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ABSTRACT: Individuals playing a sequence of different games have shown to learn about the other player’s behavior 

during their initial interaction and apply this knowledge when playing another game with the same individual in the 

future. Here we use a published computational cognitive model to generate predictions for an upcoming human study. 

The model plays both Prisoner’s Dilemma and Chicken Game with a confederate agent who uses one of two 

predetermined strategies and whose level of trustworthiness is manipulated. We go beyond the standard postdictive 

practice and adopt the increasingly popular practice of using the model to make a priori predictions before the human 

data will be collected in an upcoming study. 

 

1.     Introduction and Background 
 

How people learn to trust one another over time and how 

they use this information to inform their future decisions is 

a question relevant to many aspects of human interaction. 

Trust is defined as “the willingness of a party to be 

vulnerable to the actions of another party based on the 

expectations that they will perform a particular action” 

(Mayer, Davis, & Schoorman, 1995). Trust relationships 

have been proposed to be self-sustaining once developed, 

allowing individuals to forgo re-evaluation of a person 

after they have been determined to be trustworthy (Hardin, 

2002). Yamagishi, Kanazawa, Mashima, and Terai (2005) 

found that when participants played a modified version of 

the game Prisoner’s Dilemma (PD), where participants 

could choose the amount of points they could risk during 

each round, over time participants would gradually 

increase the number of points they would risk as the 

individuals began to establish trust for one another. 

Consistent with these results, Castelfranchi & Falcone 

(2010) suggest that trust mitigates risk and develops 

through gradual risk-taking between two individuals.   

 

In order to study how individuals behave in different 

situations, both economic and psychological research have 

used games of strategic interaction. A game represents an 

abstraction of a real-world scenario in which participants 

can win and lose points based on the behavior of both 

players. Participants can play either with another human 

participant (e.g., Juvina, Saleem, Martin, Gonzalez, & 

Lebiere, 2013) or with a preprogrammed strategy (e.g., 

Juvina, Lebiere, Martin, & Gonzalez, 2012). 

 

Two different strategies that have been used in place of 

human participants during these games of strategic 

interaction are the Tit-for-Tat (T4T) (Axelrod, 1984) and 

the Pavlov-Tit-for-Tat strategy (PT4T) introduced by 

Juvina, Lebiere, Gonzalez and Saleem (2012). T4T is a 

simple strategy, which repeats on round N the same choice 

that the other player made on round N-1. The PT4T 

strategy is a combination of two different strategies, T4T 

and Pavlov. Pavlov is another simple strategy that 

continues to choose the same choice on round N as long as 

it earned points with that choice on round N-1, only 

changing choices on round N when it lost points on round 

N-1. The PT4T strategy repeats the other player’s move 

from N-1 on round N, just as the T4T strategy, except for 

when the strategy and the other player make opposite 

choices and the strategy earns points on that round. Instead 

of switching to the other player’s choice as the 



T4T strategy would, the PT4T strategy repeats its previous 

choice, as the Pavlov strategy would. The PT4T strategy 

was created based on analysis of the repetition propensities 

(the probability to repeat a move following a certain 

outcome) of humans in PD and in an attempt to develop a 

strategy that had similar repetition propensities as humans 

(Juvina et al., 2012). 

 

Previous research has found that when individuals play 

games of strategic interaction sequentially, they use the 

information gained about the other player from a previous 

game to inform their choices when playing with that person 

again (Juvina et al., 2013). Different explanations have 

been offered for why these transfer effects occur, such as a 

similarity between the games, the expectation of the other 

player to behave as they did in the past, or a strategy that 

was used during a simpler game continuing to be used in a 

more complex game (Knez & Cramer, 2000; Devetag, 

2003; Bednar, 2012 ). 

 

Juvina et al. (2013) found that these explanations failed to 

account for the transfer effects seen when repeated rounds 

of the games Prisoner’s Dilemma (PD) and Chicken Game 

(CG) were played sequentially. As an alternative 

explanation for why transfer effects occur between these 

games, Juvina et al. (2013) proposed that it is the increase 

in reciprocal trust between the two players that results in a 

transfer of learning occurring between these games, 

allowing them to find the optimal outcome faster in the 

second game compared to the first. Juvina, Lebiere, and 

Gonzalez (2014) implemented this idea of reciprocal trust 

in a computational cognitive model that replicates the 

transfer effects seen when the games PD and CG are played 

sequentially in either order. 

