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ABSTRACT 

Sanders IV, William F. M.S. Department of Physics, Wright State University, 2011. 

Computed Tomography Reconstruction: Investigating the Effect of Varying Circle 

Diameter. 

 

 

In Computed Tomography (CT) reconstruction, several methods for determining the 

intensity of individual pixels from the back-projection of the scanned profiles exist.  The 

standard reconstruction method uses linear interpolation between ray values to determine 

pixel intensity.  This study quantifies the effects of varying circle diameter on the 

accuracy of an alternative method where the pixel is approximated as a circle and the area 

contributions calculated.   

 

A library of 104 scans in 3 image families was created by a synthetic CT scanner and 

reconstructed with circle radii from 0.1 to 1.0 pixel in 0.1 pixel steps.  Images were 

compared against a baseline and accuracy measured.  Image quality was poor and 

measures erratic for radii smaller than 0.5 pixels where it stabilized.  The overall 

optimum of the radius was determined to be 0.5 pixels for all images. The reconstructed 

image quality was not a significant improvement over the standard linear interpolation 

method. 
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INTRODUCTION 

Computed Tomography, better known as CAT or CT, has transformed the ability of 

medical professionals to diagnose and treat internal abnormalities and injuries.  Similarly 

it has allowed a broad expanse of non-destructive testing to improve industrial quality 

control, preventative diagnostics, and failure analysis (Buzug, 2008).  This revolutionary 

technique was the result of combining modern computing power with classical 

mathematical methods in the recombination of radiographic projections taken from 

multiple angles through a target medium.  These projections are filtered to reduce the 

geometric effects of the scan and noise then reassembled into a 2D cross-sectional image 

of the radiometric density of the target medium.  

 

When using the most common reconstruction method, the linear interpolation method, 

intensity values are assigned to the pixel by use of a proximity weighting basis where the 

projection ray values contribute to the pixel in proportion to their proximity to the pixel 

center (Peters, 1981).  Normally only the two closest rays to the center of the pixel are 

considered and the centerline of the detector element the rays are used for distance 

calculations.  This technique is relatively computationally simple and allows for edge 

information shared between rays to contribute to an edge pixel.  However the ray‟s 

contribution to the pixel value is not tied to the percentage of area that the ray covers so 

the contributed amount can vary by rotational angle.   
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The Circle Area Weighted technique explored here focuses on an alternative method of 

assigning the intensity values to individual pixels.  In this method the pixel is 

approximated as a circle and the ray boundary passing through the circle determines the 

contribution of each ray to the pixel intensity.  The circle size can be varied to include or 

exclude overlap between pixels for ray contribution.  One possible disadvantage of this 

approach is that the approximation of the pixel as a circle is not geometrically accurate 

since physical pixels are square.  This can lead to dead spaces in the corners of the pixels 

for small circle sizes and overlap as the circle radius passes 0.5 pixels with continued 

dead spots in the corners till the radius exceed 0.7 pixels.  This method of reconstruction 

does not appear to have been studied before in published literature. 

 

In this study we will evaluate circle diameter reconstruction as compared to a MatLab 

built in „iradon‟ method using linear interpolation reconstruction with identical filtering 

(Mathworks, Inc, 2004).   To evaluate the methods, three images were used as synthetic 

phantoms to simulate medical, industrial, and maximum entropy images.  Factors such as 

edge location and definition as well as density accuracy were explored. 

 

 

  



3 

 

 

 

BACKGROUND AND THEORY 

CT History and Scan Generation: Sir Godfrey Hounsfield and Allen Cormack shared 

the Nobel Prize for Medicine in 1979 for this pioneering work (The Nobel Assembly of 

Karolinska Institutet, 1979).  The foundation of any CT scanner is the ability to create 

discreet “rays” through the target medium which represent the cumulative radiodensity, 

stored as an intensity pixel, along the path of the X-rays from source to the detector.   

 

The intensity pixel representing each ray are combined to form projections that are a 

linear array, or B-scan, of the radiodensities along the linear travel of the source and 

detector across the target volume.  By rotating the source/detector around the target 

volume a series of projections is made that represent the B-scans of the target as viewed 

from discrete angles as demonstrated in Figure 1.   
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Figure 1. B-scan profiles of radon (cumulative radiodensity) rays through a target 

medium at 0 and θ angles. 

 

The collection of these B-scan projections forms the basis of a 2D slice of the radio-

density of the target medium.  Through various reconstruction methods the B-scan 

projections can be recombined into a 2D image of the radio-density of the target.   

 

Early scanners were limited by the computing power of the day and the physical 

methodology of the scanners in their ability to acquire a scan and then reconstruct the 

image.  The original EMI head scanner used the 1
st
 generation scan methodology of 

translate-rotate, where the source and detector translated linearly along the full width of 

the projection then rotated before acquiring the next projection as seen in Figure 2. 
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Figure 2. 1
st
 Generation pencil beam “translate-rotate CT Scanner system as used 

by Hounsfield. 

 

 

The earliest reconstruction methods relied on the inverse radon transform of the B-scan 

projections to recreate the target image (Goldman, 2007).  The inverse radon transform 

required the entire scan to be completed before any reconstruction could begin.  This was 

due to the need to filter the entire slice worth of projections together using a Fourier 

Transform and/or other filtering before the reconstruction could begin.  With the 

limitations of computing power of the day, this lead to very long lag times after the scan 

before the image could be produced for analysis and any follow up scans taken.  The 

original EMI scanner took a full 2.5 hours to reconstruct a scan of the head (Beckman, 

2006).   

 

Subsequent 2
nd

 generation scanner systems refined the physical methodology to speed up 

the scan time by employing multiple detectors, reducing the number of linear translation 

steps required per angle (Goldman, 2007).   

 

 

 

  

  

 

 
 

    -   
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Figure 3. 2
nd

 Generation “Fan-Beam, Translate-Rotate” CT scanner 

 

This created fan beam projections instead of the translate-rotate parallel beam geometry.  

The introduction of multiple detectors introduces the problem of beam scatter causing 

inaccurate contributions to detectors outside of the geometric beam path.  To combat this 

collimators are installed between detectors but the physical thickness of the collimator 

causes dead spots between pixels, reducing spacial resolution.  3
rd

 generation scanners 

uses a single source and curved detector array for continuous scanning without the need 

for linear translation (Goldman, 2007).  However the source and detector array still rotate 

around the target medium.   

 

 

 

  

  

 

 
 

     - -   
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Figure 4. 3
rd

 Generation “Fan-Beam” rotate only CT scanner with a the entire 

target medium enclosed in the fan beam. 

 

The most modern single slice 4
th

 generation scanners replace the rotating detector array 

with a continuous 360º array and use software to control the activation of required 

detectors (Goldman, 2007). 

 

 

 

 

  

  

 

 
 

    -   
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Figure 5. 4
th

 Generation 360º detector fan beam CT scanner where the source 

rotates inside of the detector ring. 

