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ABSTRACT 

 

Ruark, Christopher, D. M.S., Department of Pharmacology and Toxicology, Wright State 

University, 2010.  Quantitative Structure-Activity Relationships for Organophosphates 

Binding to Trypsin and Chymotrypsin. 

 

Organophosphate (OP) nerve agents such as sarin, soman, tabun, and O-ethyl S-[2-

(diisopropylamino) ethyl] methylphosphonothioate (VX) do not react solely with 

acetylcholinesterase (AChE).  Evidence suggests that a wide range of cholinergic-

independent pathways are also targeted, including serine proteases.  These proteases 

comprise nearly one-third of all known proteases and play major roles in synaptic 

plasticity, learning, memory, neuroprotection, wound healing, cell signaling, 

inflammation, blood coagulation and protein processing.  Inhibition of these proteases by 

OPs was found to exert a wide range of noncholinergic effects depending on the type of 

OP, the dose, and the duration of exposure.  Consequently, in order to understand these 

differences, in silico biologically-based dose-response and quantitative structure-activity 

relationship (QSAR) methodologies need to be integrated.  Here, QSARs were used to 

predict OP bimolecular rate constants for trypsin and α-chymotrypsin.  A heuristic 

regression of over 500 topological/constitutional, geometric, thermodynamic, 

electrostatic, and quantum mechanical descriptors, using the software Ampac 8.0 and 

Codessa 2.51 (SemiChem, Inc., Shawnee, KS), was developed to obtain statistically 

verified equations for the models.  General models, using all data subsets, resulted in R2 
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values of 0.94 and 0.92 and leave-one-out Q2 values of 0.9 and 0.87 for trypsin and α-

chymotrypsin.  To validate the general model, training sets were split into independent 

subsets for test set evaluation.  A y-randomization procedure, used to estimate chance 

correlation, was performed 10,000 times resulting in mean R2 values of 0.24 and 0.3 for 

trypsin and α-chymotrypsin.  The results show that these models are highly predictive 

and capable of delineating the complex mechanism of action between OPs and serine 

proteases, and ultimately, by applying this approach to other OP enzyme reactions such 

as AChE, facilitate the development of biologically based dose response models. 

 



v 

TABLE OF CONTENTS 

Page 

I. INTRODUCTION……………………...…………………………………………….1 

a. Biologically Based Dose Response Modeling……………………………….1 

b. Bimolecular Rate Constants…………………………………………………..2 

c. Organophosphate Biologically Based Dose Response Modeling…….......2 

d. Organophosphate Structure…………………………………………………..3 

e. Acetylcholinesterase…………………………………………………..….……3 

f. History of Quantitative Structure-Activity Relationships……………………4 

g. Quantitative Structure-Activity Relationships in Biologically  

Based Dose Response Modeling……………………………………………..4 

h. Noncholinergic Targets………………………………………………………...5 

i. Trypsin and Chymotrypsin……………………………………………………..5 

j. Conclusion………………………………………………………………………6 

k. Hypothesis and Specific Aims………………………………………………...7 

II. METHODS……………………………………………………………………...…...8 

a. CODESSA and AMPAC Background………………………………………...8 

b. Datasets…………………………………………………………………………9 

c. OP Descriptor Calculations…………………………………………………..10 

d. QSAR Regression Technique…………………………………………….…10 

e. QSAR Model Selection……………………………………………………….11 

f. The Break Point……………………………………………………………….11 



vi 

TABLE OF CONTENTS CONTINUED 

Page 

g. Training Set Validation…………………………………………………….…12 

III. RESULTS……………………………………………………………………...…..13 

a. Database Distributions…………………………………...…………………..13 

b. Comparison of Databases……………………………………………………14 

c. Statistical Analysis of Heuristic Regression………………………….…….14 

d. ABC and Y-Randomization Cross-Validation…………………...……....…15 

IV. DISCUSSION………………………………………………………………………17 

a. The QSAR Models…………………………………………………………….17 

b. BBDR Model Application……………………………………………………..19 

c. Physical Interpretation of Descriptors……………………………………....20 

d. Conclusion…………………………………………………………...………...25 

e. Acknowledgment …………………….……………………………………….26 

V.  REFERENCES…………………………………………………………………....27 

 



vii 

LIST OF FIGURES OR ILLUSTRATIONS 

Figure              Page 

1. Generic chemical structure of OP compounds.   

R1, R2, and R3 are side chains…………………………………………………………37 

2. Schematic for noncholinergic enzyme inhibition and  

aging by OP nerve agents (Adapted from Gearhart et al., 1990)………………...38 

3. Log10 OP bimolecular rate constant box plots for  

trypsin and α-chymotrypsin global datasets………………………………………...39 

4. R2 vs. number of descriptors for ABC trypsin bimolecular  

rate constant regression………………………………………………………………40 

5. R2 vs. number of descriptors for ABC α-chymotrypsin  

bimolecular rate constant regression………………………………………………..41 

6. Experimental vs. predicted trypsin bimolecular rate 

constants for the ABC QSAR…………………………………………………………42 

7. Experimental vs. predicted α-chymotrypsin bimolecular 

 rate constants for the ABC QSAR…………………………………………………..43 



viii 

LIST OF TABLES 

Table              Page 

1.  Descriptor codes and t-test values for parameters used  

in the trypsin bimolecular rate constant regressions……………………………...44 

2. Descriptor codes and t-test values for parameters used in 

 the α-chymotrypsin bimolecular rate constant regressions……………………...45 

3. Inter-correlation between descriptors in global trypsin  

bimolecular rate constant QSAR……………………………………………………46 

4. Inter-correlation between descriptors in global trypsin  

bimolecular rate constant QSAR……………………………………………………47 

5. Trypsin results from the external validation using  

the ABC approach…………………………………………………………………….48 

6. α-Chymotrypsin results from the external validation  

using the ABC approach……………………………………………………………..49 

7. Bimolecular rate constant (M-1min-1) trypsin and  

α-chymotrypsin QSAR models for the ABC, AB, AC, 

 and BC training sets as a function of a compound’s  

descriptors (D1, D2, …, D20)……………………………………………………….....50 

8. Trypsin tissue distribution in rat and human tissues 

compared with that of AChE…………………………………………………………55 

  



ix 

APPENDIX TABLES 
 

Table                     Page 
 
 

A. Listing of OP compounds and their respective trypsin, 

α-chymotrypsin, and AChE bimolecular rate constants……………………………56



x 

LIST OF ABBREVIATIONS 

ACh:  acetylcholine 

AChE:  acetylcholinesterase 

BBDR:  biologically-based dose-response 

CNS:  central nervous system 

CODESSA:  COmprehensive DEscriptors for Structural and Statistical Analyses 

DFP:  diisopropyl fluorophosphate 

LOO:  leave-one-out 

ML:  multi-linear 

NIPALS:  non-linear iterative partial least squares  

OP:  organophosphates 

PLS:  partial least squares 

Q2:  cross-validated leave-one-out correlation coefficient 

QM: quantum mechanical 

QSAR:  quantitative structure-activity relationship 

R2:  correlation coefficient 

SEM:  standard error of the mean 

TSAME:  p-toluenesulfonyl arginine methylester  

VX:  o-ethyl s-[2-(diisopropylamino) ethyl] methylphosphonothioate 

 



xi 

ACKNOWLEDGEMENT 
 

 I would like to thank everyone who has lent support, academic or otherwise, as 

I have pursued this degree.  Without your encouragement, love and support I would not 

have been able to attain this honor.  Thank you very much. 

  



1 
 

INTRODUCTION 

For years researchers have relied on experimental animal models to obtain 

human toxicity estimates.  However, error associated with these estimates has been 

linked with an inability to extrapolate across various species, doses, dose routes, and 

durations of exposure.  As a result, in silico, biologically-based dose-response (BBDR) 

models were developed to improve the investigator’s ability to interpret and extrapolate 

animal toxicity data to human predictions (Setzer et al., 2001; Conolly and Andersen, 

1991; Kavlock and Setzer, 1996).   

 

Specifically, BBDR models are compartmental models that strive to be 

mechanistic by mathematically describing the physiology of the organism.  Mathematical 

compartments correspond to predefined organs or tissues for which the interconnections 

correspond to blood or lymph flows.  Systems of differential equations are then written 

which include physiological parameters such as blood flows, pulmonary ventilation rates, 

organ volumes, etc., for which information is available in scientific publications.  The 

description of the body is simple but a balance is struck between complexity and 

simplicity depending upon the modeled compound.   