 

The results in Juvina et al. (2014) were obtained by fitting 

the model post-hoc to the human data from Juvina et al. 

(2013) by manipulating certain model parameters. 

However, fitting the model post-hoc to a specific dataset 

does not ensure its validity and generalizability. In order to 

fit the human data, the model played against itself, using 

both the same parameters and learning mechanisms to 

determine how to play both games. This is problematic 

when trying to understand real world scenarios where 

individuals are likely to have different goals and 

understandings of the current situation. Due to these 

differences, it has not yet been shown that the model can 

account for human behavior when playing against an 

individual who has a different approach and a different 

level of trustworthiness. 

 

We are attempting to validate the model used in Juvina et 

al. (2014) by using the model to simulate the results of an 

upcoming study to be conducted with human participants. 

The model will play two games sequentially, either PD and 

CG in varying orders or one of the two games twice with a 

preprogrammed confederate agent. The confederate agent 

will use one of two predetermined strategies and will have 

varying levels of trustworthiness. A comparison of the 

model’s predictions to the behavior of human participants 

will allow for an opportunity to examine in what types of 

situations the model can predict the behavior of human 

participants. In this article, a brief overview of the model 

and the experimental design of the simulation is offered, 

along with a discussion of the model’s predictions for the 

upcoming study to be conducted with human participants.  

 

1.1 The Games 

 

Participants will play repeated rounds of the same two 

games used in Juvina et al.’s (2013) original study, which 

are PD and CG. Both PD and CG are mixed motive non-

zero sum games and are represented by their own payoff 

matrix (Fig 1.1). During each round in a game, both Player 

1(P1) and Player 2 (P2) choose to either defect (A) or 

cooperate (B). Based on the choices made by both players 

during every round, P1 or P2 either win or lose a certain 

number of points.  

 

 
  

Fig 1.1. The payoff matrix for the game Prisoners dilemma 

(left) and Chicken Game (right). 

 

When either PD or CG is played continually and both 

players do not know how long they will play, each game 

has a different optimal outcome. In PD, the optimal 

outcome over the course of the game is for both players to 

choose B (mutual cooperation) in order to earn one point 

each during each round (Fig 1.1). In CG, the optimal 

outcome is for both players to asymmetrically alternate 

between choosing A and B, earning three points every 

other round (Fig 1.1). However, when playing either CG or 

PD, attempting to choose the optimal outcome is risky. If 

only one player understands the benefits of sustaining the 

mutual cooperation or alternation outcome and is willing to 

reciprocate, then the player who attempts the optimal 

strategy will lose points as the other player gains points. To 

avoid this, players must learn to mutually cooperate with 

one another by sustaining the optimal outcome throughout 

the game, which maximizes their payoffs when either PD 

or CG is played repeatedly (Juvina et al., 2013). Due to the 

fact that each game has a different optimal outcome, the 

behavior of both players should change along with the 

games that are played. 

 



Although PD and CG have different payoff matrices, 

certain characteristics are similar across both games. There 

are both surface and deep similarities. The surface 

similarity between PD and CG that is relevant in this 

context is that both players during either game can choose 

B to earn one point during each round. Both games also 

share a deep similarity that is both players mutually 

cooperating with each another brings about the optimal 

outcome when either game is played repeatedly. Players 

can mutually cooperate by both choosing B in PD and 

asymmetrically alternating between A and B in CG (Juvina 

et al., 2013). Juvina et al. (2013) has found that when PD 

and CG are played sequentially the transfer effects between 

these games occur along both the surface and deep 

similarities. In particular, more mutual cooperation was 

seen in PD when played after CG and more alternation was 

seen in CG when played after PD. 

 

1.2 The Model 

 

A brief overview of the model used to generate the 

predictions of the upcoming study is given here; a more 

detailed description of the model can be found in Juvina et 

al. (2014). The model was built in ACT-R (Adaptive 

Control of Thought - Rational), which is both a cognitive 

architecture and a theory of human cognition (Anderson, 

2007). In ACT-R, different modules interact with each 

other in order to complete a task. In the model used for this 

study, two memory modules are used in order to play both 

games; these are the declarative and procedural modules. 

