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ABSTRACT

Parker, Keli Siqueiros. M.S., Department of Mathematics and Statistics, Wright

State University, 2011. Multilevel Hadamard Matrices.

Multilevel Hadamard Matrices (MHMs) have been examined by Trihn, Fan, and

Gabidulin for constructions of multilevel zero-correlation zone sequences, which in

turn have useful application in quasi-synchronous code division multiple access (CDMA)

systems. Subsequently, Adams, Crawford, Greeley, Lee and Murugan introduced a

construction of full-rate circulant MHMs and proved the existence of an order n MHM

with n elements of distinct absolute value for all n, thus determining the maximum

number of distinct elements permissible in an order n MHM to be the greatest pos-

sible. We give a survey of MHMs, in particular examining the circulant case and

the methods for studying such objects. We provide several observations regarding

Adams’ construction, discuss the characterization of circulant matrices H satisfying

HHT = wI for orders 3 and 4, and give new constructions for other orders of MHMs.
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1. Introduction

A Hadamard matrix of order n is defined as a square matrix H with entries of ±1

such that

HHT = nIn.

Equivalently, a Hadamard matrix may be defined as a ±1 matrix, with the restric-

tion that the rows are mutually orthogonal. Clearly columns must also be mutually

orthogonal, and

HTH = nI

also holds [9].

It is well known that a necessary condition for the existence of a Hadamard matrix

of order n is n = 1, 2 or n ≡ 0 (mod 4). The Hadamard matrix conjecture speculates

that this condition is sufficient for existence, but the question remains open, with

the smallest unknown case currently of order 668. Hadamard matrices have signif-

icant applications for error correcting codes, optimal weighing designs, and CDMA

spreading codes [22].

There are many generalizations of Hadamard matrices that have been studied for

their potential use in similar applications. Multilevel Hadamard matrices (MHMs)

in particular were proposed by Trinh et al. as an extension of Hadamard matrices

for use in the construction of multilevel zero-correlation zone sequences. MHMs are

n× n matrices with nonzero integer entries whose columns are mutually orthogonal.

Specifically, an MHM of order n, weight w, referred to as MHM(n,w) is an n × n
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matrix M with nonzero integer entries ±a1, ±a2, . . . , ±an satisfying

MMT = MTM = wI,

where

w =
n∑
i=0

a2i .

The latter condition pertaining to the weight w as the sum of the squares of the ele-

ments is readily seen to be a result of the mutual orthogonality of the column vectors

(and hence row vectors as well). The matrix product MMT takes on nonzero values

only along the main diagonal, at which point entries are simply the inner product

of said column vector with itself [1]. While we suspect that MHMs may have appli-

cations similar to those of traditional Hadamard matrices (see section Applications),

the issue of how to best incorporate such a non-binary object into existing and devel-

oping systems is yet unresolved. However, for this thesis we primarily are concerned

with investigating the combinatorial properties and constructions of MHMs, and it is

our hope that future work may prove these objects to be valuable in application.

Motivated by Adams et al. we refer to order n MHMs with n elements of distinct

absolute value as full rate MHMs (FMHMHs), from the terminology of generalized

orthogonal designs. Orthogonal designs have been a topic of research in combinatorics

for some time, and it can be seen that if we replace the integer entries of an MHM with

commuting indeterminates we obtain an orthogonal design. For an original treatment

of the subject we refer the reader to [10]. In this thesis we are most concerned with

circulant (CMHMs) and full rate circulant MHMs (FCMHMs) as investigated by

2



Adams et al. A CMHM M of order n takes the form of

M =



a0 a1 · · · an−2 an−1

an−1 a0 a1 · · · an−2
...

. . . . . . . . .
...

a2 · · · an−1 a0 a1

a1 · · · an−2 an−1 a0


,

where each row consists of a right cyclic shift of the previous row and of course the

conditions of an MHM are satisfied [1]. In this way it becomes clear that a CMHM is

completely determined by its first row, and we may use notation to take advantage

of this fact. When referring to group invariant MHMs we will make use of the group

ring notation (see section: Preliminaries).

Theorem 1. (Adams et al. [1]) For all positive integers n 6= 4, there exists an

FCMHM with n entries of distinct absolute value.

Example 1. The following example of a previously unknown order 5 FCMHM of

weight 1681 is

M =


6 17 14 26 −22

−22 6 17 14 26

26 −22 6 17 14

14 26 −22 6 17

17 14 26 −22 6

 .

Related to Hadamard matrices and MHMs are weighing matrices, denoted W (n, k),

square n×n matrices of weight k with entries in {-1,0,1} whose columns are mutually

orthogonal. A more generalized design would be an integer weighing matrix (IW,

or ICW if circulant), defined as a square matrix W with integer entries (possibly

including 0) satisfying

WW T = kI
3



for some weight k. In this thesis we will consider IWs as the most general family

of integer entry objects which Hadamard matrices, MHMs, FCMHMs and ICWs all

belong to.
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2. Preliminaries

Let R be a commutative ring with identity and G a multiplicatively written group.

Then the group ring R[G] is defined as the set of formal sums

A =
∑
g∈G

agg,

with ag ∈ R. ∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

and

(
∑
g∈G

agg)(
∑
h∈G

bhh) =
∑
g,h∈G

(agbh)gh

define addition and multiplication, respectively, for R[G] [19]. Earlier we noted that

any CMHM is completely determined by its first row, and we would take advantage

of this by using the group ring notation. In actuality, we will use group ring notation

for any group invariant matrix, not just cyclic matrices. That is, let M be any matrix

of order n and Sn denote the symmetric group of order n. M is group invariant given

the existence of a subgroup G of Sn for which a group action is defined on the set

{1, 2, . . . , n} such that for M = [mi,j], mg(i),g(j) = mi,j. It can be seen that the set of

group invariant matrices over a ring R is isomorphic to the group ring R[G] via the

isomorphism

Ψ(M) =
∑
g∈G

mg(1),1g,

as given in [3].
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Hence the MHM(n,w) M with entries a0, a1, . . . , an−1 may be represented as A ∈

Z[G], where G is a group of order n and

A =
∑
g∈G

agg.

Equivalently, if we let g be a generator of Cn, the cyclic group of order n, and the

entries a0, a1, . . . , an−1 are of distinct moduli, A represents a FCMHM and we may

write A in polynomial notation as

A =
n−1∑
i=0

aig
i = a0 + a1g + · · ·+ an−1g

n−1,

highlighting the circulant nature of the object. At this point it is convenient to

mention that w = v2, where v =
∑n−1

i=0 ai. For the remainder of this thesis we

will refer to such v as the sum weight of an FCMHM. The following are notations

commonly used in the study of group ring objects that are useful for the remainder

of the thesis. See [9].

Definition 1. Let A ∈ Z[G] be a group ring element and t an integer. Then we

define

A(t) =
∑
g∈G

agg
t for A =

∑
g∈G

agg.

Similarly, if α : G → H is a mapping from the group G into a group H, then we

extend this map linearly as a mapping from Z[G] into Z[H] and denote this as

Aα =
∑
g∈G

agg
α for A =

∑
g∈G

agg.
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Definition 2. For A ∈ R[G], the support of A is defined as

supp(A) = {g ∈ G : ag 6= 0},

hence for MHM M ∈ Z[G], supp(M) = G.

Most of our interest for this thesis is directed at circulant examples and as such,

group ring representations are created using cyclic groups. However, it seems that

it would be of interest for the future study of such objects to consider MHMs con-

structed with abelian groups in general. We thus borrow some ideas from the study

of difference sets to obtain generalized conditions for an object to be an MHM.

Using our group ring notation as described above, we may now see that the trans-

pose of a matrix A is A(−1) ∈ Z[G]. Hence for an abelian group G, A ∈ Z[G] represents

an MHM of weight w if and only if the support of A is G and

AA(−1) = w.

A represents an FMHM if and only if in addition to the above condition, the coeffi-

cients of A are of distinct moduli. We introduce some common definitions, see [20].

2.1. Characters. Let G be an abelian group and C∗ denote the multiplicative group

of all the nonzero elements of the field of complex numbers. Then we call a homo-

morphism χ from G into C∗ a complex character of G and denote the set of all such

characters by Ĝ. It is easy to see that Ĝ forms a group under point-wise multiplica-

tion that is in fact isomorphic to G itself. Characters map elements of G to roots of

unity, specifically, if g is an element of order v in G then χ(g) is a v-th root of unity
7



for any character χ. Additionally, for g an element of order v in G, if ξ is a v-th root

of unity in C∗, then there exists χ in Ĝ such that χ(g) = ξ. The principal character

is the identity element of Ĝ that maps all g ∈ G to the identity of C∗. We will use

characters in our notation by extending them linearly as

χ(A) =
∑
g∈G

agχ(g) for A =
∑
g∈G

agg.

