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ABSTRACT 

 
Patel, Jay, M.S., Department of Physics, Wright State University, 2011. 

Growth and Characterization of Carbon Nanomaterials. 

 

In this thesis, single and multi-layered graphene films were epitaxially grown on either 

Si-face or C-face of SiC single crystal substrates. The film growth conditions, such as 

decomposition temperatures and pressures, and their surface morphologies were optimized. 

These films were then characterized by using surface analysis tools including SEM, TEM, AFM 

evanescent wave microscopy and electron educed spectroscopy. In addition to studying graphene 

decomposed from SiC crystals, carbon nanotube material was fabricated using a floating catalyst 

technique. These carbon nanotube material was then studied for potential cathode applications in 

this thesis.  Field emission properties of these cathodes was measured and compared between 

carbon nanotubes grown by the floating catalyst technique and carbon nanotube material 

fabricated from a super acid solution spinning process. The result found that carbon nanotube 

material produced from the floating catalyst method supported the highest emission currents. As 

a result of this research, carbon nanotube field emitters fabricated from this method are now 

being studied in a wide range of vacuum electronic applications. 
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CHAPTER 1: INTRODUCTION 

 

 

As the transition is made towards the incorporation of nanomaterials in devices, specific 

challenges have been identified in the fabrication processes of these materials. The lack of 

precise, repeatable fabrication methods resulting from lack of understanding and control of 

growth mechanisms at an atomic scale has hindered the commercial uses of nanomaterials. 

Sensitivity to growth condition variations makes bulk manufacturability an issue that must be 

overcome. The goal of this thesis is to understand growth mechanisms to drive efforts of 

achieving single atomic layer growth and translate this control to increased bulk material quality. 

By addressing initial surface conditions as well as chamber conditions, recipes for carbon 

nanomaterials fabrication are optimized in this thesis. These materials are then studied to 

correlate physical uniformity to their bulk electrical properties. By developing uniform 

nanomaterials, device performance can be maximized substantially.  

One method of carbon nanomaterial growth is a decomposition process of SiC crystals. 

Decomposition of SiC has shown to result in carbon nanotube and/or graphene materials. SiC 

work presented in this thesis will primarily focus on graphene fabrication optimization. Effects 

of various decomposition variables of SiC will be studied and characterized in Chapter 4. The 

goal is to optimize conditions such that to develop a standardized process for accurate, precise 

and repeatable growths. Material characterization techniques such as evanescent microwave 

microscopy and electron beam induced current spectroscopy will be used to correlate structural 

homogeneity to electrical performance.  

 Along with studying graphene, carbon nanotube material from University of Rice’s super 

acid solution process and carbon nanotube material from University of Cambridge’s floating 
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catalysts methods will be studied. General background of carbon nanotube material and the 

fabrication processes of these materials will be discussed in subsequent sections of this Chapter.  

1.1 CARBON NANOTUBE BACKGROUND 

 

Since their discovery, there has been much interest in studying carbon nanotubes. Carbon 

nanotube structures can be thought up as rolled up sheets of graphene.  

 

Figure 1. Schematic of how graphene can be rolled into various chiralities of CNTs [1]. 

Depending on how the graphene sheet is rolled, the tube can take on three possible structures or 

chiralities: armchair, zigzag or chiral. Chirality of the tubes plays an important role in the electric 

properties of the carbon nanotube (CNT); it dictates whether the tubes will act like a metal or a 

semiconductor or a combination of the two. 

In Figure 1, green to blue connection will produce an armchair chirality, if the CNT is 

rolled green to red this will produce a zigzag, and if the CNT is rolled green to black this will 
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produce an intermediated zigzag. Single walled carbon nanotubes can be defined by introducing 

a Chiral Vector, , and a Translation Vector, , as shown in Figure 2. 

 

Figure 2. Visual representation of CNT defining chirality vector  and translation vector . 

 

The band gap energy can be related directly to the geometry of the Brillouin zone, 

therefore the energy spectrum of a single CNT can be related to the chirality and translation 

vectors. The physical folding of the CNT through this relationship is directly whether the CNT 

will be metallic or semiconducting in nature. This demonstrates the importance in studying the 

chirality whenever discussing fundamental electric properties of CNT [24,25,26].  
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1.2 CARBON NANOTUBE SYNTHESIS 

 

After the initial discovery of CNTs, various fabrication processes to create bulk CNT 

materials have been explored. Laser ablation [2], arc discharge [3], solid state spinning from 

aligned CNT forests [4], floating catalyst chemical vapor depositions [5], super acid solution 

spinning [6] or various other material decomposition techniques [7] are just few techniques 

utilized to create carbon nanotube structures. Each of these methods has advantages and 

disadvantages and each process will create unique bulk CNT structures. Few of these growth 

techniques that pertain to this thesis will be discussed in the following sections. 

1.2.1 FLOATING CATALYST CNT MATERIAL 

 

The floating catalyst method is a form of solid state spinning using a special chemical 

vapor deposition (CVD) process. Typically, a CVD process consists of mixing a carbon source 

gas, iron catalyst and growth promoters together inside a CVD chamber’s heat zone around 

1000⁰C-1200⁰C in the presence of a carrier gas to create CNT material. Unlike a traditional CVD 

process, the CNTs do not grow and align themselves on a substrate but rather grow in a hot 

vapor pocket called an aerogel pocket.  
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Figure 3. Illustration of vertical CVD and two CNT material collection techniques. (A) 

Extraction of fiber and (B) extraction of highly aligned film [15]. 

 

Figure 3 is an example of a vertical CVD furnace, liquid feedstock is fed into the system 

creating an aerogel inside the heat zone. The aerogel is captured and wound out of the hot zone 

continuously as a fiber or film. In Figure 3A,wind up is done by rotating spindle, resulting in a 

CNT fiber, versus Fig.3B where the aerogel is collected by a rotating winder creating a highly 

aligned film.  

1.2.2 SUPER ACID SOLUTION SPINNING 

 

The super acid solution spinning process such as the one utilized by Rice University
 
[8], 

produces SWNT fibers using conventional spinning techniques with rigid rod polymers. The 

process uses SWNTs produced by using a HiPco process, which are washed and purified by a 
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acid wash to remove excess of metal catalysts. These purified SWNT are then suspended in 

solution of sulfuric acid, which is then loaded into a syringe. The SWNT acidic solution is then 

extruded through a small capillary tube creating a SWNT fiber, which is wound on a rotating 

stage. 

 

Figure 4. Schematic of a traditional Super Acid Solution Spinning Layout [8]. 

This process can create a limited range of fiber diameters, less than 100 µm. However, this 

process is able to create very densely packed SWNT fibers that are free from iron catalysts.  

1.2.3 DECOMPOSITION OF SIC 

 

The formation of tightly packed and vertically aligned multi-walled carbon nanotubes 

(MWNTs) has been observed after annealing SiC wafers at high temperatures (1200⁰C – 

1700⁰C) and at pressures ranging from 10
-3

 Torr to 10
-5

 Torr. Specifically, these CNTs lack the 

presence of catalyst metals, regarded as an impurity, which can be difficult and costly to remove. 

Though the decomposition is not fully understood, one of the current theories in decompositions 

is illustrated in Figure 5. In Figure 5A, around 1000⁰C sheets of graphene form parallel to the 

SiC surface, as the temperature is increased Si decomposing from the surface forms bubbles that 
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pushes the graphene sheets upwards. The graphene sheets then are bent outward in SiC (001) 

plane and the CNTs growth inward towards the center for the SiC as Si evaporates. 

 

A

B C

 

Figure 5. Growth mechanisms of CNT material from decomposition of SiC [5]. 

