Wright State University CORE Scholar

Browse all Theses and Dissertations

Theses and Dissertations

2011

Anthropometric Analysis of the Cervical Spine

Susan Hueston Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

Part of the Biomedical Engineering and Bioengineering Commons

Repository Citation

Hueston, Susan, "Anthropometric Analysis of the Cervical Spine" (2011). *Browse all Theses and Dissertations*. 487. https://corescholar.libraries.wright.edu/etd_all/487

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

ANTHROPOMETRIC ANALYSIS OF THE CERVICAL SPINE

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering

By

SUSAN LAURA HUESTON B.S., Wright State University, 2008

2011 Wright State University

COPYRIGHT BY SUSAN L. HUESTON 2011

WRIGHT STATE UNIVERSITY

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL

August 9, 2011

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY

SUPERVISION BY Susan Laura Hueston ENTITLED Anthropometric Analysis of

the Cervical Spine BE ACCEPTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF Masters of Science in Engineering

Taurn Goswami, DSc Thesis Director

Thomas N. Hangartner, PhD, Chair Department of Biomedical, Industrial and Human Factors Engineering

Committee on Final Examination

Tarun Goswami, DSc

David B. Reynolds, PhD

Michael Albert, MD

Thomas N. Hangartner, PhD

Andrew Hsu, PhD Dean, Graduate School

ABSTRACT

Hueston, Susan Laura. M.S.Egr, Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, 2011. Anthropometric Analysis of the Cervical Spine.

An understanding of the dimensional anatomy of the cervical spine is necessary in order to help diagnose disease, deformity, injury, and device development. Previous investigation has been completed utilizing cadavers, X-rays and other imaging techniques. This research utilized computer tomography images from the trauma registry at Miami Valley Hospital in Dayton, Ohio to complete an anthropometric study of the cervical spine. Linear mathematical models were developed to investigate the relationships present in the dimensional anatomy of the cervical spine. New measurements were completed on subjects of both Caucasian and African American descent and of both genders. An approximation of the moment of inertia for the vertebral body was developed along with a computer program to predict anthropometric features. Statistical analysis on published data revealed 128 of 3000 and 133 of 2760 comparisons were significant. Similar trends were found to the measurement carried out with the CT data for this research.

TABLE OF CONTENTS

1
2
2
2
7
19
32
32
34
35
40
40
52
61
66
81

LIST OF FIGURES

Figure 1: Chinese Singaporean Measurements	3
Figure 2: South African Measurements	8
Figure 3: Caucasian Measurements – Panjabi	14
Figure 4: Measurements by X-ray – Liguoro	21
Figure 5: Measurements by X-Ray – Nissan	23
Figure 6: CT measurement, Axial – Rao	25
Figure 7: CT Measurement, Sagittal – Rao	25
Figure 8: CT Measurement, Sagittal2 – Rao	26
Figure 9: Program utilized to view CT's and complete measurements	29
Figure 10: Coronal Measurements	30
Figure 11: Sagittal Measurements	31
Figure 12: Axial Measurements	32
Figure 13: Vertebral body representation	35
Figure 14: Elliptical Plate	36
Figure 15: Elliptical Cone	37
Figure 16: MOI predicted and measured for the C3 vertebra	63
Figure 17: MOI predicted and measured for the C4 vertebra	63
Figure 18: MOI predicted and measured for the C5 vertebra	64
Figure 19: MOI predicted and measured for the C6 vertebra	64
Figure 20: MOI predicted and measured for the C7 vertebra	65
Figure 21: Flow chart of how step II works.	78

LIST OF TABLES

Table 1: Chinese Singaporeans Measurement	7
Table 2: South African C7 measurements	. 11
Table 3: African American Spinal Canal Measurements	. 13
Table 4: Caucasian Measurements - Panjabi	.16
Table 5: Caucasian Measurements – Francis	. 17
Table 5: Caucasian Measurements – Francis part 2	. 18
Table 5: Caucasian Measurements – Francis part 3	. 19
Table 6: X-Ray Measurements – Liguoro	. 22
Table 7: X-Ray Measurements - Nissan	. 24
Table 8: CT Measurement – Rao	. 27
Table 9: Chinese Singaporean Correlations part 1	. 41
Table 9: Chinese Singaporean Correlations continued part 2	. 42
Table 9: Chinese Singaporean Correlations continued part 3	. 43
Table 9: Chinese Singaporean Correlations continued part 4	. 44
Table 9: Chinese Singaporean Correlations continued part 5	. 45
Table 9: Chinese Singaporean Correlations continued part 6	. 46
Table 10: Caucasian Correlations, Cadaver part 1	. 47
Table 10: Caucasian Correlations, Cadaver part 2	. 48
Table 10: Caucasian Correlations, Cadaver part 3	. 49
Table 10: Caucasian Correlations, Cadaver part 4	50
Table 10: Caucasian Correlations, Cadaver part 5	51
Table 11: CT measurements, Caucasian	. 53
Table 12: CT Measurements, African American	. 54
Table 13: CT measurements, age	. 55
Table 14: CT Male Correlations	. 57
Table 14: CT Male Correlations part 2	. 58
Table 15: CT Female Correlations	. 59
Table 15: CT Female Correlations part 2	60
Table 16: Moment of Inertia	. 62
Table 17: Correlations between Studies, male	. 74
Table 18: Correlations between Studies, female	.75

ACKNOWLEDGEMENTS

I would like to acknowledge and express my sincerest gratitude to my advisor, Dr. Tarun Goswami. Without his guidance, support and pushing me to do the best work I could I would not have been able to accomplish this overwhelming task. I'd also like to thank my committee members Dr. Albert and Dr. Reynolds for taking the time out of their busy schedules to assist me in any way to review and provide helpful suggestions in completing this thesis. I also want to acknowledge my fellow lab mates and co-members of the Spine Research Group Isaac Mabe, Mbulelo Makola, Dan Reese, Paige King, Brandon Walters, Keith Saum, and Matt Binkley, MD. I appreciate all your help, guidance, and support. I also would like to thank Mr. Scott Calvin; Manager of Imaging Department at Miami Valley Hospital who provided all of the CT scan data. Finally I would like to thank my loving husband, family, and friends who have supported me through this whole process in achieving my Masters Degree.

INTRODUCTION

The spine supports the skull and trunk, protects the spinal cord, and helps absorb stress that is produced from movement of the body (KenethS. Saladin PhD 2004). It also provides an attachment for the extremities, thoracic cage, and muscles (KenethS. Saladin PhD 2004). It consists of five sections: cervical, thoracic, lumbar, sacrum, and coccyx (KenethS. Saladin PhD 2004). There are a total of 33 vertebrae in the spine, in particular there are 7 in the cervical spine (located in the neck), 12 in the thoracic spine (located in the mid-section, supporting the rib cage), 5 in the lumbar spine (located in the lower back), 5 in the sacrum (located at the base of the spine), finally 4 small vertebra in the coccyx (KenethS. Saladin PhD 2004).

Of particular interest for the Spine Research Group is the cervical spine. There are an estimated number of 6000 deaths as a result of injury to the cervical spine and around 5000 cases of quadriplegia each year (Moira Davenport 2010). Because the cervical spine houses many of the nerves involved with bodily functions including those involved with sensory movement, injury to this section of the spine can be serious and even life-threatening. In order to better assist injury that occurs to this region of the spine it is important to understand its anatomy. Several studies have been completed by performing quantitative measurements of this region of the spine, particularly for the Caucasian population. The objective of the study was to establish any linear mathematical relationships that may be present in the difference found with respect to race, gender, and age of the subject. Furthermore it was of interest to establish an estimate of the mass moment of inertia of the vertebral body.

1

LITERATURE REVIEW

As stated previously, numerous studies have been completed investigating the morphometry of the spine. Included in these investigations have been cadaveric studies, as well as various CT/MRI/X-ray studies. In this section a review of the previous studies performed is discussed.

Cadaver Studies

Previous studies investigated the three-dimensional morphometry of the spine. Several of these studies investigated different races, particular sections of the spine, gender, or particular areas of the vertebra itself.

The different ethnicities included in the morphometric analyses were: Chinese Singaporeans, South Africans, African Americans, and Caucasians. The methods and actual measurements taken for these studies were not standardized and different approaches were taken in their investigations. However, similar measurements were taken for the Caucasian and Chinese Singaporean in two different studies.

Chinese Singaporeans:

Tan et al investigated Chinese Singaporean males between the ages of 50-70 years old. The spinal units were from the C3 to the L5 vertebrae (S.H. Tan 2004). The following measurements were included in their investigation: the upper and lower endplate width (EPWu and EPWl), the upper and lower endplate depth (EPDu and EPDl), posterior and anterior vertebral body height (VBHp and VBHa), spinal canal width and depth, (SCW and SCD), pedicle height on the left and right side (PDHl and PDHr), PL (pedicle length), spinous process length (SPL), transverse process width (TPW), upper and lower endplate area (EPAu and EPAl), spinal canal

2

area (SCA), pedicle area on the left and right side (PDAl and PDAr), upper and lower endplate transverse inclination (EPItu and EPItl), pedicle sagittal inclination on the left and right side (PDIsl and PDIsr), and pedicle transverse inclination on the left and right side (PDItl and PDItr) (S.H. Tan 2004). These can all be seen in Figure 1.

Figure 1: Chinese Singaporean Measurements – cervical spine (a), thoracic spine

(b), and lumbar spine (c) (S.H. Tan 2004)

Before completing measurements the soft tissue was removed from the vertebrae and then immersed in a sodium hydrochloride solution for 30 minutes in order to dissolve the remaining remnants (S.H. Tan 2004). In order to remove the sodium hydrochloride spinal units were rinsed "under lukewarm water for" 20 minutes (S.H. Tan 2004). Finally, in order to limit the chance of the vertebra to deform they were "air dried and stored at a constant temperature and humidity (S.H. Tan 2004)."

The measurements were taken utilizing "a direct-contact, three-dimensional digitiser" that had an accuracy of 0.01 mm (S.H. Tan 2004). A direct contact probe was used in order to establish the coordinate system of the vertebra. This probe was then connected to a computer to collect the data and process it (S.H. Tan 2004).

As stated previously, the focus of this investigation has involved the cervical spine, as a result other regions of the spine will not be discussed. Tan et al found that the endplate width, depth, and vertebral body height remained relatively constant from C3 to C5 where it then increased (S.H. Tan 2004). The endplate width was found to increase more significantly than both the endplate depth and vertebral body height (S.H. Tan 2004). Also the VBHp, EPWl and EPDl were larger than the VBHa, EPWu and EPDu, respectively (S.H. Tan 2004). The SCW and SCD were fairly constant from C3 to C6 (S.H. Tan 2004). The SPL and TPW increase from C3 to C7 in a similar fashion (S.H. Tan 2004). The pedicle height on both the left and right side decreased from C3 to C6 and then increased gradually to C7 (S.H. Tan 2004). The pedicle width, on both the left and right side, increases through the cervical spine from C3 to C7 (S.H. Tan 2004).

5

The endplate area was found to increase through the spine as well from C3 to C7, with the upper always being larger than the lower (S.H. Tan 2004). Both the pedicle and spinal canal area remained fairly constant (S.H. Tan 2004). The endplate inclinations for both the upper and lower regions are angled toward the head with a steady inclination, and the EPItl was smaller than the EPItu (S.H. Tan 2004). The pedicle sagittal inclination (PDIs) was fairly constant at about 40° from C3 to C6, however at C6 the pedicles congregate towards each other (S.H. Tan 2004). The pedicle transverse inclination (PDIt) was angled towards the back from C3 to C4 and angle towards the head after C4 (S.H. Tan 2004)

	Cá	3	C	4	C	5	C6		C7	7
		Std		Std		Std		Std		Std
	Mean	dev	Mean	dev	Mean	dev	Mean	dev	Mean	dev
EPWu	13.8	0.1	14.7	0.1	14.9	0.1	15.8	0	19	0.1
EPW1	14.3	0.1	15	0.1	15.9	0.1	19.5	0.2	20.3	0.2
EPDu	13.6	0.1	14	0.1	14.3	0.1	14.6	0.2	15.1	0.2
EPD1	15.1	0.2	15.2	0.4	15.1	0.3	15.7	0.3	15.6	0.3
VBHa	10	0.2	9.9	0.3	9.6	0.2	10.4	0.3	11.2	0.2
VBHp	11.2	0.1	11.3	0.2	11.3	0.1	11.3	0.2	11.8	0.3
SCW	19.2	0.4	19.3	0.5	20.3	0.4	20.6	0.4	19.7	0.4
SCD	10.3	0.3	10.3	0.3	10.3	0.3	10.3	0.3	11	0.2
PDH1	6.7	0.2	6.6	0.2	6.3	0.3	6	0.3	6.5	0.2
PDHr	6.8	0.2	6.7	0.2	5.9	0.2	6	0.1	6.1	0.1
PDWl	4.5	0.2	4.6	0.2	4.7	0.1	5.4	0.1	5.6	0.2
PDWr	4.4	0.2	4.5	0.2	4.9	0.2	5.4	0.2	5.7	1
SPL	25.6	0.5	30.3	0.4	33.6	1	40.5	1.5	46.9	1.1
TPW	41.4	0.8	44.9	0.8	47.6	1	48.4	0.9	53.8	1
EPAu	154.7	3.8	169.2	4.9	187.4	6.6	210.58	10	220.8	9
EPAl	216.8	10.1	241.5	10.6	286.4	10.3	316.3	7.4	340	10.3
SCA	149.7	9	159.9	8.4	166.8	8	163.7	10.2	167.5	6.7
PDAl	27.6	1	27.7	0.8	27.4	1.1	29.4	1.5	33.7	2.6
PDAr	28.5	1	28.8	1	28.5	1.1	33	1.3	32.1	1.6
EPItu	5	4.1	5.2	5.2	7.1	1.2	5.8	0.6	7.2	0.7
EPItl	3.3	0.5	3.5	0.7	2.7	0.3	4.2	0.4	5.1	0.5
PDIsl	-42.9	1	-44	1.3	-46.3	1	-41.9	1.6	-30.6	1.1
PDIsr	39.6	1	38.9	1.1	39.1	1.6	38.5	2.3	30.3	0.9
PDItl	-4.8	1	-3.2	0.7	2.6	0.7	4.8	1	5.8	0.7
PDItr	-6.5	1	-5.4	1.1	4.9	1	6	1.3	3.1	0.7

Table 1: Chinese Singaporeans Measurement (S.H. Tan 2004)

South Africans

Kibii et al, investigated the differences in morphometry for three different subgroup of South Africans including White, Colored, and Zulu. Their study was limited, in that they only measured the C7 vertebra. The measurements included the EPW, EPD, SCW, SCD, and VBHa and illustrated in Figure 2 (they used different acronyms of CCW, BAP, CT, CAP, and CCH respectively (Job M. Kibii 2010).

Kibii et al collected 240 cadaveric C7 vertebrae of both sexes, ranging from 30 to 70 years age group (Kibii). Of these 240 specimens: 120 were of Zulu origin with 60 of them being female and 60 being male; 60 were of White origin, with 30 being female and 30 being male; finally 60 of Colored origin, again with 30 being female and 30 male (Job M. Kibii 2010). Measurements were taken with the use of vernier calipers that had an accuracy of 0.01 mm (Job M. Kibii 2010). Their investigation included an analysis utilizing race and gender, and the correlations found were different morphometry, discussed below.

a.

b.