 

These models have a few advantages over the ―classical‖ pharmacokinetic 

models, which are based less on physiology.  They can predict internal tissue 

concentrations of chemicals and/or metabolites and help interpolate/extrapolate between 

doses, exposure durations, routes of administration, species, and individuals.  While
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 toxicology has greatly benefited from the success of these approaches, such 

mechanistically-based models rely on biochemical data not ordinarily collected in simple 

animal toxicity studies.  Examples of these data not ordinarily collected include: 

tissue:blood partition coefficients and Michaelis-Menten enzyme kinetic parameters, VMax 

and KM.Therefore, there are often data gaps in the literature when one begins to develop 

a BBDR model.  For organophosphates (OP) in particular, these models require 

quantitative estimates of their bimolecular rate constants describing the binding reaction 

kinetics between the OP and its target enzyme.  This binding rate is proportional to the 

inhibitor concentration and the rate of inhibition is equal to the rate of loss of the OP in 

the system.  Therefore, bimolecular rate constants have units of M-1min-1 and can be 

characterized in the following reaction scheme: 

A + B     
   

where A and B are reactants, P is a product and d[A] / dt = d[B] / dt = -k [A] [B] and d[P] / 

dt = k [A] [B]. 

 

Organophosphates are widely used as insecticides and have the potential to be 

used as chemical warfare agents.  Therefore, there is a potential for human exposure.  

These pesticides constitute a problem for public health and, according to the World 

Health Organization, it is estimated that there are about three million cases of acute 

intoxication and 220,000 deaths each year (Pancetti et al., 2007).  For these reasons, a 

variety of OP BBDR models were developed with the primary aim of predicting 

cholinergic toxicity, such as acetylcholinesterase (AChE) inhibition (Gearhart et al.1990, 

1994; Langenberg et al., 1997; Poet et al., 2004; Sultatos, 1990; Sweeney et al., 2006; 

Timchalk et al., 2002, 2007; van der Merwe et al., 2006).  These models have relied on 

experimentally measured model parameters and, while these measurements are 
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necessary to validate the model predictions, they are time consuming, expensive, and 

not available for numerous OP.  Noncholinergic targets are also rapidly gaining 

acceptance in the literature (Holmuhamedov et al., 1996; Lockridge, 2008; Pancetti et 

al., 2007; Richards et al., 2000) and there may be a need to incorporate these new 

targets into future BBDR models.  Consequently, with an ever growing number of 

cholinergic and noncholinergic parameters needed for model validation, in silico 

techniques to predict these parameters will become crucial tools for the future of OP 

BBDR model development. 

 

Agricultural companies have placed an enormous amount of effort into 

developing structure-activity relationships for OP insecticides, fine tuning their products 

by utilizing a common phosphoryl-oxygen and varying the leaving group (R1) and/or 

substituents (R2-R3) (Figure 1).  In particular, they have been designed to reversibly 

inhibit the active site of serine esterases (Vilceanu et al., 1977).  Once inhibited, many of 

these serine esterases promote a dealkylation (aging) reaction, such as trypsin with di-

isopropyl fluorophosphate (DFP) (Kossiakoff, 1984) and AChE complexed with sarin, 

soman, or DFP (Millard et al., 1999) (Figure 2), which results in the formation of a 

covalent bond.  This has provided a wide range of toxicities for OP compounds and 

made BBDR model development for OP lacking toxicokinetic and toxicodynamic data a 

challenging endeavor. 

 

Acetylcholinesterase, above all other enzymes, is believed to be the most 

significant target for OP toxicity (Bajgar et al., 2008).  This enzyme is responsible for the 

rapid hydrolysis of acetylcholine (ACh), a neurotransmitter involved in the numerous 

cholinergic pathways in the body.  Inhibition of this enzyme leads to the accumulation of 
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ACh in synapses and neuromuscular junctions, leading to hyper-stimulation of 

cholinergic pathways (Aroniadou-Anderjaska et al., 2009).  AChE, like many esterases, 

belongs to an esterase superfamily which has highly conserved active site residues with 

similar mechanisms of action (Pen et al., 1990).  Because of this, all serine esterase 

superfamily members should have the capacity to react with OP compounds (Pancetti et 

al., 2007).  Thus, characterizing members of this class of enzymes through the 

integration of BBDR and quantitative structure-activity relationship (QSAR) modeling will 

provide a useful resource for the identification of novel OP targets and aid our 

understanding of the beneficial and adverse effects these chemicals have on the body. 

 

QSAR has been used in drug design for decades and only more recently become 

a tool to estimate BBDR model parameters (Barratt, 1998; Blaauboer, 2003).  

Specifically, QSAR relies on developing a statistical algorithm that quantitatively relates 

differences in activity with that of changes in molecular descriptors for each compound.  

These descriptors can be described as useful numbers that are transformed from the 

molecular structure and are commonly used by medicinal chemists (Hansch et al., 

2004).  Descriptors have evolved over the years from simple global properties like LogP 

(capturing hydrophobicity), solubility, and ionization, to today, where there are more than 

3,000 descriptors encompassing six different dimensions (Sumathy, 2007).  QSAR 

methods have successfully reduced cost and streamlined the pharmaceutical industry 

and with increasing demand for OP toxicity estimates, the application of QSAR may be 

necessary to assess the risk and threat of OP compounds to human health. 

 

 Examples of QSAR models predicting biochemical parameters such as skin 

permeability coefficients, skin/water and tissue/blood partition coefficients, bimolecular 
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rate constants, and metabolic parameters such as Vmax and Km, for the development of 

BBDR models and/or for human health risk assessment are not a new endeavor 

(Hansch and Deutsch, 1966; Kamgang et al., 2008; Knaak et al., 2004; Lowe et al., 

2006; Poulin and Krishnan, 1995; Raevskii et al., 1990; Yang et al., 1998).  Specifically, 

AMPAC and CODESSA methodology has shown promising results in medicinal 

chemistry applications including predicting BBDR specific parameters (Katritzky et al., 

1998, 2005).  However, the relationship between OP structure with that of trypsin and α-

chymotrypsin bimolecular rate constants has, to my knowledge, not yet been evaluated. 

 

Little attention has been paid to the QSAR between serine proteases and OP 

toxicity but these enzymes play essential roles in a wide range of biological processes 

(Bhongade et al., 2005).  Serine proteases are found in a variety of tissues throughout 

the body including the central nervous system (CNS), blood, and digestive tract (Davies 

et al., 2001; Gingrich and Traynelis, 2000) and in every organelle and compartment of 

most, if not all, eukaryotic cells (Ekici et al., 2008).  There have been over 500 proteases 

identified in the human genome (Puente et al., 2005), one-third of which are serine 

proteases, and are also associated with a number of diseases, including cardiovascular 

and Alzheimer’s disease, cancer, autism, autoimmune diseases, inflammation, and 

hypertension (Ekici et al., 2008).   

 

Trypsin and chymotrypsin are the best-known serine proteases which are 

exclusively expressed in the digestive tract and responsible for hydrolyzing proteins 

which ultimately provide nutrients to the body (Rawlings and Barrett, 1994).  While these 

proteases were shown to be inhibited by OP (Schaffer et al., 1957), they are not 

believed to be toxicologically significant at high dose short term exposures, but rather 
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may play a role in chronic low-level toxicity.  For example, cognitive deficits produced 

from these exposure conditions (Joosen et al., 2009; Raveh et al., 2002) may result from 

nutrient deprivation in the brain.  Other structurally similar serine proteases, many of 

which are found in the CNS and blood, are involved in regulating neurotoxicity, learning, 

memory, synaptic plasticity, inflammation, cell signaling, and wound healing responses 

(Bhongade and Gadad, 2004; Bhongade et al., 2005; Davies et al., 2001; Gingrich and 

Traynelis, 2000; Movsesyan et al., 2001; Richards et al., 2000) and potentially may be 

involved in OP induced toxicity. 

 

Therefore, quantifying their activity can be performed by elucidating small 

differences at a molecular level through the use of various descriptors.  By utilizing a 

step-wise or tiered approach, beginning with a screening level tool such as this, 

scientists will be able to make initial assessments of the rate at which OP inhibit trypsin 

and α-chymotrypsin.  Furthermore, the formation of these QSAR models will assist in 

elucidating a mechanism of interaction for members of the serine esterase superfamily, 

potentially allowing comparisons with other cholinergic and noncholinergic targets.  

Incorporating these QSAR into BBDR models will allow for assessment of the dose-

response, help identify potential or likely health effects (cholinergic and noncholinergic), 

and by linking multiple BBDR models, have the potential to aid in the investigation of 

various therapeutic interactions even in the absence of experimental data on the specific 

compound.  Thus, the integrated QSAR-BBDR modeling approach described in this 

study should be useful for predicting in vivo OP trypsin and α-chymotrypsin 

toxicodynamics in animals and humans under data-poor situations and set the stage for 

future QSAR predicting OP bimolecular rate constants with other members of the serine 

esterase superfamily. 
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HYPOTHESIS 

The chemical structure of organophosphate nerve agents can be used to quantify 

their toxicity through physiochemical descriptors, thereby eliminating data gaps in 

biologically based dose response model development. 

 

SPECIFIC AIMS 

 Test the hypothesis that quantitative structure-activity relationships can be used 

to predict bimolecular rate constants of organophosphates binding to trypsin. 

 

Test the hypothesis that quantitative structure-activity relationships can be used 

to predict bimolecular rate constants of organophosphates binding to α-chymotrypsin. 