 

 

Figure 6. SEM images of CNT material from decomposition of SiC [13]. 
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1.3 FABRICATION OF BULK CNT MATERIALS 

 

The quality and performance of CNT material is highly dependent on the synthesis 

techniques. Moreover, when creating bulk macrostructures from these nanomaterials, 

distribution, alignment and uniformity will drastically alter the mechanical and electrical 

properties of the material. Theoretically, a single CNT has physically properties much different 

than their bulk counterparts. Literature has shown that taking the same SWNT material and 

forming thick carbon mats versus bundles the resistance and other their properties are going to be 

drastically changed. This drastic change is attributed to various vacancy defects, interconnections 

and tangled regions of CNTs [22]. 

Also, when creating bulk materials it is not guaranteed that all CNTs are identical as far 

as chirality is concerned. If chirality is not controlled, as pointed out earlier, the carbon 

nanotubes in bulk form could be either semiconducting or metallic in nature. The goal of any 

nanotube growth is accuracy and repeatability.  Furthermore, combining unlike material into a 

single macroscopic structure will create irregular performance. It has been shown[18] by taking 

resistance vs. temperature measurements of bulk CNT fibers where the same material could have 

both metallic and semiconducting properties.  
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Figure 7. Resistance vs. temperature of MWNT fiber. 

This measurement was fitted to the equation 

 

The first term in Equation 1, represents a metallic term and the second corresponds to 

fluctuations induced tunneling between metallic regions. In metals, as temperature is increased 

the number of inter ballistic collisions increases therefore increasing the metal’s resistivity. In 

semiconductors, as temperature is decreased the resistance of the material increases. Figure 7 

shows a measurement of resistance as a function of temperature, if the MWNT fibers acted only 

as a semiconductor or a metal, resistance will not have local minimum. Since there is a local 

minimum, it can extracted that the MWNT exhibits a combination of metallic and 

semiconducting properties.  The and β in Equation 1 are material dependent constants. This 

measurement shows a MWNT without chirality control will both as a metal or a semiconductor. 
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Chirality is only example of the lack of control during the nanomaterials fabrication 

process. There are many variables that go into creating CNTs and even larger number of 

variables that go into creating bulk materials. Some properties of materials grown using solution 

spinning and solid-state spinning are listed in Table I and Table II.  

Table I. Solution spinning fiber performance parameters. 

Spinning Technique Type Length Diameter

Modulus 

(GPa)

Strength 

(GPa)

Toughness 

(J/g)

Electric Resistivity             

( mΩ X cm)

as-spun 15 0.15 2.25

stretched 40 23 0.82

annealed - - -

stretched 80 1.8 570

Surfactant dispersion coagulated in ethanol as-spun 2 0 - 150

Surfactant dispersion coagulated in acid or base as-spun 12 0.065 - 150

Sulfuric acid dispersion coagulated in water SWNT <1μm ~1nm annealed 120 0.116 - 0.2

~ 1 nm

Surfactant dispersion coagulated in water 10

Solution Spinning

SWNT < 1μm

 

Table II. Solid state spinning performance parameters. 

Spinning Technique
Type

Length    

(μm)

Diameter 

(nm)

Modulus 

(GPa)

Strength 

(GPa)

Toughness 

(J/g)

Electric Resistivity             

( mΩ X cm)

MWNT 30 30 as-spun - 0.1-1 - 0.12

DWNT 1000 10 vapor 78 1.3 13 0.2

MWNT 100 10 twisted 5-30 150-460 11-20 3.3

MWNT 650 10 275 275 - 5.8

MWNT - 5-15 methanol 37 37 13 0.2

Solid State Spinning

Gas-Phase CVD

Vertical grown CNT Array  

For electrical studies, the most important property of interest is the electric resistance. 

The rows highlighted in blue reflect Rice SWNT (Solution Spinning) and Cambridge MWNT 

(Solid State Spinning) fiber properties, respectively.  

Before the optimization of fabrication processes of the carbon nanotube and graphene 

material are discussed, it is important to discuss the characterization techniques used to analyze 

these materials. Chapter 2 will discuss a unique measurement system that exploits near field 

interactions to extract material parameters such as conductivity, and permittivity.    
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CHAPTER 2: EVANESCENT MICROWAVE MICROSCOPY 

 

2.1 EVANESCENT MICROWAVE MICROSCOPY THEORY 

 

A non-destructive way to measure local complex permittivity parameters is evanescent 

microwave microscopy [19]. Using a perturbation technique, the local properties of a sample 

near microscope tip can be extracted by analysis the frequency shift of the evanescent wave. 

Using a network analyzer, a signal is generated and coupled to a coaxial transmission line which 

ends in a sharpened tip. The transmission line acts as a quarter resonator and is able to generate 

evanescent waves in the near field. When the transmission line is placed near a conductive or 

dielectric material, there is a perturbation in the resonance of the transmission line. The 

frequency and quality factor perturbation is measured which then is correlated to material 

parameters. 

 
 

Figure 8. Schematic of evanescent microwave microscope system. 
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 Figure 8 represents is a simple schematic of the evanescent microwave system at Wright 

State University Physics Department. The theory behind this system is a potential perturbation. 

Suppose the probe tip has a certain known potential, . When the probe is moved close to the 

sample under test, charges on the probe will induce a polarization response in the sample. This 

interaction induces a frequency sift in the resonator (probe). The frequency perturbation can be 

equated in terms of physical properties using Maxwell’s equations. First by taking the difference 

of two pairs of modified Maxwell’s equations respectively where [Eo,Ho,ωo] represent the 

original resonator fields and [E, H, ω] represent perturbed parameters  

                                                         

   

                  

       

and exploiting the vector identity of  , Equation (4) 

and (2) will read, 

 

Using the same vector identity, Equation (3) and (5) will read, 

 

 
 

Taking Equation (6) and (7), the divergence theorem can be written as 

 

 

 
 

Since  the relationship can be made in terms of frequency 
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To complete Equation (10), the perturbed electric field has to be calculated. In Figure 9, a 

schematic for an image charge problem, and using cylindrical coordinates, is drawn and the 

potential a distance d away from the tip can be calculated. 

 
Figure 9. Diagram of image charge problem. 

 

The potential is given by the equation 

 

 
 

where  , in cylindrical coordinates (r, θ, z), is defined by  Now that 

the perturbed electric fields using the method of images can be calculated as [21] 
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where E1 and E2 represent the perturbed electric field in the tip-sample region and the sample 

volume, respectively. By using Equations (12) – (17), the total relative frequency shift can be 

determined 

 
 

This technique is a unique way to determine local properties of materials. Since 

evanescent waves are utilized, only the volume near the probe tip is active and therefore micron 

sized area of the sample can be measured. This is particular useful studying CNT fibers and tapes 

because evanescent spectroscopy will give localized properties of the material.  
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CHAPTER 3: FABRICATION OF CARBON NANOTUBE MATERIALS 

 

3.1 UNIVERSITY OF CAMBRIDGE FLOATING CATALYST METHOD 

 

The floating catalyst vertical CVD process is the trademark CNT fabrication process used 

by Windle’s and Koziol’s Research Group at the Materials Science Department of Cambridge 

University. Their bulk CNT fibers have been widely published [14,23]. Notable features of their 

CNT materials are their strong mechanical properties including their ability to extract continuous 

uniform fibers from their vertical CVD furnace.  

 
Figure 10. Cambridge furnace. (A) Feed system control, (B) vertical furnace tube and (C) 

collection area. 