 

Further generations of CT scanners expanded the technology to 3D imaging with the use 

of multiple rows of detectors to stack 2D B-scan slices generated from a cone beam on 

top of each other to form a 3D C-scan of the target medium and spiral CT where the 

source and detectors, or the target medium, move in a helical pattern along the Z-axis 

(Goldman, 2007).  All fan and cone beam scanners rely on the concept of “parallel 

rearrangement” to create the needed pair of parallel rays through the target medium, 

essentially converting the data back into parallel beam projections.  Spiral CT breaks 

from this and interpolates the missing rays between the known ray values to complete the 

data set needed for reconstruction. 
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Reconstruction Methods: Individual pixels of a reconstruction represent the 

radiodensity at each pixel as an intensity value where 0 represents full transmission, 0 

density such as air, and 1 represents 0 transmission where the X-ray beam is completely 

absorbed by the target medium. Often it is desired to extract the physical properties of the 

target medium from the reconstruction; intensity values are used in conjunction with 

known energy dependent radio densities of objects in the image, such as air and/or water, 

to calculate the density in a dimensionless value of Hounsfield Units.  This conversion 

allows for standardized comparison of materials across machines and calibration against 

standards (Buzug, 2008).   

 

The mathematical basis of reconstructing a CT image is the Fourier Slice Theorem and 

Radon Transform (Buzug, 2008).  These formulas describe dissolving an image, or other 

2D profile, into discrete characteristic projections and then reassembling the projections 

back into the original via an inverse transform.  Mathematically the Fourier Slice 

Theorem uses Fourier transforms from specific angles to dissolve the image which could 

then be reassembled using inverse Fourier transforms along each angle.  However when 

imaging a physical object, the internal make up is not known so there is no function or 

other source of data to Fourier transform.  However the Radon transform utilizes line 

integrals through an object or image which can be considered to be no more than the 

mathematical expression for the cumulative radiodensity along an X-ray beam path 

through an object.  As implimented in the context of CT, the reconstruction of the 

individual radiodensity path values into an image is known as backprojection, the most 
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basic of which is the linear backprojection and proceeding in complexity up to filtered 

fan/cone beam backprojection (Buzug, 2008). 

 

As with the generation of raw projection data, reconstruction methods also take measures 

to decrease the time requirements with the creation of the convolution backprojection 

which uses a predefined map or map of functions known as a kernel, of the size of the 

reconstructed image to correct for the geometric effects of the scan and reconstruction.  

Because the convolution is predefined, the image can be reconstructed while the scan is 

ongoing, resulting in the final image being ready far quicker.  However convolution 

backprojection also requires all filtering parameters to be incorporated into the map or 

kernel at creation.  Bulk Fourier Transform based filtering cannot be done on an image 

until it is reconstructed.  

 

The overall the impact of the fan and cone beam scanners and convolution backprojection 

was to increase scanner speed, which correspondingly decreased patient dose, and 

decrease reconstruction time (Buzug, 2008).  The trade offs in spatial resolution and 

filtering abilities were considered acceptable in the light of the medical need to limit dose 

and increase patient throughput on the very expensive machines.  While industrial 

imaging largely does not suffer from dose limitations, process throughput was still a very 

important factor in justifying the cost of the process.  While the scanner generations 

define the physical method of ray and projection collection, any reconstruction method 

can be applied if the slice data is stored. 
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Regardless of the filtering methodology, the task of reconstructing data from a 

continuous medium onto a finite matrix of pixels requires the utilization of different 

approximations of how the data from each ray contributes to an individual pixel.  Like the 

scanners and reconstruction techniques, there was a progression of the approximations 

used to apply these values to the pixels.  The 0
th

 order approximation method was to 

simply apply the value from the closest ray centerline to the pixel. 

 

 

Figure 6. Diagram of 0
th

 order nearest neighbor approximation pixel intensity 

assignment where the pixel is assigned the value of the closest ray to the 

center of pixel. 
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While simple, this approximation was largely inaccurate as structures would lose their 

detail with pixels being assigned intensities from a single ray when their value more 

accurately lay on a continuum between adjacent ray values (Lewitt, Bates, & Peters, 

1978).  An attempt to address this short coming was made with the 1
st
 order linear 

interpolation approximation.  In this approximation, the distance of centerline of the ray 

(detector) to the center of the pixel was inversely proportional to the ray‟s contribution to 

the pixel value.  This approximation could be applied using a single ray or multiple rays 

in a weighting scheme to give an average value to a pixel from the surrounding rays.   

 

 

Figure 7. Diagram of 1
st
 order linear interpolation pixel intensity assignment 

where the intensity value i is determined by the weighted factors 

inversely proportional to the distance dn to the detector centerline rn. 
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The draw back was once again the value of the pixel is based on the distance of the ray 

centerline to the pixel center determining the importance, not the actual percentage of the 

area of the pixel covered by a particular ray.  However for most applications this 

technique is sufficient to generate images of acceptable accuracy and reduced 

computational requirements (Peters, 1981).  As a result, this technique is the most 

commonly used in commercial scanners.   

 

The 2
nd

 order approximation addressed the area function by treating the pixel as a square 

and calculating the percentage of the area covered by a particular ray.  This is the most 

dimensionally accurate way to reconstruct the image since the rays are overlaid over the 

exact territory they scanned. The disadvantage of the square is that it requires the 

calculation of the angle and resultant triangular and/or irregular pentagonal sections of 

the area which is very computationally complex and time consuming. 
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Figure 8. Diagram of 2
nd

 order area weighting approximation pixel intensity 

assignment showing pixel intensity as a function of area inside of a 

particular ray.   
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METHODS 

Software: The generation of synthetic scans, both reconstruction algorithms, and the data 

analysis used MatLab software.  The scan generation, „radon‟, and the linear interpolation 

reconstruction, „iradon‟, method used algorithms that were already available in MatLab.  

The circle-weighted reconstruction and the data analysis routines were constructed during 

the execution of the project 

 

Phantom images:  Product literature from various medical CT devices determined the 

maximum image size while lower end sizes were extrapolated to fit the possibility of 

industrial scanner with very large object capacity but limited detector quantities (GE 

Healthcare, 2008).  Similarly, scanner rotation step size covers a realistic range of 

parameters useful both to medical and industrial imaging.   

 

Three different images were used as phantoms for the analysis series.  The first was a 

“Shepp-Logan” phantom, Figure 9a., generated out of MatLab‟s „phantom‟ function of 

the desired image size.  The phantom itself is a rough simulation of a head containing a 1 

(full density) ring representative of the skull surrounding various internal structures 

imbedded in a 0.2 density field which simulates brain matter.  There are internal voids for 

nasal sinus simulation and overlapping structures of 0.3 density values; the overlapping 

regions plus up to 0.4 for two structures and down to 0.1 for a structure and void (Shepp 
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& Logan, 1974).  While not a recognized standard, the “Shepp-Logan” is widely known 

and used in simulation of tomographic reconstruction.  The second and third phantoms 

were created especially for the study.  The second image used was a model of the 

Olympic rings, Figure 9b., with each ring having a progressively higher density (0-0.5) 

with summing intersection increasing the density range.  This image was created to 

simulate a complex industrial part with multiple interior voids.  The final image set was a 

random distribution of 0-0.4 Gaussian noise of 0.n values that had been subjected to a 

one pixel „imdilate‟ command to expand the points into 3x3 diamond shaped points to 

allow the analysis tools to work on them, Figure 9c.  Unlike the previous two images, the 

random nature of the Gaussian noise dictated that each image size be different from any 

other image of the same family.  However since the images were intended to analyze the 

effectiveness of the reconstruction algorithm on an extremely varied image with very 

small structures, maximum entropy, the overall objective was achieved.  The Noise 

phantom is also unique because it is continuous to within a few pixels of the circle that 

could be scanned by a physical CT system.  Both the “Shepp-Logan” and Ring phantom 

fit within the same circle but do not have the noticeable limits like the Noise phantom 

does.  The three phantom images can be seen in Figure 9. 
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Figure 9. a.”Shepp-Logan”, b.Ring, and c.Noise phantom images of 256x256 pixel image size. 