Thus χ(A) ∈ C for our purposes. The following are well known regarding characters.

Orthogonality Relations:

∑
χ∈Ĝ

χ(g) =


|G| for g = 1

0 for g 6= 1

∑
g∈G

χ(g) =


|G| for χ = χ0

0 for χ 6= χ0

,

where χ0 is the principal character.

Inversion Formula:

ag =
1

|G|
∑
χ∈Ĝ

χ(A)χ(g−1) for A =
∑
g∈G

agg ∈ Z[G].

Hence for A,B ∈ Z[G], if χ(A) = χ(B) for all χ ∈ Ĝ, then A = B. Now we have the

following generalized result for MHMs.
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Lemma 1. An element A of a group ring Z[G], where the order of G is n and

supp(A) = G is an MHM(n,w) if and only if for every character χ ∈ Ĝ,

|χ(A)| =
√
w.

Proof. We apply any character χ to our equation AA(−1) = w to get

χ(AA(−1)) = wχ(1).

Since we are considering complex characters, it is clear that χ(g−1) = (χ(g))−1 = χ(g)

for all g ∈ G, so

χ(AA(−1)) = χ(A)χ(A(−1)) = χ(A)χ(A) = |χ(A)|2.

Furthermore, wχ(1) = w and we have the identity. Finally, inversion formula com-

pletes the proof. �

It is a simple observation to note that χ(A) is an eigenvalue of the matrix represen-

tation of A for any character χ ∈ Ĝ, and {χ(A) : χ ∈ Ĝ} gives all eigenvalues of

A.

2.2. Similarity of MHMs. A notable issue with FCMHMs is determining when two

such objects are equivalent. It becomes necessary to consider the possible redundancy

of considering A =
∑

h∈G ahh and gA =
∑

h∈G ahgh as distinct FCMHMs when clearly

gA is simply a cyclic shift of A for g a nonidentity element of G.
9



Definition 3. Let A be an IW of order n weight w. We define an IW B as a

permutation of A if there exists a bijection σ from G to itself such that B = Aσ.

It is immediate that for any MHM A, we may easily generate an MHM that is a per-

mutation of A by letting σ be an automorphism. In general if σ not an automorphism,

Aσ will not be an MHM, with the exception that any translate of A clearly will be.

FCMHMs that are permutations of each other have the same order, the same weight,

and contain the same n coefficients. However we may have MHMs that are related

to one another in far more subtle ways. In fact we can see that the space of IWs is

closed under matrix multiplication, as is the space of all ICWs, and that MHMs and

FCMHMs are closed under scalar multiplication. Let M be an FCMHM(n,w) and

α ∈ Z \ {0}. Then we have that

MMT = wIn =⇒ (αM)(αMT ) = α2wIn.

Now α is an integer, so clearly αM contains n elements of distinct absolute value

provided that M does, and αM is an FCMHM with weight α2w.

Definition 4. We define a reduced MHM M with integer coefficients a0, a1, . . . , an−1

as an MHM such that gcd(a0, a1, . . . , an−1) = 1. By the reduced form of an MHM M ,

we mean sM , where s is an appropriate scalar such that sM is a reduced MHM.

Definition 5. Two MHMs are defined to be similar if their reduced forms are per-

mutations of each other.
10



Let A, B be examples of an MHM(n,w) and MHM(n, v), respectively. It is clear

that AB and BA are IW (n,wv), and with the proper restrictions, MHM(n,wv).

AB(AB)T = ABBTAT = AvInA
T = wvIn.

Hence it would seem useful to provide yet another definition for MHMS.

Definition 6. An MHM M is said to be irreducible if M is not the product of at least

one MHM with a nonidentity IW of the same order. Hence an MHM(n,w) is always

irreducible if w = p2, p a prime.

In our investigation of the existence of MHMs, an important question for clas-

sification purposes arose. Can we find n, w such that there exist M1, M2 both

MHM(n,w)s such that M1 is not similar to M2? Unfortunately for the complexity

of the problem we are able to answer an even stronger question with the following

irreducible FCMHM(5, 712)s, which are clearly not similar.

6 + 18g + 26g2 + 54g3 − 33g4,

62 + 11g + 26g2 − 16g3 − 12g4.

11



3. Known Constructions

MHMs were originally conceived by Trihn, Fan, and Gabidulin as a method for

the construction of multilevel zero correlation zone sequences and they considered

examples of MHMs constructed with an alphabet of 2 elements. We include some

particular construction results here from [22].

3.1. Kronecker product and two element circulant constructions. Let M1

and M2 be MHM(n,w) and MHM(m, v), respectively. Then M1 ⊗M2, where ⊗ is

the Kronecker product is an MHM(nm,wv).

(M1⊗M2)(M1⊗M2)
T =


m1

(1,1)M2 . . . m1
(1,n)M2

m1
(2,1)M2 . . . .

. . . . .

. . . . .

m1
(n,1)M2 . . . m1

(n,n)M2




m1

(1,1)M
T
2 . . . m1

(n,1)M
T
2

m1
(1,2)M

T
2 . . . .

. . . . .

. . . . .

m1
(1,n)M

T
2 . . . m1

(n,n)M
T
2


= wvInm.

If we consider the Kronecker product of a binary Hadamard matrix and an MHM

it becomes quite easy to build MHMs of larger orders that have a clear block struc-

ture. Trihn et al. include such a construction in their work, along with a two element

circulant construction that generates a CMHM for all n > 1. They note that if we

generate an n×n circulant matrix with first row [abb · · · b], then the matrix will be an

MHM if we subject the elements to the restriction that 2ab− (n− 2)b2 = 0. This re-

striction satisfies the same constraining equations that the Adams construction arises

from (see 3.2), and provides a simple method for generating a circulant MHM(n, n2)

for any n > 2. Simply let b = 2 and a = 2− n and this is easily achieved.
12



3.2. Adams construction. [1] If an order n matrix is group invariant, as are most

MHMs we consider, then it may be constructed with a potential maximum of n

elements. Adams et al. proved that an MHM of order n with n elements of distinct

absolute value exists for all n, and it was the construction Adams gave as proof that

provided the motivation for this thesis.

Adams examined the equations that arise from the condition that an MHM has

mutually orthogonal columns, and considered the circulant case as follows. Let

A =
n−1∑
i=0

aig
i ∈ Z[Cn]

be a circulant MHM of order n with weight w. Then it may be observed that in order

for AA(−1) = wIn to hold, the equations

n−1∑
i=0

aiai+j(mod n) = 0

must be satisfied for j = 1, . . . , bn
2
c. In fact, any integers satisfying the above equa-

tions will generate a circulant MHM. The bn
2
c equations are simpler to deal with than

the general case, which would involve
(
n
2

)
such equations. We will later see that a bn

2
c

condition on the number of equations necessary to express mutual orthogonality can

be exploited for non-circulant group invariant matrices as well. Adams et al. then

took the equation with general j and manipulated in the following way. Let r be an

integer greater than 1 and let ai = ri for i = 0, 1, . . . , n − 2. We may then solve for

an−1 to achieve

an−1 = −r
n−1 − r
r2 − 1

.

13



Since r was selected to be an integer, ai is an integer for i = 1, . . . , n − 2. an−1

is potentially not an integer, but by selecting s an appropriate scalar, for instance

s = r2 − 1, we may ensure all entries are integers by replacing ai with sai for i =

1 . . . , n− 1 if need be. We also note that the use of a scalar makes the restriction of

r to an integer unnecessary, and the construction holds for r ∈ Q not equal to ±1 or

0, appropriate scalar s ∈ Z.

We thus refer to Adams’ construction as

A = s[(
n−2∑
i=0

rigi)− (
rn−1 − r
r2 − 1

)gn−1].

Since Adams’ construction is clearly circulant we will have an FCMHM for the cases

when rn−1 − r 6= (r2 − 1)ri for i = 1, . . . , n − 2. Thus Adams’ construction gives an

FCMHM for all n 6= 4. Concerning the n = 4 case, Adams showed that no FCMHM

of order 4 exists, although CMHMs and non-circulant FMHMs do [1]. The circulant

binary Hadamard matrix H = 1 + g + g2 − g3 is a particularly interesting case of an

order 4 MHM, and it is conjectured to be the only order greater than 1 for which a

circulant binary Hadamard matrix exists [20]. This open conjecture has seen many

failed attempts at a proof.