Figure 2: South African Measurements – axial view (a), sagittal view (b) (Job M. Kibii 2010)

Kibii et al found that for the White South Africans the SCD was larger in males than in females (Job M. Kibii 2010). The smallest SCD was seen in the Zulu male and Colored female subgroups (Job M. Kibii 2010). All together the females in the White and Colored subgroups had statistically significant smaller SCD than their male counterparts, but there was no significant difference found in gender in the Zulu subgroup (Job M. Kibii 2010). White males had statistically significant larger SCD than both the Colored and Zulu males (with no statistical difference found between the Colored and Zulu males) (Job M. Kibii 2010). Kibii et al also found that there was no statistical difference in the SCD among the subgroups for the female gender. The largest SCW was found in the White subgroup, while the smallest were found in the Colored (Job M. Kibii 2010). All together the females of both Colored and Zulu group exhibited significantly smaller SCW than their male counterparts, while the White group had no statistically significant difference in regards to gender (Job M. Kibii 2010). Both the Zulu and White males had significantly larger SCW (with no statistical significant difference between the two) than the Colored males (Job M. Kibii 2010). White females exhibited significantly larger SCW than both the Zulu and Colored females (with no statistically significant difference between the two) (Job M. Kibii 2010).

The Colored subgroup displays the smallest EPD out of the three, while the Zulu males and White females have the largest EPD (Job M. Kibii 2010). Males of all three subgroups have statistically larger EPD's than their female counterparts (Job M. Kibii 2010). Colored males and females were found to have a significantly smaller EPD than both the Zulu and White males and females (with no significant difference found between the Zulu/White males and Zulu/White females) (Job M. Kibii 2010).

The largest VBHa was seen in the White group, while the Colored males and Zulu females had the smallest VBHa (Job M. Kibii 2010). Again the male gender of all subgroups displayed significantly larger VBHa than their female counterparts (Job M. Kibii 2010). White males and females were found to have significantly larger VBHa than both the Zulu and Colored males and females (with no significant difference between the Zulu/Colored males and Zulu/Colored females) (Job M. Kibii 2010).

10

As for the EPW, the largest was seen among the White group and smallest in the Colored (Job M. Kibii 2010). Again the male gender of all subgroups displayed significantly larger EPW than their female counterparts (Job M. Kibii 2010). Colored males had significantly smaller EPW than both the Zulu and White males (with no significant difference between these two) (Job M. Kibii 2010). Finally there were no significant differences found in subgroups in the female gender (Job M. Kibii 2010). Measurements found for this study are displayed in Table 2.

	SCD									
	Z	Zulu	W	/hite	Co	lored				
	Male	Female	Male	Female	Male	Female				
Mean	14.08	14.06	15.06	14.24	14.29	13.63				
Std dev	1.43	1.62	1.34 1.42		0.9	1.04				
			S	SCW						
	Z	Zulu	W	/hite	Co	lored				
	Male	Female	Male	Female	Male	Female				
Mean	24.37	22.9	24.77	24.25	23.48	22.45				
Std dev	1.68	1.42	1.66	1.1	1.8	1.22				
			E	EPD						
	Z	Zulu	W	Vhite	Colored					
	Male	Female	Male	Female	Male	Female				
Mean	17.62	15.59	17.5	16.18	16.55	15.1				
Std dev	1.74	1.31	1.65	2.06	1.3	1.55				
			V	BHa						
	Z	Zulu	W	Vhite	Colored					
	Male	Female	Male	Female	Male	Female				
Mean	14.14	12.92	15.97	14.3	13.65	12.99				
Std dev	1.34	0.86	2.96	1.18	0.87	0.79				
			E	PW						
	Z	Zulu	W	Vhite	Co	lored				
	Male	Female	Male	Female	Male	Female				
Mean	28.03	25.18	28.34	25.52	26.98	24.86				
Std dev	2.14	1.69	3.3	1.77	2.02	2.12				

 Table 2: South African C7 measurements

African Americans

There is very little investigation of this magnitude in the African American race in the United States. There have been several anthropometric studies that include this particular race but are for the lumbar or thoracic spine (Youssef Masharawi 2008; Peter V. Scoles MD 1988). A couple of studies even investigate estimating height of the subject based on length of a section of the spine (Donald R. Jason 1995; Tibbetts 1981).

One study that was found for the African American race (a second study that included an investigation in to both Caucasian and African American can be seen in the following section entitled Caucasians) and the morphometry of the cervical spine only included measurements of the spinal canal including the SCD and SCW (they used the acronyms CAP and CTR respectively) (Nancy E. Tatarek 2005). In this analysis Vernier calipers were used and the measurements were rounded to the nearest millimeter (Nancy E. Tatarek 2005). Measurements were completed on 321 skeletal subjects where 80 were African American males, 73 African American females, 80 Caucasian males, and 88 Caucasian females (Nancy E. Tatarek 2005). It was found that for both races and genders the SCD appeared largest in the C2 vertebra level, but generally males were larger than females (Nancy E. Tatarek 2005). In the C3 vertebra the SCD was fairly similar for both races and gender (Nancy E. Tatarek 2005). The African American race exhibited the smallest SCD in the C4 vertebra, while the Caucasian race exhibited the smallest in the C6 vertebra (Nancy E. Tatarek 2005). Tatarek et al found that the largest SCW was in the C6 vertebra, and generally it increased from C2 to C7. The SCW was generally 10 mm

12

larger than the SCD for all subjects (Nancy E. Tatarek 2005). The measurements completed for this study are displayed in Table 3.

			SCI)		SCW				
		African	American	Cauc	asian	African	American	Caucasian		
		Male	Female	Male	Female	Male	Female	Male	Female	
C^{2}	Mean	16.4	15.09	16.8	16.61	23.39	22.52	23.79	22.9	
C2	Std. Dev	1.31	1.57	1.54	1.14	1.23	1.39	1.47	1.51	
C2	Mean	14.43	13.33	15.02	14.44	23.32	22.68	23.43	22.48	
C5	Std. Dev	1.2	1.37	1.34	1.39	1.22	1.34	1.35	1.31	
C4	Mean	13.98	13.16	14.58	13.73	24.31	23.47	24.13	23.47	
C4	Std. Dev	1.32	1.44	1.33	1.34	1.23	1.48	1.46	1.29	
C5	Mean	14.12	13.28	14.5	13.61	25.02	23.98	24.86	24.2	
CS	Std. Dev	1.22	1.31	1.42	1.26	1.36	1.46	1.6	1.28	
<u>C6</u>	Mean	14.25	13.32	14.26	13.39	25.46	24.49	25.21	24.32	
CO	Std. Dev	1.13	1.29	1.37	1.08	1.44	1.6	1.65	1.41	
<u>C7</u>	Mean	14.37	13.57	14.33	13.42	24.48	23.53	24.33	23.41	
U/	Std. Dev	0.97	1.21	1.41	1.07	1.31	1.35	1.61	1.33	

 Table 3: African American Spinal Canal Measurements (Nancy E. Tatarek 2005)

Caucasian:

There have been several studies completed on the Caucasian race and the morphometry of the cervical spine. A study completed by Panjabi et al included 12 cadaveric spines. The subjects ranged from 19-59 years old with an average of 46.3 years, and 8 males and 4 females (Manohar M. Panjabi 1991). Before measurements were taken all soft tissue was removed from the vertebrae. A specially designed morphometer was used to assist in measurements taking. This instrument included "one linear variable (LVDT) and two rotational variable (RVDT) displacement transducers arranged such that their axes met at one point," this established a spherical coordinate system (Manohar M. Panjabi 1991). The measurements were then directly recorded on a computer (Manohar M. Panjabi 1991). The

measurements investigated were similar to what was established earlier in the investigation of the Chinese Singaporean race by Tan except excluding the VBHa and PL, and including upper and lower uncovertebral joint inclination in the frontal plane (UJIfu and UJIfl), upper and lower uncovertebral joint inclination in the sagittal plane (UJIsu and UJIsl), upper and lower uncovertebral joint area on the right side (UJAru and UJArl), and the upper and lower uncovertebral joint area on the left side (UJAlu and UJAll) (Manohar M. Panjabi 1991). These measurements are displayed in Figure 3.

Figure 3: Caucasian Measurements – Panjabi (Manohar M. Panjabi 1991) Panjabi et al found that the EPW and EPD increased from C2 to C7, and the widths were always greater than the analogous depths. The EPAu was found to increase from C2 to C7, while the EPAl increased from C2 to C3 and from C6 to C7

(Manohar M. Panjabi 1991). As an approximation of these areas they found that an elliptical approximation of the EPA was "justified (Manohar M. Panjabi 1991)." The VBHp was found to be fairly constant from C3 to C7 (Manohar M. Panjabi 1991). Investigation into the spinal canal measurements exhibited that the SCW was significantly larger than the SCD (Manohar M. Panjabi 1991). The SCW remained fairly constant from C2 to C7, the SCD though decreased from C2 to C3 where it then remained constant until C6 where there was a decrease into C7 (Manohar M. Panjabi 1991). The SCA was largest at C2 and smallest at C7 (Manohar M. Panjabi 1991). The pedicle parameters: width and height on both the left and right side were larger at C2 and smallest at C3, thereafter, there is an increase into C7 (Manohar M. Panjabi 1991). The PDH is significantly larger than the PDW, thus creating an elliptical cross section (Manohar M. Panjabi 1991). The SPL decreased from C2 into C3 but then remains constant through C5, where it then increases into C7 (Manohar M. Panjabi 1991). The TPW increases superiorly-inferiorly through the cervical spine (Manohar M. Panjabi 1991). The upper uncovertebral joint area is approximately two times larger than the lower (Manohar M. Panjabi 1991). The UJIf increases from C5 to C7, while the UJIs remains constant through the cervical spine (Manohar M. Panjabi 1991). The measurements described previously that were completed by Panjabi are displayed in Table 4.

	C	2	C	:3	C	4	C	25	C6		C7	
		Std.										
	Mean	Dev.										
EPDu			15	0.55	15.3	0.75	15.2	0.35	16.4	0.52	18.1	0.66
EPWu			15.8	0.46	17.2	0.66	17.5	0.58	18.5	0.55	21.8	0.66
EPD1	15.6	0.58	15.6	0.4	15.9	0.38	17.9	0.52	18.5	0.69	16.8	0.32
EPW1	1.5	0.52	17.2	0.29	17	0.49	19.4	0.4	22	0.75	23.4	0.98
VBHp			11.6	0.35	11.4	0.43	11.4	0.32	10.9	0.26	12.8	0.46
EPAu			169.4	8.78	183	9.32	182.9	7.77	221.2	7.62	278.3	12.93
EPAl	194.4	9.64	190.7	5.74	199.2	7.27	246.2	12.07	289.9	16.54	280.3	13.71
EPItu			2.7	0.77	3.5	1.5	1.7	0.43	4.7	1.1	2.2	0.54
EPItl	4.2	1.2	4	0.84	2.1	0.4	2.7	1.1	2.7	0.69	1.8	0.42
SCW	24.5	0.61	22.9	1.15	24.7	0.52	24.9	1.13	25.8	0.66	24.5	0.92
SCD	21	0.35	16.2	1.33	17.7	0.46	17.4	0.72	18.1	0.46	15.2	1.15
SCA	374.5	13.08	248.7	34.21	272	26.18	249.5	34.09	266.5	24.94	223.8	36.26
PDWr	7.7	0.35	5.8	0.64	5.7	0.6	6.1	0.46	6.3	0.49	6.6	0.42
PDHr	9.4	0.46	7.6	0.46	7.4	0.42	6.7	0.42	7.1	0.39	7.5	0.32
PDW1	8.3	0.07	5.4	0.32	5.1	0.46	5.1	0.35	5.6	0.39	6.5	0.35
PDH1	11.1	0.14	7.2	0.35	7.3	0.49	7.3	0.39	7.5	0.32	7.5	0.28
PDAr	32.3	2.44	24.2	2.69	24.7	2.65	23.8	2.83	24.5	2.58	30.4	3.08
PDAl	51.8	0.28	21.4	2.02	24	3.08	23.9	2.58	27.9	2.47	27.8	2.37
PDIsr			41.6	1.13	44.6	1.66	39.3	4.45	29.6	2.3	33.1	2.23
PDItr			-9.2	2.58	-8.6	2.44	-6.3	1.63	7.1	1.13	13.4	1.7
PDIsl			42.9	2.16	43.9	2.47	41.2	4.77	34.1	2.16	26.7	2.69
PDItl			-7.1	0.67	-6.5	1.66	-5.7	1.48	5.9	2.51	9.2	1.52
SPL	33.7	1.39	29.6	0.78	30.3	1.07	28.5	0.98	34.2	1.88	45.7	0.84
TPW	52.6	2.08	50.3	1.62	48.5	2.14	46.4	2.97	49.5	2.11	66.6	1.13
UJAru			46.7	4.27	40.9	3.18	45.3	6.09	48.8	3.32	43.1	3.84
UJAlu			40.5	3.95	37	3.41	40.4	4.73	58.1	7.45	41.2	3.15
UJArl	19.8	3.7	22.6	2.51	25.5	3.26	27.2	2.94	25.6	2.66	23.4	2.71
UJAll	17.7	2.4	22.3	2.89	23.5	1.96	30.5	3.84	23.9	1.79	19	3
UJIfu			76.6	2.22	76.2	2.45	82.7	1.44	104	2.4	115.6	2.68
UJIsu			38.7	3.87	40	2.89	34.5	2.08	40.8	3.52	47.3	3
UJIfl	78.4	3.2	81.6	1.59	83.5	1.39	84.9	1.1	106.2	2.28	113.4	2.17
UJIsl	63.7	5.05	47.8	4.01	47.8	3.46	45	3.03	49.2	4.33	59.8	4.47

 Table 4: Caucasian Measurements – Panjabi (Manohar M. Panjabi 1991)

Francis also studied the morphometry of the cervical spine including both genders, and of both Caucasian and African Americans. In this study 100 Caucasian

male cadaveric spines were used that ranged from the ages of 25-36 years old, 100 African American male cadaveric spines from 25-34 years of age, 27 Caucasian female between the ages of 25-36 years, and 57 African American females between the ages of 25-36 years (Francis 1955). The measurements included in this study include TPW, SCD, SCW, VBHp, EPDI, EPWI, along with the total anteroposterior diameter of the vertebra (Francis 1955). This study found that there was no significant difference in the size of the vertebra between races of both genders (Francis 1955). It was stated that the females of both races were smaller than their counterparts, but there was no significant difference between male and female (Francis 1955). This is different than what has been found previously, with males generally being significantly larger than females. Table 5 displays the measurements completed by Francis.