 

For each of these images a square phantom of 128-512 pixels in 64 pixel steps was 

generated.  These base images were scanned using a synthetic scanner in 2º-5º rotational 

step sizes with corresponding 180-72 projections per scan. 

 

Synthetic scan generation:  A scratch built scanner utilizing the Bresenham 3D digital 

line approximation algorithm was constructed (Pendelton, 1992).  The scanner first 

symmetrically zero padded the image out to roughly double size then rotated the end 

points of the Bresenham line around the target image.  The line was then used as the 

coordinate system to extract and sum the pixels of the target image for each ray.  Since 

the Bresenham line approaches its minimum length at approximately 45º, all points were 

normalized to the average density along the line to remove the line length variation from 

the scan.  However this process was extremely slow and took over 6 min to complete the 

most intensive scan since it was the digital analog of the 1
st
 generation translate-rotate 

scanner.  After comparison with the built in „radon‟ function, the built in „radon‟ function 

produced nearly identical scans while requiring only ~20s for the most intensive scan, so 

it was selected for faster phantom generation time.  Both the scratch built and the „radon‟ 

c a b 
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functions produced scans containing a B-scan along each column and rows representing 

the individual ray cumulative radiodensity (detector intensity). The resulting transform of 

the “Shepp-Logan” phantom is shown in Figure 6. 

Radon Transform  

Figure 10. Radon transform of a 256x256 pixel “Shepp-Logan” phantom image 

with 180 rotational steps corresponding to a 2º rotational step size. 

 

Oversized synthetic scan generation:  Since physical matter is not composed of discrete 

points; using an image much larger than the synthetic detector quantity allows each 

detector point to represent a physical beam through the target by compressing a scan into 

a “standard” sized scan matrix (128x128-512x512 pixel matrixes).  To approximate a 

scan of a continuous medium, an image of much larger dimensions than the detector 

width was chosen.  The image is first zero padded to a square since any physical scan 

would take place inside of a full width circle inscribed in a square space.  Since the 

transform only generates sums along given rays, the zero padding has no effect on the 

scan.  The image dimension is divided by 64 and the integer result used as the base image 

size.  Images larger than 512x512 after square padding use 512 as the base image size.  

512x512 proved to be the maximum size the reconstruction map generator could handle 
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due to memory limitations.  Consulting product documentation for various medical CT 

systems revealed the maximum size of a current reconstruction matrix is 512x512 pixels 

so this reconstruction limit is consistent with current system maximum capabilities.  The 

image is again zero padded out to the next multiple of the base image size and centered 

within the field.  For images that have a non-symmetric padding split, the lower 

(coordinate wise) side takes the smaller while the upper takes the larger padding.  After 

conventional scanning using the „radon‟ function, the scan is compressed down to 

“standard” scan matrix dimensions by averaging all the pixels within a range defined by 

the multiplication factor of the base image into a single scan pixel.  While this does affect 

the reconstructed size of the object, it allows the synthetic scanner to realistically create 

scans without any approximations to compress the scan down to a standard and 

reconstructable size.  This compression also mimics physical detector behavior where the 

sum of the different line paths from a source to a detector of physical width through the 

target medium.  Since the intensity stored for each ray can be considered a percent of 

attenuation, the averaging of the rays for compression is an accurate representation of the 

compression vs. summing.   This size change is somewhat noticeable in Figure 11 where 

a 1490x1490 pixel “Shepp-Logan” phantom has been compressed after scan then 

reconstructed into a 512x512 pixel image. 
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Figure 11.  1490x1490 pixel “Shepp-Logan” phantom (resized for space) with 

512x512-5º and 0.6 pixel radius reconstruction of the same image 

showing relative size shift of the reconstructed image. 

 

Experimental 3
rd

 Order Reconstruction: An alternative reconstruction technique used 

in this research is to approximate the pixel as a circle centered at the middle of the pixel.  

This “3
rd

” order circle weighting approximation has the advantage mathematically that 

any line through a circle is identical to any other line crossing at the same distance from 

the origin (Ruegesegger, et al., 1980). 
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Figure 12. Diagram of 3
rd

 order area weighting approximation pixel intensity 

assignment showing pixel intensity as a function of area inside of a 

particular ray. 

 

The other advantage of the circle is that the perimeter is equidistant from the origin and 

therefore the ability of a ray boundary to pass through the area is not dependent on the 

projection angle.  The disadvantage of the circle approximation is that the pixels are 

physically square and a circle of equal area will not cover the same physical space as the 

square pixel leading to dead spots and/or overlapping areas of contribution between 

pixels illustrated in Figure 13. 
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Figure 13. 1x1 unit pixel with overlaid circle approximations showing dead areas 

and overlaps based on circle radius. 

 

Reconstruction Methodology:  Any ray can be defined in Cartesian coordinates by a 

line in slope-intercept form as shown in Eq. 1.  

b

c
x

b

a
y       (1) 

From this line the minimum distance to any other Cartesian point (m, n) can be calculated 

via Eq. 2 where d is the distance. 

ba

cnbma
d

22
    (2) 

Because of scanner rotation, coordinates for each ray is defined in a local Cartesian 

coordinate system of r, s defined in relation to the x, y plane by Eq. 3 and shown 

graphically in Figure 14, where θ is the angle of the scanner. 

cossin

sincos

yxs

yxr
   (3) 
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Figure 14. x-y to r-s coordinate system relationship through the angle θ. 

 

The linear representation of the detector array is a straight line along the local s axis at 

the gantry radius so all rays are defined by a vertical r line.   
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Figure 15. Ray projections along the „r‟ axis with the detector array along the „s‟ 

axis at gantry radius. 

 

Solving the r component of Eq. 3 for y and substituting the resulting factors into Equation 

Eq. 1 allows the direct calculation of the distance between a given ray and point via Eq. 4 

where rr is the ray number (detector widths from detector home/beginning of the array) 

along the detector array. 

rrsiny-cosxd    (4) 

Calculating the exact non-integer ray then rounding to the surrounding integer rays 

proved to be more computationally efficient.  The distance between the ideal ray and the 

integer rays became the basis for the area calculation.  If a ray boundary did not pass 

through the circle, the entire pixel approximation lay within a single ray region and the 
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reconstruction effectively defaults to a right hand justified neighbor approximation for 

pixel value as seen in Figure 16.   