The declarative module stores information that the model 

has learned from the environment. The procedural memory 

allows for action selection reinforced through reward 

patterns that occur within the environment (Anderson, 

2007). Both modules are used together to account for 

human behavior in the two games when played 

independently and sequentially.  

 

In order for the model to be able to play either game, it 

needs to be aware of the interdependence between itself 

and the other player; to do this the model uses instance-

based learning (IBL: Gonzalez, Lerch, & Lebiere, 2003). 

In IBL, past instances of an event are stored in a model’s 

declarative memory to be recalled later, and inform future 

decisions. When the model is in a situation similar to a 

previous experience, it uses information stored in its 

declarative memory to make a decision about what to do in 

its current situation. At each round, the model stores in its 

declarative memory the previous move of both itself and 

the other player along with the other player’s move for the 

current round. Throughout both games, each time the 

model stores a copy of a previous instance that has already 

been placed in its declarative memory it increases the 

probability that that specific instance will be recalled when 

placed in a similar situation again, as controlled by ACT-

R’s activation equations (Anderson, 2007). 

To account for the behavior of the human participants in 

each game, the model uses both IBL and reinforcement 

learning. During each round, the model attempts to recall a 

previous instance from memory using both its own and the 

other player’s previous move as retrieval cues. The stored 

previous instances in the model’s declarative memory 

allow it to recall what the other player’s next move was 

when placed in that situation before. The model predicts 

that the other player will choose the move that was chosen 

more frequently when placed in similar situations in the 

past. The model then chooses to cooperate or defect 

depending on which choice has the greatest utility given 

the model’s prediction of the other player’s move. Previous 

rewards the model has received for cooperating and 

defecting in similar contexts (i.e., the other players 

expected next move based on the previous move of the 

other player and the model) determine the utility or the 

value of these choices to the model (Juvina et al., 2014). 

 

In order to account for the deep transfer effects seen when 

PD and CG are played sequentially, two trust accumulators 

and three different reward functions were added to the 

model. The two accumulators are called trust and trust-

invest. Each accumulator starts at zero at the beginning of 

the first game and increases or decreases depending on the 

moves both the model and the other player make after each 

round. The trust accumulator increases when both players 

either mutually cooperate or when the model defects and 

the other player cooperates. It decreases when both players 

mutually defect or when the model cooperates and when 

the other player defects. The trust-invest accumulator 

increases with mutual defections and decreases with 

unreciprocated cooperation. Throughout either game the 

current levels of the trust and trust-invest accumulators 

determine the model’s current reward function. 

 

Three reward functions are used which reinforce the 

model’s choices differently for each of the four possible 

outcomes that can occur during a game, in turn affecting 

the model’s behavior. By alternating between three 

different reward functions, the model uses the reward 

function that is most applicable to its current situation. The 

reward function that is applied to the current round of the 

game is determined by the level of the trust and trust-invest 

accumulator. When the trust accumulator is positive, the 

model is reinforced for increasing the payoff of both 

players. When only the trust-invest accumulator is positive, 

the model is reinforced for increasing the payoff of the 

other player. When both accumulators are at or below zero, 

the model is reinforced for maximizing its own payoff and 

minimizing the payoff of the other player. 

 

2. The Experiment 
 

The model predictions presented in this paper were 

generated by simulating a fully balanced 4 x 2 x 2 



experiment that will be conducted with human participants. 

Participants will play both PD and CG or one of these two 

games twice. Instead of participants playing games with 

one another as in Juvina et al.’s (2013), participants will 

play with a “confederate agent”, implemented as a software 

agent. The confederate agent will use one of two 

predetermined strategies and the trustworthiness of the 

agent will be controlled, while playing both games. The 

model was run in conditions identical to those that future 

participants will be placed in.  

 

On Qualtrics.com, the online platform that will be used to 

run the upcoming experiment, we created sixteen 

conditions with each possible combination of game order, 

confederate agent’s strategy, and trustworthiness. In each 

condition, ten preprogrammed versions of each game were 

developed to ensure random variability in the behavior of 

the confederate agent. Once the experiment begins 

participants will first be randomly assigned to a condition 

and then randomly assigned to play one of the ten possible 

versions of each of the two games they will play during the 

experiment. The experimental protocol for the upcoming 

study was copied when generating model predictions, 

simulating fifty human participants in each condition. 

