome synthesis and centromere duplication.  To test the hypothesis that Rev 

expression induces apoptosis, I will search for signs of apoptosis in Rev-expressing 

cells.  Specifically, I will look for DNA fragmentation by visual inspection, measure 

the presence of mono- and oligonucleosomes using an ELISA-based assay, and use 

western analyses to detect activated caspases. 
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Materials and Methods 

Plasmids: 

 Overnight cultures were grown using LB broth, kanomycin (10 mg/mL), and a 

plasmid of choice (pYFP, pRevEYFP, pRevEGFP, pRevM4EYFP, pRevM6EYFP, 

pRevM10EYFP).   Plasmids were perpetuated in DH5α cells and purified using Qiagen 

maxiprep kits per manufacturer’s recommendations. 

Cell culture: 

 HeLa cells were grown in 100 mm plastic dishes with DMEM, 10% fetal bovine 

serum at 37°C with 5% CO2 in a humidified incubator.  Cells were split when cultures 

were 80-90% confluent using trypsin:EDTA and typically reseeded at 1:5 dilutions.  A 

stable cell line, Rev GFP, was also used and grown according to the same conditions. 

Transfection: 

 Polyfect transfection reagent (Qiagen, Valencia, CA) was used to transiently 

transfect HeLa cells according to manufacturer’s recommendations.  Briefly, HeLa cells 

were split and reseeded at 500,000 cells/ml.  The following day, 3 or 6µg of plasmid 

DNA were mixed with 20,100µl Polyfect transfection reagent and incubated at room 

temperature for 10 min.  After 10 min, 1 ml of DMEM was added to the mixture and 

added then applied to Hela cells present in 7 ml of serum-free DMEM.  After 24-48 hrs 

of incubation, the transfection media was replaced with DMEM-10% FBS.  

Detection of apoptosis: 

Elisa Method: 

 The Cell Death detection ELISA
PLUS 

 kit (Roche, Indianapolis, IN) was used to 

detect apoptotic cells.  Adherent HeLa cells were treated with trypsin:EDTA and 
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collected by 200 × g centrifugation for 10 min.  Cell pellets were resuspended in a 

proprietary lysis buffer, incubated at room temperature for 30 min, and subjected to 200 × 

g centrifugation for 10 min.  Aliquots of the supernatant were put into the streptavidin-

coated microtiter plate.  Biotin-conjugated antibodies specific for histones and 

nucleosomal DNA were then added and incubated at room temperature for 2 hours.  

Wells were rinsed with a proprietary incubation buffer and the amount of bound histones 

were detected using a 10 min incubation using the ABTS solution (used for color 

development).  The reaction was stopped using ABTS stop solution.  Optical densities of 

each well were measured at 405 nm and 490 nm. 

Immunofluoresence method: 

 HeLa cells were seeded at 500,000 cells/ml on coverslips placed in 100 mm 

dishes and transfected with plasmid DNA the following day as described above.  Two 

days after transfection, cells were fixed with 4% formaldehyde in 1x PBS for 20 min, 

rinsed with TBSTx (TBS: 20 mM Tris, 150 mM NaCl, pH 7.5; 0.1% Triton-X100) and 

treated with Abdil (2% donkey serum, 0.1% NaN3, TBSTx) for 30 min.  Coverslips were 

rinsed with TBSTx and immunostained sequentially using 1:2000 diluted DM1a and 

1:500 diluted rhodamine-conjugated goat anti-mouse antibodies.  After washes with 

TBSTx, coverslips were stained with DAPI (1:20,000 concentration) and mounted on 

glass slides using p-phenylenediamine antifade mounting media. 

SDS-PAGE and Immunodetection 

Cell lysis: 

 HeLa cells were washed with PBS and scraped off the plates 48 hours after 

transfection using a rubber policeman.  Cells were collected by 5,000 × g centrifugation 
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for 5 min.  Pellets were washed twice with PBS and cells were collected by centrifugation 

at 13,000 rpm for 5 min.  Cells were lysed in 300 mM NaCl, 100 mM Tris, 0.2 mM 

EDTA, 1% NP40, 10% glycerol, protease inhibitors (80 µM aprotinin, 100 mM AEBSF, 

5 mM Bestatin, 1.5 mM E-64, 2 mM leupeptin, 1 mM pepstatin A) by end-over end 

mixing for 45 min.  Samples were spun at 2,000 × g for 10 min; the supernatant was 

collected and frozen at -80°C. 

SDS-PAGE: 

 Samples were prepared by mixing sample and 2x sample buffer and boiling for 5 

min.  Samples were loaded in a 15% polyacrylamide gel and run for 1 hour 5 min at 35 

mA. 