 

Figure 16.Ray circle approximation interaction showing the two possibilities of a 

ray boundary within and outside of the circle approximation and the 

resulting area values. For the internal ray boundary, the central angle φ 

is illustrated. 

 

The other possibility illustrated in Figure 12 is a ray boundary that passes through the 

circle with the area now divided between two ray regions.  Capitalizing on circular 

symmetry, any ray passing through the circle can be treated the same as any other of the 

same distance from the origin.  The area of a segment of a circle is defined by Eq. 5, 

where φ is the central angle, d is the ray distance, and R is the radius of the circle. 

sin
2

2

RAs     (5) 
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Solving for φ using the right triangle formed by the radius and d, Eq. 5 becomes directly 

solvable in the form of Eq. 6. 

2

sin cos2
sin

1

12 R

d

R

d
RAs

      (6) 

Because the parameters of the mapping only allow a maximum of two rays to contribute 

to a pixel, the remaining area is completely associated with the second ray.  This limits 

the maximum radius of the circle to 1.0 pixels as well.   

 

The majority of the computational work described above can be stored in a predefined 

maps corresponding to the scan parameters.  Because these maps are pregenerated, 

accuracy becomes the driving factor in determining the circle value to use for a given 

reconstruction as processing time for the reconstruction is virtually identical between 

small and large circle diameters after the maps are created.  Reconstruction accuracy 

measures mirror the importance of CT data to the medical and industrial communities; 

edge definition/migration and pixel value (radiodensity) shifts.   

 

Map files are quite large, ranging from 800Kb to 151Mb for weight value maps at single 

floating point precision.  Each map set contains four 3D matrixes of image sized arrays 

for each projection angle to track the segment and remainder areas as well as the 

associated ray values for each area segment.  In total the reconstruction library takes 

approximately 20Gb of memory. 
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Image Reconstruction:  Filtered linear backprojection was used to reconstruct images in 

this study.  To correct for artifacts inherent in both synthetic and physical scanners, the 

bulk scan must be filtered before reconstruction.  The “Shepp-Logan” filter (L. A. Shepp 

and B. F. Logan, 1974) was chosen for its reduced sensitivity to high frequency noise 

compared to a simple ramp filter like the “Ram-Lak” (Ramachandran & 

Lakshminarayanan, 1971).  This filter consists of a low to high frequency ramp filter 

modified with a sinc function as defined in Eq. 7, and displayed graphically in Figure 7; 

where H(f) is the filter mask,  fc is the Nyquist cut off frequency, and f is the spatial 

frequency (Jackson, 2005). 

f

f

c

c
f

fH
2

sin
2

  for f<fc   (7) 

 

Figure 17. Graphs of Fourier Transform Filters (Jackson, 2005) 
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For consistency, the Nyquist is not optimized but locked at 1; however this compromise 

results in the ray like artifacts present Figure 18. 

 

Figure 18. Reconstructions showing the ray like noise present in both the 

reconstruction and „iradon‟ images with a Nyquist frequency of 1. 

 

The scan is first expanded to the next power of two with respect to the square of the 

height of the scan to reduce aliasing and capitalize on MatLab‟s base two processing 

efficiency.  This expanded scan is then run through MatLab‟s Fourier Transform function 

to convert the scan to frequency space.  The filter H (f) is applied and the resulting scan 

inverse transformed back to the padded size in physical space. The scan is then cut back 

down to the correct size for reconstruction.  For consistency, the entire filter process was 

copied from MatLab‟s built in „iradon‟ inverse radon transform routine into the 

reconstruction algorithm to remove the filtering as a potential variable in comparing the 

reconstruction methods (Mathworks, Inc, 2004).  The entire process can be seen as it is 

applied to a radon transform of a 256x256-5º “Shepp-Logan” image in Figure 15. 

  

Range Adjusted Image Range Adjusted iradon Image
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Figure 19. Original radon transform (signograph) through the full “Shepp-Logan” 

Fourier filtering process.  Note: image range is from 0-1, the original 

radon transform is out of range. 

Original Sinograph Padded

Unfiltered (Real) Unfiltered (Imaginary) Filtered (Real) Filtered (Imaginary)

Padded Filtered Filtered Sinograph
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The results of using an unfiltered scan are dramatically highlighted in Figure 16 where 

any usable detail is washed out of the image with just a rough shape visible. 

 

 

Figure 20. Unfiltered backprojection and “Ram-Lak” filtered backprojection as 

compared to the original 200x200 pixel “Shepp-Logan” image. 

 

From this filtered scan, the reconstruction algorithm reassembles the data by selecting the 

proper ray from the scan as determined by the ray index map and multiplying the value 

by the area of the circle it covers as defined by the segment maps.  These individual 

pixels form a single projection map that is summed with the building image.  After 

reconstruction, the image is normalized by multiplying by π then dividing by two times 

the number of rotational steps and the percentage of the pixel the circle covered. By using 

the MatLab .mat binary file type, storage requirements for each image is minimized.  

  

Original Image Unfiltered Reconstruction Filtered Reconstruction
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Data Analysis: The usefulness of CT in either the medical or industrial inspection realms 

is dependent on the ability of the reconstruction to correctly identify the boundaries of 

regions inside of the medium and correctly determine the density of each region.  

Original images were used as the analysis template for all “standard” sized image 

families.   

 

All analysis routines created a standardized spreadsheet that contains the mean and 

standard deviation of the densities, edge shift, and edge slopes for all image sizes, 

rotations, and circle approximation radii.  The final analysis method was the comparison 

of the base image against itself, which verified that the analysis methods were working 

properly and that the edge slope values in particular were calculating identically.   

 

Automatic Region and Edge Identification 

For the “Shepp-Logan”, Ring, and Noise image families, the original densities are known 

to be multiples of 0.1 ranging from 0.1 to 1 which facilitates binning the images by 

density value.  The image is filtered to “tag” each density region with an integer value 

assigning to a certain density layer of the image.  Structures of a specific density, whether 

contiguous or separate, all represent the components of a density layer of the image and 

are all tagged with the same integer.  Each layer is subjected to an „imerode‟ command 

which removes the outer layer of pixels of a given structure as seen in Figure 21 to back 

away from edge effects due to the modulation transfer function digitization of an edge.   
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Figure 21. One pixel erosion of a 20 pixel radius circle highlighted in red. 

 

The „imerode‟ command also creates the know edges of the regions.  To deconflict 

eroding a region into another, a possibility in an image such as the “Shepp-Logan” where 

there is a large constant density field, the eroded edge is used as a negative mask to 

remove any growth.   The eroded image forms the density layer masks for use in finding 

the mean and standard deviation of the region.  The eroded area is considered the edge 

with a positive mask as seen in Figure 22.   

 

 

Figure 22. Positive edge mask of a 320x320 pixel “Shepp-Logan” phantom 

created by eroding a single pixel away from each “tagged” region of 

the original image. 
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Density analysis 

Density of a region is critical to CT inspection of industrial parts for identification of 

material defects such as insufficient densification or porosity on castings.  Medically, CT 

is often used for bone densitometry and other clinical processes requiring accurate 

density determination (Buzug, 2008).  Since all density values of all three phantoms 

correspond to 0.n values, the values of each pixel in the reconstruction can be compared 

to its known value.  The mean and standard deviation of the population of each “tagged” 

density region of the reconstruction after the imerode operation is calculated and 

recorded.   