Even though most CVD furnaces are horizontal, Cambridge uses a vertical two-story split 

level CVD furnace. The top consists of reaction chamber and feed network, the bottom is a 

collection zone area. Figure 10A points to the top unit which controls the feedstock, gas rates and 

temperature during the growth. (B) is pointing to the large alumina reinforced quartz tube which 
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acts very similar to any CVD heat zone. This heat zone is open on the top for feedstock input and 

the other end is open and leads to a small enclosed room labeled by (C). In this room, collection 

of CNT material from the heat zone is made.  

The composition of the feedstock is very important to CNT product. The fibers are 

produced from a liquid feedstock of 1.8/.25/97.95 wt % of ferrocene/thiophene/ethanol injected 

into the reactor at a rate of 6 mL/h (Figure 10). This is injected into the reactor around 1300 ⁰C 

coupled with a hydrogen flow rate of about 2.5 L/min. Even though many scientific groups have 

published extensively on their fibers, they have only recently been able to use ethanol as a liquid 

carbon source.  

Iron in the form of ferrocene, plays a very important role in the synthesis process and 

must be present in the correct amount and particle size for carbon nanotubes nucleation to occur. 

If too much is present, the tubes will have very irregular diameters and if too little is present the 

carbon will simply not form homogeneous structures.  

The addition of sulfur and thiophene is used in the feedstock which is an unconventional 

addition. Sulfur enhances the catalytic properties of the iron in the feedstock and results in CNT 

materials with longer lengths in comparison to material growth without sulfur. 

Needless to say, the carbon source is crucial in the feedstock. The carbon source plays an 

important role of a stabilizer in creating the feedstock made out of the iron and sulfur. Various 

carbon sources have been used, such as hexane, ethanol and methanol in the past. 

Fe(C5H5)2

C4H4S
C2H6O

HEAT

 
Figure 11. Chemical reaction to form CNT. 
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3.1.1 EXTRACTION OF CNT FIBERS 

 

Using this CVD process, multiple types of bulk CNT material can be extracted. The 

aerogel pocket of CNT material in the reactor can be pierced by a mechanical arm which is used 

to draw CNT material out. The temperature difference of the mechanical arm and the aerogel 

sock will attract the CNT material to the arm end. If done under the right conditions, this process 

will extract a single continuous fiber consisting of densely packed highly oriented CNTs. This 

fiber can then be further condensed and spun by a rotating spindle (Figure 12).   

 
 

Figure 12. (A) Spinning spindle used to collect CNT material from Cambridge furnace. (B) 

Densification process of CNT directly from Cambridge furnace [23]. 

 

These fibers can be further densified by using acetone to create an ultra dense fiber. It has 

been shown in literature that when in contact with liquids CNT fibers will collapse upon 

themselves to create ultra dense fibers. Studies performed by Koziol et al., [16] have shown in a 

matter of seconds with contact of acetone that Cambridge fibers will condense to a fraction of the 

size (Figure 13 and Figure 14).  
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Figure 13. SEM of uncondensed and condensed fibers [16]. 

 

 
 

Figure 14. Optical time lapse of densification of CNT fiber when in contact by acetone.  
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Figure 15. Two fibers that are twisted and condensed using acetone. 
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Figure 16. SEM micrograph of two twisted together fibers. 

 

Since these fibers are liquid spun, the fibers are highly flexible and not prone to be brittle. 

Multiple fibers can be spun together (Figure 15) and condensed to create higher order 

macroscopic forms. This technique is used when fibers of large radius need to be made. 
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3.1.2 EXTRACTION OF CNT MATS 

 

Instead of using a mechanical arm, a horizontal spindle can be placed right below the 

furnace’s heat zone. Now instead of using a mechanical arm, hydrogen gas flows down the 

chamber at an increased rate and the aerogel over time will slowly leak out of the bottom and 

begin to coat the horizontal spindle. Though this process does not create highly aligned material, 

it can be used to coat thin film of CNT material over large areas (Figure 17).  

Using this method, increased level of hydrogen is introduced to the system, which under 

high concentration could be combustible. To compensate, ferrocene concentration is slightly 

increased. This tends to result in higher concentration of residual iron catalysts in the final 

material (Figure 18, Figure 19, Figure 20, Figure 21).  

 

Chamber End

Spinning mandril

 
 

Figure 17. Live picture of fiber collection to a spinning mandril. 
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Figure 18. SEM of carbon nanotube mats made from Cambridge CVD process. High levels of 

iron can be easily seen in SEM image. 
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Figure 19. SEM of carbon nanotube mats made from Cambridge CVD process. High levels of 

iron can be easily seen in SEM image. 
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Figure 20. SEM of carbon nanotube mats made from Cambridge CVD process. High levels of 

iron can be easily seen in SEM image. 
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Figure 21.  SEM of carbon nanotube mats made from Cambridge process. Cluster ball in the 

image is residual iron catalysts.  

 

3.2  CARBON NANOTUBE POST GROWTH TREATMENTS 

 

In traditional CNT fabrication techniques, an unwanted product in the material is the iron 

catalysts. In literature, there have been various techniques developed to attempt the removal of 

these unwanted particles. Moreover, CNT have been found to be prone to oxidation and contain 

amorphous carbon residual from the growth process.  



27 
 

A technique that is explored in order to remove amorphous carbon material, oxidation 

and other defects is low temperature annealing of the CNT fibers. Measurements of the 

resistance of the material subjected to annealing process can provide a better picture on the 

benefits and effects of annealing at 500⁰C for 30 mins at 10
-4

 Torr.  
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Figure 22. Resistance vs. temperature measurement of Cambridge fiber. 

 

A Physical Properties Measurement System (PPMS) was used to conduct a four-probe 

measurement of the resistance during temperature variation. The four probe system schematic 

shown in Figure 23 uses two probes to measure current and two to measure voltage as voltage is 

varied. A CNT film made from condensed Cambridge fibers was used in these measurements. 

Temperature was ramped up to 500°C and back to the initial starting temperature and then this 

process was conducted again. These measurements show that after the initial annealing sweep, 

the irreversible changes were established in the material (Figure 24). Moreover, these 

measurements showed both semiconducting (lower temperature range) and metallic (higher 

temperature range) properties of the CNT film, respectively [22].  
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Figure 23. Schematic of a four probe setup. 
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Figure 24. PPMS measurement resistance vs. temperature of Cambridge fiber. 
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To get a better description what is going on along the CNT tape, localized measurements 

were done to study the annealing effect. Optical and evanescent microwave measurements can 

shed some lights on the effect of annealing. Optical measurements were done using Dr. Clark’s 

Optical Characterization setup at Wright State University. A tungsten halogen was the light 

source optimized for VIS-NIR (360 nm - 2500 nm) range. This signal was detected by a linear 

silicon CCD-array operating in 200 nm - 1100 nm range. Using setup similar to the schematic 

diagram in Figure 25, reflectance of the CNT tape was measured. 

SAMPLE

LIGHT SOURCE

SPECTROMETER

FIBER OPTIC CABLE

 
 

Figure 25. Optical characterization set-up. 

 

The CNT tape 3 cm wide and 10 cm long was divided on small square areas (1 cm x 1 cm). A 

grid was established in the tape to identify designated areas (3 rows and 10 columns). For 

example, the designated area "1-3" is located in the first row and the third column (1 cm
2
 area in 

size). 14 different areas of the CNT tape using both optical and evanescent microwave 

microscopy where studied.  
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A. 1-3 before annealing 

 
B. 1-3 after annealing 
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Figure 26. Evanescent microwave microscopy (A,B) and optical measurements of CNT 
film in designated area “1-3”.  
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A. 2-3 before annealing 

 

 
B. 2-3 after annealing 
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Figure 27. Evanescent microwave microscopy (A,B)  and optical  measurements of CNT film in 

designated area “2-3”. 
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A. 1-5 before annealing 

 

 
B. 1-5 after annealing 
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Figure 28. Evanescent microwave microscopy (A,B) and optical measurements of CNT film in 

designated area “1-5”. 
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The Q-Factor (Quality factor) of a material is directly proportional to the conductivity of 

the material. The evanescent microwave measurements show plots of quality factor in designated 

areas. Both the evanescent measurements and optical measurements are show the same 

conductivity change in the designated areas (Figure 27, Figure 28, Figure 26). In some areas of 

the carbon nanotube material conductivity is increase and in some areas conductivity is decrease. 