Immunodetection: 

 Gels were transferred to nitrocellulose membranes for 2 hours at 150mA.  Blots 

were then treated with blocking buffer (5% donkey serum in 1x TBST) for 40 min, 

washed with 1x TBST 3 times, 5 min each, and incubated with antibodies specific for 

Rev, α tubulin, or caspase 3.  Rev was detected using sequential incubations of 1:2000 

diluted sheep ant-Rev sera obtained from US Biologicals (Swampscott, MA) and 1:2000 

HRP-conjugated donkey-anti-sheep IgG antibodies.  Tubulin was detected using 1:2000 

diluted DM1a and detected with 1:100,000 diluted HRP-conjugated donkey-anti-mouse 

IgG antibodies.  Caspase 3 was detected using 1:1000 diluted rabbit antibodies gifted by 

Dr. T. Brown followed by incubation with 1:20,000 diluted donkey-anti-rabbit IgG 

antibodies.  All secondary antibodies were obtained from Jackson Immunolabs 

(Westgrove, PA) and blots were incubated in antibody containing solutions for 40 min.  
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Blots were washed with 1x TBST and developed using Pico detect kit (Pierce, Rockford, 

IL). 
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Results 

Apoptosis can be measured by a variety of assays each subjected to different 

biases and artifacts.  Therefore, any attempt to determine whether Rev expression induces 

apoptosis, multiple assays should be used.  Three assays were selected for this study.  The 

first assay involved visual inspection looking for nuclear fragmentation, the canonical 

sign of apoptotic death.  Parental HeLa cells and HeLa cells stably expressing Rev fused 

to GFP were fixed two days after passage, stained with DAPI and the fraction of cells 

with fragmented nuclei were scored.  Stable cell lines were used because they are easier 

to work with and the levels of Rev expression are identical from cell to cell.  The average 

fraction of apoptotic control cells was 0.34% whereas the average of Rev-expressing 

apoptotic cells was 0.40% (Table 1a).  A one tailed paired T-test confirms that there is no 

statistical difference between the parental HeLa cells and cells stably expressing Rev-

GFP, p=0.25.  This data is inconsistent with the hypothesis that Rev induces apoptosis. 

 Since the creation of stable cell lines selects for viable cells that compensate for 

lethal effects due to Rev expression, cells transiently expressing Rev were also examined.  

HeLa cells were transfected with equal amounts of either a control YFP plasmid or Rev-

GFP for 48 hours before fixation and visualization.  Wild-type Rev is normally found in 

the nucleus of cells, specifically the nucleoli whereas YFP is dispersed throughout the 

entire cell (Figure 4a).  Under these conditions, Rev expression leads to an approximately 

two-fold increase in apoptosis relative to YFP controls (means equal to 1.35% and 0.61% 

respectively, n=2, Table 1a).  Examples of apoptotic cells can be seen in Figure 4b.  A 

one tailed paired T-test shows a statistically significant difference (p=0.011) between 

cells expressing YFP and Rev-GFP.  These data are consistent with the hypothesis that  
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Table 1. Frequency of Apoptosis in Rev expressing cells:  the visual assay.  A. 

Average frequencies of apoptotic cells (± standard deviations) of 2 trials comparing HeLa 

control cells with HeLa cells transiently (t) expressing wild-type Rev as scored by the 

visual assay. 

B. Average frequencies of apoptotic cells (± standard deviations) of 3 trials comparing 

HeLa control cells with HeLa cells stably (s) or transiently (t) expressing wild-type Rev 

or Rev mutants as scored by the visual assay. 

 

A. 

Rev (t) YFP (t) 

1.35% ± 0.07  0.61% ± 0.03 

 

B. 

HeLa Rev (s) Rev (t) M4 (t) M6 (t) M10 (t) 

0.34% ± 0.12 0.40% ± 0.11 3.3% ± 3.2 1.34% ± 0.61 1.38% ± 0.36 0.99% ± 0.15 
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Figure 4. Subcellular localization of Rev and mutants and apoptotic cells.   A.  

Normal HeLa cells showing wild-type Rev in the nucleoli and YFP in the cytoplasm.  

M10 is also localized to the nucleoli while M6 is localized to the cytoplasm and M4 is 

found in both the nucleoli and cytoplasm.  B.  Examples of apoptotic HeLa cells and 

HeLa cells expressing wild-type Rev, M4, M6, and M10. 
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Rev stimulates apoptosis.  This increase was not due to an increase in the amount of 

fluorescent protein that was expressed.  As seen in Figure 5, the levels of transgene 

expression are similar.  Similarly transfection frequencies of both plasmids were similar, 

with YFP having an average of 35.5% and Rev-GFP having an average of 26.0% 

frequency (Table 2 a,b).  A two tailed paired T-test reveals no statistical difference when 

comparing the transfection rates of YFP and Rev-GFP, p=0.17. 