At this point we were motivated to investigate the existence of other examples of

MHMs. As with weighing matrices and difference sets, the question existence for

particular orders n and weights w is a topic of research interest. Clearly the work of

Adams et al. answered an important question as to the orders n for which an MHM

exists and in the process also answered for which n an FCMHM exists. However, a

complete classification of MHMs is still unknown, and it was unclear if the examples
14



from the construction created by Adams et al. would cover the set of all FCMHMs. We

thus focused on FCMHMs and initially used a brute force approach to the problem.

The key observation that led to the derivation of Adams’ construction was the bn
2
c

constraining equations mentioned above, and this suggested an elementary computer

algorithm to search for explicit examples. While not elegant, it was effective for

small n to write a code implementing nested for loops that would step the elements

ai, i = 0, 1, . . . , n − 1, through integers in a given range and test the satisfaction of

the bn
2
c constraining equations while also ensuring full rate. Clearly large n prohibits

such a method due to the high number of operations such an algorithm requires, and

the nesting of the for loops ensures that an increase in n increases the computing time

exponentially. However even using consumer level computers, this algorithm yielded

FCMHMs of orders 3, 5, 6, 7, 8, though the number of examples was greatly reduced

for the later two cases. Examples which are not full-rate are also easily found and

will be discussed later in the thesis. Every order 3 example found fit the Adam’s

construction and led to the following observation.

3.3. Characterization of order 3.

Remark 1. Adams’ construction gives a complete characterization of the family of

order 3 group invariant MHMs, up to similarity .

We may see this through the following arguments. Suppose M is an order 3 group

invariant MHM. Hence we may write

M =
∑
g∈C3

agg.

15



We have that M is a circulant MHM and, denoting C3 = 〈g〉, as such satisfies

MM (−1) = (a0 + a1g + a2g
2)(a0 + a1g

2 + a2g) = a20 + a21 + a22.

We thus are able to derive the following:

a0a1 + a1a2 + a0a2 = 0

a2 = − a0a1
a1 + a0

a2
a0

= − a1
a1 + a0

= −
a1
a0

a1
a0

+ 1

Set r = a1
a0

, select scalar s for integer entries, and M is similar to

s

a0
M = s(1 + rg − r

r + 1
g2),

which is precisely Adams’ construction for order 3. Note that the above arguments are

valid even for non-integer valuedM , and Adams construction completely characterizes

order 3 group invariant matrices A satisfying AAT = wI. Similarly the following

general observation covers the order 3 case.

Remark 2. The roots a, b, c of any polynomial of the form x3 + wx2 + α form a

circulant matrix represented by A = a+ bg + cg2 that satisfies AA(−1) = w.

This is easily seen to be true when we recall that the x coefficient of such a poly-

nomial (x − a)(x − b)(x − c) is necessarily ab + bc + ac. Hence if the x coefficient is

zero, then ab + bc + ac = 0 and the only constraining equation on the elements of
16



an order three group invariant matrix with mutually orthogonal columns is satisfied.

This gives a complete classification of the family of order 3 complex group invariant

matrices A satisfying AA(T ) = wI for some w.

17



4. Circulant Order 6 MHMs and the Doubling Theorem

To us a result from a computer search is not interesting in and of itself beyond the

potential for application, so we set about investigating results that were not obviously

of the family described by Adams. In particular, orders 5 and 6 yielded several results

that failed to arise from any known r, s used in Adams’ construction. However, there

was a structure to a subset of the order 6 results that satisfied a new construction. It

was through this observation that we were able to generate the order 6 construction

as follows.

4.1. Order 6 construction.

Lemma 2. Let p, q ∈ Q \ {0}. Then

M = s[p2 + (q2 − p2)g + q2g2 + (2pq + p2)g3 + (p+ q)2g4 − (2pq + q2)g5] ∈ Z[C6]

is MHM of order n for (if needed) appropriate scalar s ∈ Z, and is FCMHM for

|p| 6= |q|, p 6= −2q, q 6= −2p.

Proof. Since M =
∑n−1

i=0 aig
i ∈ Z[C6], the entries of M must satisfy the bn

2
c = 3

constraining equations

a0a1 + a1a2 + a2a3+a3a4 + a4a5 + a5a0 = 0,

a0a2 + a1a3 + a2a4+a3a5 + a4a0 + a5a1 = 0,

a0a3 + a1a4 + a2a5 = 0.

18



A simple exercise in arithmetic shows that the coefficients of M satisfy the con-

straining equations, and that all entries are nonzero. Thus M is MHM. The additional

restrictions |p| 6= |q|, p 6= −2q, q 6= −2p are sufficient for FCMHM (see [18]). �

Example 2. The following is an example of a previously unknown FCMHM(6, 142)

constructed using the previous theorem with p = 1, q = 2.

M = 1 + 3g + 4g2 + 5g3 + 9g4 − 8g5.

Some examples resulting from the lemma are well known, however, we may show that

the example above is not similar to any Adam’s construction.

The sum weight of M is k = 14. Suppose there exists an Adams’ construction

FCMHM A that is similar to M . M is a reduced MHM, hence in reduced form, A

must also be of sum weight 14. Now we consider Adams’ construction for order 6

FCMHMs. For rational r, integer scalar s, we have that

A = s[(
4∑
i=0

rigi)− (
r5 − r
r2 − 1

)g5].

The last coefficient is equivalent to −(r3 + r) and hence for any order 6 Adams’

construction, the sum weight will be

v = s(r4 + r2 + 1).

We are now ready to use some well-known notions regarding polynomials to show

that no order 6 Adams’ construction can be similar to an FCMHM of sum weight 14.
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If A were similar to M above, then there would exist integer scalar s and rational

r = p
q

such that v = 14. Thus

sr4 + sr2 + s− 14 = 0

may be considered as a polynomial in r. By Descartes rule of signs, for r to be real

s must be positive and s− 14 negative. Hence we impose the restriction 0 < s < 14.

Applying r = p
q
, gcd(p, q) = 1, we see that

s
p4

q4
+ s

p2

q2
+ s− 14 = 0,

sp4 + sp2q2 + q4(s− 14) = 0,

so p2|(s− 14) and q2|s. We now show that no such p, q and s exist.

s = 1 =⇒ q = 1, p = 1 v = 3,

s = 2 =⇒ q = 1 p =

1 v = 6,

2 v = 42,

s = 3 =⇒ q = 1 p = 1 v = 9,

s = 4 =⇒ p = 1 q =

1 v = 12,

2 v = 21
4
,

s = 5 =⇒ q = 1 p =

1 v = 15,

3 v = 455,

s = 6 =⇒ q = 1 p =

1 v = 18,

2 v = 126,
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s = 7 =⇒ q = 1 p = 1 v = 21,

s = 8 =⇒ p = 1 q =

1 v = 24,

2 v = 21
2
,

s = 9 =⇒ p = 1 q =

1 v = 27,

3 v = 91
9
,

s = 10 =⇒ q = 1 p =

1 v = 30,

2 v = 210,

s = 11 =⇒ q = 1 p = 1 v = 33,

s = 12 =⇒ p = 1 q =

1 v = 36,

2 v = 63
4
,

s = 13 =⇒ q = 1 p = 1 v = 39.

Thus no such p, q and s exist for which A has sum weight v = 14.

4.2. The doubling theorem. We later found that Lemma 2 was a specific case of

a more general construction for MHMs that also gives results not of Adams construc-

tion. Several theorems on weighing matrices are easily adapted to give construction

results for MHMs. See [3], [7], [5] for the inspiration to the following theorems.

Theorem 2. Let A,B ∈ Z[G] be MHMs of the same weight w for an abelian group

G of order n. Let 〈t〉 = C2. Note t2 = 1. Then M ∈ Z[G× 〈t〉],

M = (1− t)A+ (1 + t)B

is an IW of order 2n, weight 4w.
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Proof. Observe that

MM (−1) = (1− t)2AA(−1) + (1 + t)2BB(−1)

= 4w

Since entries of M must be integers, the proof is complete. �

Clearly the way we have stated theorem two we cannot guarantee that the con-

structed object M will have support G × 〈t〉, so we do not have an MHM. A trivial

example of when this might happen would include constructing

M = (1− t)A+ (1 + t)A,

in which case supp(M) = G. To overcome this, we give another result.