However, throughout the whole material there is a general shift towards higher resistivity due to 

annealing. This suggests surface conductivity decreases in CNT tape due to the annealing 

process. 
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CHAPTER 4: FABRICATION OF GRAPHENE FROM SIC 

 

 

4.1 GROWTH FROM SIC 

This chapter will discuss decomposition of SiC to create carbon nanomaterials. One of the 

main goals is to establish a standardized process where repeatable high quality material can be 

grown. The following sections will outline impurities encountered in the fabrication process and 

how those risks where mitigated using various surface modifications. Subsequently, graphene 

grown will be studied in using electron beam induced spectroscopy to correlate electron mobility 

to physical uniformities.  

4.1.1 SURFACE IMPURITIES 

 

The formation of graphene have been observed after annealing SiC wafers at high 

temperatures, 1200°C – 1700°C, at pressures ranging from 10
-3

 to 10
-5

 Torr. Exact growth 

mechanisms are debated, and there are even contradicting results in literature claiming growth of 

CNT from different faces (Si and C) or both faces of SiC [13]. 

The beginning of this study is to ensure that the commercial grade 6H and 4H silicon 

carbide wafers are properly treated before decomposition. Traditionally a RCA treatment was 

used to clean the wafers. This cleaning process is a two part process; the first step is to clean the 

wafer with heated deionized water, hydrogen peroxide and ammonium hydroxide in a 5:1:1 ratio. 

This step is followed by cleaning with a solution of deionized water, hydrogen peroxide and 

hydrochloric acid in a 6:1:1 ratio. Though this process is widely accepted as an industry 

standard, AFM studies of surface topology after RCA treatment showed irregularities in 

cleanliness
 
[9].  
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A B

 
Figure 29. AFM of C-face (A) and Si-face (B) of RCA treated SiC wafers. 

 

Figure 29 are 20 μm x 20 μm AFM micrographs of the C-face (A) and Si-face (B) of SiC 

film. The unknown spherical particles were not removed during the standard RCA treatment, and 

most likely they are oxidized particles or heavy metal impurities. These however were not the 

only surface defects that were seen.  

Recently there have been reports of other structure defects in epi-layers of SiC grown on 

low off-angles (0001) SiC wafers after annealing. Nanoscale control of surface topology is 

imperative in decomposition of SiC, since the end products are also nanoscale. This phenomenon 

called Step Bunching has been shown theoretically and experimentally to depend on the 

temperature gradient during sublimation or growth of SiC. This process of step bunching on the 

surface is called the Ehrlick-Schwoebel effect (ESE) [12]. This effect explains how extremely 

small thermal fluctuations during SiC growth process can dominate mass flow to the lowest 

thermodynamically states which tend to create steps and terraces on the surface of SiC. 



36 
 

 
 

Figure 30. Mass current flow on SiC during sublimation. 

 

Figure 30 is an illustration of mass current flow on the surface of SiC during sublimation. 

There is going to be a drift of mass to the lowest energy position often directed by small thermal 

fluctuations on the surface. These surface potential barriers cause steps to be formed, and since 

each step is created independently, the steps begin to meander without regularity. 

There are two dimensions of concern, L which are the step heights and l the terrace 

lengths. For our purposes, control of the terrace lengths is more important than the step heights. 

These lengths are shown in Figure 31. 

l

L

 
Figure 31. Illustration of terraces and step heights. 
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Figure 32. AFM of SiC surface depicting step-bunching. 

 Figure 32 is an AFM scan of Si-face of SiC substrate, showing the terrace and stepping 

on the surface. The goal now becomes how decrease the step length L, and increase the terrace 

length l.  

4.2 SURFACE MORPHOLOGY CONTROL 

 

As explained earlier, control of quality growth is dependent on the elimination of 

particulate accumulation on the surface and step bunching. First to remove these extra 

contaminates the SiC was annealed in the OxyGon Industrial Inc. furnace at 700⁰ C under argon 

for 1 hour in hopes to remove any surface contaminates held on the surface after the RCA 

treatment by weak van der Walls forces. 



38 
 

 
Figure 33. OxyGon furnace at AFRL. 

The furnace at Wright Patterson Air Force Base Air Force Research Laboratory Materials 

and Manufacturing Directorate is the Oxy-Gon Universal Application furnace FR Series with 

modified chamber. The chamber has a maximum operating temperature of 3000⁰C (5432⁰F) and 

will operate in vacuum, ambient pressure, wet or dry environments. The chamber has a 

turbomolecular pump to achieve stable high vacuum pressures, 10
-6

 Torr, as well as all internal 

electropolished components to ensure stable pressures during runs. There are two ports for 

thermocouples, a small window, as well as additional ports for gas control systems.  

Initially the heating chamber had been a graphitic heating element, which became an 

issue of concern considering that there could be cross graphitic contamination. This problem was 

solved by stripping out the graphitic element and replacing it with tungsten based heating 

elements.  
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Figure 34. Tungsten heating elements. 

 

The tungsten heating elements shown in Figure 34 are a single phase tungsten mesh 

elements with a split construction. The heating element is shown to demonstrate two points (1) 

that there are no carbon sources located in the chamber other then the SiC and (2) since it is a 

split construction design with two independent current connections, there could be a possibility 

of a small temperature gradient in the oven itself. As previously discussed, any small 

thermodynamical fluctuations in the furnace would play an effect when growing nanoscale 

materials, in this case, single layers of graphene [13].  

Moreover, it is important under growth run to characterize both Si and C face of the 

material. In the past, SiC was simply placed planar on the stage in the chamber – effectively not 

allowing one side to be decomposed at the same rate. Due to this, a new stage and sample holder 

were designed and built to center the samples in the center of the heat zone as well as to expose 

both Si and C faces. 
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After making these modifications to the furnaces, post annealing treatment of SiC 

showed to remove surface particulates left even after the RCA treatment and AFM studies post 

annealing returned the surface within the accepted range of ~ 1 μm.  

A technique that would further normalize the surface is called the Chemical Mechanical 

Polishing (CMP) process. This process is widely used in the semiconductor industry to smooth 

wafers to create uniform surfaces. Since this technique uses both physical and chemical forces, 

the chances of surface damage are minimized while still achieve sub-micron global 

planarization.  

The CMP machines and their respective polishing stage such as the ones depicted below 

are capable of various surface finishes with resolutions up to .28 µm. The most common types of 

finishes are shown in Figure 35. 
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Figure 35. Pictures of CMP. 
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No Planarization

Smoothing

Perfect Planarization
 

Figure 36. Possible planarization can be accomplished by CMP. 

 

Once standardized method of preparation of SiC is accomplished, decomposition of samples in 

the Oxy-gon furnace under variable pressures, atmospheric content, temperatures, and ramp rates 

is done.  

4.3 PHYSICAL CHARACTERIZATION 

 

Structural and chemical characterization of the graphene films grown by surface 

decomposition was performed at Wright Patterson Air Force Base. This was achieved by 

transmission electron microscope (TEM), atomic force microscope (AFM) and X-ray diffraction 

analyses. 