The effects of M4, M6, and M10 expression were also examined for their ability 

to stimulate apoptosis owing to the observations that they also affect cell cycle expression 

(N. Smith, personal communication).  M10 is found in the nucleoli of cells while M6 is 

found mainly in the cytoplasm and M4 is in both the nucleoli and the cytoplasm (Figure 

4a).  DNA from each construct as well as DNA from YFP were transfected and 48 hours 

later were scored for visual signs of apoptosis.  Examples of apoptotic cells can be seen 

in Figure 4b.  When using the visual assay to compare the effects of Rev-GFP expression 

with M4-GFP, M6-GFP, and M10-GFP expression, no statistical differences were 

observed using an ANOVA, p=0.57 (Table 1b).   These mutants are not statistically 

different from wild-type Rev and by inference are greater than YFP.  These data are 

consistent with the hypothesis that Rev induces apoptosis.  

As seen in Table 1b, the average percent of apoptotic Rev-GFP cells is larger than 

the mutants M4-GFP, M6-GFP, and M10-GFP.  This is because one trial of Rev had a 

very high number of apoptotic cells.  Although there was no reason for removing this trial, 

if that number was removed, an average of 1.45% ± 0.07 was found for Rev-GFP.  This 

result is comparable with the Rev-GFP and the mutants M4-GFP, M6-GFP, and M10-
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GFP.  By inference, Rev and the mutants are the same which is greater than YFP.  These 

results are still consistent with the hypothesis that Rev induces apoptosis. 

To determine whether these data were biased by differences in transgene 

expression, transfection frequencies were measured in these experiments and an ANOVA 

was performed.  The transfection frequencies of Rev-GFP, M4-YFP, M6-YFP and M10-

YFP are shown in Table 2.  ANOVA showed there were differences in transfection 

frequencies (p=0.018) and post hoc testing using Tukey’s HSD showed that M10-YFP 

transfection frequencies were significantly greater than wild-type control (p<0.01).   
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Figure 5. Rev expression in HeLa cells 48 hr after transient transfection.  Twenty 

five micrograms of whole cell extracts prepared from cells transfected with 6 µg of YFP, 

YFP Rev, M4, M6, and M10 were resolved by SDS-PAGE and blotted onto 

nitrocellulose.  Rev was detected using Rev specific antibody as described in the 

“Materials and Methods.”  The positions migrated by molecular weight standards as 

shown at the left and an arrow points to the Rev-GFP fusion protein. 
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Table 2. Transfection frequencies.  A. Averages and standard deviations of the 

transfection frequencies of wild-type Rev and YFP. B. Averages and standard deviations 

of the transfection frequencies of wild-type Rev, and Rev mutants M4, M6, and M10. 

 

A. 

Rev YFP 

26.0% ± 0.07 35.5% ± 3.9 

 

B. 

Rev M4 M6 M10 

23.5% ± 5.1 22.5% ± 6.5 24.9% ± 3.2 36.4% ± 1.8 
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Transfection frequencies between Rev-GFP, M4-YFP and M6-YFP were not 

statistically different from each other (p>0.05).  It is unclear why M10 has a higher 

transfection frequency as all the plasmid DNAs used in these experiments were isolated 

in parallel at the same time.  Differences may be due to the fact that M10 is slightly less 

toxic than the other mutants or that the subcellular localization plays a role in this 

phenomenology.  M10 preferentially accumulates in the nucleolus which, because a lot of 

Rev accumulates in a small localized region, M10 transfectants may be easier to score.  

Of course, it is formally possible that transfection frequencies are higher because the 

other transgenes are toxic.   Additionally, levels of protein expression were also 

monitored (Figure 5).  Levels of Rev and mutant expression were equal when gels were 

loaded with the same amount of protein. 

 In an attempt to validate the sensitivity of this assay, HeLa cells were treated with 

0.1 µg/ml of Actinomycin D, a known apoptosis stimulator.  When the assay was 

repeated, the percentage of apoptotic cells was surprisingly low, only 0.69%.  The 

fraction was low, not because Actinomycin D was not inducing cell death but instead, 

because most apoptotic cells were seen floating off the coverslip before fixation.  It is 

clear that visual inspection is not an overly sensitive assay because a large fraction of 

apoptotic cells are omitted from the sample.  Thus, the true percentage of apoptotic cells 

induced by Rev expression may actually be higher than what was measured.  Therefore 

another assay was needed. 