		Ante	eroposterio	or Diame	ter (mm)	VBHp				
		Cauc	casian	Africar	n American	Caucasian		Africar	American	
		Male	Female	Male	Female	Male	Female	Male	Female	
C1	Mean	47.1	42.5	47.5	44.4	17.5	16.6	16.7	15.9	
CI	Std.Dev					1.7	1.7	1.6	1.5	
C^{2}	Mean	54.4	49	51.7	47.8	39.9	36.6	38.6	35.7	
C2	Std.Dev					2.4	2	2.4	2.4	
C3	Mean	46.2	43.1	45.4	42.1	14.3	12.4	13.7	12.3	
CS	Std.Dev					1.2	0.9	1.1	0.9	
$\mathbf{C}^{\mathbf{A}}$	Mean	46.3	43	46	42	13.8	12.6	13.4	12.1	
C4	Std.Dev					1.2	0.8	1.1	1	
C5	Mean	48.2	43.9	49	44.5	13.3	11.9	12.6	11.6	
CJ	Std.Dev					1	1.1	1	1.1	
CG	Mean	53.9	49.1	55.3	49.9	13	11.7	12.6	11.8	
CO	Std.Dev					1.1	0.8	0.9	1	
C7	Mean	62.6	56.3	63.2	56	14.6	13.2	14.6	13.2	
C/	Std.Dev					1.1	1.2	1	1	

 Table 5: Caucasian Measurements – Francis (Francis 1955)

			Г	TPW		EPDI			
		Cauc	casian	Africar	n American	Cauc	casian	Africar	American
		Male	Female	Male	Female	Male	Female	Male	Female
C1	Mean	81.4	73.3	76.8	69.8	12.2	11.1	11.8	10.8
CI	Std.Dev					1	0.9	0.8	0.9
C^{2}	Mean	56.3	51.2	54.3	49.4	16.1	14.7	17.3	15.6
C2	Std.Dev					1.3	1.1	1.4	1.3
C3	Mean	54.9	50	53.3	48.9	16.4	14.7	17.3	15.5
05	Std.Dev					1.3	1.2	1.4	1.1
C 4	Mean	55.8	51.3	54.7	50.3	16.5	14.9	17.3	15.3
CŦ	Std.Dev					1.3	1.4	1.4	1.2
C5	Mean	57.5	53.2	56.7	52.1	16.8	15.4	17.2	15.5
05	Std.Dev					1.4	1.6	1.4	1.2
C6	Mean	60.5	54.9	60	54.7	17.3	15.9	17.2	15.6
0	Std.Dev					1.4	1.3	1.6	1.2
C 7	Mean	72.4	65.4	70.2	64.5	16.7	14.9	16.8	15.2
C/	Std.Dev					1.3	1.2	1.5	1.2
			S	SCD			E	PWl	
		Cauc	sasian	SCD Africar	n American	Cauc	E easian	PW1 Africar	American
		Cauc Male	s Seasian Female	SCD Africar Male	American Female	Cauc Male	E casian Female	PW1 Africar Male	American Female
C1	Mean	Cauc Male 33.1	sasian Female 30.1	SCD Africar Male 32.4	American Female 31.1	Cauc Male 10.7	E casian Female 10.1	PW1 Africar Male 10.4	American Female 10
C1	Mean Std.Dev	Cauce Male 33.1 2	sasian Female 30.1 1.9	SCD Africar Male 32.4 2.5	American Female 31.1 2.2	Cauc Male 10.7 0.8	E casian Female 10.1 0.6	PW1 Africar Male 10.4 0.8	American Female 10 0.7
C1	Mean Std.Dev Mean	Cauc Male 33.1 2 22	S casian Female 30.1 1.9 20.7	SCD Africar Male 32.4 2.5 20.2	American Female 31.1 2.2 20.1	Cauc Male 10.7 0.8 19.5	E casian Female 10.1 0.6 17.9	PW1 Africar Male 10.4 0.8 20.3	American Female 10 0.7 18.6
C1 C2	Mean Std.Dev Mean Std.Dev	Cauce Male 33.1 2 22 1.9	seasian Female 30.1 1.9 20.7 2.1	SCD Africar Male 32.4 2.5 20.2 2.1	American Female 31.1 2.2 20.1 1.9	Cauc Male 10.7 0.8 19.5 1.7	E casian Female 10.1 0.6 17.9 1.5	PW1 Africar Male 10.4 0.8 20.3 1.2	American Female 10 0.7 18.6 1.4
C1 C2 C3	Mean Std.Dev Mean Std.Dev Mean	Cauc Male 33.1 2 22 1.9 16.5	Seasian Female 30.1 1.9 20.7 2.1 15.5	SCD Africar Male 32.4 2.5 20.2 2.1 15.2	American Female 31.1 2.2 20.1 1.9 15.1	Cauc Male 10.7 0.8 19.5 1.7 20.5	E casian Female 10.1 0.6 17.9 1.5 18.9	PW1 Africar Male 10.4 0.8 20.3 1.2 20.9	American Female 10 0.7 18.6 1.4 19.1
C1 C2 C3	Mean Std.Dev Mean Std.Dev Mean Std.Dev	Cauce Male 33.1 2 22 1.9 16.5 1.7	seasian Female 30.1 1.9 20.7 2.1 15.5 1.6	SCD Africar Male 32.4 2.5 20.2 2.1 15.2 1.3	American Female 31.1 2.2 20.1 1.9 15.1 1.3	Cauc Male 10.7 0.8 19.5 1.7 20.5 1.6	E casian Female 10.1 0.6 17.9 1.5 18.9 1.6	PW1 Africar Male 10.4 0.8 20.3 1.2 20.9 1.8	American Female 10 0.7 18.6 1.4 19.1 1.3
C1 C2 C3 C4	Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean	Cauce Male 33.1 2 22 1.9 16.5 1.7 15.4	Seasian Female 30.1 1.9 20.7 2.1 15.5 1.6 14.8	SCD Africar Male 32.4 2.5 20.2 2.1 15.2 1.3 14.8	American Female 31.1 2.2 20.1 1.9 15.1 1.3 14.5	Cauc Male 10.7 0.8 19.5 1.7 20.5 1.6 21.5	E easian Female 10.1 0.6 17.9 1.5 18.9 1.6 19.6	PW1 Africar Male 10.4 0.8 20.3 1.2 20.9 1.8 21.4	American Female 10 0.7 18.6 1.4 19.1 1.3 19.8
C1 C2 C3 C4	Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev	Cauce Male 33.1 2 22 1.9 16.5 1.7 15.4 1.5	seasian Female 30.1 1.9 20.7 2.1 15.5 1.6 14.8 1.2	SCD Africar Male 32.4 2.5 20.2 2.1 15.2 1.3 14.8 1.3	American Female 31.1 2.2 20.1 1.9 15.1 1.3 14.5 1.4	Cauc Male 10.7 0.8 19.5 1.7 20.5 1.6 21.5 1.1	E casian Female 10.1 0.6 17.9 1.5 18.9 1.6 19.6 1.5	PW1 Africar Male 10.4 0.8 20.3 1.2 20.9 1.8 21.4 1.8	American Female 10 0.7 18.6 1.4 19.1 1.3 19.8 1.3
C1 C2 C3 C4	Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean	Cauc Male 33.1 2 22 1.9 16.5 1.7 15.4 1.5 15.4	Seasian Female 30.1 1.9 20.7 2.1 15.5 1.6 14.8 1.2 14.4	SCD Africar Male 32.4 2.5 20.2 2.1 15.2 1.3 14.8 1.3 15.1	American Female 31.1 2.2 20.1 1.9 15.1 1.3 14.5 1.4 14.6	Cauc Male 10.7 0.8 19.5 1.7 20.5 1.6 21.5 1.1 22.5	E casian Female 10.1 0.6 17.9 1.5 18.9 1.6 19.6 1.5 20.4	PW1 Africar Male 10.4 0.8 20.3 1.2 20.9 1.8 21.4 1.8 22	American Female 10 0.7 18.6 1.4 19.1 1.3 19.8 1.3 20.4
C1 C2 C3 C4 C5	Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Std.Dev	Cauce Male 33.1 2 22 1.9 16.5 1.7 15.4 1.5 15.4 1.3	Seasian Female 30.1 1.9 20.7 2.1 15.5 1.6 14.8 1.2 14.4 1.4	SCD Africar Male 32.4 2.5 20.2 2.1 15.2 1.3 14.8 1.3 15.1 1.3	American Female 31.1 2.2 20.1 1.9 15.1 1.3 14.5 1.4 14.6 1.4	Cauce Male 10.7 0.8 19.5 1.7 20.5 1.6 21.5 1.1 22.5 1.7	E casian Female 10.1 0.6 17.9 1.5 18.9 1.6 19.6 1.5 20.4 1.6	PW1 Africar Male 10.4 0.8 20.3 1.2 20.9 1.8 21.4 1.8 22 1.4	American Female 10 0.7 18.6 1.4 19.1 1.3 19.8 1.3 20.4 1.5
C1 C2 C3 C4 C5 C6	Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev	Cauce Male 33.1 2 22 1.9 16.5 1.7 15.4 1.5 15.4 1.3 15.4	Seasian Female 30.1 1.9 20.7 2.1 15.5 1.6 14.8 1.2 14.4 1.4 14.1	SCD Africar Male 32.4 2.5 20.2 2.1 15.2 1.3 14.8 1.3 15.1 1.3 15.2	American Female 31.1 2.2 20.1 1.9 15.1 1.3 14.5 1.4 14.6 1.4 14.4	Cauc Male 10.7 0.8 19.5 1.7 20.5 1.6 21.5 1.1 22.5 1.7 24.8	E easian Female 10.1 0.6 17.9 1.5 18.9 1.6 19.6 1.5 20.4 1.6 22.5	PW1 Africar Male 10.4 0.8 20.3 1.2 20.9 1.8 21.4 1.8 22 1.4 24.4	American Female 10 0.7 18.6 1.4 19.1 1.3 19.8 1.3 20.4 1.5 22.3
C1 C2 C3 C4 C5 C6	Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev	Cauce Male 33.1 2 22 1.9 16.5 1.7 15.4 1.5 15.4 1.3 15.4 1.3	Seasian Female 30.1 1.9 20.7 2.1 15.5 1.6 14.8 1.2 14.4 1.4 1.4 1.4	SCD Africar Male 32.4 2.5 20.2 2.1 15.2 1.3 14.8 1.3 15.1 1.3 15.2 1.3 15.1 1.3 15.2 1.3	American Female 31.1 2.2 20.1 1.9 15.1 1.3 14.5 1.4 14.6 1.4 14.4 1.3	Cauce Male 10.7 0.8 19.5 1.7 20.5 1.6 21.5 1.1 22.5 1.7 24.8 1.9	E casian Female 10.1 0.6 17.9 1.5 18.9 1.6 19.6 1.5 20.4 1.6 22.5 1.9	PW1 Africar Male 10.4 0.8 20.3 1.2 20.9 1.8 21.4 1.8 22 1.4 24.4 1.6	American Female 10 0.7 18.6 1.4 19.1 1.3 19.8 1.3 20.4 1.5 22.3 1.4
C1 C2 C3 C4 C5 C6 C7	Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean	Cauce Male 33.1 2 22 1.9 16.5 1.7 15.4 1.5 15.4 1.3 15.4 1.4 1.55	Seasian Female 30.1 1.9 20.7 2.1 15.5 1.6 14.8 1.2 14.4 1.4 14.1 1.4 14.4	SCD Africar Male 32.4 2.5 20.2 2.1 15.2 1.3 14.8 1.3 15.1 1.3 15.2 1.3 15.5	American Female 31.1 2.2 20.1 1.9 15.1 1.3 14.5 1.4 14.6 1.4 14.4 1.3 14.3	Cauc Male 10.7 0.8 19.5 1.7 20.5 1.6 21.5 1.1 22.5 1.7 24.8 1.9 29.3	E casian Female 10.1 0.6 17.9 1.5 18.9 1.6 19.6 1.5 20.4 1.6 22.5 1.9 26.2	PW1 Africar Male 10.4 0.8 20.3 1.2 20.9 1.8 21.4 1.8 22 1.4 24.4 1.6 28.9	American Female 10 0.7 18.6 1.4 19.1 1.3 19.8 1.3 20.4 1.5 22.3 1.4 25.9

 Table 5: Caucasian Measurements – Francis part 2 (Francis 1955)

			S	SCW			
		Cauc	casian	Africar	African American		
		Male	Female	Male	Female		
Cl	Mean	30.1	28.1	28.3	27.3		
CI	Std.Dev	1.9	2.3	2.1	2.3		
C^{2}	Mean	24.5	23.1	24.1	23.4		
C2	Std.Dev	1.6	1	1.6	1.4		
C2	Mean	23.9	22.6	24.3	23.2		
CS	Std.Dev	1.3	0.9	1.5	1.2		
C_{4}	Mean	24.7	23.7	25.2	24		
C4	Std.Dev	1.3	1.3	1.5	1.1		
C5	Mean	25.6	24.7	26	25		
CS	Std.Dev	1.4	1.2	1.4	1.5		
C6	Mean	25.9	25.1	26.4	25.3		
CO	Std.Dev	1.4	1.6	1.7	1.4		
C7	Mean	25.6	24.4	25.5	24.4		
07	Std.Dev	1.6	1.4	1.3	1.3		

 Table 5: Caucasian Measurements – Francis part 3 (Francis 1955)

From these cadaver studies it was found that generally there was significant difference between genders in the morphometry of the cervical spine. There are mixed results with respect to race, some found no significant difference between race while others found significant difference based on the measurement. Other common findings found in the previous studies include that the SCW greater than the SCD, and the TPW and PDH increased through the cervical spine.

CT/MRI/X-ray Studies:

Several studies have also been reported examining the morphometry of the cervical spine through non-cadaveric methods, utilizing Computed Tomography (CT), Magnetic Resonance Imaging (MRI), or Radiographic (X-Ray) images. In these studies there has been less focus on race but have included some analysis on age and sex. No study was found similar to Panjabi and Tan. As a result, it is important to investigate spine morphometry further, especially for other non-Caucasian descent.

Liguoro on the French population utilized X-ray images to investigate the morphometry of the cervical spine with respect to age and gender. A sample size of 120 adults was used which included 69 male and 51 female, ranging from 20 to 80 years of age (D. Liguoro 1994). Lateral views of the cervical spine were used in this investigation, and a millimeter ruler was used to take measurements from X-ray images (D. Liguoro 1994). The measurements of the cervical spine that were included in this study for the upper cervical spine were: the anterior-posterior diameter (DAP in C1), thickness of the anterior arch (TAA in C1), thickness of the posterior arch (TPA in C1), total height of C2 (C2TH), anterior-posterior diameter of the inferior side of the vertebral body (DAP in C2) (D. Liguoro 1994). The measurements for the lower cervical spine that were included in this investigation were: VBHp, VBHa, the vertebral body height in the median (VBHm), EPDu, EPDl, antero-posterior diameter in the median (EPDm), height of the intervertebral disc (HIVD), total anterior height from C3 to C7 (THa), and total posterior height from C3 to C7 (THp) (D. Liguoro 1994). These measurements can be seen in Figure 4.

20

Figure 4: Measurements by X-ray – Liguoro: 1. DAP C1, 2. TAA, 3. TPA, 4. C2TH, 5. DAP C2, 6. VBHp, 7. VBHa, 8. VBHm, 9. EPDu, 10. EPDl, 11. EPDm, 12. HIVD, 13. THa, and 14. THp

Liguoro et al found that the vertebrae themselves were more wide than thick except for C7 which was roughly square. All measurements were significantly different when gender was compared (D. Liguoro 1994). The analysis completed on age divided the subjects into three different groups: 20-40 years, 40-60 years, and 60+ years. When the 20-40 group was compared to the 40-60 it was found that there was no statistical difference, along with the comparison between the 40-60 and the 60+, but there was significant difference found between the 20-40 and the 60+ age groups (D. Liguoro 1994). It was found that the disc HIVD decreased with age, which is known to be as a result of disc degeneration (D. Liguoro 1994; KenethS. Saladin PhD 2004). The DAP C2 was found to significantly increase in both genders as age progresses (D. Liguoro 1994). Measurements for this study are included and shown in Table 6, excluding the HIVD, THa, and THp for those values were not given in the article although was stated to have been accomplished.