Theorem 3. The Doubling Theorem: Let A ∈ Z[Cn] be an FCMHM of weight

w. Let g ∈ Cn \ {1}, 〈t〉 = C2. Then M ∈ Z[Cn × 〈t〉],

M = (1− t)A+ (1 + t)gA

is an MHM of order 2n, weight 4w. If n is odd, them M above is a circulant MHM

of order 2n.
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Proof. As before,

MM (−1) = (1− t)2AA(−1) + (1 + t)2(gA)(gA)(−1)

= 4w.

Since A is FCMHM and g 6= 1,

A =
∑
h∈Cn

ahh, gA =
∑
h∈Cn

ag−1hh,

M =
∑
h∈Cn

(ah + ag−1h)h+ (ah − ag−1h)th,

=
∑

g∈Cn×C2

mgg,

and |ah| 6= |ag−1h| for any h ∈ Cn. Thus, mg = ah + ag−1h or mg = ah − ag−1h and

mg 6= 0 for any g ∈ Cn × C2. �

Example 3. The doubling theorem provides a construction for order 2n MHMs.

Clearly if n is even or the resulting MHM is not full rate, then these constructions pro-

vide results unique from Adams construction by structure. However, if n is odd, the

resulting MHM is circulant and still many of these do not follow Adams’ construction.

In addition, under certain conditions we may achieve an order 2n FCMHM from two

odd order n FCMHMs. In the following we will use a non-Adams FCMHM(5, 112) H

and an Adams’ construction FCMHM(7, 1272) A to construct an order 10 circulant
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MHM and order 14 FCMHM, respectively. Following the theorem let

H = 6 + 2g + 8g2 − g3 − 4g4,

gH = −4 + 6g + 2g2 + 8g3 − g4,

A = 3 + 6g + 12g2 + 24g3 + 48g4 + 96g5 − 62g6,

gA = −62 + 3g + 6g2 + 12g3 + 24g4 + 48g5 + 96g6.

Then

M = (1− t)H + (1 + t)gH

= 2 + 8g + 10g2 + 7g3 − 5g4 − 10t+ 4tg − 6tg2 + 9tg3 + 3tg4,

= 2 + 4tg + 10g2 + 9tg3 − 5g4 − 10t+ 8g − 6tg2 + 7g3 + 3tg4

is a circulant MHM(10, 222), and

N = (1− t)A+ (1 + t)gA

= −59 + 9g + 18g2 + 36g3 + 72g4 + 144g5 + 34g6

− 65t− 3tg − 6tg2 − 12tg3 − 24tg4 − 48tg5 + 158tg6,

= −59− 3tg + 18g2 − 12tg3 + 72g4 − 48tg5 + 34g6

− 65t+ 9g − 6tg2 + 36g3 − 24tg4 + 144g5 + 158tg6

is an FCMHM(14, 2542).
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It is easy to see that the doubling theorem may also be represented by a block

matrix construction. Let A, gA be as above. Then

M =

[
A+ gA gA− A
gA− A A+ gA

]

is an equivalent representation of the construction.

From a combinatorial perspective, one could argue that a full rate result is more

interesting due to the inherent structure and various properties that hold for distinct

elements. As we will see in the applications section this requires closer examination

to determine if a full rate MHM is of more than just theoretical interest. However,

we note here that we may use the doubling theorem in a manner to guarantee a full

rate result. Let A be an Adam’s construction MHM. Then we may use A and gA as

in the theorem in the following way. Assume

A =
n−1∑
i=0

aig
i , so

gA =
n−1∑
i=0

ai−1(mod n)g
i.

Since we have added the restriction that A is an Adams construction, we are able

to specify A and gA even further. We note that an MHM is full rate iff any similar

MHM is also full rate, hence we may scale A however we wish. For simplicity, we

let our scalar s = r2 − 1, the denominator of the last element in the general Adams

construction, and assume r is an integer. Now consider M = A − tA + gA + tgA.
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With the mentioned scaling, coefficients of M consist of:

ri+3 + ri+2 − ri+1 − ri i = 0, . . . , n− 3,

−ri+3 + ri+2 + ri+1 − ri i = 0, . . . , n− 3,

−rn−1 + r2 + r − 1,

−rn−1 − r2 + r + 1,

rn − rn−1 − rn−2 + r,

rn + rn−1 − rn−2 − r.

The only further restriction then required then is that r /∈ {±1}, and M will be full

rate.

As noted previously, we realized that the order 6 construction is actually a doubling

theorem construction from a rational formulation of an order three Adams construc-

tion. Observe that Adams order three construction may be rewritten with rational

r = p
q

as

A = s(1 +
p

q
g − p

p+ q
g2).

Scale this minimally by s = q(p+ q) to achieve

A = (pq + q2) + (p2 + pq)g − (pq)g2,

gA = −(pq) + (pq + q2)g + (p2 + pq)g2.
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Now by the doubling theorem,

N =(1− t)A+ (1 + t)gA,

=q2 + (p+ q)2g + p2g2 − (2pq + q2)t+ (q2 − p2)tg + (2pq + p2)tg2,

=p2g2 + (q2 − p2)tg + q2 + (2pq + p2)tg2 + (p+ q)2g − (2pq + q2)t.

We may then easily multiplyN by g and still have an MHM. Finally, replace tg2, which

is a generator of the cyclic group C6, with ġ and we see the order six construction

clearly.

Ng =p2 + (q2 − p2)tg2 + q2g + (2pq + p2)t+ (p+ q)2g2 − (2pq + q2)tg,

=p2 + (q2 − p2)ġ + q2ġ2 + (2pq + p2)ġ3 + (p+ q)2ġ4 − (2pq + q2)ġ5.
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5. Folding

Very early on in our investigation of MHMs, it was noted that for any MHM(n,w)

achieved through a computer search, we could find another MHM(n,w) whose co-

efficients were a simple permutation of the those of the previous object. As noted

in the preliminaries section, we decided to denote two such MHMs as permutations

of each other, and to classify them as similar MHMs. Also noted was that for A

an MHM(n,w), σ an automorphism of the generating group G, Aσ is a similar

MHM(n,w). However, the restriction of σ to an automorphism on G need not be

so strong to ensure that Aσ is an MHM in general. Consider instead ϕ : G → H

any group homomorphism. We can easily extend this homomorphism linearly to

ϕ : Z[G]→ Z[H], as mentioned in the preliminaries section. The following is adapted

from [4], [5].

Theorem 4. Folding Theorem: Let M be any MHM(n,w) for some abelian group

G of order n. Let ϕ be a group homomorphism from G to some group H. Extend ϕ

linearly to a group ring homomorphism and denote ϕ(A) as Aϕ for A ∈ Z[G]. That

is

Aα =
∑
g∈G

agg
ϕ ∈ Z[H] for A =

∑
g∈G

agg ∈ Z[G].

Then Mϕ is an IW (v, w), where v is the order of H.

Proof. It is immediate that the coefficients of Mϕ will be integers. We thus need only

verify that (Mϕ)(Mϕ(−1)) = w. Let M =
∑

g∈G agg be an MHM(n,w). Then
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(Mϕ)(Mϕ(−1)) =(
∑
g∈G

agg
ϕ)(
∑
f∈G

aff
ϕ(−1)),

=
∑
g,f∈G

(agaf )g
ϕfϕ(−1),

=
∑
h∈Gϕ

 ∑
(gf−1)ϕ=h

(agaf )h

 .

Now we know that

∑
gf−1=υ

agaf =0 for υ ∈ G not the identity of G, and

∑
gf−1=υ

agaf =w for υ ∈ G the identity.

Hence ∑
(gf−1)ϕ=h

(agaf )h = 0 for h a nonidentity element of H

and we have the above sum evaluate to

(Mϕ)(Mϕ(−1)) = w

as required. �

Theorem 4 is a well known result that we have adapted for MHMs, and has been

used for some time in the study of weighing matrices. It is used extensively to show

some results in the recent work on Strassler’s table in [4] and [5]. However one may
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note that the folding theorem does not in fact guarantee that the homomorphic im-

age of an MHM is necessarily MHM. For such a result to hold we must apply more

restrictions to the original MHM, and the homomorphism ϕ. The most obvious pre-

liminary requirement is that we require ϕ : G→ H to be a surjective homomorphism,

otherwise supp(Mϕ) 6= H trivially. Then we must apply additional restrictions to the

coefficients of M such that the sum

∑
g∈G:gϕ=h

ag 6= 0 for h ∈ H.