4.3.1 TRANSMISSION ELECTRON MICROSCOPE ANALYSIS 

 

Transmission electron microscope is often used in studying atomic structures. The 

resolutions of traditional TEM systems are below .5 nm. However, this technique is considered a 

destructive analysis techniques since it requires the sample to be destroyed to make very thin 
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cross sectional wafers. The sample must be cut and polished to a thickness less than 300 μm as 

well as have coating of conducting metal. 

The samples were formed using a Ga focused ion beam to mill out cross section from SiC 

wafers. The wafers are initially protected with a Pt using an in-situ e-beam deposition. These 

wafers are then thinned to electron transparency and then polished in an argon ion mill to remove 

any damaged areas. Images were taken on the FEI Titan TEM at Wright Patterson AFB. All the 

images were taken under 300 KeV.  

 

SiC

Graphene

Pt

SiC

Pt

SiC

Pt

1300ºC 30 min. 1500ºC 30 min. 1700ºC 30 min.  
 

Figure 37. TEM of decomposed SiC at various annealing temperatures. 

 

These images in Figure 37 are for samples of the Si-face of 6H-SiC annealed in argon 

atmospheric pressure. These samples are non-CMP, which were epi-growth and prepared by 

applying a layer of nitride masking. At temperatures below 1400⁰C, there is little change on the 

surface of SiC.  From 1400⁰C to 1600⁰C there is noticeable region at the surface that begins to 

change, however, no uniform graphene layers are present. Above these temperatures, graphene 

layers are formed and depending on temperature and growth times, layer control can be 

achieved.  
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Epitaxial graphene growth only occurs due to epi-growth nitride masking applied. If the 

nitride layer is not present, carbon nanotubes begin to grow on the surfaces. The actual growth 

mechanism is not well known. The TEM images (Figure 38) are CNT material decomposed from 

non-CMP treated Si-face of 6-H SiC annealed at 1700⁰C under high vacuum.  

 

100 μm

CNTs

  
 

Figure 38. Cross-section of CNT decomposed from SiC wafer [13]. 

 

 

4.3.2 ATOMIC FORCE MICROSCOPY 

 

Atomic Force Microscopy (AFM) is a nondestructive technique that can provide accurate 

surface measurements well into the nanometer regime. AFM measures the interaction between 

the sample and the tip of the AFM probe. By measuring small fluctuations in the position of the 

probe as it is dragged across the surface, AFM can generate surface topologies.  
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1500ºC 30 min. 1600ºC 60 min. 1700ºC 30 min.  
 

Figure 39. AFM of graphene on SiC without CMP treatment at various annealing temperatures 

(2 µm x 2 µm). 

 

Figure 39 represents Si-Face of 6H-SiC that has been decomposed without undergoing 

CMP treatment under atmospheric argon. SiC wafers were annealed in the Oxy-Gon furnace at 

1500⁰C, 1600⁰C and 1700⁰C for 30 minutes. The ramp rate of the temperature was about 

20⁰C/minute. 

As seen in the AFM, surface morphology is irregular, with deep scratches visible in all 

the images. At 1500⁰C, some irregular shaped flake like structures appear, at 1600⁰C graphene 

flakes are observed over the whole surfaces and finally at 1700⁰C highly organized atomically 

flat domains are observed.  
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1700ºC 30 min. non-CMP 1700ºC 30 min. CMP

 
Figure 40. Comparison between non-CMP and CMP treated wafer (2 µm x 2 µm). 

 

Under the same growth conditions, wafers that are CMP treated show drastic 

improvement in graphene quality. In Figure 40, films grown at 1700⁰C for 30 minutes for CMP 

and non-CMP wafer are compared. Step heights measured by Raman spectroscopy showed 

similar graphene thickness. Conclusions from comparing these samples are the CMP treated 

wafers result in larger domain sizes, less wrinkles, and smoother surfaces. Graphene layer 

thickness can be achieved by control of annealing times. In Figure 41, samples that were allowed 

to be annealed longer showed increasing thickness of graphene grown. 

 

1700ºC 2 min. 1700ºC 10 min. 1700ºC 30 min.

0nm

40nm

0nm

40nm

0nm

40nm

 
 

Figure 41. AFM showing increase of graphene thickness as a function of dwell time. 
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4.3.3 X-RAY DIFFRACTION 

 

X-ray diffraction is a useful technique when studying crystalline films. X-ray diffraction 

exploits Bragg’s law to generate diffraction patterns as a function of incident angle, distance 

between crystal planes and wavelength of incident X-ray. Bragg’s Law relates the interatomic 

spacing between two crystalline lattices to incident wavelength and angle of incidence. A Rigaku 

XRD system located at Wright Patterson AFB was used to collect data. 

This technique is useful in characterization of film quality from SiC decomposition. 

Intensity peaks at various 2-θ degrees can be correlated to either SiC or crystalline C. XRD 

measurements was taken on nanotubes grown on the Si-face at 1700⁰C for 30, 60, and 120 

minutes. Over the XRD measurements, several peaks begin to emerge that have been identified 

as pure crystalline carbon (CNT). 

In the XRD for 30 minute annealing, two main peaks are present that correspond to SiC. 

As time of annealing are increased carbon signals being to appear in the XRD. For example, at 

120 minute annealing times, both carbon and SiC signals are present, confirming that only a 

small fraction of the silicon carbide substrate is converted into CNT materials. 
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SiC

SiC

 
 

Figure 42. SiC Si-face after annealing at 1700⁰C for 30 minutes.  

 

 The XRD only shows peaks around 35° and 75° of 2θ scan that correlate with SiC peaks  

 

(Figure 42).   
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SiC

SiC
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Figure 43. SiC Si-face after annealing at 1700⁰C for 60 minutes. 

 

 The XRD (Figure 43) shows peaks that correlate with SiC as well as crystalline carbon 

(CNTs).  
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Figure 44. Si-face after annealing at 1700⁰C for 120 minutes.  

 

 The XRD (Figure 44) shows peaks that correlate with SiC as well as crystalline carbon. 

Intensity counts of carbon peeks begin to become more pronounced when compared to 60 minute 

annealing. Even with two hours of annealing full decomposition of SiC is still incomplete. 

4.3.4 EVANESCENT MICROWAVE MICROSCOPY 

 

Evanescent microwave microscopy spectroscopy is a non destructive technique that can 

be used to extract important material properties. Since both CNT and graphene can be 

decomposed from SiC substrates, SiC decompostion can be used to characterize local areas of 

patterned substrates and compare material properties of both CNT and graphene simultaneously. 
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Figure 45 represents measurements of SiC where graphene is grown surrounded by a forest of 

CNTs. Graphene has conductivity values higher then carbon nanotubes and it is easy to relate the 

measured Q-factor to the difference in their properties. The higher quality factor of the material 

results in its higher conductivity. The region boxed in red is a strip of graphene. The box in green 

is carbon nanotube region. The Q-factor is significantly higher in the graphene region, which 

corresponds to the higher conductivity values. Figure 45B shows a close up of the region 

between graphene and CNTs. The Q-values show presence of an intermediate material that is 

neither graphene nor nanotubes. Further studies must be done to unveil an exact property and 

morphology of the intermediate layer. 

 



52 
 

B

A

B

 

Figure 45. Q-factor plots of graphene - CNT boundary. 
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4.4 ELECTRON BEAM INDUCED CURRENT SPECTROSCOPY 

 

A key feature of Evanescent Microwave Microscopy is its ability of non-destructive 

analysis of materials on a micron scale. In the semiconductor industry as the size of electronics 

become smaller, there has been a growing need for non-destructive failure analysis of devices. 

To isolate areas in a device of electron failure, there is a need for sub-micron resolution. One 

technique that has been developed is Electron Beam Induced Current Spectroscopy.  