		C1		C2		C3		C4		C5		C6		C7	
	Male		55		19										
DAP	Female		51		16										
ТАА	Male		14												
IAA	Female		12												
ТРА	Male		11												
IIA	Female		10												
С2ТН	Male				43										
02111	Female				39										
VBHn	Male						17		16		16		16		17
v B iip	Female						15		15		14		14		15
VBHa	Male						16		15		15		15		16
v D11a	Female						14		14		13		13		15
VBHm	Male						15		14		19		15		15
v D11111	Female						13		13		16		12		14
EDDu	Male						18		19		19		20		21
LFDu	Female						16		16		16		18		18
EDDI	Male						20		20		21		21		20
	Female						17		17		18		19		18
FPDm	Male						19		19		14		19		20
	Female						16		16		13		17		18

 Table 6: X-Ray Measurements – Liguoro (D. Liguoro 1994)

Nissan et al studied 157 Caucasian males ranging from the ages of 20-38 years. All were taken from lateral X-Ray images, utilizing the same machine. The measurements included in this study were EPDI, VBHa, EPDu, VBHp, SPL, spinous process horizontal length (SPLh), anterior intervertebral disc height (HIVDa), posterior intervertebral disc height (HIVDp), and the vertebral body diagonal (VBd) (M. Nissan 1984). These measurements can be seen in Figure 5.

Figure 5: Measurements by X-Ray – Nissan: a. EPDl, b. VBHa, c. EPDu, d. VBHp, e. SPL, f. SPLh, g. HIVDa, h. HIVDp, and k. VBd.

Nissan et al found that the EPD increased superiorly to inferiorly through the cervical spine. The VBH was found to decrease from C2 to C5 but then increased into C7 (M. Nissan 1984). The SPL increased from C3 to C7, but C2 was significantly larger than C3 (M. Nissan 1984). The VBd was fairly constant throughout the cervical spine (M. Nissan 1984). Table 7 includes all measurements completed in this study by Nissan et al.

		C2	C3	C4	C5	C6	C7
EDDI	Mean	15.3	15.6	15.8	16.1	16.6	16.3
EFDI	Std. Dev	1.6	1.5	1.5	1.5	1.4	1.4
VBUo	Mean	19	14.1	13.4	12.7	13	14.6
v D11a	Std. Dev	3.2	1.3	1.3	1.3	1.3	1.4
EDDu	Mean	12.6	14.8	15.5	15.5	16	16.4
LFDu	Std. Dev	2.1	1.5	1.7	1.7	1.7	1.4
VBUn	Mean	16.6	14.5	13.9	13.8	13.9	14.9
vBnp	Std. Dev	2.5	1.4	1.2	1.4	1.6	1.4
SDI	Mean	40	34.4	33.6	35.4	41.5	49.6
SIL	Std. Dev	3.5	3.1	2.8	3.1	4.6	3.5
SDI h	Mean	36.6	30.6	30.4	33	39.7	46.4
SILI	Std. Dev	2.6	3	2.6	3.2	5	3.3
	Mean	4.8	5.3	5.5	5.4	5.2	4.7
111 v Da	Std. Dev	1	0.9	1	1	1	1.2
HIVDn	Mean	3.4	3.3	3	3	3.3	3.5
III V Dp	Std. Dev	1	0.9	1	0.9	1	1.2
VBd	Mean	24.7	23.4	23	22.6	22.6	22.8
v Du	Std. Dev	2.4	1.9	1.9	1.8	1.7	1.6

 Table 7: X-Ray Measurements - Nissan

Other studies done for the cervical spine have been focused on measurement of the pedicle. One study investigated transpedicular screwing of the C7 vertebra, and testing the safety of a surgical technique that would only use posterior landmarks as guidance to placement of the screw (C. Barrey 2003). Studies have also been completed on the thoracic and lumbar regions in determining the safe zone for pedicle procedures (Shiu-Bii Lien 2007).

Rao et al studied 63 males, and 35 females of unknown race, with a mean age of 24.6 ± 5.7 years and 25.3 ± 6.1 years respectively. The measurements were taken of the lower cervical spine (C3-C7) on CT images and included: the pedicle length (PDL), pedicle axis length (PDXL), PDIt, PDIs, medial offset of the pedicle axis

(MOPD), PDH, PDW, and the sagittal offset of the pedicle axis (SOPD) (Raj D. Rao 2008). Figures 6-8 display these measurements.

Figure 6: CT measurement, Axial – Rao: 1. PDL, 2. PDXL, 3. PDIs, 4. MOPD

(Raj D. Rao 2008)

Figure 7: CT Measurement, Sagittal – Rao (Raj D. Rao 2008)

Figure 8: CT Measurement, Sagittal2 – Rao: a. Offset- SOPD b. PDIt (Raj D. Rao 2008)

Rao et al found that there was no statistical difference between the left and right side pedicles. They found that there was statistical significant difference between genders of all measurements except for the case of the PDIs (Raj D. Rao 2008). All measurements except PDIs were significantly dependent on sex and the vertebral level (Raj D. Rao 2008). The male gender exhibited larger measurements than the females in all cases (Raj D. Rao 2008). The PDH was larger than the PDW from C3-C5, but fairly equal at C6, and reversed in the C7 vertebra (Raj D. Rao 2008).

		C3		C4		C5		C6		C7	
		Mean	Std. Dev								
PDH	Male	6.6	0.8	6.8	0.7	6.6	0.7	6.6	0.8	7	0.8
	Female	5.6	1	5.6	0.8	5.6	0.7	5.6	0.9	6	0.8
PDW	Male	5.8	0.9	6	0.8	6.3	0.8	6.5	0.8	7.6	1
	Female	4.8	0.9	5	0.8	5.2	0.8	5.7	0.8	6.5	0.9
PDL	Male	5.4	0.7	5.3	0.6	5.7	0.6	6	0.6	5.9	0.6
	Female	5.1	0.7	5.1	0.6	5.5	0.7	5.6	0.7	5.5	0.8
PDXL	Male	34.3	2.2	33.7	2.4	34.2	2.4	34.1	3.2	32.6	3.2
	Female	30.9	1.9	30.3	1.7	30.9	2.1	30.6	2.6	28.9	3.5
PDIs	Male	47.4	3.4	47.8	3.6	45.9	3.6	41.8	4.3	33.8	5.7
	Female	46.6	3.2	47.8	2.9	46.9	4.2	42.5	4.5	33	5.6
PDIt	Male	13.9	4.1	7.3	4.1	1.3	4.3	-2.6	4	-2.4	3.9
	Female	13.4	3.7	7.7	4.4	0.5	4.2	-3.3	3.5	-3.6	3.7
MOPD	Male	1.5	1	2.7	1.2	2.9	1.3	3.4	1.5	5.6	2
	Female	1.3	0.9	1.9	1	2	1.2	2.7	1.4	4.8	1.7
SOPD	Male	4.5	1.4	2.4	1	2	1	1.6	1	1.9	1.1
	Female	3.8	1	2.4	0.8	1.9	0.7	1.7	0.8	1.4	0.9

Table 8: CT Measurement – Rao (Raj D. Rao 2008)

Previous studies have used CT MRI or X-Ray images to measure dimensional anatomy however they did not assess the differences in demographics of the subjects. One study did assess the effect of gender and age on dimensional anatomy. Specifically there was significant difference between the 20-40 age group and the 60+ age group, but no difference between the 20-40 and 40-60 age group and no difference between the 40-60 and 60+ age group (Nancy E. Tatarek 2005). Also in relationship with the pedicle morphometry it was found that it is greatly dependent on the spinal level (Raj D. Rao 2008). Aside from these previously stated studies there have been no studies investigating total 3D measurements through the use of CT scans. Furthermore there has been no investigation into racial parameters.
METHODS

Subjects:

The Institutional Review Board (IRB) protocol 10-0011 approved on 04/07/10 was obtained to investigate spinal morphometry. A total of 50 randomly selected subjects were utilized in this investigation, where 17 were female (5 African American, 12 Caucasian), and 27 were male (2 African American, 25 Caucasian). Subjects were also divided into age groups of 18-40 years (15 subjects), 41-60 years (12 subjects), and 61+ years (17 subjects). CT images were taken at Miami Valley Hospital in Dayton, Ohio through the year of 2010. Images were collected by Matt Binkley, MD, utilizing the guidelines presented in the IRB. The CT images were selected from the trauma registry, but the subjects used in this investigation did not include those with serious injury or with serious deformation in the cervical spine.

Measurements:

Three-dimensional measurements were taken from the CT images including all three views available when viewing images of this type, from the C3 to C7 vertebra. When investigating how measurements were taken in previous studies of this type, it was found that measurements were completed utilizing anatomical features, thus guiding the way measurements were completed in this investigation. All measurements were taken on the slice that provided the most "full" view of the vertebra, multiple measurements taken when possible. The slice thickness, in most cases was 2 mm, this had to be taken into account when measuring the details. All measurements were taken with the CT viewer provided for all subjects, the Centricity DICOM Viewer, Version 2.2 by GE Medical Systems, seen in Figure 9. The case

28

numbers of the patients have been blocked in order to protect the identity of the subjects. This program was utilized to create the appropriate distance and angles.

Figure 9: Program utilized to view CT's and complete measurements

The measurements completed in the coronal view, seen in Figure 10, were the EPWu and the EPW1. The EPWu was measured on the superior surface of the vertebra on the location of the upper endplate from one uncovertebral joint to the other. The EPW1 was also measured in this view on the inferior surface of the vertebra from one side to the other (seen in Figure 10).

Figure 10: Coronal Measurements

In the sagittal view, seen in Figure 11, the VBHp, VBHa, EPDu, and EPDI were measured. The VBHp was measured on the posterior surface of the vertebra from the most superior-posterior point on the vertebral body to the most inferiorposterior point on the vertebral body. The VBHa was measured on the anterior surface of the vertebra from the most superior-anterior point on the vertebral body to the most inferior-anterior point on the vertebral body. The EPDu was measured on the superior surface of the vertebral body, from the most superior-anterior point to the most superior-posterior point. Finally the EPDI was measured on the inferior surface of the vertebral body, from the most inferior-anterior point to the most inferior-posterior point.

Figure 11: Sagittal Measurements

The axial view was more complicated since the alignment of the slice was not perfectly aligned, as can be seen in Figure 12. In these slices a coordinate system had to be created to make sure the most accurate measurement was taken. The Xaxis was created utilizing the transverse process as markers, then using that axis the Y-axis was created 90° from it. With the axes created the SCW, SCD, and TPW were measured. The SCW was measured from the farthest point of one side of the spinal canal to the other along the X-axis. The SCD was measured from the farthest anterior point of the spinal canal to the most posterior point of the spinal canal along the Y-axis that was created. Finally the TPW was measured from the farthest part of the transverse process to the other, again along the X-axis that was created.

Figure 12: Axial Measurements

Statistical Analysis:

Statistical analysis was completed on two previous studies of different races, one utilizing the measurements completed by Tan on Chinese Singaporeans, and another utilizing measurements completed by Panjabi on Caucasians. The lack of information on the African American race did not allow for this investigation to be accomplished. An investigation of this type was accomplished for the measurements completed by the author, with further investigation into differences present in morphometry with respect to race, gender and age. The methods of how this was accomplished are discussed further in the following sections.

Previous Studies – Race:

Investigation into correlations present in the vertebrae of the cervical spine was completed for the Chinese Singaporean race (utilizing measurements completed by Tan) and the Caucasian race (utilizing measurements completed by Panjabi). In this analysis, a comparison of one vertebral body's measurements was compared. A good example is comparing data from the C3 vertebra to other C3 vertebral data. The statistical analysis was completed using linear regression, and ANOVA with the use of SAS[®] 9.2 TS Level 2M0 (Inc., SAS 9.2). A 95% confidence interval was used to test the significance between variables, thus a P ≤ 0.05 found the two variables investigated to be statistically linearly correlated (Douglas C. Montgomery 2007). Significant correlation in this respect shows the interdependence between the two or more variables being compared (Douglas C. Montgomery 2007). This type of knowledge will help to model this section of the spine more accurately. Knowing how the endplate width decreases as the pedicle width increases can show how the morphometry of the cervical spine is all interdependent upon each other. It is not only of interest to see how if the endplate width increases the endplate area will also increase, but also to see the more anatomically irreconcilable relationships. This led to the investigation completed comparing all measurements within the vertebrae themselves. If there is a linear relationship explained between the anterior vertebral body height and the pedicle area on the left side this can assist in better modeling of the cervical spine vertebrae. With better spine modeling, device development can be improved because further knowledge can be known about the anatomy of this region.

It is important to find that the morphometry of the cervical spine was different with respect to race, gender, and age. If measurements were to find significantly different dimensions in these demographics, then it cannot be said that "one size fits all" for spinal devices. If spinal implants are being designed for a specific gender or race, i.e. 50% Caucasian male, the "one size fits all" mentality will not be of benefit for those that do not fit that range of dimensions. This investigation establishes the morphometric dimensions of the cervical spine.

33

There were a total of 600 comparisons completed for each vertebra (from C3-C7) in the Chinese Singaporean race, totaling 3000 comparisons for this particular race. As for the Caucasian race there were a total of 552 comparisons completed for each vertebral body segment, totaling 2760 comparisons for this particular race. Utilizing the mean and ± 1 standard deviation from the studies completed by Tan and Panjabi, SAS[®] random number generation was used to create a normally distributed data set. From this random number generation, 100 observations were simulated in order to make the comparisons more robust.

Measurements:

The same comparisons completed for the Chinese Singaporeans and Caucasians was accomplished with the measurements completed in this investigation. This part of the investigation was completed using JMP 9 using again linear regression and a confidence interval of 95% with a P \leq 0.05 finding the corresponding anthropometrics to be statistically linearly correlated.

Along with this an investigation into the correlations present between gender, race and age group was completed. With race including Caucasian and African American, and age groups divided in 18-40, 41-60, and 61+. This analysis was as well completed utilizing JMP 9. For this part of the investigation ANOVA was used with a null hypothesis that the means were equal; this was accomplished in the same aspect for both races and age groups. A P≤0.05 would cause for rejection of the null hypothesis thus stating that the means were different (Glenn Gamst 2008). When there was significant difference found post-hoc analysis was completed, for gender and race (female/male, and African American/Caucasian) post-hoc analysis only

34

includes looking at the mean values of the samples to see which is larger. For the case of the age group since there were three groups post-hoc analysis was completed using Tukey-Kramer's Honestly Significant Difference test to see which group was significantly different (Glenn Gamst 2008).

In addition to this a separation of gender was done of the sample to investigate the race difference within gender, again using ANOVA with a P \leq 0.05 stating there is significant difference between the means.

Moment of Inertia:

Finally an estimate for the moment of inertia of the vertebral body was of interest, in order to establish the effect of moments on the body as well as its resistance to rotation. In order to accomplish this, the vertebral body was estimated to be in the shape of an elliptical frustum (see Figure 13). An elliptical frustum is the shape of a truncated elliptical cone.

Figure 13: Vertebral body representation

The moment of inertia along the y, x and z axis of an elliptical thin plate (Figure 14) was found where:

Figure 14: Elliptical Plate

- a=long radius of the elliptical plate
- b=short radius of the elliptical plate
- t=thickness of the plate
- m=mass of the plate
- ρ =density of the plate
- V=Volume of the plate

$$I_{y} = \rho t I_{y-ellipse} = \frac{1}{4} \rho \pi a^{3} b t \tag{1}$$

(2)

With $m = \rho V = \rho \pi abt$ thus leading:

$$I_{y} = \frac{1}{4}\rho\pi a^{3}bt = \frac{1}{4}ma^{2}$$
(3)

$$I_x = \rho t I_{x-ellipse} = \frac{1}{4} \rho \pi a b^3 t = \frac{1}{4} m b^2$$
(4)

$$I_{z} = I_{x} + I_{y} = \frac{1}{4}ma^{2} + \frac{1}{4}mb^{2} = \frac{1}{4}m(a^{2} + b^{2})$$
(5)

Using the basis of this the moment of inertia of an elliptical cone can be found (see Figure 15).