 

Edge shift  

One of the most useful diagnostic characteristics of a CT image is that it can locate 

abnormalities and/or check the conformation of an object or structure to specifications.  

Fundamental to the proper function of this feature is the ability to identify an edge, or 

more properly a change in material density.  In radiation therapy applications, the edges 

of a tumor define the treatment volume to be irradiated.  An incorrectly calculated 

treatment volume can lead to unnecessary exposure of healthy tissue or insufficient 

exposure of the tumor mass.  Either situation produces unacceptable side effects.  

Industrially, complex parts can be checked for conformation to a design spec where 

internal passages must meet size tolerances.  If an edge were to migrate in the 

reconstruction, parts could be rejected needlessly or more significantly; defective parts 

make it past quality control. 
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Automated reconstructed image edge identification 

The edge mask is used as a trigger for searching a 3x3 pixel neighborhood of the 

reconstructed image centered on the edge trigger for the pixel with maximum difference 

from its eight neighbors.  Since it is possible for multiple pixels in the analysis region to 

have the same difference from its neighbors as others, the center pixel is considered to be 

the edge if it contains a maximal difference value.    

 

Simplified edge definition algorithm 

While in this study, we have the foreknowledge of where the edge should lie, edges in a 

target medium are not always known.  Edge detection algorithms are dependent on the 

difference between one region and its neighbors so good digitization of an edge must be 

produced by the reconstruction.  To simplify the edge digitization metric, edge slope was 

used.  Edge slope is the average change in density across a vectorized gradient defined by 

the digitized edge.  Edge slope is calculated as the difference of the center point from the 

neighbors along the vector from the maximal difference to the minimal difference.  Since 

the analysis region is 3x3, these regions are either a pair of adjacent edges and the center 

pixel or a single edge and the middle row or column as diagramed in Figure 23. 
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Figure 23. Possible edge slope masks depending on edge orientation determined 

by pixel difference gradient within the 3x3 neighborhood of the edge 

trigger.  White squares signify a „1‟ in the mask while black squares 

signify a „0‟ in the mask.  The red lines indicate the edge through the 

neighborhood. 

 

Again these values are stored and the mean and standard deviation of the slopes 

calculated.  An identical vectorized edge slope process is repeated for the base image to 

provide a benchmark to compare the reconstruction algorithms performance. 

   

Analysis of oversized images 

For oversized images, MatLab‟s „iradon‟ function provides a known standard to compare 

the experimental reconstructions against.  The „iradon‟ function operates using the 

Inverse Radon Transform of the scan using the approximations of 2
nd

 order ray distance 

weighting for pixel value assignment and a selectable filter (Mathworks, Inc, 2004).  The 
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“Shepp-Logan” filter was used to match the experimental reconstruction filter type and 

the Nyquist limit was similarly locked at 1. The analysis process begins with the selection 

of the original scan to match the detector number and rotational step size of the 

experimental reconstruction to be analyzed.  This scan is reconstructed using the „iradon‟ 

function to create the known standard for oversized reconstruction comparison.  By using 

the original image condition of binning into 0.n density bins, the „iradon‟ reconstruction 

is binned based on the weighted average of the bin and its x±1 and y±1 neighbors 

rounded to the nearest 0.n bin.  This weighted binning scheme provides a more spatially 

accurate binning of the values since pixel values near 0.n5 could be wrongly binned into 

a lower or higher bin based on straight rounding of the pixel value. For values out of the 

0-1 range, the pixels are binned with the extremes.  Beyond these special concessions to 

the lack of an initial image, the analysis process is otherwise identical to the “standard” 

sized image analysis method.  The oversized image set consisted solely of a 1490x1490 

pixel image compressed into a 512x512 pixel scan and reconstruction of each image for 

all rotational step sizes and circle radii.   

 

Optimized circle radius 

It is possible using the above listed performance measures to calculate the optimal circle 

size for a given image size and rotational combination for each image family. The 

optimization was done both for individual measures and the overall reconstruction. All 

image measures are weighted evenly in the overall optimization, though customized 

weights for a given parameter could be applied in the optimization routine.  The 

individual optimum for a measured parameter is a calculation of the absolute difference 
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between the reconstructed parameter value and the original “true” value from the base 

image.  Since density accuracy is measured in 10 regions, the total difference between of 

all density regions and their corresponding true value is used.  Edge shift and edge slope 

both use the straight numeric difference of the parameters from the optimal value (0) for 

shift, and the phantom edge slope for edge slope.  The circle radius with the smallest 

difference is the optimal value.  The differences of all measures for a given radius are 

summed and the radius with the smallest total absolute difference is the overall optima 

for that phantom, image size, and rotational step size. 
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RESULTS 

The three image families, “Shepp-Logan”, Ring, and Noise; were scanned, reconstructed, 

and analyzed in terms of edge position, edge slope (definition), and density. The images 

were first reconstructed using the custom built algorithm.   

 

Standard sized reconstructions: The standard sized images, 128x128 - 512x512 pixels, 

reconstructions were analyzed using the original phantom image as the standard of 

comparison. 

Qualitative effect of circle radius 

Figures 24-26 illustrate the progressively improving reconstruction quality as the circle 

approximation size grows.   
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384x 384-3º “Shepp-Logan” reconstructions 

 

 

 

 

 

Figure 24. Reconstructions of the 384x384-3º “Shepp-Logan” Phantom using 

circle radii of 0.1-1.0 pixels. 
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384x 384-3º Ring reconstructions 

 

 

 

 

 

Figure 25. Reconstructions of the 384x384-3º Ring Phantom using circle radii of 

0.1-1.0 pixels. 
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384x 384-3º Noise reconstructions 

 

 

 

 

 

Figure 26. Reconstructions of the 384x384-3º Noise Phantom using circle radii of 

0.1-1.0 pixels. 

 

Images reconstructed with less than a 0.5 pixel radius are of poor quality and structures 

are very poorly defined.  After the radii reaches 0.5, the quality of the image largely 

stabilized and only minor difference are observed.  Because of its greater content, the 

Noise phantom exhibits many more artifacts in the “unscanned” region outside of the full 

width inscribed circle but does show a definitive ring that is the boundary of the real data. 

 

Density accuracy  

Each image was likewise evaluated for density accuracy for all image sizes, rotational 

step sizes, and circle radii.  The reconstruction intensity was compared to the intensity of 

the original image for the 0.3 density regions for all circle radii as well as the identical 

region in the “iradon” reconstruction.  The 0.3 density region was chosen for its presence 

0.1 Circle Radius 0.2 Circle Radius 0.3 Circle Radius 0.4 Circle Radius 0.5 Circle Radius

0.6 Circle Radius 0.7 Circle Radius 0.8 Circle Radius 0.9 Circle Radius 1.0 Circle Radius
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in all three phantoms and it‟s large abundance in the “Shepp-Logan” and Ring phantoms.  

The results for the “Shepp-Logan” phantom are shown in Table 1 for selected image 

sizes. 