Clearly many restrictions could be imposed, but for the sake of practicality, we include

only a canonical result here.

Corollary 1. Let M be a FMHM(n,w) for some abelian group G of order n, n

even. Let N be a normal subgroup of G of order 2. Then for ϕ : G→ G/N given by

ϕ : g 7→ Ng, Mϕ is an MHM(n
2
, w).

Proof. All we need to verify is that Mϕ will have support of order n
2
. Since the coeffi-

cients of M are of distinct modulus, the sum of any two will be nonzero. Furthermore,

since every coefficient of Mϕ is the sum of two coefficients of M ,

supp(Mϕ) = G/N.

�

The folding theorem implies one possible application of MHMs in the search of

weighing matrices. A common technique for shrinking the search parameters of a
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potential weighing matrix is to consider the possible lower order matrices that the

weighing matrix in question could fold down to. A particular MHM might be the

result of just such a folding. It is notable that in practice it is generally easy to attain

an MHM from the folding of a higher order MHM for an arbitrary subgroup.

5.1. Non-circulant group invariant MHMs. It is well known that non-circulant

examples of MHMs exist, and we have discussed some ways to construct such objects,

such as with a Kronecker product or the doubling theorem. There are also the obvious

examples of any binary Hadamard matrix as a special case of an MHM. However, as

with the circulant case, there do exist non-circulant MHMs that defy any known

construction. One such example is the reduced form FMHM(9, 212)

A = 1 + 8g + 9g2 + 11h+ 3hg − 5hg2 + 6h2 − 2h2g − 10h2g2.

It is unknown if this object is an irreducible example, especially since its sum weight

is 21. However by inspection four coefficients are of prime modulus, suggesting that

this is not the result of a Kronecker product between two order 3 MHMs. A and other

non-circulant examples were found using a computer search algorithm very similar

to the one used for the circulant case. The success of this algorithm relies once

again on the fact that the condition of mutual orthogonality still gives bn
2
c equations,

even when the group G is Z3 × Z3. It is clear that the non-circulant case is not well

understood and requires some inspection for a complete understanding to be realized.
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6. prime weight theorem

Definition 7. Let G be a group of order n and A ∈ Z[G]. Any integer t with (n, t) = 1

is called a multiplier of A if A(t) = Ag for some g ∈ G.

This definition is actually specifying what has been referred to as a numerical

multiplier in the literature, but we do not concern ourselves with multipliers that are

non-numerical. Multipliers have been studied intensively for their usefulness in the

construction of difference sets. In the following we include some results that may

prove useful for the classification of MHMs. For a further discussion of multipliers

see [9], [11], [12], [14], [16], [17], and in particular for a treatment of their use with

the existence problem for circulant weighing matrices, see [4], [5]. The following is a

well known result concerning multipliers originally from McFarland [16].

Theorem 5. The Multiplier Theorem Let G be a finite abelian group or order n.

Let A be an element of G such that AA(−1) = w2 for some integer w relatively prime

to n. Let

w = pα1
1 . . . pαs

s

where the pi’s are distinct primes. Suppose there are integers t, f1, . . . , fs such that

t ≡ pf11 ≡ · · · ≡ pfss (modn).

Then t is a multiplier of A.

Unfortunately for our problem we have not found a way to use multipliers for

construction purposes as they are typically used for weighing matrices, an issue that
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stems from the fact that for any group G generating an MHM(n,w) A, supp(A) =

G, and coefficients of A are not restricted to {±1, 0}. However we are able to use

multipliers in a fashion that gives certain restrictions to the possible weights of MHMs,

a particularly useful result for the classification of the full rate case. The following

notions have been noted by various authors throughout the years and are often used,

we refer in particular to [2], [17], [8] and include an alternate proof here.

Lemma 3. Let G be a multiplicatively written abelian group of order n, and let

A =
∑

g∈G agg be an element of the group ring Z[G] such that
∑

g∈G ag = k. We

define the stamina of A by

St(A) =
∏
g∈G

gag ∈ G.

If (n, k) = 1, then there exists a unique translate of A, say B = Ab for some b ∈ G,

whose stamina is the identity of G.

Proof. Let G = {gi}n−1i=0 be the desired abelian group as above and let A be an element

of the group ring Z[G]. Then

St(A) =
∏
g∈G

gag = ga00 g
a1
1 · · · g

an−1

n−1 ∈ G.

Now (k, n) = 1, so ϕ : x 7→ xk is an automorphism on G. Hence there exists a unique

b ∈ G such that ga00 g
a1
1 · · · g

an−1

n−1 b
k = e. The result can now be made clear by observing
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that

e = ga00 g
a1
1 · · · g

an−1

n−1 b
k =(g0b)

a0(g1b)
a1 · · · (gn−1b)an−1 ,

=
∏
g∈G

(gb)ag ,

=St(B),

where B = Ab = {gb : g ∈ A}. Hence B is the required translate. �

Lemma 4. Let G be a multiplicatively written group of order n, A =
∑

g∈G agg ∈ Z[G]

such that
∑

g∈G ag = k, (k, n) = 1. Then there exists a translate of A that is fixed by

all multipliers of A.

Proof. Let t be any multiplier of A. Note that t a multiplier of A implies t is a

multiplier of any translate of A. Let B = Ab be the unique translate of A whose

stamina is identity, as in Lemma 3. Let (Ab)(t) = Ac. We make the following

observations.

e = et =gta00 gta11 · · · g
tan−1

n−1 btk,

=(g0b)
ta0(g1b)

ta1 · · · (gn−1b)tan−1 ,

=(g0c)
a0(g1c)

a1 · · · (gn−1c)an−1 ,

=ga00 g
a1
1 · · · g

an−1

n−1 c
k.

It must be that bk = ck. Furthermore, since (k, n) = 1 implies that ϕ : x 7→ xk is an

automorphism, b = c. Therefore (Ab)(t) = Ab �
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These lemmas give a proof for the following well known result, as used in [2].

Corollary 2. Let G be an abelian group of order n and let p be a prime relatively

prime to n. If A ∈ Z[G] is such that AA(−1) = p2r, then there exists g ∈ G such that

(gA)(p) = gA.

Proof. Since AA(−1) = p2r implies that
∑

g∈G ag = pr, and (pr, n) = 1, all we need to

do is verify that p is a multiplier of A and apply lemma 4. Of course, the multiplier

theorem guarantees that such a prime p will indeed be a multiplier, and we have the

required condition. �

The following is an adapted result of [2], which we include to explain a restriction

on the possible weights of MHMs.

Theorem 6. Let G be an abelian group of order n and let p be a prime relatively

prime to n. Let A =
∑

g∈G agg ∈ Z[G], where the ag are distinct nonzero integers

such that AA(−1) = p2r. That is let A be an MHM of order n and weight p2. Then

p ≡ 1(mod d) for d the exponent of G. If G is cyclic, then p ≡ 1(mod n).

Proof. By Corollary 2, there exists an element g ∈ G such that (gA)(p) = gA. Since

A is MHM, supp(A) = G, and hence h ∈ G⇒ h ∈ supp(A). Thus any h ∈ G has the

property of being fixed by p since the coefficients of A are distinct, that is, hp = h

for all h ∈ G. Therefore, o(h)|p− 1 for all h ∈ G. Since d is the exponent of G, there

exists an h such that o(h) = d and thus d|p − 1. Clearly d = n for cyclic groups G

and the result holds. �
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Although the previous prime weight theorem follows from a well known result,

it has interesting implications for MHMs and their classification. In particular we

would like to note that if p is a prime congruent to one modulo the order n of the

MHM, then Zp is a finite field that contains nth roots of unity. Most of the research

that we have conducted here was motivated by results of the previously mentioned

computer search algorithm, and the motivation to consider the prime weight theorem

was driven directly by a strong observation among the results. These observations

seem to suggest the possibility of a specific structure to these MHMs, particularly in

the circulant case. Obviously Adams construction results in MHMs that fit a specific

cyclic form, and in the following we make some observations on the structure of this

form. Later in the thesis, we include some conjecture and the evidence we have seen

in the search results to support the idea of a connection between finite fields and

MHMs.
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7. On Adams Construction and Roots of Unity of a finite field

MHMs may be thought of in many different ways. In this thesis we have already

used a group ring representation of the matrices, and included conditions for existence

defined in terms of complex characters. Obviously MHMs are but one example of

many generalized forms of n × n matrices that satisfy an HHT = wIn condition. It

is quite easy to find an MHM with entries that come from some ring other than the

integers, we could for instance consider instead all real numbers in R and achieve

scaled orthogonal matrices, or the field C of complex numbers and deal with unitary

matrices, or even use entries from Zk the ring of integers modulo some number k. We

will discuss for now a simple observation pertaining to Adams construction MHMs.