 

Test the hypothesis that α-chymotrypsin will have a higher affinity than trypsin for 

organophosphates.
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METHODS 

CODESSA and AMPAC Background 

CODESSA (Comprehensive Descriptors for Structural and Statistical Analyses), 

developed by SemiChem Inc. (Shawnee, KS), was used for developing the trypsin and 

α-chymotrypsin QSAR models.  This program takes a database of chemical structures 

for which the biochemical property of interest is known, and calculates descriptors based 

on the chemical structure.  It then performs a regression of the biochemical property on 

the descriptors to derive an equation.  A wide variety of chemical descriptors can be 

calculated, including topostructural/topochemical, geometric, thermodynamic, 

electrostatic, and quantum mechanical (QM) properties (Ivanciuc, 1997) when used with 

the semi-empirical quantum mechanics features in the software AMPAC (Shawnee, KS).  

All of the descriptors used in the equations are theoretical; therefore, the trypsin and α-

chymotrypsin bimolecular rates can be predicted for novel chemical structures.  It 

includes regression techniques such as stepwise partial least squares (PLS), heuristic, 

multi-linear (ML), and non-linear iterative partial least squares (NIPALS) that can be 

used for searching the best multi-descriptor correlation (Equation 1). 

 

Equation 1.  Description of QSAR using chemical structure descriptors. 

Biological Activity = f (Chemical Structure) + Error 

where f is some function of the chemical structure descriptor. 
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Datasets 

The database of OP bimolecular rate constants for binding with trypsin and α-

chymotrypsin in their active form (phosphoryl-oxygen) was collected from the literature 

(Ooms, 1961) and can be found in the appendix.  It is believed that this dissertation, 

while the experimental techniques and approaches may be out dated, is the only 

available large dataset for trypsin and α-chymotrypsin OP bimolecular rate constants.  

The OP were obtained from the TNO Prins Maurits Laboratory while chymotrypsin and 

trypsin were obtained from General Biochemical Inc. (Chagrin Falls, OH, U.S.A.) and 

The British Drug Houses Ltd. (Poole, England) respectively.   

 

A titrimetric method using p-toluenesulfonyl arginine methylester (TSAME) as the 

substrate was used to quantify the trypsin reaction progress and the non-crystalline 

commercial trypsin preparation was purified according to Anson and Mirsky (1934).  It 

had a specific activity of 8.6 x 10-4 U/mg egg-white Nitrogen, whereby a unit of trypsin 

was defined as the enzyme quantity which frees so much acid from TSAME that 1 µl of 

0.01 N NaOH/min is necessary to keep the pH at 8.0.  The chymotrypsin commercial 

preparation, on the other hand, had an egg white N-content of 14.6% and a specific 

activity of 1.4 x 105 U/mg egg-white Nitrogen.  A unit of chymotrypsin was defined as that 

quantity of enzyme which under the experimental conditions (Balls and Jansen 1952) 

frees so much acid from N acetyl-L-tyrosine ethyl-ester that 1µL of 0.01 N NaOH/min is 

necessary to keep the pH at 7.8.  The proteolytic hemoglobin method of Anson 

(Northrop et al. 1948) based on the freeing of tyrosine and tryptophan out of denatured 

hemoglobin by α-chymotrypsin, was selected for quantifying the reaction progress.  The 

egg white was cast down by trichlor acetic acid and tyrosine and tryptophan were 

precipitated with Folinphenol-reactors and spectrophotometry quantified at 280nm 
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(Ooms, 1961).  Descriptive statistics (skewness, normality, inter-quartile range, etc.) was 

also performed with Prism 5 (GraphPad Software, San Diego, CA) to identify similarities 

and differences between the two enzymes. 

 

OP Descriptor Calculations 

The chemical structures were drawn, three-dimensionally optimized, and saved 

as .MOL files by using ChemSketch (Advanced Chemistry Developments, Inc., Toronto, 

Ontario, Canada).  3D optimization was based on the CHARMM force field 

parameterization (Brooks et al. 1983) and the stereo bonds on the 3D structure were 

ambiguous.  Each .MOL file contained chemical information necessary to compute 

CODESSA topological, topochemical, and geometric descriptors while the output files 

(.OUT) carried the quantum chemical, electrostatic, and thermodynamic descriptors 

computed in AMPAC.  To generate the AMPAC .OUT files, each .MOL file was loaded 

into AMPAC’s Graphic User Interface (AGUI).  The CODESSA output scheme (Job 

Type: Opt+Fre, Minimize Energy, Using TRUST, IR Frequencies and Thermodynamic 

Properties; Method:  Model AM1, Wavefunction Restricted HF; Properties: Calculate 

bond orders, Calculate ESP charges, Generate output for CODESSA; Solvent:  

Solvation None; General:  Default; Comment: default settings; Title: default settings) was 

used in the AMPAC calculation setup and each .MOL file was submitted and saved as a 

.OUT file.  The .OUT and .MOL files were then loaded into the CODESSA program to 

calculate the molecular descriptors. 

 

QSAR Regression Technique 

The heuristic regression procedure was used to find the best correlated models 

from the selected non-co-linear descriptors.  This regression selected the best two-
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parameter regression equation, the best three parameter regression equation, etc., by 

eliminating variables from consideration on the basis of the R2 value, F-test, standard 

deviation, and a t-test for each parameter in the stepwise regression procedure.  During 

the heuristic procedure, the descriptor scales were normalized and centered, and the 

final result was given in natural scales.  Inter-correlation among the descriptors was 

evaluated prior to descriptor inclusion in the model (Katritzky et al. 2001; Coi et al. 

2006). 

 

QSAR Model Selection 

Default values for control parameters and criteria were used: one-parameter R2 

test for significance=0.01, high inter-correlation level=0.99, significant inter-correlation 

level=0.80, one-parameter t-test for significance=0.10, multi-parameter t-test for 

significance=3.0, branching criteria=3.0, maximum number of saved correlations=10.0, 

minimum one-parameter ANOVA F-test=1.0.  Evaluation of the best-correlated models 

was carried out by validation of the stability of each regression model by a cross-

validation technique, leave-one-out (i.e., the sensitivity of the model to the elimination of 

any single datum).  The QSAR model was selected on the basis of the best statistical 

parameters (i.e., the highest squared correlation coefficient (R2) and the highest the F-

value). 

 

The Breakpoint 

During the heuristic regression procedure, it was important to know when to stop 

adding descriptors.  An excessive number of descriptors can lead to over-correlated 

equations that poorly predict anything but the available training set.  In general, a simple 

procedure following the principle of Occam’s razor is available to prevent over-

correlation (Hawkins, 2004).  This procedure relies on not exceeding the number of 
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descriptors that crosses the break point.  The break point can be identified from 

analyses of the plot of the number of descriptors involved versus the squared correlation 

coefficient (R2), and the cross-validated square correlation coefficient (Q2).  As the 

numbers of descriptors are increased the R2 will eventually plateau.  The number of 

descriptors corresponding to the point where the R2 is nearly at its plateau is called the 

break point, and the model corresponding to the break point has the optimum number of 

descriptors to be used (Katritzky et al., 2005). 

 

Training Set Validation 

General QSAR models using all the data were first developed.  These models 

were designed to meet the breakpoint criteria.  The data sets were then split into three 

subsets (denoted as A, B, and C) by selection of every third datum point.  Three new 

datasets, (A+B, A+C, and B+C) were then constructed.   The descriptors chosen from 

each of the general models were then used in developing QSAR models for the A+B, 

A+C, and B+C datasets.  The counterparts to each of these three datasets (C, B, and A) 

were used as external validation datasets (Katritzky et al., 2009).   

 

The sensitivity of the general model to chance correlations was also estimated by 

applying a y-randomization procedure (Rucker et al., 2007) involving 10,000 

randomizations using MatLab 7.9.0 (R2009b; Natick, MA).  The bimolecular rate 

constants were scrambled while leaving chemical descriptors constant.  The heuristic 

regression was then applied to the scrambled data set and the mean R2 was calculated. 
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RESULTS 

The OP compounds identified from the literature were grouped according to 

log10trypsin and log10α-chymotrypsin bimolecular rate constants.  Both datasets, 

containing 52 and 62 structures respectively, were found to be normally distributed 

based upon the D’Agostino and Pearson omnibus normality test at α=0.05.  It was found 

that both the trypsin and α-chymotrypin databases were positively skewed (trypsin=0.83 

and α-chymotrypsin=0.29) and that the trypsin database had more of its variance as the 

result of infrequent extreme deviations from the mean based upon the calculated 

kurtosis values (trypsin=-0.24 and α-chymotrypsin=-0.68).  Finally, the sum of the values 

within the trypsin database was found to be log1060.68 M-1min-1 while the sum of the 

values within the α-chymotrypsin database was found to be log10122.80 M-1min-

1(GraphPad Prism 5, La Jolla, CA). 