 

Table 1. Intensity values in the 0.3 region of the reconstructed image for all circle 

radii and the „iradon‟ reconstruction of the “Shepp-Logan” phantom. 

 

Density = 0.3 256x256 384x384 512x512 

Reconstruction 

type Mean 

Standard 

Deviation Mean 

Standard 

Deviation Mean 

Standard 

Deviation 

iradon 0.294 0.021 0.297 0.022 0.295 0.022 

0.1 0.129 0.042 0.110 0.038 0.099 0.034 

0.2 0.169 0.036 0.150 0.033 0.140 0.031 

0.3 0.223 0.035 0.206 0.034 0.192 0.032 

0.4 0.241 0.029 0.241 0.030 0.231 0.029 

0.5 0.286 0.022 0.286 0.022 0.267 0.021 

0.6 0.288 0.021 0.288 0.021 0.269 0.020 

0.7 0.289 0.020 0.289 0.020 0.271 0.019 

0.8 0.290 0.019 0.291 0.020 0.273 0.018 

0.9 0.290 0.018 0.291 0.019 0.274 0.018 

1.0 0.291 0.018 0.292 0.019 0.275 0.018 
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The results for the Ring phantom are shown in Table 2 for selected image sizes. 

Table 2. Intensity values in the 0.3 region of the reconstructed image for all circle 

radii and the „iradon‟ reconstruction of the Ring phantom. 

 

Density = 0.3 256x256 384x384 512x512 

Reconstruction 

type Mean 

Standard 

Deviation Mean 

Standard 

Deviation Mean 

Standard 

Deviation 

iradon 0.263 0.070 0.282 0.062 0.288 0.056 

0.1 0.214 0.137 0.187 0.134 0.165 0.116 

0.2 0.220 0.094 0.226 0.107 0.232 0.105 

0.3 0.253 0.093 0.253 0.091 0.244 0.086 

0.4 0.287 0.090 0.266 0.075 0.269 0.072 

0.5 0.285 0.078 0.296 0.066 0.294 0.058 

0.6 0.285 0.077 0.296 0.065 0.294 0.058 

0.7 0.285 0.077 0.296 0.065 0.295 0.057 

0.8 0.285 0.076 0.296 0.065 0.295 0.057 

0.9 0.285 0.076 0.296 0.064 0.295 0.057 

1.0 0.285 0.075 0.296 0.064 0.295 0.057 

 

The results for the Noise phantom are shown in Table 3 for selected image sizes. 

 

Table 3. Intensity values in the 0.3 region of the reconstructed image for all circle 

radii and the „iradon‟ reconstruction of the Noise phantom. 

 

Density = 0.3 256x256 384x384 512x512 

Reconstruction 

type Mean 

Standard 

Deviation Mean 

Standard 

Deviation Mean 

Standard 

Deviation 

iradon 0.242 0.048 0.248 0.055 0.246 0.062 

0.1 0.146 0.074 0.133 0.074 0.101 0.065 

0.2 0.198 0.068 0.181 0.070 0.156 0.071 

0.3 0.208 0.058 0.177 0.054 0.179 0.064 

0.4 0.245 0.058 0.213 0.056 0.205 0.063 

0.5 0.254 0.053 0.235 0.054 0.217 0.058 

0.6 0.254 0.052 0.236 0.053 0.219 0.057 

0.7 0.254 0.051 0.237 0.052 0.220 0.056 

0.8 0.255 0.050 0.237 0.051 0.221 0.056 

0.9 0.256 0.049 0.238 0.050 0.222 0.055 

1.0 0.256 0.049 0.238 0.050 0.223 0.055 
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Overall the density accuracy improves as the circle radius becomes larger.  The density 

accuracy is terrible below 0.4 pixels radius for all cases.  Density accuracy for the 0.3 

region improves at 0.5 pixels radius and gets incrementally better, though in very small 

steps, as the radius increases.  Interestingly, larger images of the “Shepp-Logan” and 

Noise phantoms have 3% and 7% worse density accuracy at 512x512 pixels than they do 

at 256x256 pixels respectively. 

 

Edge shift 

From the perspective of radiation therapy the most critical parameter of any CT 

reconstruction is the edge precision, that is the ability of the reconstruction to identify the 

edge of an internal structure for treatment.  All images were tested against the original for 

edge shift and both the reconstruction and the „iradon‟ exhibited zero edge shift. 

 



45 

 

Edge slope 

Tables 4-6 shows the edge slope values as compared to the original phantom image and 

„iradon‟ for selected image sizes of each of the image families. 

 

Table 4. Edge Slope values for the original “Shepp-Logan” phantom image and 

selected reconstructed image sizes for the 2º rotational step size for the 

„iradon‟ and reconstruction. 

 

“Shepp-Logan” 256x256 384x384 512x512 

Reconstruction 

Type Mean 

Standard 

Deviation Mean 

Standard 

Deviation Mean 

Standard 

Deviation 

phantom 0.543 0.317 0.541 0.316 0.541 0.316 

iradon 0.563 0.35 0.641 0.409 0.639 0.41 

0.1 0.115 0.087 0.123 0.095 0.122 0.096 

0.2 0.232 0.162 0.243 0.171 0.24 0.174 

0.3 0.351 0.234 0.367 0.249 0.359 0.248 

0.4 0.471 0.307 0.488 0.322 0.48 0.323 

0.5 0.602 0.39 0.63 0.408 0.621 0.408 

0.6 0.601 0.387 0.629 0.406 0.62 0.406 

0.7 0.6 0.385 0.627 0.404 0.618 0.404 

0.8 0.598 0.383 0.625 0.402 0.616 0.403 

0.9 0.597 0.38 0.625 0.401 0.615 0.402 

1 0.596 0.379 0.623 0.4 0.614 0.401 
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Table 5. Edge Slope values for the original Ring phantom image and selected 

reconstructed image sizes for the 2º rotational step size for the „iradon‟ 

and reconstruction. 

 

Ring 256x256 384x384 512x512 

Reconstruction 

Type Mean 

Standard 

Deviation Mean 

Standard 

Deviation Mean 

Standard 

Deviation 

phantom 0.227 0.161 0.23 0.169 0.23 0.168 

iradon 0.275 0.193 0.281 0.202 0.281 0.203 

0.1 0.052 0.041 0.054 0.044 0.054 0.045 

0.2 0.104 0.079 0.105 0.083 0.106 0.083 

0.3 0.154 0.113 0.158 0.119 0.159 0.121 

0.4 0.208 0.15 0.212 0.156 0.211 0.158 

0.5 0.27 0.189 0.277 0.2 0.276 0.201 

0.6 0.269 0.188 0.277 0.199 0.276 0.2 

0.7 0.269 0.187 0.276 0.198 0.275 0.2 

0.8 0.268 0.186 0.276 0.197 0.274 0.198 

0.9 0.267 0.186 0.275 0.197 0.273 0.198 

1 0.267 0.185 0.275 0.197 0.273 0.197 

 

Table 6. Edge Slope values for the original Noise phantom image and selected 

reconstructed image sizes for the 2º rotational step size for the „iradon‟ 

and reconstruction. 