Theorem 7. Let A ∈ Z[G] be a reduced Adams’ construction of order n, weight

w = v2 generated by an integer q and scaled minimally by s to ensure integer entries.

Then the coefficients ai of A =
∑n−1

i=0 aig
i are the roots of xn − sn in Zv[x]. That is,

A =
n−1∑
i=0

sqigi ∈ Zv[G],

and q is a primitive nth root of unity in Zv.

Proof. We begin by examining Adams’ construction for odd order n = 2k+1. Without

scaling, we have
2k−1∑
i=0

rigi − (
r2k − r
r2 − 1

)g2k
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The last term is easily expanded to

−rr
2k−2 + r2k−3 + · · ·+ r + 1

r + 1

Thus A may be scaled minimally by r+1 to ensure integer entries. We therefore have

a form of any odd order Adam’s construction as

A =
2k−1∑
i=0

ri(r + 1)gi −

(
r

2k−2∑
i=0

ri

)
g2k.

From here it is immediate that the sum weight of A is

v =
2k∑
i=0

ri =
r2k+1 − 1

r − 1
.

Let r = q be an integer of modulus greater than 1 and let s = q + 1. Now the gn−1

coefficient of A satisfies

−q
2k−2∑
i=0

qi ≡ sq2k(mod v), and

A =
n−1∑
i=0

sqigi ∈ Zv[G].

Clearly s is a particular root of xn−sn in Zv[x], so we need only verify the claim that

q is a primitive nth root of unity in Zv. Since q 6= ±1 it is clear that qi is a distinct

element of Zv for i = 1, . . . , n− 1. Finally, qn = (q − 1)v + 1 and qn = 1 ∈ Zv.

For even order n = 2k, the last term is seen to be an integer since

r2k−1 − r
r2 − 1

= r2k−3 + · · ·+ r3 + r,
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so the sum weight becomes

v =
2k−2∑
i=0

ri −
k−2∑
i=0

r2i+1 =
k−1∑
i=0

r2i.

Now for r = q as before, q is a primative nth root of unity in Zv and we again achieve

A =
n−1∑
i=0

qigi ∈ Zv[G].

�

7.1. The orders 4 and 5 cases. The original motivation for this thesis was to

determine if Adams construction provided for the complete family of full rate circulant

MHMs and to explore other possible constructions of MHMs, including non-circulant

and non-full rate examples. It was immediately clear from the computer search results

that Adams construction is not in fact the complete family of FCMHMs. Through

the manipulation of a construction technique for weighing matrices we were able to

provide the doubling theorem, which extended an explanation for the existence of

many even order MHMs, but unexplained examples in prime orders such as n = 5

and n = 7 continue to abound. It was in our search of an explanation for the existence

results we have found that we first noticed the presence of a large family of MHMs

that fit a specific form. As we have shown with Adams construction above, the

coefficients of many full rate circulant results generate a polynomial with nth roots

when considered modulo the weight of the FCMHM. The following observations and

conjecture could be a topic of further research on these objects, possibly leading to a

new construction.
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To begin, consider the circulant order 4 matrices with complex entries satisfying

HHT = wI, and let A = a0+a1g+a2g
2+a3g

3 be such a generalized object. As noted

by Adams et al. in [1], there are two constraining equations that A must satisfy to

have mutually orthogonal columns:

a0a1 + a1a2 + a2a3 + a0a3 = 0

a0a2 + a1a3 = 0.

Without loss of generality, we may state that the former of the two conditions requires

a1 = −a3, and note that given this condition the first equation is always satisfied.

Then the remaining constraint is that

a0a2 = −a21,

and the sum weight of A will be a0 + a2. Hence we may construct a complex order

4 circulant matrix satisfying the general condition HHT = wI simply by taking any

two numbers a0 and a1 that sum to w, and take the other two elements to be ±√a0a1.

Clearly this implies that to attain such a matrix with integer entries, a0a1 must be a

perfect square, which leads to the following fact.

Remark 3. Let p be a prime, p ≡ 1(mod 4). Then there exists a CMHM(4, p2), and

similar to the observations regarding Adams construction, when the elements of the

CMHM(4, p2) are taken to be roots of a polynomial in Zp[x], this polynomial takes

the form of x4 − α ∈ Zp[x].
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The above can be shown to be true by construction. Consider the well-known

theorem of Fermat from number theory that any prime congruent to one modulo four

may be written as the sum of two squares. Then for any prime p ≡ 1(mod 4), let

a2 + b2 = p. It is trivial to verify that

A = a2 + abg + b2g2 − abg3

is a CMHM(4, p2). Observe also that

(x− a2)(x− ab)(x− b2)(x+ ab) = x4 − a2b2 ∈ Zpx.

The observations regarding these types of circulant MHMs may be able to give

future construction results. Computer results support the possibility of a general

construction for CMHM(n,w)s whose elements are integer representatives of the

roots of xn − α ∈ Zw[x]. In particular, the following has been verified for primes less

than 104.

Conjecture 1. There exists a CMHM(5, p2) for any prime p ≡ 1 (mod 5), and in

particular there exists such of a form that its elements are integer representatives of

the roots of x5 − α ∈ Zp[x].

Of course we should include that even this conjecture is not powerful enough to

classify all prime weight circulant examples of order 5. While we have confirmed

the existence of an FCMHM(5, p2) satisfying the conjecture for appropriate p up

to the practical limits of computation, there are also examples of FCMHMs that

occur with prime weights but are not the roots of such a polynomial. For example
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we consider the FCMHM(5, 712)

M = 6 + 18g + 26g2 + 54g3 − 33g4.

M is not an example that arises from the conjecture as we can see from the fact that

(x− 6)(x− 18)(x− 26)(x− 54)(x+ 33) = x5 + 62x2 + 26x+ 60 ∈ Z71[x].
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8. Applications

Hadamard matrices have had extensive applications in communications, error cor-

recting codes, digital signal processing, and code division multiple access (CDMA)

spreading systems [1], [15], [22]. While more research is required to determine the

usefulness of multilevel Hadamard matrices in these areas, some work has already

been done to apply these objects in an interesting way. The canonical application of

an MHM involves considering an MHM as a particular type of multilevel sequence.

We require some definitions, as seen in [13] and [10].

Definition 8. The periodic autocorrelation function (PACF) of an integer valued

sequence a = (a0, a1, . . . , an−1) of length n is defined as

Ra(T ) =
n−1∑
i=0

aiai+T (mod n), T = 0, 1, . . . , n− 1.

The periodic cross-correlation function (PCCF) of a and another sequence b = (b0, b1, . . . , bn−1)

of the same length is given by

Rab(T ) =
n−1∑
i=0

aibi+T (mod n), T = 0, 1, . . . , n− 1.

Finally, we define a perfect sequence as one for which its PACF is zero except for

T = 0, at which point Ra(0) is called the energy of the sequence a. That is,

Ra(T ) =


Ea, T = 0

0, T 6= 0,
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and Ea = a21 + a22 + · · ·+ a2n−1, what we have referred to as the weight for an MHM.

It is quite trivial to see that the first row (or column) of any circulant MHM, when

considered as a sequence, is in fact a perfect sequence. The advantage here is that

using our knowledge of MHMs , we may generate multilevel perfect sequences for

arbitrary n. However, it is desirable to have a restricted alphabet in application, and

the energy of a sequence generated in this way could grow rapidly with increased n.

It is relevant to note that MHMs may be easily converted into other types of matrices

with similar properties, and these matrices in turn correspond to other types of perfect

sequences.

For instance, let A be an MHM(n,w2). Simply scale by 1
w

and 1
w
A becomes a

rational orthogonal matrix, from which we may generate a rational perfect sequence.

Of course, the orthogonal matrices are simply real examples of unitary matrices. We

include another definition, as given in [21].

Definition 9. A complex Hadamard matrix H = [hi,j] is a square n× n matrix with

complex entries satisfying |hi,j| = 1 for i, j = 0, 1, . . . n− 1, and the property that

HH∗ = H∗H = nIn,

where * denotes the conjugate transpose of a complex matrix.

Take any MHM, and let A be the corresponding orthogonal matrix. Then for any

complex Hadamard matrix H, AH and HA are also complex Hadamard matrices.