 To this end, a commercially available ELISA based assay capable of detecting 

apoptosis was used.  This assay detects apoptosis by measuring the amount of mono- and 

oligo-nucleosomes that are released during nuclear fragmentation.  After cells were 
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collected and lysed, a mixture of anti-histone antibody conjugated to biotin and anti-DNA 

antibody conjugated to peroxidase were incubated with cell extracts.  The anti-histone 

antibody binds to the nucleosomes and its covalently bound biotin promotes attachment 

of nucleosomes to the streptavidin coated microtiter plate.  The anti-DNA antibody will 

bind to the DNA present in these nucleosomes and the amount of immobilized 

histones/DNA is proportional to the amount of peroxidase activity. 

 In this test, transient YFP and Rev-YFP were again compared.  YFP expressing 

control cells had an average net optical density of 0.86 while YFP Rev had an average net 

optical density of 0.87 (Table 3).  An ANOVA was performed and it confirms that YFP 

and Rev-YFP expression did not have statistically significant different amounts of 

apoptosis (p= 0.37).  This data is inconsistent with the hypothesis that Rev induces 

apoptosis.  For comparative purposes, parental HeLa cells and Actinomycin D-treated 

HeLa cells were used as negative and positive controls, respectively.  Parental cells had a 

low average value of 0.48 and the Actinomycin D treated cells had a high average value 

of  ≈2 (Table 3).  These data demonstrate that the assay is working as expected. 

Despite the fact that there was no significant difference between YFP and Rev-

YFP, a pilot experiment was done with the mutants (Table 3). Although there were not 

sufficient replicates to make a definitive conclusion, the results suggest that the mutants 

M4, M6, and M10 did not stimulate apoptosis. 

 Since the first two assays provided conflicting results, western blots were 

performed with whole cell extracts looking for activation of caspase 3 (Figure 6).  

Caspase 3 is an effector caspase that is activated during apoptosis.  If Rev expression 

stimulates cell death, then caspase 3 should be activated.  Activated caspase 3 is readily 
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Table 3. Fractions of apoptotic cells: The ELISA assay.  The fraction of apoptotic cells 

following expression of wild-type Rev, M4, M6, and M10 or treatment with 0.1µg/ml 

actinomycin D (ActD) compared to untreated HeLa controls.  Tabulated values represent 

average optical densities (±standard deviations) obtained using the ELISA assay.  The 

standard deviations for the mutants M4, M6, and M10 are based on replicates of one trial.  

The standard deviations for HeLa, ActD, YFP, and Rev are based on averages between 

trials.  Individual standard deviations between each trial were comparable to the mutants. 

 

 

HeLa ActD YFP Rev M4 M6 M10 

0.37 ±0.54 2.01 ±0.49 0.86 ±0.45 0.87 ±0.32 0.60 ±0.04 0.56 ±0.01 0.39 ±0.03 
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Figure 6. Caspase 3 is not activated following Rev expression. Whole cell extracts 

prepared from cells transfected with Rev, Rev mutants, and YFP were resolved by SDS-

PAGE, and blotted onto a nitrocellulose membrane.  Caspase 3 was detected using 

specific antibodies.  Activated Caspase 3 is present in extacts prepared from HeLa cells 

treated with actinomycin D (+) but is absent (-) in untreated HeLa cell extracts. (gift of 

Dr. T. Brown) 
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 distinguished by its molecular size which is smaller than procaspase 3 that has not been 

proteolytically cleaved.  No activated caspase 3 is detected in Rev and YFP expressing 

cells.  As seen in Figure 6, apoptosis is only detected in the positive control (Figure 6, 

lane 9).  Because caspase 3 is only activating the positive control cells, these results 

suggest that Rev expression is not triggering apoptosis.  These results are inconsistent 

with the hypothesis that Rev induces apoptosis. 

Since there was only one assay testing the mutants with Rev-GFP, the caspase 3 

assay was used to determine if Rev mutants stimulated apoptosis.  As with YFP and YFP 

Rev, there was no detection of any apoptosis in M4, M6, or M10 lanes 3-7 in Figure 6.  

This is inconsistent with the hypothesis that Rev induces apoptosis. 
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Discussion 

 The goal of this research was to determine whether Rev expression stimulates 

apoptosis.  Three separate assays commonly used to detect apoptosis were used and 

collectively, the combined results suggest Rev expression that does not stimulate cell 

death.  No evidence of apoptosis was detected in Rev expressing cells using either the 

ELISA-based assay that detects chromatin fragmentation or the western blot analysis that 

detects activated caspase 3.  Even the visual assay showed that the cell line stably 

expressing Rev-GFP did not have elevated rates of apoptotic cells than HeLa controls.  