 

The mean and standard deviation of the trypsin database were found to be 

log101.17+/- log101.18 M-1min-1 with a standard error of the mean  (SEM) of log100.16 M-

1min-1.  From this sample it can be said, with 95% confidence, that the true mean of the 

trypsin population for OP inhibition lies between log100.84 and log101.50 M-1min-1.  The 

inter-quartile range for the database was found to be log101.58 M-1min-1 while the 

minimum, maximum, and median values were found to be log10-0.60, log104.240, and 

log100.80 M-1min-1 (Figure 3) (GraphPad Prism 5).
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On the other hand, the mean and standard deviation of the α-chymotrypsin 

database was found to be log101.98+/- log101.95 M-1min-1 with a SEM of log100.25 M-1min-

1.  From this sample it can be said, with 95% confidence, that the true mean of the α-

chymotrypsin population for OP inhibition lies between log101.49 and log102.48 M-1min-1.  

The inter-quartile range for the α-chymotrypsin database was found to be log103.09 M-

1min-1 while the minimum, maximum, and median values were found to be log10-1.00, 

log106.30, and log101.67 M-1min-1 (Figure 3).  Lastly, the difference between the means of 

these two databases (-0.81+/-0.31) was found to be significantly different and it can be 

said, with 95% confidence, that the difference between the two population means lies 

between -1.43 and -0.20 (i.e. α-chymotrypsin is more active than trypsin; GraphPad 

Prism 5). 

 

 It was found that by comparing and contrasting the trypsin and α-chymotrypsin 

database with that of our in-house AChE bimolecular rate constant database that AChE 

has a much higher mean binding affinity for OP.  Sarin, for example, had measured 

bimolecular rate constants of Log3.24, Log4.36 and Log7.15 for trypsin, α-chymotrypsin and 

AChE respectfully (Appendix).  QSAR delineating these complex reaction mechanisms 

for AChE are in development and will be published at a later date.  The sample mean of 

this AChE database was found to be Log5.16 M-1min-1 (unpublished data).  

Chymotrypsin and trypsin sample means were log1.98 and log1.17 M-1min-1 by 

comparison.  Reasons for these differences can be attributed to the physiochemical 

properties of the OP as well as the characteristics of the enzyme active site. 

 

The heuristic regression technique, applied to the entire training set of OP 

compounds, identified a breakpoint of 10 descriptors for both enzymes (Figures 4-5).  
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The global trypsin R2 was found to be 0.94 and the global α-chymotrypsin R2 was found 

to be 0.92 (Figures 6-7).  The largest global F-values, 66.96 for trypsin and 62.37 for α-

chymotrypsin, were found for the 10 parameter equations in CODESSA.  The global 

variances of the populations (s2) were found to be 0.01 and 0.34 and the global leave-

one-out (LOO) Q2 was noted to be 0.90 and 0.87 for trypsin and α-chymotrypsin 

respectively.  The descriptors utilized in the rate constant regressions can be found in 

Tables 1 and 2.  Seventy % of the descriptors utilized in the global QSAR models were 

constitutional/topological while the remaining 30% were quantum chemical descriptors.  

A t-test was performed on the descriptors incorporated in the models and the Kier shape 

index (order 2) and the count of H-donors sites [Zefirov’s PC] were identified as the most 

important contributors to the trypsin and α-chymotrypsin global QSAR models, 

respectively.  It was also shown that the number of fluorine and oxygen atoms were the 

highest correlated descriptor pairs (R2=-0.79) for the global trypsin rate constant 

regression (Table 3).  Contrasting that of trypsin, the highest correlated descriptor pairs 

for α-chymotrypsin resulted in a tie between the count of H-donors sites [Zefirov’s PC] 

and the Kier flexibility index as well as the relative number of aromatic bonds and the 

number of rings (R2=0.82) (Table 4). 

 

The three subsets (A, B, and C) constructed for the trypsin QSAR validation 

contained 18, 17, and 17 compounds.  The α-chymotrypsin subsets (A, B, and C) 

contained 21, 21, and 20 compounds.  An average training set R2 of 0.93 (Table 5) and 

0.81 (Table 6) was found for the trypsin and α-chymotrypsin models.  The average test 

set R2 values were shown to be 0.75 and 0.61 for trypsin and α-chymotrypsin.  The 

descriptors and t-test values for each model validation can be found in Tables 1 and 2 

and the equations associated with those QSAR models are shown in table 7.  Finally, 
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the y-randomization procedure yielded a mean and standard deviation trypsin 

R2=0.24+/-0.08 and a mean and standard deviation α-chymotrypsin R2=0.3+/-0.07. 
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DISCUSSION 

The QSAR Models 

The biological data for these QSAR models were found to be skewed but by 

performing a log10 transformation of the data the distribution was moved to normal.  The 

QSAR models produced R2 values of 0.94 and 0.92 for the trypsin and α-chymotrypsin 

global training sets indicating that the degree of relationship between the predicted and 

observed rates was significant (an R2 of 1.0 is indicative of a perfect correlation).  The F-

test characterized the ratio of the variance explained by the model to that of the variance 

not explained by the model and was dependent upon the number of parameters included 

in the model.  The F-test for each of these QSAR models was large indicating that the 

appropriate number of descriptors was added to each model and this was confirmed by 

the breakpoint.  It has also been shown that a high LOO cross-validated Q2 is necessary 

but not sufficient for QSAR models to have high predictive power (Golbraikh and 

Tropsha 2002).  The LOO cross-validated global Q2 did not differ significantly from the 

global R2, indicating that the predictive power for both models was retained after 

removing any one datum. 

 

With regard to the QSAR submodels (A+B, A+C, and B+C ), the descriptors used 

were similar to the global models and the external validation data set R2 values 

remained close to the training subsets, thus demonstrating the robustness of the 

generated sub-models.  Data suggest that no one compound in the training set was 

responsible for a large portion of the regression’s predictive capabilities.  The y-
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randomization procedure generated R2 values that averaged 0.24 and 0.30 for trypsin 

and α-chymotrypsin.  This suggests that the descriptors in each model were not chosen 

by random chance.  It was also found that ¾ of the models were over-parameterized by 

one or more descriptors making it clear that the break point can be difficult to identify 

from visual inspection.  For example, in the trypsin AC training model the standard error 

of the regression coefficient of D3 is greater than the regression coefficient itself (2.04 +/- 

2.45).  From these results it is recommended that a more stringent heuristic regression 

approach be taken by additionally comparing the standard error with the regression 

coefficient before accepting the breakpoint. 

 

QSAR regressions require sufficient variation in activity and in descriptors within 

the training set (Yang et al., 2009).  These QSAR models spanned 4 trypsin and 6 α-

chymotrypsin log10 units of activity and utilized over 500 initial descriptors from three 

different dimensions in the selection process meeting this requirement.  However, due to 

the vast chemical space that accompanies OP compounds, the limited datasets of 52 

and 62 OP reduced the domain of applicability.  All together, 66 OP combinations were 

used in this database and it was divided as follows:  35 p-nitrophenyl combinations, 2 p-

nitrothiophenyl combinations, 4 o-nitrophenyl combinations, 4 m-nitrophenyl 

combinations, 4 m-dimethylamino-ethanthiol combinations, 10 fluoridates, 2 

diethylamino-ethanthiol combinations, and 5 not further classified combinations.  Utilizing 

these QSAR for chemicals that fall outside this domain (i.e., compounds not of the OP 

class or OP with different structural features not included in the model) will give 

erroneous results.  An example of a model giving flawed results can be shown in the α-

chymotrypsin B+C model.  The test set R2 was found to be 0.16, significantly lower than 

the training set R2 of 0.68.  It is believed that these QSAR models can be improved by: 
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increasing the number of experimental compounds used in the training set, utilizing 

higher dimensional descriptors that are better correlated with the experimental data 

(Vedani et al., 2005), and/or use different regression techniques (support vector 

machine, neural network, etc.).  It would also be recommended that the over-

parameterized models be re-parameterized by eliminating those descriptors with 

standard errors greater than its coefficient. 

 

BBDR Model Application  

While these QSAR models predict bimolecular rates for trypsin and α-

chymotrypsin, data is lacking on OP trypsin and α-chymotrypsin regeneration and aging 

rate constants.  Therefore, more QSAR approaches need to be developed to complete 

the toolkit.  Once completed, this toolkit could help determine the target tissue dose in 

which a response, such as altered digestion, is seen in an exposed animal.  Also, 

extrapolating this technique to other serine proteases could help determine if these 

enzymes sequester OP at physiologically relevant doses.  If true, serine proteases could 

play a vital role in OP toxicity and even cause symptoms such as impaired synaptic 

plasticity, learning, memory, neuroprotection, wound healing, cell signaling, 

inflammation, and blood coagulation. 

 

Other necessary parameters for incorporation into an OP BBDR model include 

the relative tissue distribution of trypsin, α-chymotrypsin, and other serine proteases in a 

variety of species.  Trypsin, for example, has been found in the serum of Wistar rats at a 

concentration greater than that of blood AChE.  The enzyme is also found at a 

concentration 100 times higher in the pancreas than that of AChE in the blood (Table 8).  

Due to such a high concentration in the pancreas, inhibition of these enzymes could lead 
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to acute pancreatitis.  Finally, it is believed that in order to identify other tissue 

concentrations for a variety of serine proteases, a more thorough literature review will 

need to be conducted. 