 

Noise 256x256 384x384 512x512 

Reconstruction 

Type Mean 

Standard 

Deviation Mean 

Standard 

Deviation Mean 

Standard 

Deviation 

phantom 0.207 0.058 0.21 0.059 0.21 0.057 

iradon 0.219 0.055 0.225 0.06 0.222 0.064 

0.1 0.039 0.018 0.042 0.021 0.04 0.023 

0.2 0.078 0.028 0.084 0.032 0.079 0.035 

0.3 0.118 0.037 0.126 0.042 0.119 0.046 

0.4 0.157 0.045 0.168 0.051 0.159 0.054 

0.5 0.202 0.054 0.215 0.059 0.205 0.063 

0.6 0.201 0.054 0.215 0.059 0.205 0.063 

0.7 0.201 0.053 0.215 0.058 0.205 0.062 

0.8 0.201 0.053 0.215 0.057 0.205 0.061 

0.9 0.201 0.052 0.215 0.057 0.205 0.061 

1 0.201 0.052 0.215 0.057 0.205 0.061 
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Interestingly, the edge slope follows an inverse pattern from the density accuracy with 

decreasing slope values as the circle size becomes larger.  This is indicative of greater 

contrast difference between the two regions contained in the 3x3 edge neighborhood and 

would show greater edge definition.  Additionally, image size did not have a significant 

impact on the accuracy of the edge slope.  There is no clear pattern to the circle radius 

that the image has minimal variation from the phantom that appears tied to image size. 

Optimum Circle Radius: The optima for the Shepp and Logan are shown in Tables 7 

and graphically in Figure 27. 

 

Table 7.Optimal circle radii for the “Shepp-Logan” Phantom  

 

5º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.6 1 1 1 1 1 1 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 1 1 1 1 1 1 

4º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 1 1 1 1 1 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 1 1 1 1 1 1 

3º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 1 1 1 1 1 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 1 1 1 1 1 1 

2º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 1 1 1 1 1 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 1 1 1 1 1 1 

 

 



48 

 

 

Figure 27. Overall circle radius optimization for the “Shepp-Logan” Phantom. 

  

Overall Shepp-Logan Optimization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 192 256 320 384 448 512
Image Size (pixels)

C
ir

c
le

 R
a
d

iu
s
 (

p
ix

e
ls

)

5 4 3 2



49 

 

Similarly the individual and overall optima for the Ring Phantom are plotted in Tables 8 

and Figure 28. 

 

Table 8. Optimal circle radii for the Ring Phantom with  

 

5º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 0.4 0.4 0.4 0.4 0.4 

Density 1 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 0.5 0.5 0.5 0.5 0.6 1 

4º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 0.4 0.4 0.4 0.4 0.4 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

3º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 0.4 0.4 0.4 0.4 0.4 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 0.5 0.5 0.5 0.5 0.5 0.8 

2º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 0.4 0.4 0.4 0.4 0.4 

Density 1 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
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Figure 28. Overall circle radius optimization for the Ring Phantom. 
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Finally the individual and overall optima for the Noise Phantom are plotted in Tables 9 

and Figure 29. 

 

Table 9. Optimal circle radii for the Noise Phantom with 

 

5º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 0.5 1 1 0.6 0.5 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

4º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 0.5 1 1 0.8 0.5 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

3º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 0.5 1 1 0.9 0.5 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

2º steps 128 192 256 320 384 448 512 

Edge Shift 0 0 0 0 0 0 0 

Edge Slope 0.5 1 0.5 1 1 0.5 0.5 

Density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Overall 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
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Figure 29. Overall circle radius optimization for the Noise Phantom 

 

It is of interesting note that the minimal circle radius for all image families at is 0.5 pixels 

and is almost bimodal with optima occurring at the minimum stability point of 0.5 pixels 

or at maximum radius.  There are a few outliers but only most are within 0.1 pixels radius 

off of one of these two modes.  Similarly the individual optima cluster at 1.0 or 0.4 pixels 

for density and 0.4-0.6 or 1.0 pixels for edge slope.  Larger images tend to generate 

higher circle radii optima as demonstrated by the shift from 0.5 pixel for the 128x128 

pixel image to 1.0 pixel for the 192x192 pixel image and the 448x448 and 512x512 pixel 

optima for the Ring phantom. 
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Oversized images:  The oversized versions of all three images were reconstructed using 

the same range of rotational steps and circle radii as with the “standard” sized images.   

The following 3 figures show the progression of reconstructed images for all three image 

families at the 3º rotational step size 

 

 

 

 

 

 

1490x1490-3º oversized “Shepp-Logan” reconstructions 

 

 

 

 

 

Figure 30. Reconstructions of the 1490x1490 pixel “Shepp-Logan” phantom 

original image scanned and compressed to a 512x512-3º then 

reconstructed using circle radii of 0.1-1.0 pixels. 
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1490x1490-3º oversized Ring reconstructions 

 

 

 

 

 

Figure 31. Reconstructions of the 1490x1490 pixel Ring phantom original image 

scanned and compressed to a 512x512-3º then reconstructed using 

circle radii of 0.1-1.0 pixels. 
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1490x1490-3º oversized Noise reconstructions 

 

 

 

 

 

Figure 32. Reconstructions of the 1490x1490 pixel Noise phantom original image 

scanned and compressed to a 512x512-3º then reconstructed using 

circle radii of 0.1-1.0 pixels. 

 

As with the “standard” sized images, the oversized images show increasing image quality 

as the circle radius increases.  Again the image quality stabilizes at approximately 0.5 

pixel circle radius.  However the overall image quality is marginally better with the 

oversized images.  Most noticeable is the increased signal to noise ratio in the Noise 

phantom with less noise in the “unscanned” areas. 

 

The oversized images were also processed through the optimization algorithm though the 

region definition and edge slope values were determined off of the „iradon‟ vs. the 

original images.  The composite Table 10 shows the optimizations for each of the image 
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types for density, edge shift, and edge slope for all circle radii.  Likewise Figure 33 

shows the overall optimization graphically for equally weighted parameters. 

 

Table 10. Circle radius optima for all density, edge shift, and edge slope for all 

three oversized images 

 

5º “Shepp-Logan” Ring Noise 

Edge Shift 0 0 0 

Edge Slope 0.5 0.5 0.5 

Density 1 1 1 

Overall 0.5 1 1 

4º “Shepp-Logan” Ring Noise 

Edge Shift 0 0 0 

Edge Slope 0.5 0.5 0.5 

Density 0.6 1 1 

Overall 0.5 0.5 1 

3º “Shepp-Logan” Ring Noise 

Edge Shift 0 0 0 

Edge Slope 0.5 0.5 0.5 

Density 0.5 1 0.5 

Overall 0.5 0.5 0.5 

2º “Shepp-Logan” Ring Noise 

Edge Shift 0 0 0 

Edge Slope 0.5 0.5 0.5 

Density 1 1 0.5 

Overall 0.5 1 0.5 
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Figure 33. Overall circle radius optimization for oversized reconstructions of all 

three images against the optima of a 512x512 pixel image of the same 

family but “standard sized”. 