Complex Hadamard matrices are a topic of great study for their combinatorial interest

and potential applications to many physical problems including quantum computing
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and quantum information theory [21]. Of course as before we could easily use such a

matrix to generate a complex perfect sequence.

The work of Trihn et al. in [22] used MHMs to build multilevel (specifically ternary)

zero correlation zone (ZCZ) sequence sets, which have been useful in CDMA systems.

We include their particular construction here and include a multilevel ZCZ sequence

set achieved from their construction using some MHMs of our results.

Definition 10. A multilevel zero correlation zone (ZCZ) sequence set is a set of

multilevel sequences whose PACF and PCCF take on a value of 0 over a range of

T. Such a family of sequences is denoted as ZCZ(N,M,ZCZ) for N the size of each

sequence in the set, M the number of sequences in the family, and ZCZ the size of the

zone for which the correlation functions are zero.

The construction in [22] is as follows. Let n be fixed and A = [ai,j], B = [bi,j] be two

MHMs of order n. We will construct sets of sequences {u(m)
r }2n−1r=0 for 2n sequences for

m ≥ 0. Define I(ar, bs) = [ar,0, bs,0, . . . , ar,n−1, bs,n−1], and for m = 0, 0 ≤ r ≤ n − 1,

let

u
(0)
2r = I([−ar, ar], [br, br]) and u

(0)
2r+1 = I([ar,−ar], [br, br]).

Assume {u(m−1)r }2n−1r=0 has been constructed, then for 0 ≤ r ≤ n− 1,

u
(m)
2r = I([u

(m−1)
2r , u

(m−1)
2r+1 ]) and u

(m)
2r+1 = I([u

(m−1)
2r ,−u(m−1)2r+1 ]).

Then the sequence set {u(m)
r }2n−1r=0 is a ZCZ(n2m+2, 2n, 2m).
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For example we will select m = 3, n = 6. Let

A =



1 −8 9 5 4 3

3 1 −8 9 5 4

4 3 1 −8 9 5

5 4 3 1 −8 9

9 5 4 3 1 −8

−8 9 5 4 3 1


and B =



1 −3 4 −5 9 8

8 1 −3 4 −5 9

9 8 1 −3 4 −5

−5 9 8 1 −3 4

4 −5 9 8 1 −3

−3 4 −5 9 8 1


.

The result of this construction is the multilevel ZCZ(96, 12, 4) sequence set seen

in Table 1. Included in the table are the autocorrelation R0,0(T ) of u
(2)
0 and cross

correlation R0,i(T ) of u
(2)
0 with u

(2)
i .
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Table 1. Multilevel ZCZ(96, 12, 4) sequence set

u
(2)
0 = (-1, -1, 1, -1, 1, 1, 1, -1, 8, 8, -8, 8, -3, -3, -3, 3, -9, -9, 9, -9, 4, 4, 4, -4, -5, -5, 5,

-5, -5, -5, -5, 5, -4, -4, 4, -4, 9, 9, 9, -9, -3, -3, 3, -3, 8, 8, 8, -8, 1, 1, -1, 1, 1, 1, 1,
-1, -8, -8, 8, -8, -3, -3, -3, 3, 9, 9, -9, 9, 4, 4, 4, -4, 5, 5, -5, 5, -5, -5, -5, 5, 4, 4, -4,
4, 9, 9, 9, -9, 3, 3, -3, 3, 8, 8, 8, -8)

u
(2)
1 = (-1, 1, 1, 1, 1, -1, 1, 1, 8, -8, -8, -8, -3, 3, -3, -3, -9, 9, 9, 9, 4, -4, 4, 4, -5, 5, 5, 5,

-5, 5, -5, -5, -4, 4, 4, 4, 9, -9, 9, 9, -3, 3, 3, 3, 8, -8, 8, 8, 1, -1, -1, -1, 1, -1, 1, 1, -8,
8, 8, 8, -3, 3, -3, -3, 9, -9, -9, -9, 4, -4, 4, 4, 5, -5, -5, -5, -5, 5, -5, -5, 4, -4, -4, -4, 9,
-9, 9, 9, 3, -3, -3, -3, 8, -8, 8, 8)

u
(2)
2 = (-3, 3, -3, 8, 8, 8, -8, -1, -1, 1, -1, 1, 1, 1, -1, 8, 8, -8, 8, -3, -3, -3, 3, -9, -9, 9, -9,

4, 4, 4, -4, -5, -5, 5, -5, -5, -5, -5, 5, -4, -4, 4, -4, 9, 9, 9, -9, 3, 3, -3, 3, 8, 8, 8, -8, 1,
1, -1, 1, 1, 1, 1, -1, -8, -8, 8, -8, -3, -3, -3, 3, 9, 9, -9, 9, 4, 4, 4, -4, 5, 5, -5, 5, -5, -5,
-5, 5, 4, 4, -4, 4, 9, 9, 9, -9)

u
(2)
3 = (-3, 3, 3, 3, 8, -8, 8, 8, -1, 1, 1, 1, 1, -1, 1, 1, 8, -8, -8, -8, -3, 3, -3, -3, -9, 9, 9, 9,

4, -4, 4, 4, -5, 5, 5, 5, -5, 5, -5, -5, -4, 4, 4, 4, 9, -9, 9, 9, 3, -3, -3, -3, 8, -8, 8, 8, 1, -1,
-1, -1, 1, -1, 1, 1, -8, 8, 8, 8, -3, 3, -3, -3, 9, -9, -9, -9, 4, -4, 4, 4, 5, -5, -5, -5, -5, 5,
-5, -5, 4, -4, -4, -4, 9, -9, 9, 9)

u
(2)
4 = (-4, -4, 4, -4, 9, 9, 9, -9, -3, -3, 3, -3, 8, 8, 8, -8, -1, -1, 1, -1, 1, 1, 1, -1, 8, 8, -8, 8,

-3, -3, -3, 3, -9, -9, 9, -9, 4, 4, 4, -4, -5, -5, 5, -5, -5, -5, -5, 5, 4, 4, -4, 4, 9, 9, 9, -9, 3,
3, -3, 3, 8, 8, 8, -8, 1, 1, -1, 1, 1, 1, 1, -1, -8, -8, 8, -8, -3, -3, -3, 3, 9, 9, -9, 9, 4, 4, 4,
-4, 5, 5, -5, 5, -5, -5, -5, 5)

u
(2)
5 = (4, 4, 4, 9, -9, 9, 9, -3, 3, 3, 3, 8, -8, 8, 8, -1, 1, 1, 1, 1, -1, 1, 1, 8, -8, -8, -8, -3, 3,

-3, -3, -9, 9, 9, 9, 4, -4, 4, 4, -5, 5, 5, 5, -5, 5, -5, -5, 4, -4, -4, -4, 9, -9, 9, 9, 3, -3, -3,
-3, 8, -8, 8, 8, 1, -1, -1, -1, 1, -1, 1, 1, -8, 8, 8, 8, -3, 3, -3, -3, 9, -9, -9, -9, 4, -4, 4, 4, 5,
-5, -5, -5, -5, 5, -5, -5)

u
(2)
6 = (-5, -5, 5, -5, -5, -5, -5, 5, -4, -4, 4, -4, 9, 9, 9, -9, -3, -3, 3, -3, 8, 8, 8, -8, -1, -1, 1,

-1, 1, 1, 1, -1, 8, 8, -8, 8, -3, -3, -3, 3, -9, -9, 9, -9, 4, 4, 4, -4, 5, 5, -5, 5, -5, -5, -5, 5, 4,
4, -4, 4, 9, 9, 9, -9, 3, 3, -3, 3, 8, 8, 8, -8, 1, 1, -1, 1, 1, 1, 1, -1, -8, -8, 8, -8, -3, -3, -3,
3, 9, 9, -9, 9, 4, 4, 4, -4)

u
(2)
7 = (-5, -5, 5, -5, -5, -5, -5, 5, -4, -4, 4, -4, 9, 9, 9, -9, -3, -3, 3, -3, 8, 8, 8, -8, -1, -1, 1,

-1, 1, 1, 1, -1, 8, 8, -8, 8, -3, -3, -3, 3, -9, -9, 9, -9, 4, 4, 4, -4, 5, 5, -5, 5, -5, -5, -5, 5, 4,
4, -4, 4, 9, 9, 9, -9, 3, 3, -3, 3, 8, 8, 8, -8, 1, 1, -1, 1, 1, 1, 1, -1, -8, -8, 8, -8, -3, -3, -3,
3, 9, 9, -9, 9, 4, 4, 4, -4)

u
(2)
8 = (5, 5, 5, -5, 5, -5, -5, -4, 4, 4, 4, 9, -9, 9, 9, -3, 3, 3, 3, 8, -8, 8, 8, -1, 1, 1, 1, 1, -1,