 

Physical Interpretation of Descriptors 

Electrophilicity 

Constitutional/topological descriptors, despite their conceptual simplicity, 

provided important one-dimensional structural characteristics for both global QSAR 

models.  The numbers of fluorine (D1), oxygen (D7, D16), and sulfur (D15) atoms in the 

models were believed to partially characterize OP electrophilicity, which is essential for 

OP inhibition of esterases (Ahmad, 1970).  The electron withdrawing capability of each 

substituent is altered in the presence of these elements and consequently plays a crucial 

role in breaking the P=O bond in the phosphorylation of the enzyme (Jinsong et al., 

2004).  The number of fluorine atoms (D1) was found to be positively correlated while the 

number of oxygen atoms (D7) was found to be negatively correlated with trypsin OP 

bimolecular rate constants.  On the other hand, the number of oxygen atoms (D16) was 

negatively correlated and number of sulfur atoms (D15) was positively correlated with α-

chymotrypsin OP bimolecular rate constants.  Other features, such as induction or 

resonance effects, formed through the addition or loss of electron density could also be 

characterized by these descriptors.  They are driven by the compounds electronegativity, 

number of lone pair electrons, and the presence of multiple bonds.  

 

The number of aromatic bonds (D11) and number of rings (D18), which are also 

constitutional descriptors, are believed to characterize the highly mobile and polarizable 

electrons, creating resonance effects (the movement of electron density through π 
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bonds) which make for good covalent catalysts.  The number of aromatic bonds (D11) 

was found to be negatively correlated while the number of rings (D18) was found to be 

positively correlated with α-chymotrypsin OP rate constants.  α-Chymotrypsin substrates 

were all found to contain rings with aromatic bonds (Voet and Voet, 2004) and it is 

believed that this property influences the ability of OP to penetrate the gorge, interact at 

the hydrophobic active site residues, and offer extra long range electronic stability which 

is necessary during the inversion of configuration when the leaving group is excised.   

 

van der Waals Forces 

van der Waals interactions were found to be important contributors of general 

enzyme activity and it is believed that OP use these same interactions to stabilize the 

transition state.  This force is highly dependent upon the size of atoms and the distance 

between them and these QSAR models chose to characterize the property through the 

atomic radii.  This three-dimensional feature determines the area of contact between the 

two molecules:  the greater the area, the stronger the interaction.  Fluorine (D1), oxygen 

(D7, D16), and sulfur (D15) atoms, for example, have very small radii, giving them a larger 

surface area in which to interact through van der Waals forces.  OP with elements such 

as these should produce desirable pharmacodynamic attributes (Makhaeva et al., 2009).  

The number of fluorine atoms (D1) was positively correlated while the number of oxygen 

atoms (D7) was negatively correlated with trypsin OP bimolecular rate constants.  On the 

other hand, the number of oxygen atoms (D16) was negatively correlated and number of 

sulfur atoms (D15) was positively correlated with α-chymotrypsin OP bimolecular rate 

constants. 

 

London Dispersion Forces and Lipophilicity 
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London dispersion forces also become stronger as the surface area is increased.  

This produces an uneven distribution of electrons on OPs which could produce 

temporary dipoles.  This property is believed to be characterized by the topographic 

electronic index (all bonds) (D19), FPSA-1 Fractional PPSA (PPSA-1/TMSA) [Zefirov’s 

PC] (D9), and PPSA-3 Atomic charge weighted PPSA [Zefirov’s PC] (D6).  The 

topographic electronic index (all bonds) (D19) was negatively correlated with α-

chymotrypsin, the FPSA-1 Fractional PPSA (PPSA-1/TMSA) [Zefirov’s PC] (D9) was 

positively correlated with trypsin and the PPSA-3 Atomic charge weighted PPSA 

[Zefirov’s PC] (D6) was negatively correlated with trypsin. Dipoles such as these could 

describe the tendency of OP QSAR models to show strong descriptor correlations with 

lipophilicity and/or hydrophobicity.  Some examples of QSAR descriptors characterizing 

OP lipophilicity include the linear free energy polar parameter (σ*) (Metcalf and Metcalf, 

1984), the π constant (Hansch and Leo, 1979), and in some cases the octanol/water 

partition coefficient (Leo et al., 1971).  Lipophilic compounds generally have little or no 

capacity to form hydrogen bonds, another important requirement in OP inhibition of 

serine proteases; therefore an optimum must be found to create a quality catalytic 

environment for bond formation.   

 

Hydrogen Bonds 

The conformational distortion that occurs with the formation of the substrate 

tetrahedral intermediate, and, in the case of OP, the trigonal bipyrimidal intermediate, 

creates a hydrogen bond network within the oxyanion hole (Taylor et al., 1999).  These 

hydrogen bonds come in two forms: strong and weak.  The strong hydrogen bonds, also 

known as low barrier hydrogen bonds, in the active site of serine esterases can create a 

charge relay system responsible for the catalytic activity in the triad.  The weak hydrogen 
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bonds in the Michaelis complex are converted to a strong hydrogen bond in the 

transition state, facilitating proton transfer from aspartate to histidine, to the active site 

serine residue, creating an environment that is safe for OP covalent bond formation 

(Voet and Voet, 2004).  In fact, a distinguishing difference between trypsin, α-

chymotrypsin, and AChE are the hydrogen bond lengths in the catalytic triad.  The His440 

- Asp327 bond distance is 2.5 Å (2.8 Å resolution) in AChE and 0.2 Å shorter than in the 

corresponding hydrogen bonds of trypsin and α-chymotrypsin (1.5 Å resolution) 

(Chambers and Stroud, 1977).  Appearing in the QSAR models were the HA dependent 

HDSA-1 [Zefirov’s PC] (D20), count of hydrogen-donor sites [Zefirov’s PC] (D12), number 

of oxygen atoms (D7), and the relative number of hydrogen atoms (D8).  They were 

respectively found to be positively, negatively, negatively, and negatively correlated with 

their enzyme bimolecular rates.  It is believed that changes in these hydrogen bonding 

properties alter the charge relay system for these serine proteases. 

 

Electrostatic Forces 

Serine esterases such as AChE, BChE, trypsin, and α-chymotrypsin all contain a 

negatively charged oxyanion hole which is generally believed to stabilize substrates and 

preferentially bind the transition state, lowering the activation energy of the reaction 

(Zhang et al., 2002).  This fundamental property, electrostatic attraction or repulsion 

between two elements, follows Coulomb’s law and becomes highly important with these 

esterases as both short range and long range electrostatic ―steering forces‖ are utilized, 

most likely to maintain a high catalytic turnover of substrates.  In doing so, water 

molecules are rapidly pumped in and out of the active site gorge to maintain the 

appropriate pH and in providing the correct environment for catalytic activity.  This 

property is believed responsible for much of the catalytic efficiency of these enzymes 
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and Wang et al (2006) concluded that these enzymatic reactions are strongly influenced 

by the solvent environment generated by these electrostatic forces.  Descriptors that 

characterize these properties included the RPCG relative positive charge 

(QMPOS/QTPLUS) (D14) (negatively correlated), RNCG Relative negative charge 

(QMNEG/QTMINUS) [Zefirov’s PC] (D3) (negatively correlated), PPSA-3 Atomic charge 

weighted PPSA [Zefirov’s PC] (D6) (negatively correlated), and the FPSA-1 Fractional 

PPSA (PPSA-1/TMSA) [Zefirov’s PC] (D9) (positively correlated). 

 

Steric Hindrance and Connectivity 

Topological descriptors are two-dimensional descriptors that reflect the molecular 

connectivity without geometric information.  Multiple topological descriptors were found 

in each of the two models characterizing the importance of connectivity in predicting 

bimolecular rates.  α-Chymotrypsin and trypsin bimolecular rate constants appear to be 

driven by the Balaban index (D5) and the Kier & Hall (1986) descriptors.  Examples 

include the Kier & Hall (1986) index (order 3) (D13), Kier (1985) flexibility index (D17), and 

the Kier (1985) shape index (order 2 and 3) (D2, D10).  These Kier indices, commonly 

denoted by 1ĸ, 2ĸ, and 3ĸ, are 2D topological indices based on graph theory concepts.  

Index 1ĸ quantifies the cyclicity of a molecule, index 2ĸ quantifies the star-like attributes 

of a molecule, and index 3ĸ quantifies the place in the chain where the branching occurs.  

The equations for calculating these Kier indices are given elsewhere (Kier, 1985, Kier 

and Hall 1986).  The Balaban index (D5) and the Kier & Hall (1986) index (order 3) (D13) 

was found to be negatively correlated with trypsin and α-chymotrypsin OP bimolecular 

rates.  On the other hand, the Kier (1985) flexibility index (D17) was found to be positively 

correlated with α-chymotrypsin OP bimolecular rates while the Kier (1985) shape index 

(order 2 and 3) (D2, D10) were both found to be positively correlated with trypsin OP 
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bimolecular rates.  This suggests that the active site of trypsin and α-chymotrypsin for 

OP agents is driven, at least in part, by the branching characteristics of the chemical 

structure.  This indicates that isomeric structures will differ in their affinity towards the 

active site and this is confirmed by the fact that serine hydrolase enzymes show 

stereoselectivity for the levorotatory isomers of soman; bimolecular rates of 104 M-1min-1 

for AChE and 102 M-1min-1 for trypsin and α-chymotrypsin (Kovach, 1988; Ooms and van 

Dijk, 1966). 