Figure 15: Elliptical Cone

Utilizing equation of an ellipse and the theory of similar triangles it can be stated that:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{T^2}$$
(6)

$$\frac{a_l}{T} = \frac{a}{z} \qquad \frac{b_l}{T} = \frac{b}{z} \tag{7}$$

Equation 2 can also be stated as, $dm = \rho \pi abdz$ (8)

Substituting in the values for a and b from equation 7 into equation 8 then results in:

$$dm = \rho \pi \left(\frac{a_l z}{T}\right) \left(\frac{b_l z}{T}\right) dz \tag{9}$$

Using equation 5 the moment of inertia along the z-axis of the elliptical cone can be found as:

$$dI_{z} = \frac{1}{4} \left(a^{2} + b^{2} \right) dm = \frac{1}{4} \left(\frac{a_{l}^{2} z^{2}}{T^{2}} + \frac{b_{z}^{2}}{T^{2}} \right) \left(\rho \pi \frac{a_{l} z}{T} \frac{b_{l} z}{T} \right) dz = \frac{\rho \pi a_{l} b_{l}}{4T^{2}} \left(\frac{a_{l}^{2}}{T^{2}} + \frac{b_{l}^{2}}{T^{2}} \right) z^{4} dz$$
(10)

Integrating equation 10 results in:

$$I_{z} = \frac{\rho \pi a_{l} b_{z}}{4T^{2}} \left(\frac{a_{l}^{2}}{T^{2}} + \frac{b_{l}^{2}}{T^{2}} \right)_{0}^{T} z^{4} dz = \frac{\rho \pi a_{l} b_{z}}{4T^{2}} \left(\frac{a_{l}^{2}}{T^{2}} + \frac{b_{l}^{2}}{T^{2}} \right) \frac{1}{5} T^{5} = \frac{\rho \pi a_{l} b_{l} T^{3}}{20} \left(\frac{a_{l}^{2}}{T^{2}} + \frac{b_{l}^{2}}{T^{2}} \right)$$
(11)

To find the moment of inertia of the frustum the top cone (with base a_u and b_u) will be subtracted from the larger cone (with base a_1 and b_l). The moment of the inertia of the larger cone along the z-axis is the same as displayed in equation 11:

$$I_{T_z} = \frac{\rho \pi a_l b_l T^3}{20} \left(\frac{a_l^2}{T^2} + \frac{b_l^2}{T^2} \right)$$
(12)

Using the corresponding radii, and heights the moment of inertia of the top cone along the z-axis is found using equation 11:

$$I_{2z} = \frac{\rho \pi a_u b_u L^3}{20} \left(\frac{a_u^2}{L^2} + \frac{b_u^2}{L^2} \right)$$
(13)

Finally to find the moment of inertia of the frustum along the z-axis:

$$I_{z} = I_{Tz} - I_{2z} = \left[\frac{\rho\pi a_{l}b_{l}T^{3}}{20} \left(\frac{a_{l}^{2}}{T^{2}} + \frac{b_{l}^{2}}{T^{2}}\right)\right] - \left[\frac{\rho\pi a_{u}b_{u}L^{3}}{20} \left(\frac{a_{u}^{2}}{L^{2}} + \frac{b_{u}^{2}}{L^{2}}\right)\right]$$
(14)

Using the following two equations, substitutions for L and T can be made:

$$T - h = L \qquad \frac{a_u}{L} = \frac{a_l}{T} \tag{15}$$

$$\frac{a_u}{T-h} = \frac{a_l}{T} \Longrightarrow T = \frac{a_l h}{a_l - a_u}$$
(16)

$$\frac{a_u}{L} = \frac{a_l}{L+h} \Longrightarrow L = \frac{a_u h}{a_l - a_u}$$
(17)

Plugging the values of T and L from equations 16 and 17 into equations 12 and 13 results in:

$$I_{Tz} = \frac{\rho \pi a_{l}^{4} b_{l} h^{3}}{20(a_{l}^{3} - 3a_{u}a_{l}^{2} - a_{u}^{2}a_{l} - a_{u}^{3})} \left(\frac{a_{l}^{2} - 2a_{u}a_{l} + a_{u}^{2}}{h^{2}} + \frac{b_{l}^{2} \left(a_{l}^{2} - 2a_{u}a_{l} + a_{u}^{2}\right)}{a_{l}^{2} h^{2}} \right)$$
(18)
$$I_{2z} = \frac{\rho \pi a_{u}^{4} b_{ul} h^{3}}{20(a_{l}^{3} - 3a_{u}a_{l}^{2} - a_{u}^{2}a_{l} - a_{u}^{3})} \left(\frac{a_{l}^{2} - 2a_{u}a_{l} + a_{u}^{2}}{h^{2}} + \frac{b_{u}^{2} \left(a_{l}^{2} - 2a_{u}a_{l} + a_{u}^{2}\right)}{a_{u}^{2} h^{2}} \right)$$
(19)

The final moment of inertia of the frustum along the z-axis was then solved in Matlab and found to be:

$$I_{z} = \frac{\rho \pi h \left(a_{l}^{4} b_{l} + a_{l}^{2} b_{l}^{3} - a_{u}^{4} b_{u} - a_{u}^{2} b_{u}^{3} \right)}{20(a_{l} - a_{u})}$$
(20)

Using the following substitutions for measurements that are collected from this investigation results in:

 I_z

$$a_{u} = \frac{EPWu}{2} \quad a_{l} = \frac{EPWl}{2} \quad b_{u} = \frac{EPDu}{2} \quad b_{l} = \frac{EPDl}{2} \quad h = VBH \quad (21)$$
$$= \frac{\rho\pi(VBH)(EPDl^{3}EPWl^{2} + EPDl \cdot EPWl^{4} - EPDu^{3}EPWu^{2} - EPDu \cdot EPWu^{4})}{320(EPWl - EPWu)} \quad (22)$$

RESULTS

Previous Studies – Race:

A simple linear regression analysis was used with the morphometric analysis data of Tan and Panjabi. Random data fitting to mean and ± 1 standard deviation were generated using SAS. Normal distribution was assumed to describe the data, (100 data points). Analysis revealed a total of 128 significant correlations from C3-C7 in the Chinese Singaporean population, with 27 being in the C3 vertebra, 28 in the C4 vertebra, 25 in the C5 vertebra, 28 in the C6 vertebra, and 20 in the C7 vertebra (these results are displayed in Table 9). There were a similar amount of correlations found in the Caucasian population with a total of 133, with 35 being in the C3 vertebra, 26 in the C4 vertebra, 28 in the C5 vertebra, 18 in the C6 vertebra, and 26 in the C7 vertebra (also displayed in Table 10). The table displays the slope (m), y-intercept (b), and the Probability greater than F (P>F), where the equation of the linear relationship found is described by y=mx+b.

		C3			C4			C5			C6			C7	
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
EPAl vs EPWu	Not	Significat	nt				-27.65	698.89	0.01	No	t Significa	nt			
EPAl vs EPDu	-27.43	590.44	0.01	No	t Significa	int				INO	t Significa	illi			
EPAl vs EPD1	-9.81	365.04	0.04							6.19	218.46	0.01			
EPAl vs SCW	Not	Significa	nt	-4.82	332.09	0.04	Not	Significar	ht.						
EPAl vs SCD	1101	Significa	It	-8.57	327.61	0.02	NOL	Significan	IL						
EPAl vs PDAr	3.98	148.93	0.00	No	t Significa	nt							No	ot Significa	ant
EPAl vs PDIsr				-2.64	344.25	0.01									
EPAu vs VBHp							16.66	1.72	0.03	No	t Significa	nt			
EPAu vs SCA	Not	Significa	at	No	t Significa	int	0.21	154.56	0.03	INO	t Significa	un			
EPAu vs PDW1	INOL	Significa	II				-20.59	286.93	0.01						
EPAu vs PDWr				-5.21	192.94	0.01									
EPAu vs PDIsr													1.91	163.74	0.03
EPDl vs SCD	-0.15	16.68	0.03										No	t Signific	nt
EPDl vs TPW	Not	Significa	at							0.08	11.51	0.02	110	n Significa	un
EPDl vs PDWl	INOL	Significa	It				Not	Significar	nt	No	t Significa	int	0.36	13.53	0.01
EPDl vs EPAl	0.00	16.05	0.04	No	t Significa	nt				0.02	12.17	0.01			
EPDl vs PDItr				NO	i Sigiinica					-0.06	15.96	0.02			
EPDu vs EPW1										-0.25	19.60	0.01	No	ot Significa	ant
EPDu vs EPD1	Not	Significa	at							-0.17	17.35	0.00			
EPDu vs VBHa	INOL	Significa	II				0.13	13.04	0.03						
EPDu vs TPW													0.06	11.93	0.00
EPDu vs PDHr				0.02	13.14	0.12	Not	Significar	ht.	No	t Significa	int	Nz	t Signific	ont
EPDu vs EPAl	0.00	14.12	0.01	No	t Significa	nt	INOL	Significal	ii.				INC	, Significa	
EPDu vs PDAr	Not	Significa	nt	INO	Giginnea	un							-0.03	15.90	0.04

		C3			C4			C5			C6			C7	
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
EPDu vs EPItl	0.00	13.62	0.01	0.03	13.87	0.02	Not	Signific	ant				-0.12	15.65	0.01
EPItl vs EPDu	-1.34	21.56	0.01	1.54	-18.16	0.02	NOL	Significa					0.01	14.32	-0.61
EPItl vs PDHl	No	t Significa	nt				0.18	1.47	0.04	Not	Signific	ant	No	t Signific	ant
EPItl vs EPItu	-0.02	3.40	0.05										110	t Signific	ant
EPItu vs SCW	No	t Significa	nt										0.35	0.16	0.05
EPItu vs SPL	110	torginnea								-0.09	8.96	0.01	No	t Signific	ant
EPItu vs TPW	1.27	-48.93	0.02				Not	Signific	ant				110	t Signine	ant
EPItu vs PDWr	No	t Significa	nt	No	t Significa	nt	The Significant			Not	Signific	ant	0.24	5.65	0.03
EPItu vs PDItr	-0.78	-1.21	0.03												
EPWl vs EPDu										-0.25	23.12	0.01			
EPWl vs PDHl										0.16	18.56	0.02			
EPW1 vs SPL							-0.02	16.57	0.05						
EPWu vs SCW	No	t Significa	nt				0.05	13.82	0.03	Not	Signific	ant			
EPWu vs PDHl	110	t bigiintea		-0.10	15.33	0.03	Not	Significa	ant	1101	biginne	unt			
EPWu vs PDWr							0.09	14.44	0.03				No	t Signific	ant
EPWu vs SPL							Not	Significa	ant	0.00	15.80	0.04			
EPWu vs EPAl			-				0.00	15.52	0.01						
PDAl vs VBHa	-1.08	38.14	0.05							Not	Signific	ant			
PDAl vs PDWr	0.42	25.42	0.01	No	t Significa	nt									
PDAl vs TPW	No	t Significa	nt				Not	Signific	ant	0.36	12.00	0.03			
PDAl vs PDItl	-0.22	26.28	0.02				NOL	anı							
PDAr vs EPDu	No	t Significa	nt							Not	Signific	ant	-1.56	55.73	0.04
PDAr vs VBHa	1.25	16.34	0.04										No	t Signific	ant

		C3			C4		C5			C6			C7		
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
PDAr vs EPA1	0.03	21.46	0.00	No	t Significa	nt									
PDAr vs PDIsr				-0.14	36.77	0.05				No	t Significa	nt			
PDAr s PDItl				No	t Significa	nt				0.22	32.48	0.05	Not	Signific	ant
PDAr vs PDItr					t Significa					0.23	32.23	0.02	1101	Significa	unt
PDHl vs EPWl				No	t Significa	nt	Not	Signifi	cant	0.36	-1.14	0.02			
PDHl vs EPWu				-0.46	13.30	0.03									
PDH1 vs PDW1				No	t Significa	nt							-0.19	7.61	0.05
PDH1 vs PDWr				-0.30	7.95	0.00				No	t Significa	nt			
PDHl vs SCA				-0.01	7.48	0.03		1	1	-					
PDH1 vs EPIt1				No	t Significa	nt	0.24	5.70	0.04						
PDH1 vs PDItr										-0.05	6.28	0.02			
PDHr vs EPDu	No	ot Significa	ant	0.47	0.19	0.02							Not	Signific	ant
PDHr vs VBHa				0.17	5.15	0.03				No	t Significa	nt		~-8	
PDHr vs PDItl				0.07	7.00	0.02									
PDHr vs PDIsr				No	t Significa	nt				-0.01	6.44	0.02			
PDIsl vs SPL				-0.72	-22.25	0.01				No	t Significa	nt			
PDIsl vs EPItu							Not	Signifi	cant	0.60	-45.52	0.03			1
PDIsr vs SCD				No	t Significa	nt				No	t Significa	nt	1.12	18.26	0.03
PDIsr vs PDHr						1				-4.51	64.91	0.02	Not	Signific	ant
PDIsr vs EPA1				-0.02	45.29	0.01								Signific	
PDIsr vs EPAu				No	t Significa	nt				No	t Significa	nf	0.03	24.91	0.03
PDIsr vs PDAr		1		Not Significant -0.20 45.73 0.05						110	: Significa		Not	Signific	ant
PDItl vs VBHa	-1.14	-16.18	0.04	0.79	-8.47	0.02							1101	Signific	u111

		C3			C4			C5			C6			C7	
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
PDItl vs PDHr	Not	Signific	ant	-0.69	0.00	0.02									
PDItl vs PDWr	Not		ant							Not	Signific	ant			
PDItl vs TPW	-0.29	7.17	0.05				Not	Signific	ant	1101	Significa	unt			
PDItl vs PDA1	-0.23	1.43	0.02				1101	Signine	un			r	Not	Significa	ant
PDItl vs PDAr										0.17	-0.88	0.05			
PDItr vs EPD1								1		-0.93	20.52	0.02			
PDItr vs SCD	Not	Signific	ant				-1.15	16.69	0.00	Not	Signific	ant			
PDItr vs SCW	1101										bigilitie		-0.42	11.47	0.01
PDItr vs PDH1				No	t Significa	int				-1.02	12.11	0.02			
PDItr vs PDAr		-0.06 -6.00 0.03					Not	Signific	ant	0.25	-2.29	0.02	Not	Significa	ant
PDItr vs EPItu	-0.06	-0.06 -6.00 0.03												n	
PDWl vs EPDl	-	-0.06 -6.00 0.03							1				0.17	3.01	0.01
PDWl vs SCD	-						0.07	3.91	0.02				Not	Signific	ant
PDWl vs PDHl							Not	Signific	ant				-0.21	6.95	0.05
PDWl vs EPAu	Not	Signific	ant				0.00	5.35	0.01						
PDWr vs EPWu	-				r	1	0.52	-2.88	0.03						
PDWr vs PDHl				-0.39	7.09	0.00				Not	Significa	ant			
PDWr vs EPAu		r	1	-0.01	7.02	0.01	Not	Signific	ant						
PDWr vs PDAl	-0.05	-0.05 5.79 0.01					1101	Signine	unt				Not	Signific	ant
PDWr vs EPItu	-	-0.05 5.79 0.01			t Significa	int			T				0.36	3.42	0.00
PDWr vs EPItl	Not	Signific	ant				-0.22	5.49	0.01						
PDWr vs PDItl	1101	51511110	uiit	-0.08	4.25	0.02	Not	Signific	ant				Not	Significa	ant
SCA vs PDH1				-8.19	212.95	0.03	1101	Signific	un						