1, 1, 8, -8, -8, -8, -3, 3, -3, -3, -9, 9, 9, 9, 4, -4, 4, 4, 5, -5, -5, -5, -5, 5, -5, -5, 4, -4, -4,
-4, 9, -9, 9, 9, 3, -3, -3, -3, 8, -8, 8, 8, 1, -1, -1, -1, 1, -1, 1, 1, -8, 8, 8, 8, -3, 3, -3, -3,
9, -9, -9, -9, 4, -4, 4, 4)

u
(2)
9 = (-9, -9, 9, -9, 4, 4, 4, -4, -5, -5, 5, -5, -5, -5, -5, 5, -4, -4, 4, -4, 9, 9, 9, -9, -3, -3, 3,

-3, 8, 8, 8, -8, -1, -1, 1, -1, 1, 1, 1, -1, 8, 8, -8, 8, -3, -3, -3, 3, 9, 9, -9, 9, 4, 4, 4, -4, 5,
5, -5, 5, -5, -5, -5, 5, 4, 4, -4, 4, 9, 9, 9, -9, 3, 3, -3, 3, 8, 8, 8, -8, 1, 1, -1, 1, 1, 1, 1, -1,
-8, -8, 8, -8, -3, -3, -3, 3)

u
(2)
10 = (-9, 9, 9, 9, 4, -4, 4, 4, -5, 5, 5, 5, -5, 5, -5, -5, -4, 4, 4, 4, 9, -9, 9, 9, -3, 3, 3, 3, 8,

-8, 8, 8, -1, 1, 1, 1, 1, -1, 1, 1, 8, -8, -8, -8, -3, 3, -3, -3, 9, -9, -9, -9, 4, -4, 4, 4, 5, -5,
-5, -5, -5, 5, -5, -5, 4, -4, -4, -4, 9, -9, 9, 9, 3, -3, -3, -3, 8, -8, 8, 8, 1, -1, -1, -1, 1, -1, 1,
1, -8, 8, 8, 8, -3, 3, -3, -3)

u
(2)
11 = (8, 8, -8, 8, -3, -3, -3, 3, -9, -9, 9, -9, 4, 4, 4, -4, -5, -5, 5, -5, -5, -5, -5, 5, -4, -4, 4,

-4, 9, 9, 9, -9, -3, -3, 3, -3, 8, 8, 8, -8, -1, -1, 1, -1, 1, 1, 1, -1, -8, -8, 8, -8, -3, -3, -3, 3,
9, 9, -9, 9, 4, 4, 4, -4, 5, 5, -5, 5, -5, -5, -5, 5, 4, 4, -4, 4, 9, 9, 9, -9, 3, 3, -3, 3, 8, 8, 8,
-8, 1, 1, -1, 1, 1, 1, 1, -1)

R0,0(T ) = (3136, 0, 0, 0, 0, -12, 0, 12, -48, 12, 0, -12, 0, 80, 0, -80, 320, -80, 0, 80, 0, 0, 0,

0, 0, 0, 0, 0, 0, -80, 0, 80, -320, 80, 0, -80, 0, 12, 0, -12, 48, -12, 0, 12, 0, -784, 0,

784, 0, 784, 0, -784, 0, 12, 0, -12, 48, -12, 0, 12, 0, -80, 0, 80, -320, 80, 0, -80, 0, 0,

0, 0, 0, 0, 0, 0, 0, 80, 0, -80, 320, -80, 0, 80, 0, -12, 0, 12, -48, 12, 0, -12, 0, 0, 0, 0)

R0,i(T ) = (0, 0, 0, 0, 0, x, x, x, x, x, x, x, 0, x, x, x, x, x, x, x, 0, x, x, x, x, x, x, x, 0, x, x, x, x, x, x,

x, 0, x, x, x, x, x, x, x, 0, x, x, x, 0, x, x, x, 0, x, x, x, x, x, x, x, 0, x, x, x, x, x, x, x, 0, x, x,

x, x, x, x, x, 0, x, x, x, x, x, x, x, 0, x, x, x, x, x, x, x, 0, 0, 0, 0)
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Table 2. Adams construction examples

Order First row r s sumweight

3 (28, 21, -12) 3/4 28 w=37

(10, 15, -6) 3/2 10 w=19

(3, 6, -2) 2 3 w=7

(14, 35, -10) 5/2 14 w=39

(4, 12, -3) 3 4 w=13

(18, 63, -14) 7/2 18 w=67

(5, 20, -4) 4 5 w=21

(6, 30, -5) 5 6 w=31

4 ( 16, 12, 9, -12) 3/4 16 w=25

( 4, 6, 9, -6) 3/2 4 w=13

( 1, 2, 4, -2) 2 1 w=5

( 4, 10, 25, -10) 5/2 4 w=29

( 1, 3, 9, -3) 3 1 w=10

( 4, 14, 49, -14) 7/2 4 w=53

( 1, 4, 16, -4) 4 1 w=17

( 1, 5, 25, -5) 5 1 w=26

5 (448, 336, 252, 189, -444) 3/4 448 w=781

( 40, 60, 90, 135, -114) 3/2 40 w=211

( 3, 6, 12, 24, -14) 2 3 w=31

( 56, 140, 350, 875, -390) 5/2 56 w=1031

( 4, 12, 36, 108, -39) 3 4 w=121

( 72, 252, 882, 3087, -938) 7/2 72 w=3355

( 5, 20, 80, 320, -84) 4 5 w=341

( 6, 30, 150, 750, -155) 5 6 w=781

6 (256, 192, 144, 108, 81, -300) 3/4 256 w=481

( 16, 24, 36, 54, 81, -78) 3/2 16 w=133

( 1, 2, 4, 8, 16, -10) 2 1 w=21

( 16, 40, 100, 250, 625, -290) 5/2 16 w=741

( 1, 3, 9, 27, 81, -30) 3 1 w=91

( 16, 56, 196, 686, 2401, -742) 7/2 16 w=2613

( 1, 4, 16, 64, 256, -68) 4 1 w=273

( 1, 5, 25, 125, 625, -130) 5 1 w=651
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Table 3. x5 − α ∈ Zp circulant MHMs for primes p less than 1000

First row a primitive 5th root α prime sumweight
(-4 -1 8 2 6) 3 10 11
(-14 24 12 6 3) 2 26 31
(-22 26 14 17 6) 10 27 41
(-18 -2 54 6 21) 9 29 61
(-12 -16 26 11 62) 5 23 71
(-43 -4 56 24 68) 36 87 101
(-64 68 26 87 14) 53 69 131
(-69 52 114 6 48) 8 75 151
(-27 -48 156 36 64) 42 49 181
(-48 -46 131 38 116) 39 155 191
(-114 60 135 40 90) 55 12 211
(-42 -39 222 34 66) 87 176 241
(-49 -22 236 24 62) 20 151 251
(-156 147 96 118 66) 10 113 271
(-94 -30 110 65 230) 86 37 281
(-178 116 176 74 123) 6 165 311
(-144 52 18 159 246) 64 220 331
(-156 -4 113 116 332) 39 179 401
(-150 -54 250 90 285) 252 310 421
(-4 -118 398 104 51) 95 269 431
(-64 -100 420 80 125) 88 14 461
(-106 -124 383 96 242) 101 288 491
(-100 -4 500 20 105) 25 18 521
(-312 264 276 141 172) 48 316 541
(-306 132 111 288 346) 106 401 571
(-191 -102 342 126 426) 32 97 601
(-66 -197 282 96 516) 228 504 631
(-34 -106 122 41 618) 357 579 641
(-374 333 186 354 162) 197 77 661
(-345 160 66 390 420) 89 108 691
(-274 -58 438 149 446) 89 47 701
(-333 526 396 24 138) 80 522 751
(-4 -268 308 89 636) 67 498 761
(-321 316 78 666 72) 212 581 811
(-58 -307 654 206 326) 51 713 821
(-30 -295 770 230 206) 268 623 881
(-412 371 672 14 266) 19 334 911
(-228 -184 776 164 413) 349 739 941
(-208 -12 74 191 926) 65 715 971
(-125 -180 930 150 216) 160 296 991
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