 

2.1 The Confederate Agent 

 

The confederate agent will utilize one of two 

predetermined strategies throughout both games. The T4T 

strategy will choose on round N the choice that the other 

player made on round N-1. The PT4T strategy will 

reciprocate mutual cooperation and defection, but will not 

reciprocate unilateral cooperation.  

 

Along with using one of two predetermined strategies, the 

confederate agent’s trustworthiness will be manipulated 

and randomness will be added into its behavior. To 

accomplish this, the confederate agent will either cooperate 

or defect a certain number of times throughout each game 

at random times. In the high trustworthiness (HT) 

condition the confederate agent will cooperate and in the 

low trustworthiness (LT) conditions the confederate agent 

will defect. For this experiment, we wanted to create a 

confederate agent that would generate significant 

differences in the outcomes that were chosen across all 

conditions. To accomplish this, multiple model predictions 

for all conditions were run by varying the number of rounds 

the confederate agent employed its strategy (reactive 

strategy – T4T or PT4T) and automatic cooperation or 

defection (fixed strategy). We found that, because PT4T is 

inherently less trustworthy than T4T (i.e., more apt to 

defect), to avoid the model only predicting a high 

frequency of mutual defection during the PT4T HT 

conditions, a larger percentage of cooperation was needed 

to raise the strategies trustworthiness. For this experiment, 

during the T4T conditions, the confederate agent will 

employ the T4T strategy randomly during 90% of the 

game, while randomly employing its fixed strategy during 

10% of the game. During the PT4T conditions, the 

confederate agent will employ the PT4T strategy randomly 

during 65% of the game and randomly employ its fixed 

strategy during 35% of the game. 

 

3. Results and Discussion of the Model’s 

Predictions 
 

We computed the frequency of five relevant outcomes 

during each round in every condition over the fifty 

different model runs. In order to determine instances of 

asymmetrical alternation, rounds where one player chose 

to defect while the other player cooperated or vice versa on 

round N and had both chosen the opposite choices on round 

N-1 were identified. The frequency of alternation during 

each round across all conditions was computed like all 

other outcomes. Because of the limitation of space in this 

paper, we cannot report all of the results. All of the model’s 

predictions are available for viewing and can be 

downloaded at  

(http://psych-scholar.wright.edu/ijuvina/publications). A 

linear mixed effects analysis (LME) was used to assess the 

effect of strategy, trustworthiness of the confederate agent, 

and order in which the games were played on the predicted 

frequency of the five outcomes. P-values were obtained 

using a likelihood ratio test comparing a full to a reduced 

model. The 95% confidence intervals for the effects 

predicted by the LME are also reported. It should be noted 

that the confidence intervals that are reported are large, 

which is expected given the large variability generated by 

each ACT-R model, the randomness added to the 

confederate agent, and the multitude of experimental 

conditions. The model’s predictions will be compared to 

human data from each condition, once the experiment has 

been run.   

 

Transfer effects were assessed using a paired t-test, run on 

the frequency of each outcome during the first game 

compared to the frequency of that outcome when the same 

game was played second against a confederate agent of the 

same strategy and level of trustworthiness. Significant 

results indicate that the order in which the model played 

the game affected the frequency that an outcome was 

chosen during that game. 

 

3.1 Effects of Trustworthiness 

 

One clear difference seen across the high and low 

trustworthiness conditions in the model’s predictions is the 

level of the trust accumulator. A t-test run on the round-by-

round average of the magnitude of the trust accumulator 

across the simulated low (M = -66.86, SD = 38.11) and high 

(M = 62.36, SD = 39.17) trustworthiness conditions was 



found to be significant (t(49) = 66.87, p <  .001). The 

model’s current level of the trust accumulator affects which 

current reward function is used and will determine whether 

the model will attempt to maximize its own payoff or the 

payoff of both players. The difference in the trust 

accumulator between the simulation of the high and low 

trustworthiness conditions indicates that the experimental 

manipulations of trustworthiness were effective. Based on 

its level of trust, the model predicts a difference in the 

frequency that mutual defection will occur in both games, 

despite differences in the strategy used by the confederate 

agent and order. 