This latter observation is not surprising in that creating stably expressing cell lines 

involves selecting for viable cells.  The only significant signs of apoptosis were detected 

following transient expression of Rev and Rev mutants M4, M6, and M10 using the 

visual assay. 

 There are several possible explanations for the discrepant results provided by the 

visual assay.  The most likely explanation is that the visual signs of apoptosis were 

confused for the combined stresses incurred by transfection and/or Rev expression.  

Certainly the ELISA and western assays that detect specific biochemical markers of 

apoptosis should not detect necrosis or other forms of cell stresses.  Alternatively, the 

visual assay was clearly less sensitive than the other two assays in that it was poor at 

detecting apoptosis stimulated by Actinomycin D.  Lastly, it is possible that investigator 

bias interfered with the visual assay.  In retrospect, it may have been prudent to conduct 

these assays in a blinded manner. 

 Even though no apoptosis believed to result from Rev expression, it does not 

mean that Rev is not toxic to cells.  Indeed, Rev expression alters cell cycle progression 
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and leads to an accumulation of cells in mitosis prior to the spindle assembly checkpoint 

(N. Smith, personal communication; Miyazaki et al., 1995).  These observations have 

been explained variously.  Rev may be affecting the function of the nucleolar protein B23 

that is involved in centrosome duplication and ribosome biogenesis (Miyazaki et al., 

1995; Zatsepina et al., 1999).  It is well established that B23 function is critical for cell 

proliferation although there is contradictory evidence whether its depletion leads to 

apoptosis (Korgaonkar et al., 2005; Okada et al., 2007).  Even if B23 acts as a suppressor 

of apoptosis, the results presented here suggest Rev binding B23 is not sufficient to 

trigger cell death. 

 Rev may also affect cell cycle progression by altering the polymerization state of 

microtubules thereby affecting spindle function, activating the spindle assembly 

checkpoint which ultimately triggers apoptotic signaling (Watts et al., 2000; Kotha, 

2010).  In such a model, Rev inhibits microtubule polymerization or promotes 

microtubule depolymerization such that spindle formation and chromosomal congression 

that occurs in prophase and prometaphase are slowed.  In one model, Rev is hypothesized 

to inhibit microtubule polymerization by sequestering tubulin heterodimers.  If correct, 

because cellular concentrations of tubulin far exceed Rev concentrations, it is probable 

that Rev expression will only slow spindle function and not activate apoptotic signaling.  

In another model, Rev may be inhibiting chromatin-mediated nucleation of microtubules 

by interfering with Ran activity (Quimby and Dasso, 2003; Kalab and Heald, 2008; 

Kotha, 2010).  If this is correct, spindle assembly should be slowed but not completely 

blocked because redundant spindle microtubules are populated by those polymerized 

from centrosomes.  In a final model, if Rev is depolymerizing existing microtubules, then 
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apoptosis may be achieved providing that the extent of depolymerization is high.  

However, it is not and there are no obvious spindle defects seen in Rev expressing cells 

(Kotha, 2010). 

Since Rev does not induce apoptosis in cells and cells may correct for spindle 

defects, future experiments should determine whether Rev expression activates the 

spindle assembly checkpoint.  This can be achieved by determining if checkpoint proteins 

such as Bub1 and BubR1 accumulate on kinetochores more frequently in Rev expressing 

cells.  This can also be quantified by measuring the ability of Rev expressing cells to 

recover from activation the checkpoint by taxanes.  If Rev expression alters microtubule 

behavior, then Rev expressing cells should recover poorly after taxane removal. Similarly, 

the nature of the cell cycle defect due to Rev expression should be better characterized.  

This includes time-lapse videography looking for defects in chromosomal congression 

and spindle tension. Some research has been done toward this direction, but not enough 

to form a conclusion. 

After this work was completed, Levin et al. (2010) found that Rev expression 

stimulated expression of TNF and caused cell death in non-dividing cells.  Dividing cells 

were viable. Because TNF is involved in both necrosis and apoptosis (REF?), they were 

unable to determine the nature of death. Necrosis is a type of cell death that is cell 

destruction by the release of intracellular components.  Necrosis occurs due to cellular 

trauma such as inflammation or infection whereas apoptosis is a type of programmed cell 

death and can be initiated by internal and external cell factors (Okada and Mak, 2004.)  

Since apoptosis is not detected here, it is likely the cell death observed in the visual 

assays may be due to necrotic cell death.  
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