		C3			C4			C5			C6			C7	
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
SCA vs EPAu	Not	Signific	ant				0.21	126.23	0.03						
SCA vs EPItu	NO	Significa	ant	Not	t Signific	ant	3.93	142.44	0.04						
SCD vs EPD1	-0.30	14.79	0.03				No	t Significa	nt				Not	Significa	ant
SCD vs EPA1				-0.01	11.98	0.02	110	- Significa							
SCD vs PDW1							0.71	7.07	0.02	Not	Signific	ant			
SCD vs PDIsr							No	t Significa	int				0.04	9.69	0.03
SCD vs PDItr				Not	Signific	ant	-0.07	10.74	0.00						
SCW vs EPWu					Signific	an	0.84	7.80	0.03						
SCW vs VBHp							-0.94	30.99	0.02		-		Not	Significa	ant
SCW vs SPL										-0.07	23.45	0.00	-		
SCW vs EPAl				-0.01	21.53	0.04	No	t Significa	int						
SCW vs EPItu	Not	t Significa	ant				110	t biginnet		Not	Signific	ant	0.11	18.89	0.05
SCW vs PDItr	-									110	Signific	unt	-0.14	20.12	0.01
SPL vs EPW1				Not	t Signific	ant	-1.95	64.68	0.05						
SPL vs SCW										-1.14	63.74	0.00	Not	Signific	ant
SPL vs EPItu										-0.71	44.15	0.01	1101	Significa	um
SPL vs PDIsl				-0.09	26.37	0.01				Not	Signific	ant			
TPW vs EPDu							No	t Significa	int	110	. Signine		1.37	33.01	0.00
TPW vs EPD1							140	t Significa	un	0.62	38.76	0.02	-		
TPW vs PDA1				Not	Signific	ant				0.12	44.85	0.03			
TPW vs EPItu	0.04	41.31	0.02	1101	Signific	ant							Not	Significa	ant
TPW vs PDItl	-0.14	40.80	0.05							Not	Signific	ant			
VBHa vs EPDu	Not	t Significa	ant				0.37	4.22	0.03						

		C3			C4			C5			С	6		C7	7
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
VBHa vs PDHr	Not	Signific	ant	0.27	7.98	0.03									
VBHa vs PDA1	-0.04	10.98	0.05				Not	Signifia	ant						
VBHa vs PDAr	0.03	8.97	0.04				INOL	Signific	anı		N	ot		No	t
VBHa vs PDItl	0.04	10.15	0.04	No	t Signifi	icant				Si	gni	ficant	Si	gnifi	icant
VBHp vs SCW	Not	Signifia	ont				-0.06	12.59	0.02						
VBHp vs EPAu	INOL	Significa	ant				0.00	10.75	0.03						

 Table 9: Chinese Singaporean Correlations continued part 6

		C3			C4			C5			C6			C7	
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
EPAl vs SCD				5.89	93.84	0.00							Not	t Significa	nt
EPAl vs PDHl	No	t Significa	nt				No	ot Significa	int	No	t Significa	nt	9.36	206.82	0.04
EPAl vs EPAu	NO	t Significa	111							NO	t Significa	.111	0.25	206.73	0.01
EPAl vs PDIsl							0.57	220.57	0.04						
EPAu vs SPL	2.60	92.58	0.02				No	ot Significa	int	-0.84	251.72	0.03	No	t Significa	nt
EPAu vs PDH1	No	t Significa	nt				-4.55	216.47	0.02						
EPAu vs EPA1	110			No	ot Signifi	cant							0.30	195.94	0.01
EPAu vs EPItu	-3.02	178.40	0.02				No	ot Significa	int						
EPAu vs PDItl	-3.05	148.05	0.03										Not	t Significa	nt
EPDl vs EPWu	No	t Significa	nt				0.22	14.02	0.04						
EPDl vs SCW	NO	t Significa	m										-0.07	18.62	0.05
EPDl vs PDHl	0.25	13.70	0.03							No	t Significa	nt			
EPDu vs EPW1	No	t Significa	nt	0.29	10.30	0.03				NO	t Significa	.111			
EPDu vs VBHp	110			-0.30	18.64	0.05	No	ot Significa	int						
EPDu vs PDHr	-0.24	16.91	0.02	No	ot Signifi	cant							No	t Significa	nt
EPDu vs PDA1				-0.06	16.77	0.01							110	t Significa	m
EPItl vs SCW	No	t Significa	nt	0.20	-2.90	0.02									
EPItl vs PDHr							-0.61	6.65	0.02						
EPItl vs PDWr	-0.30	5.60	0.03												
EPItl vs SCA	No	t Significa	nt							-0.01	4.81	0.00	0.00	1.00	0.01
EPItl vs PDAr	110	t Significa	111	No	ot Signifi	cant	Ne	t Significs	nt				-0.03	2.65	0.03
EPItu vs EPW1	-0.57	12.73	0.01				110	n Significa		No	t Significa	nt			
EPItu vs PDH1	0.44	-0.18	0.03							110	t Significa	.111	No	t Significa	nt
EPItu vs EPAu	-0.02	6.19	0.02												

		C3			C4			C5			C6			C7	
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
EPWl vs EPWu				Not	Significa	ant	0.12	17.17	0.05						
EPWl vs EPDu	Not	t Significa	nt	0.17	14.41	0.03									
EPWl vs SPL				0.10	14.09	0.03				Not	t Signific	ant			
EPWl vs PDWr	-0.14	18.08	0.00												
EPWl vs EPItu	-0.11	17.60	0.01	Not	Signific	ant	Not	Signific	ant						
EPWu vs SCD	Not	t Significa	nt	1101	Significa	ant	NO	Significa	ant	-0.21	22.32	0.04	No	t Significa	nt
EPWu vs PDIsr	-0.07	19.02	0.02		-					Not	Signific	ant	140	t Significa	.111
PDA1 vs EPDu	Not	t Significa	nt	-1.26	44.30	0.01				110	i Sigiinte	ant			
PDAl vs VBHp	-1.39	37.17	0.01	1.37	9.39	0.04		-		1.77	9.21	0.04			
PDA1 vs PDW1	Not	t Significa	nt				1.74	15.65	0.01						
PDA1 vs PDWr	0.73	16.87	0.04				Not	Significa	ant						
PDAl vs SCA							0.01	20.75	0.04						
PDA1 vs PDItr							Not	Significa	ant	Not	Signific	ant	0.03	23.34	0.34
PDAr vs SCW	Not	t Significa	nt				-0.52	35.91	0.03	110	Signific	am	No	t Significa	nt
PDAr vs EPItl				Not	Significa	ant							-1.60	33.85	0.03
PDAr vs PDItl							Not	Significa	ant				0.52	26.11	0.02
PDH1 vs EPD1	0.18	4.25	0.03					-							
PDHl vs PDWr							0.23	6.04	0.01	0.17	6.37	0.01	No	t Significa	nt
PDHl vs EPAu	Not	Significa	nt				-0.01	9.74	0.02						
PDH1 vs EPA1		Significa	m										0.00	6.21	0.04
PDHl vs SCA				0.00 8.14 0.04				Cianifia	ant	Not	t Signific	ant			
PDH1 vs EPItu	0.11	6.75	0.03	Not	Signific	ant	INOL	Significa	111l				No	t Significa	nt
PDHl vs PDIsr	0.06	4.67	0.05	1001	Significa	ant									

		C3			C4			C5			C6			C7	
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
PDHr vs EPDu	-0.23	10.97	0.02	Not	Signific	ant	Not	Significa	ant						
PDHr vs PDW1				1101	. Significa		0.30	5.22	0.03						
PDHr vs SPL				0.13	3.41	0.00	Not	Significa	ant						
PDHr vs SCA				Not	Significa	ant	0.00	7.48	0.05	No	t Signific	ant			
PDHr vs PDIsl				-0.04	9.13	0.02	Not	Signific	ant						
PDHr vs PDIsr	Not	Signific	ant	-0.06	9.86	0.03		biginnea					N	ot Signifi	cant
PDIsl vs VBHp				Not	Signific	ant	-3.22	77.50	0.01				11	ot Siginii	cant
PDIsl vs SCD				NO	. Signine		Not	Signific	ant	0.91	17.35	0.03			
PDIsl vs PDHr				-1.27	53.70	0.02	100	. Significa							
PDIsl vs EPA1							0.08	22.53	0.04	No	t Signific	ant			
PDIsr vs EPWu	-0.69	52.55	0.02												
PDIsr vs VBHp	Not	Signifia	ant	Not	Significa	ant				2.49	2.85	0.00			
PDIsr vs SCW	Not	Signific	am										0.54	20.00	0.05
PDIsr vs PDH1	0.69	36.65	0.05				Not	Signific	ant						
PDIsr vs PDHr	Not	Signific	ant	-0.86	51.42	0.03	1101	bigiinte	unt				N	ot Signifi	cant
PDIsr vs EPItl	-0.38	43.06	0.01	Not	Signific	ant				No	t Signific	ant			
PDIsr vs PDItl					. Significa					110	t Signin	ant	0.44	28.96	0.00
PDIsr vs PDItr				0.19	46.69	0.02			r				0.27	29.60	0.05
PDItl vs EPW1	Not	Signific	ant				-0.99	13.47	0.02				N	ot Signifi	cant
PDItl vs PDWr													0.79	3.74	0.02
PDItl vs SPL				Not	Signific	ant				0.35	-6.15	0.01	N	ot Signifi	cant
PDItl vs EPAu	-0.01	-4.53	0.03	1400	Jighine	u111	Not	Significa	ant				11	or orginn	cuit
PDItl vs PDAr	Not	Signific	ant							No	t Signific	ant	0.11	6.07	0.02
PDItl vs PDIsr	INOL	Signific	ant										0.21	2.76	0.00

		C3			C4			C5			C6			C7	
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
PDItr vs PDA1	N	lot Signific	cant										0.14	9.52	0.03
PDItr vs SPL	1.48	-53.11	< 0.0001	Not	t Significa	nt				Not	Significan	at	No	t Significa	nt
PDItr vs SCA	0.02	-13.41	0.03		-		Not	Significat	nt	1101	Significal	n	NO	t Significa	unt
PDItr vs PDIsr				0.27	-20.20	0.02							0.15	8.64	0.05
PDW1 vs VBHp	N	ot Signifi	cant	-0.21	7.45	0.04				0.36	1.77	0.02			
PDW1 vs PDHr	1	ot signin	cant				0.15	4.10	0.03						
PDW1 vs PDA1							0.03	4.28	0.01	Not	Significar	nt			
PDWr vs EPWl	-0.56	15.36	0.00				0.31	-0.02	0.01						
PDWr vs PDHl	N	ot Signifi	cant				0.26	4.07	0.01	0.42	3.19	0.01	No	t Significa	nt
PDWr vs TPW	-0.08	9.84	0.03	Not	Not Significant			7.54	0.04						
PDWr vs SCA	N	ot Signifi	cant				0.00	6.64	0.05						
PDWr vs PDA1	0.06	4.36	0.04												
PDWr vs EPItl	-0.03	5.72	0.03				Not	Significa	nt						-
PDWr vs PDItl							1101	Significal	iii.	Not	Significar	nt	0.07	6.01	0.02
SCA vs PDHl				-13.79	380.53	0.04									
SCA vs PDHr	N	lot Signifi	rant				-13.95	349.08	0.05				No	t Significa	nt
SCA vs PDWr	1	ot biginit	curr				-15.69	349.14	0.05				110	t Significa	
SCA vs PDA1							2.79	186.49	0.04						
SCA vs EPItl				Not	Significa	nt				-10.22	288.56	0.00	18.43	188.69	0.01
SCA vs PDItr	2.89	274.35	0.03	INO	Significa	111				Not	Significar	nt			
SCD vs EPWu	N	ot Signifi	cant				Not	Significat	nt	-0.20	21.83	0.04	No	t Significa	int
SCD vs SPL	0.38	5.00	0.02							Not	Significar	nt			
SCD vs TPW	N	ot Signific	cant							100	Significal	n	5.84	27.09	0.04

		C3			C4			C5			C6			C7	
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
SCD vs EPA1				0.02	13.84	0.00				Not	Significa	ant	Not	Signific	ant
SCD vs PDIsl							Not	Significa	ant	0.05	16.40	0.03	Not	Significa	anı
SCW vs EPD1				Not	Signific	ont							-0.53	33.23	0.05
SCW vs PDAr	No	ot Signif	icant	NO	Signific	am	-0.09	27.13	0.03				Not	Significa	ant
SCW vs PDIsr													0.07	21.88	0.05
SCW vs EPItl				0.29	24.06	0.02				Not	Significa	ant			
SPL vs EPW1				0.49	21.91	0.03									
SPL vs SCD	0.15	27.22	0.02	Not	Signific	ant									
SPL vs PDHr	No	ot Signif	icant	0.69	25.08	0.00	Not	Signific	ant				Not	Significa	ant
SPL vs EPAu	0.02	26.30	0.02				NO	Significa	ant	-0.06	47.08	0.03			
SPL vs PDItl	No	ot Signif	icant							0.19	33.31	0.01			
SPL vs PDItr	0.12	30.68	< 0.0001												
TPW vs VBHp	No	ot Signif	icant	Not	Signific	ant							-0.65	74.93	0.01
TPW vs SCD	110	л ыğıш								Not	Signific	ont	-0.23	70.08	0.04
TPW vs PDWr	-0.56	53.20	0.03				-1.28	54.40	0.04	Not	Significa	un			
VBHp vs EPWl							-0.23	15.88	0.01				Not	Significs	ant
VBHp vs EPDu	Nc	ot Signif	icant	-0.13	13.47	0.05							Not	Significa	ant
VBHp vs PDW1	140	n Sigilli	icant	-0.20	12.43	0.04	Not	Signific	nt	0.16	10.04	0.02			
VBHp vs TPW				Not	Signific	ant	INOL	Significa	1111	Not	Significa	ant	-0.09	18.88	0.01
VBHp vs PDAl	-0.04	12.57	0.01	0.03	10.67	0.04				0.02	10.27	0.04			
VBHp vs PDIsl	N	t Signif	icont	Not	Signific	ont	-0.02	12.16	0.01	Not	Significa	ant	Not	Significa	ant
VBHp vs PDIsr	INC	n sigiili	icalli	INOL	Signific	ant	Not	Significa	ant	0.04	9.82	0.00			

New Measurements:

New linear measurements were completed as described in the Methods section. These measurements were completed on 50 randomly selected subjects that consisted of both genders, and of both African American and Caucasian race. Of this sample 27 of them were male, with 25 being Caucasian and 2 African American. The female portion of the sample included 12 Caucasian and 5 African American female subjects, totaling to 17. The age of the subjects ranged from 18-91, dividing these subjects into 3 groups resulted in: 15 in the 18-40 age group, 12 in the 41-60 age group, and 17 in the 61+ age group. The summary of the measurements performed are displayed in Tables 11-13 with separation of gender, race, and age.