 

Conclusion 

QSAR models were developed for the prediction of trypsin and α-chymotrypsin 

bimolecular rate constants using descriptors calculated from OP structures alone.  It was 

found from these models that α-chymotrypsin was the more reactive of the two digestive 

proteases and descriptors that characterize electrophilicity, van der Waals interactions, 

London dispersion forces, lipophilicity, hydrogen bonding, electrostatic charges, steric 

hindrance, and connectivity were the most useful properties in predicting their 

bimolecular rates.  These QSAR provided important mechanistic features about the 

interaction of serine proteases with OP compounds as well as an approach towards the 

development and validation of BBDR models for OP that lack toxicokinetic and 

toxicodynamic data. 

 

While not necessarily toxicologically significant under all exposure circumstances, 

trypsin and α-chymotrypsin may play a role in noncholinergic OP induced toxicity.  They 

represent two members of a highly conserved protease superfamily that comprises 

nearly one-third of all known proteases identified to date, which play crucial roles in a 

wide variety of cellular and extracellular functions of the body.  This demonstrates the 
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potential that OP could disrupt vital processes such as learning, memory, synaptic 

plasticity, cell signaling, immunomodulation, inflammation, and digestion which can not 

be attributed to cholinergic toxicity.  In fact, a recent study published in Pediatrics, has 

linked the insecticide chlorpyrifos, which is used on some fruits and vegetables, with 

delays in learning rates, reduced physical coordination, and behavioral problems in 

children, especially attention deficit hyperactivity disorder (Bouchard et al. 2010).  

Inhibition of these enzymes by OP could also be linked with pancreatitis (Somogyi et al. 

2001).  This evidence, and along with others, clearly indicates that a wide variety of 

secondary proteins are targets for OP (Murray et al., 2005; Quistad and Casida, 2000; 

Richardson, 1992) however without further knowledge of their aging and regeneration 

rates it is difficult to determine a dose at which these effects could be seen.  Thus, 

characterizing members of this class of enzymes through the integration of biologically 

based mathematical models such as BBDR and QSAR modeling can provide a useful 

resource for the identification of novel OP targets and aid our understanding of the 

beneficial and adverse effects these chemicals exert on the body.  While these QSAR 

models can not obviously create new data, they provide an economic and less 

cumbersome alternative in the screening and priority selection of large inventories of 

hazardous OP compounds.  They may be used to better interpret experimental results 

and inform future QSAR models for OP targets such as AChE. 
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Figure 1.  Generic chemical structure of OP compounds.  R1, R2, and R3 are side chains. 
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Figure 2.  Schematic for noncholinergic enzyme inhibition and aging by OP nerve agents 

(Adapted from Gearhart et al., 1990). 
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Figure 3.  Log10 OP bimolecular rate constant box plots for trypsin and α-chymotrypsin 

global datasets. 
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Figure 4.  R2 vs. number of descriptors for ABC trypsin bimolecular rate constant 
regression. 
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Figure 5.  R2 vs. number of descriptors for ABC α-chymotrypsin bimolecular rate 

constant regression. 
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Figure 6.  Experimental vs. predicted trypsin bimolecular rate constants for the ABC 

QSAR. 
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Figure 7.  Experimental vs. predicted α-chymotrypsin bimolecular rate constants for the 

ABC QSAR.
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Table 1.  Descriptor codes and t-test values for parameters used in the trypsin bimolecular rate constant regressions. 

Descriptor  

Code 
Descriptor Name 

T-test 

(Global training 

set) 

T-test 

(AB training 

set) 

T-test 

(AC training 

set) 

T-test 

(BC training 

set) 

NA
a
 Error 4.40 3.23 -6.87 0.77 

D1 Number of F atoms 7.82 6.63 12.65 4.92 

D2 Kier shape index (order 2) 9.83 8.09 8.12 4.08 

D3 
RNCG Relative negative charge 

(QMNEG/QTMINUS) [Zefirov’s PC] 
-0.84 0.10 8.33 1.80 

D4 Kier&Hall index (order 3) -7.49 -5.06 -6.66 -3.80 

D5 Balaban index -3.37 b -2.65 -3.40 

D6 
PPSA-3 Atomic charge weighted PPSA 

[Zefirov’s PC] 
-5.81 -4.75 b -3.40 

D7 Number of O atoms -5.24 -3.92 b b 

D8 Relative number of H atoms -5.11 -5.17 b 1.03 

D9 
FPSA-1 Fractional PPSA (PPSA-1/TMSA) 

[Zefirov’s PC] 
3.66 3.10 b b 

D10 Kier shape index (order 3) 2.00 2.08 -1.23 -0.49 

a.  Not applicable. b.  Not included in model. 



45 
 

 Table 2.  Descriptor codes and t-test values for parameters used in the α-chymotrypsin bimolecular rate constant 

regressions. 

Descriptor 

Code 
Descriptor Name 

T-test 

(Global training 

set) 

T-test 

(AB training 

set) 

T-test 

(AC training 

set) 

T-test 

(BC training 

set) 

NA
a
 Error 9.78 7.14 6.59 2.90 

D11 Relative number of aromatic bonds -6.29 -2.90 -4.60 b 

D12 
Count of H-donors sites [Zefirov’s 

PC] 
-12.91 -9.26 -7.62 -5.26 

D13 Kier&Hall index (order 3) -13.13 -8.37 -10.10 b 

D14 
RPCG Relative positive charge 

(QMPOS/QTPLUS) [Zefirov’s PC] 
-5.49 -5.26 -4.42 b 

D15 Number of S atoms 3.79 3.59 b -1.23 

D16 Number of O atoms -4.35 -3.02 -1.78 -2.25 

D17 Kier flexibility index 7.29 4.05 3.16 b 

D18 Number of rings 6.65 b 4.59 -2.77 

D19 
Topographic electronic index (all 

bonds) [Zefirov’s PC] 
-4.81 -1.46 -2.65 2.62 

D20 HA dependent HDSA-1 [Zefirov’s PC] 2.83 b b b 

a.  Not applicable. b.  Not included in the model.
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Table 3.  Inter-correlation between descriptors in global trypsin bimolecular rate constant 

QSAR. 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

D1 1 -0.64 0.43 -0.67 0.67 -0.43 -0.79 0.63 0.22 0.05 

D2 
 

1 -0.73 0.73 -0.59 0.60 0.63 -0.06 0.30 0.59 

D3 
  

1 -0.27 0.42 -0.76 0.22 0.30 -0.18 -0.44 

D4 
   

1 -0.54 0.17 0.05 0.59 -0.44 0.21 

D5 
    

1 -0.47 0.67 -0.59 0.42 -0.54 

D6 
     

1 -0.43 0.60 -0.76 0.17 

D7 
      

1 -0.70 -0.25 0.10 

D8 
       

1 0.72 0.52 

D9 
        

1 0.58 

D10 
         

1 
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Table 4.  Inter-correlation between descriptors in global α-chymotrypsin bimolecular rate 

constant QSAR. 

 
D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 

D11 1 -0.34 0.44 -0.71 -0.06 0.81 0.30 0.82 0.34 -0.32 

D12 
 

1 0.14 -0.16 0.20 -0.42 0.82 -0.19 0.32 0.64 

D13 
  

1 -0.77 0.46 0.18 0.34 0.32 0.43 -0.04 

D14 
   

1 -0.08 -0.49 -0.32 0.64 -0.04 -0.07 

D15 
    

1 -0.14 -0.06 0.20 0.46 -0.08 

D16 
     

1 0.81 -0.42 0.18 -0.49 

D17 
      

1 0.21 0.78 0.00 

D18 
       

1 0.39 -0.30 

D19 
        

1 0.25 

D20 
         

1 
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Table 5.  Trypsin results from the external validation using the ABC approach. 

Training 

set 

Number of  

compounds 
R2 Q2 F s2 Test set 

Number of 

compounds 
R2

test RMSEtest 

A + B 35 0.95 0.88 48.46 0.10 C 17 0.85 0.46 

A + C 35 0.94 0.91 77.02 0.11 B 17 0.59 0.70 

B + C 34 0.91 0.84 30.89 0.15 A 18 0.82 0.56 

Average 34.67 0.93 0.88 52.12 0.12 Average 17.33 0.75 0.57 

R2=Coefficient of determination. 

Q2=Cross-validated LOO R2. 

F=Fisher F-test. 

s2=Mean squared error.  s2 =                                   
    where Yic is the ith calculated/predicted property 

value, Yio is the ith observed/input property value, Ns is the number of training structures, Nd is the number of descriptors and the sum 

runs from 1 to Ns.  

RMSE: Root mean standard error.
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Table 6.  α-Chymotrypsin results from the external validation using the ABC approach. 