This technique utilizes a Scanning Electron Microscope electron beam to induce a current 

signal within a sample, which is then logged by various current monitors. Theoretically, the 

electrons will inelastically collide with the sample lifting the valence electrons into the 

conduction band and creating electron-hole pairs. In most n-p devices, this effect would cause 

the electrons and holes to drift in opposite directions generating currents that are much greater 

than the initial electron beam current. This substantial charge multiplication effect is the basis for 

the EBIC technique.  

The current multiplication is monitored by an extremely low noise current amplifier and 

this information is used to create a signal image. The image qualitatively shows the electronic 

properties within the sample within the resolution of the SEM electron beam spot size.  

This technique is extremely useful in locating junction defects, recombination sites and 

potential sample degradation areas. For example, in a typical p-n junction, majority carriers 

would be induced by the electron beam to drift across the space charge region and picked up by 

the amplifier. If however there are structural defects in the device within the diffusion length of 

the junction, the electron-hole recombination rates will be quenched and a change in current 

would be produced. This alternative current is then picked up by the amplifier and would be 

shown in the image as a contrast. Ideally, this induced current is measured in the form of 
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where x is the distance from the junction, Io is a constant and L is the minority-carrier diffusion 

length. Therefore, the contrast within a certain image can be related to the distance from the 

nearest junction as well as minority and majority carrier diffusion lengths.              

 Figure 46 represents a schematic of an EBIC measurement system. There is a traditional 

SEM component which is combined with an external I-V converter system. 
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Figure 46. Schematic of EBIC system. 

 

A Scanning Electron Microscope at AFRL (WPAFB) was modified to perform Electron 

Beam Induced Current (EBIC) studies. SiC was decomposed at 1700°C for 120 minutes to form 

a graphene multilayer. The graphene was marked off and four probes were connected in as in 

Figure 47.  
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Figure 47. Traditional SEM of graphene in four-probe set-up. 

 

In the traditional SEM image, only structural features of a material can be studied. Figure 

47is the SEM micrograph of a device made with four-probe connections. Structural defects such 

as scratches on the surface seen in Figure 47 as well as particle debris can be studied by using 

SEM. However, SEM images cannot describe any junction defects, recombination sites and 

potential sample electric degradation areas. EBIC images show such junction defects and 

potential sites of device breakdown. In Figure 48, Figure 49, and Figure 50, the top image 

corresponds to EBIC images and the bottom image corresponds to SEM images of the same 

location.  
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Figure 48. EBIC (A) and SEM (B) image of the same area. 
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Figure 49. EBIC (A) and SEM (B) image of the same area. 
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Figure 50. EBIC (A) and SEM (B) image of the same area. 
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CHAPTER 5: FIELD EMISSION 

 

Using the optimized fabrication process outlined in the previous chapters, carbon 

nanotube material was fabricated and tested in field emission experiments. This Chapter will 

discuss the general physics behind field emission from metals. It will also discuss field 

enhancement factors and various techniques for locally generating high electrostatic fields under 

voltages. These principles will be used to optimize cathodes constructed from carbon nanotube 

fibers. 

5.1 THEORY OF FIELD EMISSION 

 

In atomic physics, ionization energy is well defined – it corresponds to the work needed 

to overcome atom’s Coulomb force and remove a electron to infinity. Inevitably, after ionization 

the atom is rearranged due to the loss of an electron and the atom takes on a new configuration.  

In the case of solids the work function W is the amount of energy it would take to remove 

an electron to infinity. Often the work function is defined in terms of a potential, φ = W/e. A 

more useful definition of the work function potential is the energy needed to remove an electron 

from a solid to a relative distance away from the surface. 

In removing an electron from a solid there are some key interactions that contribute to the 

work function potential. First there is penetration of the electron wave functions into the vacuum. 

The tails of the wave function that describe the occupied levels will penetrate some distance 

outside the solid. This results in an electric dipole layer at the surface of the metal. In order for 

an electron to escape it must overcome this surface barrier potential.  

Having crossed the surface barrier potential, the electron must still overcome the image 

force. The interaction with the image forces is simply given by the formula  
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where x is the distance to conducting plane defining a location on the surface. Equation (50) is 

calculated by computing the work needed to move an electron from x to infinity. 

 
Figure 51. Electron in front of conducting plane e- is mirrored by the image charge e+. Distance 

between two image charges from the conducting surface is the same. 

 

This method of electron escaping from the solid is very different from ionization. As the 

electron is pulled away from the solid the positive charge continues to move deeper into the 

solid. This is equivalent of saying, when an electron is removed another is taken from within the 

solid to replace the one lost. In general, ionization energies are often greater than the work 

function. Work function and ionization energy for metals is given in Table III.  
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Table III. Comparison of work function and ionizations for various metals and metal surfaces 

[9]. 

Material Face W (eV) IE (eV)

Li Polycrystal 2.90 5.39

Na Polycrystal 2.75 5.14

K Polycrystal 2.30 4.34

Rb Polycrystal 2.16 4.18

Cs Polycrystal 2.14 3.89

(100) 4.41 5.99

(110) 4.06 5.99

(111) 4.24 5.99

(100) 4.64 7.58

(110) 4.52 7.58

(111) 4.74 7.58

(100) 4.59 7.48

(110) 4.48 7.48

(111) 4.98 7.48

(100) 5.47 9.23

(110) 5.37 9.23

(111) 5.31 9.23

(100) 4.63 7.98

(110) 5.25 7.98

(111) 4.47 7.98

(100) 5.22 7.64

(110) 5.04 7.64

(111) 5.35 7.64

(100) 4.53 7.10

(110) 4.95 7.10

(111) 4.55 7.10

Al

Mo

Ni

W

Au

Cu

Ag

 
 

Currently there are three ways of measuring the work function. One is to heat the material 

and boil an electron off to stimulate thermionic emission. Second is to photons of a specific 

energy to stimulate photoemission. The last way is to apply a strong enough electric field to the 

metal to lower the potential energy in vacuum below the Fermi energy and have the electron 

tunnel through the barrier. This process is called field emission.  



62 
 

5.2 PRINCIPLES OF THERMIONIC EMISSION 

 

At a finite temperature, a distribution of electrons can be described by Fermi-Dirac 

distribution 

 

The emitted electrons can be characterized by energy relative to the vacuum level so the zero of 

Ek is taken to be at vacuum level. The distribution is also dependant on the temperature, where β 

= 1/kBT. The µ as used above is the chemical potential of the surface of the solid equal to -W  

µ

E

x

U(x)

A B

 
Figure 52. (A) Potential U(x) as a function of position from the surface and (B) Fermi-Dirac 

distribution as a function of energy. 

 

There will be a certain temperature where there is a finite probability of occupation of energy 

states that will allow electrons to leave the surface. These electrons contribute to the thermionic 

emission current. The current density normal to the surface can be given by 

 
 

In Equation (52), e is electron charge, v is the velocity of particle, R represents the surface 

barrier potential and Θ is a step function to ensure current is only allowed to emit outwards.  

f(Ek, 

T) 
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Just because an energy state exists, it does not necessarily mean it is occupied all the 

time. The Fermi distribution gives us the probability that a given energy state will be occupied 

by a free electron. Multiplying the Fermi distribution by the density of states function, ρ(E) , and 

integrating over all energy above the surface potential gives a more accurate number of free 

electrons per unit volume per unit energy based on quantum mechanics statistics. Noting that the 

density of states function can be represented as  

 
and J can now be written as 

 
 Using the density of states function for three dimensions and approximating the Fermi-

Dirac equation by assuming  we have 

 
Recognizing that  and , the limits can be 

changed from  and integrated over all momenta. The result is known as 

the Richardson-Dushman formula[9]: 

 
Notice that the Richardson-Dushman formula is a function of temperature T and surface 

chemical potential . For a large thermionic emission, the surface chemical potential must be 

small and temperature must be high. 