		Male Cau	casian (mn	n)	
	C3	C4	C5	C6	C7
EPWu	16.1785	16.8349	17.5754	19.0494	21.6261
EPW1	18.8137	19.3526	20.1653	22.7662	26.0938
EPDu	15.7341	16.1706	16.6211	18.2023	18.9238
EPD1	16.9333	17.0973	18.6211	19.0675	18.1679
VBHp	15.3315	14.3733	14.1178	13.5255	14.8627
VBHa	14.2015	13.268	12.3699	12.4484	14.2311
SCW	25.1322	25.1629	26.1433	26.7853	26.7476
SCD	18.7258	15.0967	14.9516	15.5994	15.7622
TPW	53.3635	54.6664	55.0069	57.2746	61.0433
]	Female Cau	ucasian (m	m)	
	C3	C4	C5	C6	C7
EPWu	15.3655	16.0702	16.1451	17.7849	19.5365
EPW1	17.3708	17.5935	18.0625	20.6298	24.1058
EPDu	14.5784	14.4125	14.8894	16.4618	16.9314
EPD1	15.1173	15.4395	16.8605	16.9573	16.0771
VBHp	13.7192	13.2052	12.635	12.5617	14.514
VBHa	12.5395	12.0491	11.2169	11.3802	13.2547
SCW	24.1943	24.12	25.3307	28.2539	25.6148
SCD	18.1364	14.5147	14.6608	15.0689	15.2947
TPW	49.0469	50.735	52.1951	55.1931	58.4885

Table 11: CT measurements, Caucasian

	Male African American (mm)											
	C3	C4	C5	C6	C7							
EPWu	16.0584	17.2234	17.235	19.695	21.325							
EPW1	19.3384	20.9034	22.0942	21.4684	23.2667							
EPDu	16.5797	16.9057	17.253	17.7024	19.3004							
EPD1	18.964	17.8894	19.519	20.3947	19.3344							
VBHp	14.8647	13.6384	13.727	14.6534	14.1417							
VBHa	14.011	13.737	12.4967	10.5227	12.916							
SCW	24.0475	25.2267	25.1809	26.2834	26.5184							
SCD	15.5225	13.6267	14.0292	14.395	13.8525							
TPW	54.795	54.4384	57.8984	55.4834	61.2967							
Female African American (mm)												
	C3	C4	C5	C6	C7							
EPWu	14.9175	14.6436	15.6985	16.5967	19.1097							
EPW1	15.3409	16.7134	17.3487	19.0268	22.0673							
EPDu	14.2188	14.547	14.4402	14.939	14.8353							
EPD1	15.2972	15.3115	16.0435	15.5201	15.0942							
VBHp	13.3333	12.0935	12.0801	11.6902	13.218							
VBHa	12.5094	11.1362	11.0362	10.8686	12.72							
SCW	22.8975	23.4167	24.5133	24.7533	24.4675							
SCD	16.1538	13.1954	13.6083	13.7034	13.4592							
TPW	44.5479	46.875	48.1086	49.8436	54.3365							

Table 12: CT Measurements, African American

The analysis of race, and gender resulted in no significant difference between races but a significant difference in gender in most cases. Within the female gender there were generally no significant differences between race except for in the cases of: EPWl in the C3 vertebra, EPWl in the C4 vertebra, VBHp in the C4 vertebra, TPW in the C5 vertebra, SCD in the C6 vertebra, and SCD in the C7 vertebra with Caucasian being larger in all. In regards to gender it was found that there were significant differences, with male being larger than female except for the cases of: SCD in all 5 vertebral levels, SCW in the C6 vertebra, and VBHp in the C7 vertebra. The investigation into the similarities in age resulted in there being differences based on vertebral level and measurement, the results are tabulated in Table 13. If there was a significant difference in age, it was generally found that there was no difference in the 41-60 age group when compared to the 61+ group but different from the 18-40 group which had no difference to the 61+ age group. The 18-40 age group was found to be significantly smaller than the others in the following cases: EPWu in the C3 vertebra, EPDl in the C4 vertebra, EPDu/l in the C5 vertebra, EPWu/l in C6, and EPDl in the C6 vertebra. There was significant difference between the 18-40 age group and the 61+ group, but otherwise correlated in the following cases: EPDu in C6, and EPDu in C7.

		EPWu	EPW1	EPDu	EPD1	VBHp	VBHa	SCW	SCD	TPW
	18-40	14.9206	16.9811	14.2744	15.166	14.4849	13.3457	24.4966	18.3624	51.1386
C3	40-60	16.4616	18.7755	16.0342	17.7897	14.8196	13.832	24.4719	18.0172	52.2096
CS	60+	16.1297	18.4796	15.6482	16.364	14.6591	13.5241	24.8256	18.1124	51.0523
	Diff	Yes	Yes	Yes	Yes	No	No	No	No	No
	18-40	15.6813	17.6267	14.6203	15.1961	13.4573	12.8169	24.4707	14.8064	52.7977
C4	40-60	16.8913	19.702	16.3344	17.4535	14.1764	13.0272	24.4044	14.3625	53.4921
C4	60+	16.6745	18.7932	15.7908	16.9211	13.739	12.4037	25.17	14.824	52.3742
	Diff	Yes	Yes	Yes	Yes	No	No	No	No	No
	18-40	15.9702	18.1023	14.7365	16.0363	13.0812	11.9133	25.6003	15.0444	53.9036
C5	40-60	17.9384	20.494	16.6396	19.644	14.1081	12.063	25.6344	14.1588	53.9814
0.5	60+	17.1339	19.6677	16.4814	18.2845	13.3473	11.7982	25.8967	14.7901	53.3384
	Diff	Yes	Yes	Yes	Yes	No	No	No	No	No
	18-40	17.2518	20.1479	15.9805	16.5009	12.8846	11.8196	26.1702	15.6947	55.0786
C6	40-60	19.1242	22.5075	17.9917	19.2112	13.4911	11.9222	26.429	14.3974	56.2079
0	60+	19.0448	22.4986	18.0642	18.854	13.0279	11.9294	28.1598	15.3892	56.4905
	Diff	Yes	Yes	Yes	Yes	No	No	No	No	No
	18-40	19.4647	23.5492	16.4192	16.2162	14.467	13.6689	25.709	14.9094	58.8499
C7	40-60	21.9515	26.0956	18.572	17.799	14.6644	13.8522	26.6745	14.7576	59.0076
0/	60+	21.053	25.4175	18.8175	17.9077	14.537	13.7063	26.2321	16.0264	60.6458
	Diff	Yes	No	Yes	No	No	No	No	No	No

 Table 13: CT measurements, age

Given that there were significant differences due to gender rather than race, the vertebral analysis (similar to what was completed for the Chinese Singaporean and Caucasian population) was conforming to published research. There were a total of 72 comparisons completed for each vertebral segment, totaling to 360 comparisons from C3-C7. In the male population there were a total of 68 correlations, with 14 found in the C3 vertebra, 14 in the C4, 12 in the C5 vertebra, 6 in the C6, and 22 in the C7. For the female population there were a total of 82 significant relationships found, with 14 in the C3 vertebra, 20 in the C4 vertebra, 22 in the C5 vertebra, 14 in the C6 vertebra, and 12 in the C7 vertebra. There were more significant correlations found in the female gender than the male, and these linear relationships are displayed in Tables 14 and 15.

		C3		C4			C5				C6		C7			
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	
EPWu vs EPWl	0.49	6.95	0.00	0.40	9.02	0.00	0.45	8.51	0.02	0.50	7.77	0.00	0.40	11.25	0.02	
EPWu vs EPDu	N	lot Signif	Ficant	Not Significant			Not Significant			Not Significant			0.37	14.68	0.03	
EPWu vs SCW	Not Significant		Icant	Not Significant			Not Significant			IN	Not Significant			0.77	0.01	
EPW1 vs EPWu	0.59	9.34	0.00	0.77	6.44	0.00	0.46	12.22	0.02	0.74	8.46	0.00	0.49	15.28	0.02	
EPW1 vs EPDu	0.30	14.14	0.03										Net Ciercificant			
EPW1 vs EPD1	0.26	14.49	0.03										Not Significant			
EPWl vs VBHp				Not Significant									0.83	13.55	0.00	
EPW1 vs VBHa		lot Signif	Front				N	ot Signifi	icant	N	ot Signif	ficant	1.00	11.80	0.00	
EPW1 vs SCW		ot Sigini	Icant										0.66	8.05	0.04	
EPDu vs EPWu													0.49	8.33	0.03	
EPDu vs EPW1	0.61	4.35	0.03										Not Significant			
EPDu vs EPD1	0.71	3.58	< 0.0001	0.71	4.00	< 0.0001	0.58	5.83	< 0.0001	0.71	4.58	< 0.0001	1.03	0.09	< 0.0001	
EPDu vs SCD	N	lot Signif	ficant	-0.40 22.15 0.04		-0.51	24.29	0.03	N	ot Signif	Ficant	Not	Signifi	aant		
EPD1 vs EPW1	0.69	4.05	0.03	No	ot Signifi	cant	Not Significant						inor Significant			
EPD1 vs EPDu	0.95	2.07	< 0.0001	1.11	-0.80	< 0.0001	1.29	-2.87	< 0.0001	1.00	1.02	< 0.0001	0.76	3.80	< 0.0001	
EPDl vs SCD	N	lot Signif	ficant	-0.51	24.79	0.04				-0.59	28.24	0.04	Not	Signifi	pont	
EPD1 vs TPW	0.23	4.95	0.02	Ne	t Signifi	cont	N	ot Signifi	icant				NO	. Signin	ant	
VBHp vs EPWl	N	lot Signif	ficant	110	л Sigiiii	cant							0.00	6.22	0.33	
VBHp vs VBHa	0.94	1.94	< 0.0001	0.69	5.12	0.00	0.59	6.84	0.00				< 0.0001	3.26	0.82	
VBHp vs SCD				No	ot Signifi	cant				N	ot Signif	Ficant	0.35	9.19	0.02	
VBHp vs TPW	N	lot Signif	ficant	0.18	4.44	0.04	N	ot Signifi	icant	IN	ot Sigini	Icant	Not	Signific	cant	
VBHa vs EPW1				Not Significant									5.06	0.35		
VBHa vs VBHp	0.63	4.51	< 0.0001	0.57	5.16	0.00	0.73	2.10	0.00]			< 0.0001	3.45	0.72	
VBHa vs SCW	N	lot Signif	licant	No	ot Signifi	cant	0.48	-0.23	0.04				0.01	0.80	0.50	

Table 14: CT Male Correlations

		C3			C4			C5		C6			C7				
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F		
VBHa vs SCD				Not Significant			Not	Not Significant					0.02	8.70	0.35		
VBHa vs TPW	Not	Not Significant			-1.12	0.00	0.23	-0.09	0.03				Not Significant				
SCW vs EPWu	Not Significant			Nut O' au ' C' aud									0.33	19.67	0.01		
SCW vs EPWl							Not	Signific	ant	Not Significant			0.26	19.92	0.04		
SCW vs SCD	0.36	18.35	0.00	Not Significant						Not Significant					cant		
SCW vs VBHa								21.94	0.04				0.55	18.97	0.01		
SCD vs EPDu	Not	Signific	cant	-0.38	21.20	0.04	-0.36	20.83	0.03								
SCD vs EPD1				-0.32	20.44	0.04				-0.27 20.76 0.04			Not Significant				
SCD vs SCW	0.80	-1.52	0.00														
SCD vs VBHp	Not	Cionifi	ant	Not	Signifia	ont	Not	Signifia	ont				0.62	6.54	0.02		
SCD vs VBHa	INOL	Not Significant		NOL	Signific	ant	NOL	Signific	anı	Not	Signific	ont	0.64	6.61	0.02		
TPW vs EPDl	0.84	39.16	0.02							NOL	Signific	an					
TPW vs VBHp	p 0.91 41.56 0.04 a Not Significant 1.62 33.04 0.00 0.74 46.03 0.03					t Signifi	cant										
TPW vs VBHa			1.62	33.04	0.00	0.74	46.03	0.03									

Table 14: CT Male Correlations part 2

	C3			C4			C5		C6			C7			
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F
EPWu vs EPW1	0.48	7.18	0.01	0.54	6.26	0.00	0.46	7.78	0.00	0.48	7.77	0.02	0.40	10.00	0.02
EPWu vs EPDu	0.53	7.52	0.02	No	ot Signifi	cant	0.40	10.16	0.01	0.37	11.47	0.04	Nc	t Signific	ant
EPWu vs EPDl	0.54	6.98	0.00	0.38	9.81	0.02	0.35	10.24	0.00	0.38 11.17 0.04		0.04	Not Significant		am
EPWl vs EPWu	0.86	3.65	0.01	0.79	4.94	0.00	1.00	1.78	0.00	0.69	8.09	0.02	0.83	7.30	0.02
EPWl vs EPDu	N	ot Signit	ficant	0.58	8.90	0.00	0.65	8.25	0.00	0.55	11.32	0.01	0.73	11.62	0.03
EPWl vs EPDl	110	ot Sigini	licalit	0.63	7.70	0.00	0.59	8.05	< 0.0001	0.60	10.17	0.00	Not Significant		ant
EPWl vs VBHp	0.82	5.61	0.03										not Significant		
EPWl vs SCW			No	ot Signifi	cant	N	Nut City City of Nut				icont	1.38	-10.73	0.00	
EPWl vs SCD	N	Not Significant					11	ot Sigini	icalit	1	lot Sigili	icant	1.53	1.47	0.01
EPWl vs TPW				0.24 5.42 0.02									Nc	t Signific	ant
EPDu vs EPWu	0.62	5.10	0.02	No	ot Signifi	cant	0.95	-0.49	0.01	0.69 3.97 0.04			140t Significant		
EPDu vs EPW1	N	ot Signif	ficant	0.76	1.27	0.00	0.72	1.95	0.00	0.71	1.72	0.01	0.37	7.72	0.03
EPDu vs EPD1	0.71	3.73	< 0.0001	0.87	0.98	< 0.0001	0.62	4.43	< 0.0001	0.90	1.13	< 0.0001	0.86	2.66	0.00
EPDu vs VBHp	N	ot Signif	ficant	No	ot Signifi	cant	1.25	-0.82	0.00	Not Significant					
EPDl vs EPWu	0.83	2.59	0.00	0.81	2.72	0.02	1.43	-6.22	0.00	0.69	4.47	0.04	No	ot Significa	ant
EPD1 vs EPW1	N	ot Signif	ficant	0.91	-0.42	0.00	1.11	-3.23	< 0.0001	0.76	1.12	0.00			
EPD1 vs EPDu	0.93	1.69	< 0.0001	0.98	1.24	< 0.0001	1.06	0.92	< 0.0001	0.89	2.33	< 0.0001	0.74	3.76	0.00
EPDl vs VBHp	N	ot Signif	ficant	0.84	4.64	0.04	1.13	2.47	0.05						
VBHp vs EPW1	0.35	7.80	0.03	N	ot Signifi	cont	N	ot Signifi	icant	N	ot Signif	icont	Nc	t Signific	ant
VBHp vs EPDu	N	ot Cianit	Ficant	INC	J. Sigiiii	cant	0.40	6.62	0.00	1	lot Sigilii	icant	INC	n Significa	am
VBHp vs EPD1		ot Sigini	licalit	0.30	8.32	0.04	0.21	8.97	0.05						
VBHp vs VBHa	0.87	2.73	0.00	NL	ot Signifi	cont	N	ot Signif	icant	0.82	3.06	0.00	0.87	2.77	0.00
VBHp vs SCW	NL	ot Signit	Ficant		Not Significant		0.38	3.02	0.03	Nat Significant			Nc	t Signific	ant
VBHp vs TPW	Not Significant		0.19	3.29	0.01	N	ot Signif	ificant Not Significant			icalit	Not Significant			