 

A LME was run with the average predicted frequency of 

mutual defection as a dependent variable, trustworthiness 

of the confederate agent as a fixed effect, with strategy, 

order, and round as random factors. A likelihood ratio test 

was run and found that the trustworthiness of the 

confederate agent was found to have a significant effect on 

the predicted frequency of mutual defection (X2(1) = 277.3, 

p < .001), increasing the frequency of mutual defection by 

75.07% ± .6%, 95% CI [52% , 98 %], during the simulated 

low trustworthiness conditions compared to 15.4% ±6.5%, 

95% CI [0 , 37.33%], in the simulated high trustworthiness 

conditions (Fig. 1.2). 

 

 
Fig 1.2. The average round-by-round frequency that 

mutual defection was chosen across all of the simulated 

high (dashed red line) and low (solid black line) 

trustworthiness conditions. 

 

The trustworthiness of the confederate agent determines 

whether it will cooperate (high trustworthiness) or defect 

(low trustworthiness) for a specific number of times (10% 

of the rounds in the T4T and 35% of the rounds in the 

PT4T) over the course of the game at random times. The 

model predicts that participants will be sensitive to the 

trustworthiness of the confederate agent, responding by 

defecting more throughout the low trustworthiness 

conditions and less during the high trustworthiness 

conditions. 

 

3.2 Effects of Strategy 

 

The two types of strategies used by the confederate agent 

have different criteria for deciding what choice to choose 

during each round; these differences limit how quickly the 

model can change from  one outcome to another and the 

outcomes that can be achieved during a game. For 

example, continual alternation is an outcome that can only 

be achieved with the T4T strategy and not with the PT4T 

strategy. Continual mutual cooperation is also an outcome 

that is harder to achieve with the PT4T strategy, because it 

is inherently less trustworthy (i.e., more apt to defect). It is 

the differences in the behavior of these two strategies used 

by the confederate agent that affected the predicted 

frequency in which the optimal outcomes will be chosen 

despite differences in the trustworthiness of the 

confederate agent or the order in which the games are 

played. 

 

A LME was run with the average predicted frequency of 

mutual cooperation as a dependent variable, strategy as a 

fixed factor, with trustworthiness, order, and round as 

mixed effects. A likelihood ratio test was conducted and 

found that the strategy implemented by the confederate 

agent significantly affected the predicted frequency of 

mutual cooperation (X2(1) = 68.867, p < .001). The T4T 

strategy had a larger affect on the predicted frequency of 

mutual cooperation, increasing its predicted frequency by 

25.1% ± .7%, 95% CI [0 , 70%] compared to when the 

confederate agent used the PT4T strategy, increasing the 

predicted frequency of mutual cooperation by only 19% 

±13.7%, 95% CI [0 , 62%] (Fig 1.3). A second LME was 

run with the average predicted frequency of alternation as 

a dependent variable, strategy as a fixed factor, with 

trustworthiness, order, and round as random factors. 

Similar to mutual cooperation, the strategy used by the 

confederate agent was found to have a significant effect on 

the predicted frequency of alternation (X2(1) = 392.21, p < 

.001). Conditions where the confederate agent used the 

T4T strategy had a larger affect on the predicted frequency 

of alternation, increasing the frequency by 12.9% ± 0.4%, 

95% CI [6% , 30%] in conditions where the confederate 

agent used the T4T strategy compared to only 4% ± 6%, 

95% CI [0% , 20%] when it used the PT4T strategy (Fig 

1.3). 

 

The strategy used by the confederate agent was also found 

to have a significant effect on the predicted frequency of 

mutual defection, controlling for trustworthiness and order. 

A LME was run with the average predicted frequency of 

mutual defection as a dependent variable and strategy as a 

fixed factor, with trustworthiness, order, and round as 

random effects. A likelihood ratio test was conducted and 

found that the strategy used by the confederate agent had a 

significant effect on the predicted frequency of mutual 

defection (X2(1) = 574.02, p < .001). Conditions where the 

confederate agent used the PT4T 



 
Fig 1.3. A comparison of the average predicted frequency per round of three different outcomes: mutual cooperation (CC), 

alternation (ALT), and mutual defection (DD), across all the Tit-for-Tat (T4T, solid black line) and Pavlov-Tit-For-Tat 

(PT4T, dashed red line) conditions. The 95% confidence intervals per round for each outcome and condition are also 

plotted 

 

strategy had a larger effect on the predicted frequency of 

mutual defection, increasing its frequency by 54.1% ± 

29%, 95% CI [0%, 100%], compared to when the 

confederate agent used the T4T strategy increasing the 

predicted frequency of mutual defection by only 36.31% ± 

.6%, 95% CI [0% , 100%] (Fig 1.3). 