Often to decrease the surface chemical potential, thin layers of low work function 

materials are used to coat emission surface of cathodes. Materials like cesium or other alkali 

metals have been used in the past to lower the work functions for thermionic emission cathodes. 
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Using monolayer coverage on metals, the dipoles that are formed by the transfer of electrons 

from the individual Cs atoms are very strong. The surface dipoles experience strong electric 

fields due to neighboring dipoles and the direction of these electric fields can reduce the dipole 

moments. It has been shown in certain semiconductors such as GaAs, depositing Cs can actually 

make the work function negative [9].  

5.3 PRINCIPLES OF FIELD EMISSION 

 

Field emission is a quantum mechanical phenomena that occurs when an electron tunnels 

through a reduced surface potential from a static electric field. This can be pictured by Figure 53. 

(x) (x)

V(x) V(x)

Ef

W

(A) (B)
 

Figure 53. Potential barrier field emission (A) without and (B) with an imposed electric field. 

 

With an incident electric field D, the potential can be written as 

 

 
Applying this potential into the one dimensional Schrödinger equation, 

 

 
the wave function in both regions can be solved. For the x<0 case, the solution is described by 

Equation (59), where B is the reflection amplitude 
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For the case of x>0, the Schrödinger equation is slightly more complex 

 

By making the substitution of  

 

the resulting equation becomes a differential equation whose solution is a linear combination of 

two Airy functions,  

 
 

where the Airy functions and their derivatives are 

 

 
Due to continuity, the following conditions must be made true 

 

 

 
Taking into account Equations (59) and (62), we can solve Equations (64) and (65) for the 

normalization constant N 

 

where  and R
3
 is the volume of the metal. Using Equation (62) with 

the solved normalization constant, the current density can be calculated as 
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This current  is a function of the incident electric field D. To get a complete answer the current 

density must be summed over all energies that are able to penetrate the potential barrier. Making 

the substitution V ≈ , we have 

 

Finally, the total current I is attained, also known as the Fowler-Nordheim formula 

 

 
The Fowler-Nordheim formula demonstrates some key features of field emission, the 

most notably that field emission is not temperature dependent [9]. It also makes the assumptions 

that electron emission is near the Fermi energy level, the emission surface is flat, and the image 

charge potential takes on the form .  

 

5.4 GEOMETRY EFFECTS 

 

Equation 70, the Fowler-Nordheim formula does not explicitly have a term for the 

actually geometry of the emission surface. However, geometry terms are embedded into the 

electric field, D. To see the effects of various cathode shapes clearly, a simple demonstration of 

field enhancement is shown in this section. To increase emission current, local emission surface 

geometry can be modified to enhance the local electric field. To demonstrate field enhancement 

due to geometry a three-dimensional case similar to the one example by Kosmahl [10]. Starting 

with an ellipsoidal surface defined by Equation (71), 
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and assuming that  the surface of the ellipse is equipotential. The electric field in between the 

two plates can be solved by satisfying the Laplace equation for the electric potential together 

with appropriate electric field boundary conditions 

 
 

Making the assumption that c is the largest axis and two minor axes are set to be equal, 

a=b, the problem can be converted into a coordinate system that can be described as a prolate 

spheroidal system. The transformation from rectangular coordinates (x,y,z) can be made to a new 

coordinates basis ( ξ, η, φ ) 

 

 

 
 

The Laplacian in the prolate spheroidal system becomes, 

 

 
 

Equation 29 can further be simplified by assuming that the  terms equal 0 since we are only 

looking for the constant   surfaces. The solution to Laplace equation becomes a combination of 

Legendre functions that are dependent on the ellipsoidal shape. The solution becomes [11] 

 
 

where , c is the constant  converted back into rectangular coordinates, and 

.  is the potential across the two plates and d is the distance between the 

electrodes. 
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To calculate the actual field enhancement factor, the ratio of average field  is 

compared with . Simplifying this results, the equation (78) for field enhancement 

factor β is  

 
 

where , or the radius of curvature of the ellipsoid. In general, (  can be 

considered as the aspect ratio of the device (carbon nanotube).  

A B

C
 

Figure 54. 2-D absolute E-field values for three different geometries. (A) Flat rectangular 

surface, (B) curved surface of radius R, and (C) cone 

 

Figure 54 represents a computer simulation of electric field intensity for different geometry of 

cathode from the flat surface (Figure 54A) to the sharp cone (Figure 54C) imitating different 

aspect ratio for carbon nanotubes. Using the DC electrostatics package of CST Microwave 

Studio, geometries were constructed from perfect electrical conductor. There were held a fixed 
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distance from a ground plane. A potential was then applied to the cathode and field lines where 

modeled by the software. The conclusion is field lines tend to condense around sharp edges. 

Therefore, a cathode that is tapered like a cone will have the high field enhancement factor. 

 

5.5 FIELD EMISSION RESULTS 

 

The field emission setup is located at AFRL in Wright Patterson AFB. A rough schematic 

of the test chamber is shown in Figure 55. 

Vacuum Chamber

Optical Camera

Turbo 
Pump

Roughing 
Pump

DC Voltage Supply

Ammeter

 
 

Figure 55. Schematic of field emission chamber set-up. 

 

The chamber is sealed and hooked to a turbo-pump to ensure ultra high vacuum during 

testing. The anode and cathode are connected to external systems to measure current as a 

function of voltage applied. The anode is staged on electronically controlled motor which allows 

accurate stepping in one direction approximately 5 μm. In addition, a camera is focused onto the 

cathode for live images of the field emission process. Previous studies have been conducted on 
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CNT material grown on SiC. Figure 56 depicts field emission results of CNT decomposed from 

annealing 4H-SiC 1700⁰ C under 10
-3

 Torr for 3 hours (Figure 57). From each consecutive run 

there was a drastic change in current density [20]. This could be explained by the presence of 

absorbed impurities on the surface of the carbon nanotube film.  

 

Figure 56. Field emission of CNT film [20]. 

 

Figure 57. SEM of CNT film grown at 1700⁰C under 10
-3

 Torr for 3 hours [20]. 
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The one of the main focus of this thesis from experimental point of view was to find 

carbon material with the best field emission properties. High quality CNT material were used 

with the intent of stable and repeatable emission patterns. Rice SWNT fiber with a radius of 

about 85 μm was made using Rice’s super acid spinning technique. This technique creates a fiber 

with uniform thickness and no residual iron or sulfur catalysts. Because of this, Rice fibers 

should exhibit much higher current densities than SiC CNT films.  

All Rice fibers were mechanically clipped to create a flat surface and initial conditioning 

was performed to ensure standardized measurements. This initial conditioning consisted of a 

three hour voltage ramp from 0 V to 1000 V, with 1 hour dwell at 1000 V and three hour ramp 

down to 0 V. These fibers were all about 1 cm long and mounted on copper impregnated 

graphene pucks. A small hole was drilled into the puck and the fibers were threaded through the 

hole and cemented into place using silver paste. In Figure 58, SEM image represents a fiber  

mounted on a graphite puck. The shiny reflections are silver paste. 
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Figure 58. Image of SWNT fiber mounted on a graphite puck. 

 

Graphite puck 

Silver paste 
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Figure 59. SWNT Rice fiber in field emission chamber. The fiber is placed about 500 µm from 

anode. 