Training 

Set 

Number of 

Compounds 
R2 Q2 F s2 

Test 

Set 

Number of 

Compounds 
R2

test RMSEtest 

A + B 42 0.86 0.79 26.24 0.66 C 20 0.86 0.91 

A + C 41 0.90 0.63 34.21 0.49 B 21 0.81 1.13 

B + C 41 0.68 0.58 14.55 1.36 A 21 0.16 1.89 

Average 41.33 0.81 0.67 25.00 0.84 Average 20.67 0.61 1.31 

R2=Coefficient of determination. 

Q2=Cross-validated LOO R2. 

F=Fisher F-test. 

s2=Mean squared error.  s2 =                                   
    where Yic is the ith calculated/predicted property 

value, Yio is the ith observed/input property value,  Ns is the number of training structures, Nd is the number of descriptors and the sum 

runs from 1 to Ns.  

RMSE: Root mean standard error.
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Table 7.  Bimolecular rate constant (M-1min-1) trypsin and α-chymotrypsin QSAR models for the ABC, AB, AC, and BC training 

sets as a function of a compound’s descriptors (D1, D2, …, D20). 

 

Enzyme Training Set Descriptor Coefficient 
Standard 

Error 

Trypsin ABC Error 17.31 3.93 

  
D1 2.45 0.31 

  
D2 0.96 0.098 

  
D3 -3.57 4.24 

  
D4 -0.63 0.084 

  
D5 -0.55 0.16 

  
D6 -0.85 0.15 

  
D7 -1.22 0.23 

  
D8 -27.42 5.36 

  
D9 9.9 2.71 

  
D10 0.15 0.072 

Trypsin AB Error 14.78 4.57 

  
D1 2.81 0.42 
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D2 1.04 0.13 

  
D3 0.53 5.53 

  
D4 -0.53 0.1 

  
D6 -0.96 0.2 

  
D8 -32.74 6.34 

  
D7 -1.12 0.29 

  
D9 12.21 3.93 

  
D10 0.19 0.091 

Trypsin AC Error -6.75 0.98 

  
D1 3.36 0.27 

  
D2 1.02 0.13 

  
D3 2.04 2.45 

  
D4 -0.64 0.1 

  
D5 -0.42 0.16 

  
D10 -0.1 0.08 

Trypsin BC Error 1.624 2.1 

  
D1 2.52 0.51 

  
D10 -0.051 0.1 
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D5 -0.83 0.24 

  
D6 -0.48 0.14 

  
D2 0.63 0.15 

  
D4 -0.6 0.16 

  
D3 7.28 4.04 

  
D8 3.41 3.3 

α-chymotrypsin ABC Error 21.03 2.15 

  
D11 -19.81 3.15 

  
D12 -0.28 2.13 

  
D13 -1.88 0.14 

  
D14 -24.44 4.45 

  
D15 2.18 0.57 

  
D16 -0.81 0.19 

  
D17 1.12 0.15 

  
D18 2.51 0.38 

  
D19 -5.18 1.08 

  
D20 0.039 0.01 

α-chymotrypsin AB Error 25.09 3.51 
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D11 -14.85 5.12 

  
D12 -0.33 0.036 

  
D13 -1.96 0.23 

  
D14 -36.12 6.86 

  
D15 3.4 0.95 

  
D16 -0.97 0.32 

  
D17 0.72 0.18 

  
D19 -2.19 1.5 

α-chymotrypsin AC Error 20.27 3.07 

  
D11 -21.66 4.7 

  
D12 -0.23 0.03 

  
D13 -1.71 0.17 

  
D14 -25.46 5.76 

  
D15 -3.71 1.4 

  
D16 1.89 0.41 

  
D17 0.71 0.23 

  
D19 -0.51 0.29 

α-chymotrypsin BC Error 3.45 1.19 
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D18 -1.9 0.69 

  
D19 -0.24 0.46 

  
D12 3.08 1.18 

  
D16 -0.68 0.29 

  
D15 -0.92 0.75 
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Table 8.  Trypsin tissue distribution in rat and human tissues compared with that of AChE. 

Tissue 
Rat AChE 

(nmoles/g tissue) 

Rat Trypsin 

(nmoles/g tissue) 

Human Trypsin 

(nmoles/g tissue) 

Blood 0.0097b N/Aa  N/Aa 

Serum N/Aa 0.0154c 0.002d 

Pancreas N/Aa 5.069c N/Aa 

a. N/A=Not available. 

b. Sweeney et al., 2006. 

c. Reddy et al., 1985.   

d. Frier et al., 1980.  
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Appendix.  Listing of OP compounds and their respective trypsin, α-chymotrypsin, and AChE bimolecular rate constants. 

Label Structure 
IUPAC Name

d
 

Smiles notation
c
 

Log10 trypsin 

rate constant 

(M
-1

min
-1

)
a
 

Log10 α-chymotrypsin 

rate constant 

(M
-1

min
-1

)
a
 

Log10 AChE 

rate constant 

(M
-1

min
-1

)
a
 

1 

 

dimethyl 4-nitrophenyl phosphate (methyl 

paraoxon) 

[O-][N+](=O)c1ccc(OP(=O)(OC)OC)cc1 

-0.70 0.34 5.08 

2 

 

diethyl 4-nitrophenyl phosphate (ethyl 

paraoxon) 

[O-

][N+](=O)c1ccc(OP(=O)(OCC)OCC)cc1 

0.20 0.95 5.65 

P

O

O

N
+

O
-

O

O

O

CH3

CH3

P

O

O

N
+

O
-

O

O

O
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3 

 

4-nitrophenyl dipropyl phosphate 

(propyl paraoxon) 

[O-

][N+](=O)c1ccc(OP(=O)(OCCC)OCCC)cc

1 

1.34 2.74 5.92 

4 

 

4-nitrophenyl dipropan-2-yl phosphate 

(iso-propyl paraoxon) 

CC(C)OP(=O)(OC(C)C)Oc1ccc(cc1)[N+]([

O-])=O 

0.46 -0.02 4.32 

5 

 

dibutyl 4-nitrophenyl phosphate 

(butyl paraoxon) 

[O-

][N+](=O)c1ccc(OP(=O)(OCCCC)OCCCC

)cc1 

1.08 3.41 6.11 
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6 

 

bis(2-methylpropyl) 4-nitrophenyl 

phosphate 

(iso-butyl paraoxon) 

CC(C)COP(=O)(OCC(C)C)Oc1ccc(cc1)[N

+]([O-])=O 

1.26 3.85 5.88 

7 

 

dibutan-2-yl 4-nitrophenyl phosphate 

(sec-butyl paraoxon) 

CC(CC)OP(=O)(OC(C)CC)Oc1ccc(cc1)[N

+]([O-])=O 

0.15 0.34 4.68 

8 

 

4-nitrophenyl dipentyl phosphate 

(pentyl paraoxon) 

[O-

][N+](=O)c1ccc(OP(=O)(OCCCCC)OCCC

CC)cc1 

1.18 3.80 6.26 
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9 

 

O,O-diethyl S-(4-nitrophenyl) 

phosphorothioate  

[O-

][N+](=O)c1ccc(SP(=O)(OCC)OCC)cc1 

0.20 0.39 5.67 

10 

 

dimethyl 2-nitrophenyl phosphate 

[O-][N+](=O)c1ccccc1OP(=O)(OC)OC 
-0.12 1.11 3.71 

11 

 

diethyl 2-nitrophenyl phosphate 

[O-][N+](=O)c1ccccc1OP(=O)(OCC)OCC 
-0.07 1.00 4.23 

12 

 

dimethyl 3-nitrophenyl phosphate  

[O-][N+](=O)c1cccc(OP(=O)(OC)OC)c1 
-0.07 -0.05 2.72 
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13 

 

methyl 4-nitrophenyl methyl-phosphonate  

[O-][N+](=O)c1ccc(OP(C)(=O)OC)cc1 
0.82 2.70 5.91 

14 

 

ethyl 4-nitrophenyl methyl-phosphonate  

[O-][N+](=O)c1ccc(OP(C)(=O)OCC)cc1 
0.86 2.68 6.71 

15 

 

4-nitrophenyl propyl methyl-phosphonate  

[O-][N+](=O)c1ccc(OP(C)(=O)OCCC)cc1 
1.52 3.08 7.08 

16 

 

4-nitrophenyl propan-2-yl methyl-

phosphonate 

[O-

][N+](=O)c1ccc(OP(C)(=O)OC(C)C)cc1 

0.79 2.73 5.84 
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17 

 

butyl 4-nitrophenyl methyl-phosphonate 

[O-

][N+](=O)c1ccc(OP(C)(=O)OCCCC)cc1 

1.54 3.65 7.32 

18 

 

2-methylpropyl 4-nitrophenyl methyl-

phosphonate 

[O-

][N+](=O)c1ccc(OP(C)(=O)OCC(C)C)cc1 

1.28 3.36 7.96 

19 

 

butan-2-yl 4-nitrophenyl methyl-

phosphonate 

[O-

][N+](=O)c1ccc(OP(C)(=O)OC(C)CC)cc1 

0.52 2.82 6.36 

20 

 