 

The model predicts that participants will react differently 

to the two different strategies used by the confederate 

agent. Alternation and mutual cooperation are both 

predicted to occur at a higher frequency during all of the 

T4T conditions compared to the PT4T conditions. A higher 

predicted frequency of alternation occuring during the T4T 

conditions would be expected, because the PT4T strategy 

cannot continually alternate throughout the game like the 

T4T strategy. However, the T4T and PT4T strategy can 

both mutually cooperate throughout a game. The difference 

that the frequency of mutual cooperation is predicted to 

occur is caused by the strategies’ behavior during the 

experiment when played with repeatedly, because repeated 

instances of mutual cooperation are harder to obtain with 

the PT4T strategy than with the T4T strategy. In addition, 

as is seen in the model’s predictions, the PT4T condition is 

predicted to have a higher frequency of mutual defection 

across all conditions, which would affect the model’s trust 

in the confederate agent, leading it to cooperate less in 

conditions where the confederate agent used the PT4T 

strategy compared to the T4T strategy. 

 

3.3 Effects of Order 

 

The optimal outcomes that are chosen during the 

experiment depend on the games that are played during 

each condition. For example, alternation is the optimal 

outcome in CG, but is not an optimal outcome in PD, 

because alternating between a payoff of +4 and -4 points 

per round leads to a net gain of 0 for both players. While 

playing PD, mutual cooperation is the optimal strategy and 

though mutual cooperation is a possible outcome in CG, it 

leads to a sub-optimal outcome compared to alternation, +1 

point per round compared to +3 points every other round. 

Juvina et al. (2013) found that order also affects the 

frequency of the optimal outcomes during a game. The 

optimal outcome in either PD or CG occured more 

frequently when it was played after the other game 

compared to when played first. Due to the effects that order 

has been seen to have on the outcomes that are chosen over 

the course of both games, the model will predict a 

significant difference in the frequency of the two optimal 

outcomes over the course of the two games depending on 

the order that they are played.  

 

A LME was run with the average predicted frequency of 

mutual cooperation as a dependent variable, order as a 

fixed effect, with trustworthiness and strategy of the 

confederate agent and round as random effects. A 

likelihood ratio test was conducted and found that the order 

in which the games were played in a condition significantly 

affected the frequency of mutual cooperation (X2(3) = 

712.98, p < .001), increasing the predicted frequency of 

mutual cooperation by 36.6% ±1%, 95% CI [0% , 79%] in 

the simulated conditions when PD was played repeatedly 

(PDPD order), 28.47% ± 1%, 95% CI [0% , 71%], when 

PD was played before CG (PDCG order), 13.10% ± 1% , 

95% CI [0% , 71%], when CG was played before PD 

(CGPD order), and 10% ±12.3%, 95% CI [0% , 51%], 

when CG was played twice (CGCG order). 



 
Fig 1.4. Comparison of the model predictions of the average predicted frequency per round of two different optimal 

outcomes: mutual cooperation (CC, solid black line) and alternation (ALT, dashed red line), across all of the different 

orders that PD and CG were played in. The 95% confidence intervals per round for each outcome and condition are also 

plotted. 

To test the significance of the effect of order on the 

predicted frequency of alternation, a LME was run with the 

average predicted frequency of alternation as a dependent 

variable, order as a fixed factor, with trustworthiness and 

strategy of the confederate agent and round as random 

effects. The order in which the games were played was 

found to significantly affect the predicted frequency of 

alternation, opposite that of the predicted frequency of 

mutual cooperation (X2(3) = 712.98, p < .001). Game order 

affected the frequency of alternation by 15.5% ±5.9%, 95% 

CI [0% , 33%], in simulated conditions with the CGCG 

order, 11.9% ± .5%, 95% CI [0% , 23%], in the CGPD 

order, 4.95% ± .05%, 95% CI [0 % , 23%], in the PDCG 

order, and 1.86% ±.05%, 95% CI [0% , 20%], in the PDPD 

order (Fig 1.4). 