The optimization is once again bimodal with optima occurring at either the minimum 

value of 0.5 pixels for image stability or 1.0 pixels radius for maximum area coverage.  

While there is overlap between the optima for oversized and the comparable 512x512 

pixel reconstruction, the cases of non-overlap are quite dramatic with the optima 

reverting to the modal opposite of the  512x512 “standard” optima. 
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DISCUSSION 

Based upon the qualitative analysis of the images themselves and the numerical analysis 

of the image measures, the alternative reconstruction does not produce an image of 

noticeably better quality than the conventional linear interpolation method.  On a 95% 

confidence interval, the alternative reconstruction is statically similar to the „iradon‟ 

representation of the linear approximation technique for radius values over 0.4 pixels for 

all but two cases in the Noise phantom with an image size of 192x192 pixels and 

rotational step sizes of 2 and 3º.  See Table 11 for the stoplight chart.  Green is 100% 

failure to reject the null hypothesis of similar populations, yellow is a conditional failure 

to reject the null hypothesis with the range of failure marked in the cell and red is 100% 

rejection of the null hypothesis. 
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Table 11. Stoplight chart of the 95% confidence interval Z-test comparison of the 

alternative reconstruction against the „iradon‟ reconstruction for 5-2° rotational 

step sizes. 

 

“Shepp-Logan” 95% Confidence Interval Z-test 

Density 5° 4° 3° 2° Edge Slope 5° 4° 3° 2° 

128 >=0.5 >=0.5 >=0.5 >=0.5 128 >=0.3 >=0.3 >=0.3 >=0.3 

192 >=0.5 >=0.5 >=0.5 >=0.5 192 >=0.3 >=0.3 >=0.3 >=0.3 

256 >=0.5 >=0.5 >=0.5 >=0.5 256 >=0.4 >=0.4 >=0.4 >=0.4 

320 >=0.5 >=0.5 >=0.5 >=0.5 320 >=0.4 >=0.4 >=0.4 >=0.4 

384 >=0.5 >=0.5 >=0.5 >=0.5 384 >=0.4 >=0.4 >=0.4 >=0.4 

448 >=0.5 >=0.5 >=0.5 >=0.5 448 >=0.4 >=0.4 >=0.4 >=0.4 

512 >=0.5 >=0.5 >=0.5 >=0.5 512 >=0.4 >=0.4 >=0.4 >=0.4 

          Ring 95% Confidence Interval Z-test 

Density 5° 4° 3° 2° Edge Slope 5° 4° 3° 2° 

128         128         

192 >=0.5 >=0.5     192         

256 >=0.5 >=0.5 >=0.5 >=0.5 256         

320 >=0.5 >=0.5 >=0.5 >=0.5 320         

384 >=0.5 >=0.5 >=0.5 >=0.5 384         

448 >=0.5 >=0.5 >=0.5 >=0.5 448         

512 >=0.5 >=0.5 >=0.5 >=0.5 512         

          Noise 95% Confidence Interval Z-test 

Density 5° 4° 3° 2° Edge Slope 5° 4° 3° 2° 

128 >=0.4 >=0.4 >=0.5 >=0.5 128 >=0.4 >=0.3 >=0.3 >=0.3 

192 >=0.3 >=0.3 >=0.4 >=0.4 192 >=0.3 >=0.3 >=0.3 >=0.3 

256 >=0.3 >=0.3 >=0.4 >=0.4 256 >=0.3 >=0.3 >=0.3 >=0.3 

320 >=0.3 >=0.3 >=0.3 >=0.3 320 >=0.3 >=0.3 >=0.3 >=0.3 

384 >=0.3 >=0.3 >=0.3 >=0.3 384 >=0.3 >=0.3 >=0.3 >=0.3 

448 >=0.2 >=0.2 >=0.3 >=0.3 448 >=0.3 >=0.3 >=0.3 >=0.3 

512 >=0.3 >=0.3 >=0.3 >=0.3 512 >=0.3 >=0.3 >=0.3 >=0.3 
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Using the same confidence interval, both the „iradon‟ and the alternative reconstruction 

method are not statistically similar to the original image for density but do show 

similarity for edge definition as defined by edge slope.  The optimization of pixel radius 

follows a pattern of being bimodal distributed for most image sizes and measured 

parameters.  The parameters and overall optima group into either the minimum stable 

radius of 0.5 pixel or to the maximal tested at 1.0 pixel.  Overall, the general trend is that 

0.5 pixels would be the universally applicable radius. 

 

Density values tend to be approaching the true value when the reconstruction stabilizes at 

0.5 pixels radius.  This fact holds true on all phantoms which is interesting considering 

the large difference in “structure” size between the “Shepp-Logan” and the Noise 

phantom.  The “Shepp-Logan” phantom‟s eroded structure size is almost always greater 

than a 3x3 pixel square while the Noise phantom‟s eroded structure size is never above a 

single pixel unless you have overlapping 3x3 pixel diamonds of the same density.  Using 

a 99.5% confidence interval Z-test to compare the “Shepp-Logan” at 1.0 pixel radius to 

the 0.5 pixel radius, the test failed to reject the null hypothesis that the two 

reconstructions are from the same population.  This implies that while the numeric 

optimization might indicate optima at radii other than 0.5 pixel, there is no statistical 

difference between the results of using the 0.5 pixel optima. 

 

Edge slope values similarly stabilize at 0.5 pixels radius for all but the “Shepp-Logan” 

phantom.  The “Shepp-Logan” image differs significantly from the Ring phantom in that 

it has a larger number of edges between regions of relatively close density values while 
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the Ring phantom is largely structure on background edges.  The Noise phantom has 

more edges that are between regions of relatively close density and also shows a tendency 

towards large circle radii for optimums.  However with the Noise phantom, the small 

structure size causes density error to be the dominant term driving an overall optimum of 

0.5 pixel radius. 

 

For the oversized images, the edge slope is consistently optimized at 0.5 pixels radius 

however the density optima is more variable and occasionally becoming the dominant 

term driving the optima, especially for the “Shepp-Logan” phantom.  As these images are 

more representative of real scans, the overall trend towards a 0.5 pixel radius optimum 

with in these images reinforces the general statement of 0.5 pixels being the most 

universal optima for all image and rotational step sizes.  Of note is that the radius of a 

circle which has an area of 1 is 0.564 pixels, which is very close to the optimum found in 

the study. 
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CONCLUSION 

Because the technique at any circle radius does not offer significant improvements over 

the linear interpolation method and is more computationally complex, it is not well suited 

to commercial application in the current form.  There are significant improvements in the 

image quality at higher initial image sizes but no improvements numerically of the “3
rd

 

order” circle area technique over linear interpolation.  This study utilized only the most 

basic Fourier filtering and further research could be done to optimize the filter and 

Nyquist frequency for reduction of the ray like artifacts in the image.  These artifacts 

could potentially be a major source of the variations in the density and consequently edge 

slope data.  Further work could be done on a larger cross-section of scans using radii 

between 0.4 and 0.6 pixels at finer spacing to further narrow in on an optima.  Using 

images with larger ranges, smaller details or other metrics would validate the 

applicability of the optima to images across the spectrum of CT imaging. 
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