4-nitrophenyl pentyl methyl-phosphonate  

[O-

][N+](=O)c1ccc(OP(C)(=O)OCCCCC)cc1 

1.60 4.04 7.04 

P

O

OO

N
+

O
-

O

CH3

CH3

P

O

OO

N
+

O
-

O

CH3

CH3

CH3

P

O

OO

N
+

O
-

O

CH3

CH3

CH3

O
-

N
+

O

O P

CH3

O

O

CH3



62 
 

21 

 

cyclohexyl 4-nitrophenyl methyl-

phosphonate  

[O-

][N+](=O)c2ccc(OP(C)(=O)OC1CCCCC1)

cc2 

1.18 4.18 6.66 

22 

 

3,3-dimethylbutan-2-yl 4-nitrophenyl 

methyl-phosphonate 

[O-

][N+](=O)c1ccc(OP(C)(=O)OC(C)C(C)(C)

C)cc1 

-0.03 2.60 4.45 

23 

 

methyl 2-nitrophenyl methyl-phosphonate  

[O-][N+](=O)c1ccccc1OP(C)(=O)OC 
0.81 2.18 4.54 

24 

 

methyl 3-nitrophenyl methyl-phosphonate 

[O-][N+](=O)c1cccc(OP(C)(=O)OC)c1 
0.15 1.06 4.23 
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25 

 

4-nitrophenyl propan-2-yl methyl-

phosphonate  

[O-

][N+](=O)c1ccc(OP(C)(=O)OC(C)C)cc1 

0.79 2.73 5.85 

26 

 

4-nitrophenyl propan-2-yl ethyl-

phosphonate  

[O-

][N+](=O)c1ccc(OP(=O)(OC(C)C)CC)cc1 

0.23 0.72 5.46 

27 

 

4-nitrophenyl propan-2-yl propyl-

phosphonate 

[O-

][N+](=O)c1ccc(OP(=O)(OC(C)C)CCC)cc

1 

0.49 0.88 4.90 
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28 

 

4-nitrophenyl propan-2-yl propan-2-yl-

phosphonate  

CC(C)P(=O)(OC(C)C)Oc1ccc(cc1)[N+]([O

-])=O 

-0.34 -0.27 2.93 

29 

 

4-nitrophenyl propan-2-yl butyl-

phosphonate 

[O-

][N+](=O)c1ccc(OP(=O)(OC(C)C)CCCC)c

c1 

0.67 1.43 5.10 

30 

 

4-nitrophenyl propan-2-yl (2-methylpropyl) 

phosphonate  

CC(C)CP(=O)(OC(C)C)Oc1ccc(cc1)[N+]([

O-])=O 

0.53 1.43 4.32 
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31 

 

4-nitrophenyl propan-2-yl butan-2-

ylphosphonate 

CC(CC)P(=O)(OC(C)C)Oc1ccc(cc1)[N+]([

O-])=O 

0.18 0.23 3.11 

32 

 

4-nitrophenyl propan-2-yl pentyl-

phosphonate  

[O-

][N+](=O)c1ccc(OP(=O)(OC(C)C)CCCCC

)cc1 

1.89 2.29 5.11 

33 

 

ethyl 4-nitrophenyl ethyl-phosphonate 

[O-][N+](=O)c1ccc(OP(=O)(OCC)CC)cc1 
0.28 0.91 6.26 
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34 

 

O-ethyl S-(4-nitrophenyl) ethyl-

phosphonothioate  

[O-][N+](=O)c1ccc(SP(=O)(OCC)CC)cc1 

0.68 1.10 6.59 

35 

 

ethyl 2-nitrophenyl ethyl-phosphonate  

[O-][N+](=O)c1ccccc1OP(=O)(OCC)CC 
0.35 1.30 4.04 

36 

 

4-nitrophenyl diethyl-phosphinate 

O=P(Oc1ccc(cc1)[N+]([O-])=O)(CC)CC 
0.58 1.38 3.54 

37 

 

4-nitrophenyl dipropyl-phosphinate  

O=P(Oc1ccc(cc1)[N+]([O-

])=O)(CCC)CCC 

1.63 2.18 4.26 
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38 

 

4-nitrophenyl dibutylphosphinate 

O=P(Oc1ccc(cc1)[N+]([O-

])=O)(CCCC)CCCC 

2.27 3.73 4.82 

39 

 

4-nitrophenyl bis(2-methylpropyl) 

phosphinate  

O=P(Oc1ccc(cc1)[N+]([O-

])=O)(CC(C)C)CC(C)C 

0.44 1.41 2.60 

40 

 

4-nitrophenyl dipentylphosphinate  

O=P(Oc1ccc(cc1)[N+]([O-

])=O)(CCCCC)CCCCC 

2.78 4.36 4.89 

41 

 

dimethyl phosphorofluoridate  

FP(=O)(OC)OC 
2.62 3.23 4.86 
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42 

 

diethyl phosphorofluoridate  

FP(=O)(OCC)OCC 
3.39 4.20 5.31 

43 

 

dipropyl phosphorofluoridate  

CCCOP(F)(=O)OCCC 
4.24 6.30 5.96 

44 

 

dipropan-2-yl phosphorofluoridate  

FP(=O)(OC(C)C)OC(C)C 
2.99 4.18 4.66 

45 

 

propan-2-yl methyl-phosphonofluoridate 

(Sarin (GB)) 

CC(C)OP(C)(F)=O 

3.24 4.36 7.15 
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46 

 

3,3-dimethylbutan-2-yl methyl-

phosphonofluoridate (Soman (GD)) 

CC(OP(C)(F)=O)C(C)(C)C 

2.43 5.30 7.78 

47 

 

4-methylpentan-2-yl methyl-

phosphonofluoridate  

CP(F)(=O)OC(C)CC(C)C 

3.11 5.90 8.30 

48 

 

cyclohexyl methyl-phosphonofluoridate 

(Cyclosarin (GF)) 

O=P(C)(F)OC1CCCCC1 

3.38 6.30 8.52 

49 

 

ethyl ethyl-phosphonofluoridate  

CCP(F)(=O)OCC 
3.33 4.53 6.49 
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50 

 

3-(dimethylamino)phenyl methyl 

methylphosphonate  

CN(C)c1cccc(OP(C)(=O)OC)c1 

-0.34 -0.51 3.04 

51 

 

ethyl dimethyl-phosphoramido-cyanidate 

(Tabun (GA)) 

N#CP(=O)(OCC)N(C)C 

0.41 3.20 6.56 

52 

 

S-[2-(ethylsulfanyl)ethyl] O-pentyl methyl-

phosphonothioate 

CCCCCOP(C)(=O)SCCSCC 

2.38 N/A
b
 N/A

b
 

53 

 

diethyl 3-nitrophenyl phosphate  

[O-

][N+](=O)c1cccc(OP(=O)(OCC)OCC)c1 

N/A
b
 0.61 4.04 
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54 

 

dipropan-2-yl triazan-2-ylphosphonate  

O=P(OC(C)C)(OC(C)C)N(N)N 
N/A

b
 1.90 5.15 

55 

 

3-(dimethylamino)phenyl diethyl 

phosphate  

CN(C)c1cccc(OP(=O)(OCC)OCC)c1 

N/A
b
 -1.00 3.56 

56 

 

3-(dimethylamino)phenyl ethyl ethyl-

phosphonate  

CN(C)c1cccc(OP(=O)(OCC)CC)c1 

N/A
b
 -1.00 2.11 

57 

 

S-[2-(diethylamino)ethyl] O-ethyl ethyl-

phosphonothioate  

CCOP(=O)(CC)SCCN(CC)CC 

N/A
b
 -0.12 7.61 

58 

 

3-{[bis(propan-2-yloxy)phosphoryl]oxy}-1-

methylquinolinium  

CC(C)OP(=O)(OC(C)C)Oc2cc1ccccc1[n+

](C)c2 

N/A
b
 -1.00 6.26 
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59 

 

3-(dimethylamino)phenyl dimethyl 

phosphate  

CN(C)c1cccc(OP(=O)(OC)OC)c1 

N/A
b
 -1.00 3.34 

60 

 

4-nitrophenyl dibutan-2-ylphosphinate  

O=P(Oc1ccc(cc1)[N+]([O-

])=O)(C(C)CC)C(C)CC 

N/A
b
 -1.00 3.34 

61 

 

4-nitrophenyl dipropan-2-ylphosphinate  

O=P(Oc1ccc(cc1)[N+]([O-

])=O)(C(C)C)C(C)C 

N/A
b
 -1.00 2.94 

62 

 

ethyl 3-nitrophenyl ethyl-phosphonate  

[O-][N+](=O)c1cccc(OP(=O)(OCC)CC)c1 
N/A

b
 0.70 4.41 

63 

 

2-(diethylamino) ethyl ethyl ethyl-

phosphonate  

CCN(CCOP(=O)(OCC)CC)CC 

N/A
b
 0.0 N/A

b
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a. Data taken from Ooms (1961). 

b. N/A = No published data available. 

c. SMILES = Simplified Molecular Input Line Entry Specification 

(http://www.daylight.com) used to represent the chemical structure. 

d.   IUPAC Name = International Union of Pure and Applied Chemistry 

nomenclature. 
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