 

The affect that the order games were played had on the 

predicted frequency of the optimal outcomes show that in 

conditions where the same game is played repeatedly, such 

as in the PDPD and CGCG order, the model predicts that 

the frequency of the optimal outcome for that game will 

continue to increase throughout the condition. The model 

also makes an uncharacteristic prediction about the 

frequency that mutual cooperation and alternation in the 

conditions simulated with the PDCG and CGPD order. It 

would be expected based on results from Juvina et al. 

(2013), that conditions with the PDCG order would have a 

higher frequency of alternation than the CGPD order, and 

that the CGPD order would have a higher frequency of 

mutual cooperation than with the PDCG order. Instead, the 

model predicts that when PD and CG are played in 

sequence, the highest frequency of mutual cooperation will 

be in conditions with the PDCG order and the highest 

frequency of alternation will occur in conditions with the 

CGPD order. 

 

3.4 Predicted Transfer Effects 

Previous results with human pairs have found that when 

PD and CG were played in sequence, transfer effects 

between these two games occur along both their surface 

and deep similarities (Juvina et al., 2013). The same 

transfer effects have also been found when cognitive 

models were paired with one another (Juvina et al., 2014) 

In contrast, when a cognitive model was paired with a pre-

programmed agent as in the current study, no deep transfer 

effects are predicted; the model only predicts surface 

transfer effects. Mutual cooperation in the T4T HT 

condition is predicted to occur at a higher frequency during 

CG when played after PD compared to when played before 

PD (t(49) = -21.8871, p <  .001). The same prediction about 

the frequency of mutual cooperation is made during the 

PT4T HT condition. Mutual cooperation is predicted to 

occur at a higher frequency during CG when played after 

PD compared to when played before PD (t(49) = -38.429, 

p < .001).  

 

The surface transfer effect of mutual cooperation in the 

PDCG order during the PT4T HT condition is amplified by 

the limitations of the confederate agent’s strategy. Because 

continual alternation cannot be achieved with the PT4T 

strategy, mutual cooperation, a sub-optimal outcome in 

CG, is left as the only satisfactory outcome that can be 

achieved given the behavior of the confederate agent. One 

possible explanation for the lack of deep transfer effects in 

the model’s predictions is the difference between the 

behavior of the confederate agent and an actual human 

player. The confederate agent is simpler than the model 

(even with the added randomness) and does not learn from 

the interaction with the model throughout the game. If 

confirmed, the prediction of a lack of deep transfer will 

strengthen the claim made in Juvina et al. (2013, 2014) that 

joint learning and reciprocal trust are key ingredients for a 

deep transfer of learning in games of strategic interaction. 

4. Conclusion 



 
In summary, we are validating a computational cognitive 

model that has shown to be able to account for the transfer 

effects that are observed when the games PD and CG are 

played repeatedly and in sequence with human 

participants. In order to validate the model, we have made 

a priori model predictions about the behavior of human 

participants when playing against a preprogrammed 

confederate agent across a variety of conditions. From the 

model’s predictions we have developed five hypotheses for 

the upcoming study. 

H1: We predict that mutual defection will be chosen more 

across all of the low trustworthiness conditions compared 

to the high trustworthiness conditions.     

H2: We predict both optimal outcomes (i.e., mutual 

cooperation and alternation) will be chosen at a higher 

frequency in condtions where the confederate agent uses 

the T4T compared to the PT4T strategy. 

H3: We predict that the frequency of both optimal 

outcomes (i.e., mutual cooperation and alternation) will 

depend on the order that games are played in a conditon.  

H4: We predict that across the sixteen conditions no deep 

transfer of learning will occur. 

H5: We predict that across the sixteen conditions surface 

transfers of learning will only occur with the mutual 

coopertion outcome in the PDCG PT4T HT and PDCG 

T4T HT condition. 

We expect to run the study in 2015. A subsequenct 

publication will reveal the actual empirical results and 

degree of model predictive validity. 
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