 

 A SWNT Rice fiber with the diameter of about 85 μm is tested with an anode spacing of 

about 500 µm. Figure 60 and Figure 61 should show this fiber is capable of having high field 

emission currents. At 1000 V maximum current reached was 200 μA. However, current during 

the dwell period was not constant and declined significantly. 
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Figure 60. Voltage vs. time of SWNT Rice fiber test with a 500 µm gap distance. 

 
Figure 61. Field emission current vs. time of SWNT Rice fiber test a 500 µm gap distance. 



75 
 

 

Figure 62. MWNT Cambridge fiber in field emission chamber. The fiber is placed about 650 µm 

from anode. 

 

 To make an accurate comparison in SWNT Rice fiber, MWNT Cambridge fiber should 

be about the same diameter and the same gap distance. However, due to current limitations of the 

equipment these measurements could not be taken. The anode used in these experiments was 

constructed from copper and shaped to a 750 µm tip. With excessive currents plasma formation 

on the anode jeopardized accurate current measurements. MWNT Cambridge fiber at the same 

fiber radius over-saturated the amp-meter at gap distance 650 μm (Figure 60 and Figure 61). 

Even at a gap distance 60% greater, MWNT Cambridge fiber generated a higher average current 

density than SWNT Rice fiber. 
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Figure 63. Voltage vs. time of MWNT Cambridge fiber test with a 650 µm gap distance. 

 
Figure 64. Field emission current vs. time of MWNT Cambridge fiber test with a 650 µm gap 

distance. 
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Figure 65. MWNT Cambridge fiber in field emission chamber. The fiber is placed about 815 µm 

from anode. 

 

 MWNT Cambridge fiber was also placed in emission chamber (Figure 65) at the distance 

815 mm from anode and tested with respect to its emission capability. The results of these 

measurements are presented in Figure 66 and Figure 67. 
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Figure 66. Voltage vs. time of MWNT Cambridge fiber test with an 815 µm gap distance. 

 

 
Figure 67. Field emission current vs. time of MWNT Cambridge fiber test with an 815 µm gap 

distance. 
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On the other hand, MWNT Cambridge fiber showed relatively stable current during 

dwell periods (Figure 68 and Figure 69) in contrast to SWNT Rice fiber. 
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Figure 68. Current vs. time of MWNT Cambridge fiber field emission 615 µm at 1000 V. 
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Figure 69. Current vs. time of MWNT Cambridge fiber field emission 815 µm at 1000 V. 
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 In addition, morphology of the fiber tip after clipping and alignment of carbon nanotubes 

in MWNT Cambridge fiber is depicted in Figure 70. 

A B

 
 

Figure 70. SEM of MWNT Cambridge fiber. (A) Fiber tip after mechanical clipping and (B) 

alignment of CNTs in fiber. 

 

An interesting feature of the AFRL chamber set-up is the utilization of an optical camera to 

optically record the fiber in-situ during field emission. Images of the field emission showed 

evidence of localized field emission sites. Small areas of fiber tips under high voltages began to 

glow. These glowing areas changed during testing cycle, giving evidence of percolation of field 

emission sites. These images show fibers that “glow” (Figure 71). The images were taken with 

the room light on but the image in Figure 71D was taken with the room light off. 
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Figure 71. Live images of field emission process.  
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CHAPTER 6: CONCLUSION 

 

Optimization of silicon carbide decomposition to generate graphene or carbon 

nanostructures was studied. The formation of tightly packed and vertically arranged carbon 

nanotubes structures or graphene sheets were achieved by decomposition of SiC single crystal 

substrates (wafers) at elevated temperatures (above 1600
0
C) in argon atmospheric pressure or in 

vacuum. Prior to this decomposition, a standard cleaning process of SiC wafer's surface called 

RCA treatment was applied. Some spherical particles (the most likely heavy metal impurities) 

have been seen still after treatment on the surface of SiC but there were easily removed by 

subjecting SiC wafer to the high temperature annealing (700
0
C) in argon atmosphere for 1 hour. 

Our research initially concentrated on nanoscale control of wafer surface topology.  It appears 

that small thermal fluctuations during growth process can create steps and terraces on SiC 

surface (step bunching phenomenon). To avoid the step bunching, a planarization process of SiC 

wafer was done called chemical mechanical polishing (CMP) to guarantee a decrease in the step 

length and an increase in the terrace length on the surface of SiC wafer.  After initial RCA 

cleaning steps of wafer, a decomposition of non-CMP silicon carbide took place at different 

temperatures 1300
0
C, 1500

0
C and 1700

0
C. Uniform graphene layers were observed when epi-

growth nitride mask was applied subjected to temperatures above 1600
0
C in argon atmosphere. 

In turn, carbon nanotubes were seen when SiC single crystal substrate was annealed without 

mask at 1700
0
C under high vacuum. CMP treated silicon carbide wafers showed to have high 

quality graphene growths measured by increased domain sizes and uniformity of material. 

Various physical characterization techniques were used to study effects of temperature, pressure 

and surface treatments on carbon nanomaterials growths.  
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In addition, optimization of carbon nanotubes grown from the “Cambridge” process was 

presented. It is shown through evanescent microwave spectroscopy as well as optical 

spectroscopy measurements that temperature annealing MWNT Cambridge fibers up to 500
0
C in 

argon will have the same effect on local electrical properties of CNT materials. In Figs. 48-50, 

measurements of pre and post annealed MWNT Cambridge fibers show that the relative Q-factor  

and reflectance of the fibers decrease after annealing. It suggests that a surface conductivity of 

fibers decreases which is confirmed by I-V curve measurements (an increase in resistance of 

fiber shown in Figure 22). One of the possible explanations of this behavior is a removal of 

oxygen and water from the sample due to temperature annealing.  

The main goal of our studies was primarily to optimize growths and corresponding post 

treatments to achieve the highest performing materials for practical applications. The graphene 

device presented in the EBIC study is a device constructed using optimized growth techniques 

discussed in Chapter 4. The device is intended to be a sample device to study the quantum Hall 

effect. In addition, initial studies using EBIC spectroscopy show some interesting results on the 

effects of irregular graphene growths. Physical deformations can easily be seen by an SEM on 

the surface of a graphene device. However, physical deformations may not correspond to electric 

barriers. In Figure 49, SEM micrograph shows clearly a physical surface defect, however, 

different intensities on the EBIC indicate that the surface defect may not correspond to site of 

electric defects. Correlation between electric and physical deformation will improve the quality 

of future graphene based devices. Future studies must be done to translate the EBIC data into 

information characterizing the carrier properties in graphene.  

 The focus in the case of carbon nanotube materials was to study their field emission 

properties. As summarized in Table IV, a drastic improvement of field emission current was 
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found for MWNT Cambridge fiber when compared to SWNT Rice fiber measurements (see 

Figure 60). On the initial stage of our studies, field emission from silicon carbide decomposed 

carbon nanotubes was measured (Figure 56). However, these studies show the inconsistencies of 

current densities from consecutive tests.  

 CNT fiber, similar to the MWNT Cambridge fibers, has a higher potential of scalability 

into high power applications. Even with poor fiber condensation, and high level of growth 

catalysts, MWNT Cambridge fibers outperformed the SWNT Rice fibers (see Table IV). The 

MWNT Cambridge fibers can be further optimized in future studies.  Future field emission 

studies of Cambridge MWNT has been given additional funding based off results presented in 

this thesis.  

 

Table IV. Summary of field emission results. 

 
Current Density ( mA/cm

2 
) Description 

SiC CNT 5.00 
1000 V at 150 µm gap 

Rice SWNT 8.81 
1000 V at 500 µm gap 

Cambridge MWNT 
30.84 

1000 V at 615 µm gap 

7.05 
1000 V at 815 µm gap 
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