Table 15: CT Female Correlations

		C3		C4			C5			C6			C7			
	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	m	b	P>F	
VBHa vs VBHp	0.73	2.64	0.00				No	t Signific	ant	0.68	2.89	0.00	0.67	3.59	0.00	
SCW vs EPW1				Nc	Not Significant		INU	t Signific	ant				0.41 15.42 0.0			
SCW vs VBHp	Not	t Significant			ant	0.80	15.15	0.03								
SCW vs SCD								15.49	0.04				Not Significant			
SCW vs TPW	0.15	16.48	0.02	0.22	13.22	0.04	Not Significant									
SCD vs EPW1				Nc	t Signific	ant	110	t Sigiliite	ant				0.25	8.71	0.01	
SCD vs SCW				INC	n Signine	am	0.41	4.18	0.04	Not	Signifi	cant				
SCD vs TPW	Not	Signific	ant	0.21	3.86	0.04	0.25	1.84	0.00							
TPW vs EPW1				1.35	26.50	0.02							No	t Signific	ont	
TPW vs VBHp				1.99	1.99 24.10 0.01			t Signific	ant				Not Significant			
TPW vs SCW	2.06	-1.34	0.02	1.23	20.32	0.04										
TPW vs SCD	Not	t Significant 1.26 31.96 0.04		1.83	24.83	0.00										

Table 15: CT Female Correlations part 2

Moment of Inertia:

The moment of inertia of each vertebral body was found utilizing equation 22 and the measurements for the male and female gender found through the CT measurements. The results of this can be found in Table 16. The values for the density of the vertebra (ρ) , mass of the vertebra (m), and moment of inertia of the vertebra (I) (labeled lit) came from previous literature (Paul C. Ivancic 2006; B.L.Riggs 1982). All moment of inertia values, whether using mass and density or from the literature, increase axially through the spine. Values found through the approximation presented in this research using an elliptical frustum match fairly well with the value found in literature for the moment of inertia (Paul C. Ivancic 2006). Figures 16-20 display the measured and predicted values for the male and female population for the specified vertebral level. For the most part it can be seen that the estimate of the moment of inertia for the subjects matches well with the predicted moment of inertia value. There are some outlying points but not always occurring for the same subject. These outlying points are the result of the measured values of the EPWu, EPWl, EPDu, EPDl, and VBH. The values found in literature are larger in the C3, C4, and C7 vertebra than compared to the calculated value for the subject and the expected value of the moment of inertia for the population. This could be a result of the approximation that was accomplished in the moment of inertia when being compared to actual measurements found through lab testing completed by Ivancic and de Jager. The moment of inertia for both genders when viewing the graphs do appear to be fairly similar to each other.

61

		Male											
	C3	C4	C5	C6	C7								
EPWu (mm)	16.1696	16.8637	17.5502	19.0973	21.6038								
EPWl (mm)	18.8526	19.4674	20.3082	22.6702	25.8844								
EPDu (mm)	15.7967	16.225	16.6679	18.1653	18.9517								
EPDl (mm)	17.0837	17.156	18.6876	19.1658	18.2543								
VBH (mm)	15.2969	14.3189	14.0889	13.6091	14.8092								
ρ (kg/m ³)	13.3	13.3	13.3	13.3	13.3								
m (kg)	3.63E-02	3.66E-02	3.71E-02	4.39E-02	5.05E-02								
I kg m^2 (dens)	1.355E-06	1.3E-06	1.9E-06	2E-06	2.2E-06								
I kg m ² (mass)	1.999E-06	2E-06	2.6E-06	3.1E-06	3.6E-06								
I kg m ² (lit)*	4.50E-06	4.71E-06	4.92E-06	6.86E-06	1.19E-05								
	Female												
	C3	C4	C5	C6	C7								
EPWu (mm)	15.2337	15.6506	16.0137	17.4355	19.411								
EPWl (mm)	16.7738	17.3346	17.8526	20.1583	23.5063								
EPDu (mm)	14.4726	14.4521	14.7573	16.0139	16.3149								
EPDl (mm)	15.1702	15.4019	16.6202	16.5346	15.788								
VBH (mm)	13.6057	12.8782	12.4718	12.3054	14.1328								
ρ (kg/m ³)	13.3	13.3	13.3	13.3	13.3								
m (kg)	3.63E-02	3.66E-02	3.71E-02	4.39E-02	5.05E-02								
I kg m^2 (dens)	8.078E-07	8.8E-07	1.2E-06	1.1E-06	1.4E-06								
I kg m ² (mass)	1.638E-06	1.8E-06	2.3E-06	2.4E-06	2.9E-06								

Table 16: Moment of Inertia

Figure 16: MOI predicted and measured for the C3 vertebra

Figure 17: MOI predicted and measured for the C4 vertebra

Figure 18: MOI predicted and measured for the C5 vertebra

Figure 19: MOI predicted and measured for the C6 vertebra

Figure 20: MOI predicted and measured for the C7 vertebra

DISCUSSION

The statistical analysis completed on the measurements of the vertebral dimensions of the Chinese Singaporeans (Tan 2004) resulted in 128 significant relationships. These included 27 in the C3 vertebra, 28 in the C4 vertebra, 25 in the C5 vertebra, 28 in the C6 vertebra, and 20 in the C7 vertebra. The analysis completed on the anthropometric measurements completed by Panjabi on Caucasians found there to be 133 significant correlations. In particular there were 36 in the C3 vertebra, 26 in the C4, 28 in the C5, 18 in the C6, and 26 in the C7. There were a similar amounts of correlations found for both races but the same relationships were not found between them, this could be the result of the significant differences that were found between the two studies.

As stated previously, there was generally no significant difference found between races. For the male population it was found that neither the African American nor Caucasian race exhibited any trend of larger measurements. For the female population, it was found that the Caucasian females exhibited larger dimensions than their African American counterparts (with still no significant difference between them). It was also found that male anthropometric measurements were larger than that of their female counterpart; this phenomenon has been seen in several previous studies. There was a significant difference in the endplate measurements with respect to age from C3-C6, but in the C7 vertebra there was only significant difference in the upper endplate. If there was a difference found in age group it was generally found that the 41-60 age group was similar to the 61+ age group but a difference in the 18-40 age group, this was similar to what was found in

66

the study completed by Liguoro et al. This difference should be taken into consideration when designing intervertebral disc devices. If a device is designed for a middle aged male, it could lead to an improper fit in a young adult male or female which could result in possible failure.

The smallest parameter in both genders was found in the anterior vertebral body height (VBHa). The morphometric parameters with respect to this smallest measurement in the female population are as below:

C3 vertebra:

- EPWu was 1.22 times larger than VBHa
- EPWl was 1.34 times larger than VBHa
- EPDu was 1.16 times larger than VBHa
- EPDI was 1.21 times larger than VBHa
- VBHp was 1.09 times larger than VBHa
- SCW was 1.91 times larger than VBHa
- SCD was 1.41 times larger than VBHa
- TPW was 3.82 times larger than VBHa

C4 vertebra:

- EPWu was 1.33 times larger than VBHa
- EPWl was 1.47 times larger than VBHa
- EPDu was 1.23 times larger than VBHa
- EPDI was 1.31 times larger than VBHa
- VBHp was 1.09 times larger than VBHa
- SCW was 2.03 times larger than VBHa

- SCD was 1.2 times larger than VBHa
- TPW was 4.23 times larger than VBHa

C5 vertebra:

- EPWu was 1.43 times larger than VBHa
- EPWl was 1.6 times larger than VBHa
- EPDu was 1.32 times larger than VBHa
- EPDI was 1.49 times larger than VBHa
- VBHp was 1.12 times larger than VBHa
- SCW was 2.25 times larger than VBHa
- SCD was 1.29 times larger than VBHa
- TPW was 4.58 times larger than VBHa

C6 vertebra:

- EPWu was 1.55 times larger than VBHa
- EPWl was 1.8 times larger than VBHa
- EPDu was 1.43 times larger than VBHa
- EPDI was 1.47 times larger than VBHa
- VBHp was 1.1 times larger than VBHa
- SCW was 2.44 times larger than VBHa
- SCD was 1.31 times larger than VBHa
- TPW was 4.8 times larger than VBHa

C7 vertebra:

- EPWu was 1.48 times larger than VBHa
- EPWl was 1.8 times larger than VBHa

- EPDu was 1.25 times larger than VBHa
- EPDI was 1.21 times larger than VBHa
- VBHp was 1.08 times larger than VBHa
- SCW was 1.93 times larger than VBHa
- SCD was 1.13 times larger than VBHa
- TPW was 4.38 times larger than VBHa

The morphometric parameters with respect to this smallest measurement in the male population are as below:

C3 vertebra:

- EPWu was 1.14 times larger than VBHa
- EPWl was 1.33 times larger than VBHa
- EPDu was 1.11 times larger than VBHa
- EPDl was 1.2 times larger than VBHa
- VBHp was 1.08 times larger than VBHa
- SCW was 1.77 times larger than VBHa
- SCD was 1.3 times larger than VBHa
- TPW was 3.77 times larger than VBHa

C4 vertebra:

- EPWu was 1.27 times larger than VBHa
- EPWl was 1.46 times larger than VBHa
- EPDu was 1.22 times larger than VBHa
- EPDl was 1.29 times larger than VBHa
- VBHp was 1.08 times larger than VBHa

- SCW was 1.89 times larger than VBHa
- SCD was 1.13 times larger than VBHa
- TPW was 4.11 times larger than VBHa

C5 vertebra:

- EPWu was 1.42 times larger than VBHa
- EPWl was 1.64 times larger than VBHa
- EPDu was 1.35 times larger than VBHa
- EPDI was 1.51 times larger than VBHa
- VBHp was 1.14 times larger than VBHa
- SCW was 2.11 times larger than VBHa
- SCD was 1.2 times larger than VBHa
- TPW was 4.46 times larger than VBHa

C6 vertebra:

- EPWu was 1.55 times larger than VBHa
- EPWl was 1.84 times larger than VBHa
- EPDu was 1.48 times larger than VBHa
- EPDI was 1.56 times larger than VBHa
- VBHp was 1.11 times larger than VBHa
- SCW was 2.17 times larger than VBHa
- SCD was 1.26 times larger than VBHa
- TPW was 4.64 times larger than VBHa

C7 vertebra:

• EPWu was 1.53 times larger than VBHa

- EPWl was 1.83 times larger than VBHa
- EPDu was 1.34 times larger than VBHa
- EPDI was 1.29 times larger than VBHa
- VBHp was 1.05 times larger than VBHa
- SCW was 1.89 times larger than VBHa
- SCD was 1.1 times larger than VBHa
- TPW was 4.32 times larger than VBHa

In comparing the measurements completed by the author on the CT images to the previous cadaver studies of both Tan and Panjabi the following results were received (displayed in Tables 17 and 18). In Tables 17 and 18 the following nomenclature applies:

AA = African American (CT measurements)

C-M = Caucasian (CT measurements)

C= Caucasian (Panjabi's measurements)

CS = Chinese Singaporeans (Tan's measurements)

Post-Hoc Analysis:

B: AA is significantly correlated to C-M, but both are significantly different from C and CS

D: AA is significantly correlated to C-M and C but significantly different from CS.

C-M, C, and CS are all significantly different from each other.

E: C-M and AA are significantly correlated, C and CS are significantly correlated, but they are not related in any other way. F: C-M, C, and AA are significantly correlated, and CS and AA are significantly correlated, but otherwise they are significantly different.

H: Only CS is significantly different

J: All are significantly different

G: C-M and C are significantly correlated, but otherwise they are significantly different.

K: C is significantly correlated to C-M and AA, CS is significantly correlated to C-M and AA, and C and CS are significantly different.

L: C and C-M are significantly correlated, AA and CS are significantly correlated, and otherwise they are significantly different

M: CS and AA are significantly correlated, everything else is not.

N: C is correlated with AA and CS, and everything else is significantly different.

O: AA is correlated with C-M and CS, and everything else is significantly different.

P: AA is significantly correlated with C-M, CS, and C, but otherwise everything is significantly different.

Q: C-M is correlated with C and AA, AA is correlated with C-M and CS, otherwise they are significantly different.

R: AA is correlated with C-M and CS, but otherwise not.

S: C and AA are significantly correlated, but otherwise not.

T: AA is correlated with C and CS, and everything else is significantly different.

U: Only C is significantly different.

The correlations between the races differed in the vertebral level and measurement for the male population, shown in Table 17. The EPWu was significantly smaller in the Chinese Singaporeans than the other 3 groups in all vertebral levels except for C6. In C3 and C4 the EPWl was correlated in the African American race and the Caucasian race of the CT measurements, but otherwise they were significantly different. With the Chinese Singaporean race being significantly smaller than Panjabi's Caucasian measurements. The EPDu for the African American male was significantly correlated to both Caucasian populations and all were significantly larger than the Chinese Singaporeans in all vertebrae except for C5. There was no significant difference in the three populations for the VBHa in the C6 vertebra; however the Chinese Singaporeans were significantly smaller than the other two races. The African American male SCW was significantly correlated to both Caucasian populations and all were significantly larger than the Chinese Singaporeans in all vertebrae except for C4. In the C4 vertebra the SCW was significantly smaller in the Chinese Singaporeans than the other three races. The SCD in the C4-C6 vertebra was significantly correlated between the African American male and the Caucasian from the CT measurements, which were significantly smaller than Panjabi's and significantly larger than the Chinese Singaporeans. Finally the TPW in the African American males for the C3, C6 and C7 vertebra was found to be correlated to both Caucasian populations, which were all significantly larger than the Chinese Singaporeans.

		EPWu	EPW1	EPDu	EPD1	VBHp	VBHa	SCW	SCD	TPW
C3	AA	16.06	19.34	16.58	18.96	14.87	14.01	24.05	15.52	54.80
	C-M	16.18	18.81	15.73	16.93	15.33	14.20	25.13	18.73	53.36
	С	15.72	17.27	14.88	15.61	11.62	NA	23.04	16.15	50.48
	CS	13.79	14.30	13.64	15.02	11.22	10.00	19.36	10.29	41.52
	Post Hoc	Н	В	D	J	В	Н	D	D	D
C4	AA	17.22	20.90	16.91	17.89	13.64	13.74	25.23	13.63	54.44
	C-M	16.84	19.35	16.17	17.10	14.37	13.27	25.16	15.10	54.67
	С	17.22	17.06	15.22	16.03	11.48	NA	24.62	17.63	48.28
	CS	14.69	15.00	14.03	15.29	11.26	9.88	19.38	10.44	44.94
	Post Hoc	Н	В	D	В	Е	Н	Н	В	В
	AA	17.24	22.09	17.25	19.52	13.73	12.50	25.18	14.03	57.90
C5	C-M	17.58	20.17	16.62	18.62	14.12	12.37	26.14	14.95	55.01
	С	17.63	19.35	15.14	17.84	11.42	NA	24.68	17.42	47.42
	CS	14.89	15.89	14.35	15.12	11.29	9.60	20.24	10.26	47.61
	Post Hoc	Н	J	В	D	Е	Н	D	В	Е
C6	AA	19.70	21.47	17.70	20.40	14.65	10.52	26.28	14.40	55.48
	C-M	19.05	22.77	18.20	19.07	13.53	12.45	26.79	15.60	57.28
	С	18.39	22.04	16.51	18.31	10.84	NA	25.62	18.26	49.87
	CS	15.80	19.55	14.58	15.76	11.33	10.40	20.51	10.27	48.41
	Post Hoc	D	F	D	D	В	No Diff	D	В	D
C7	AA	21.33	23.27	19.30	19.33	14.14	12.92	26.52	13.85	61.30
	C-M	21.63	26.09	18.92	18.17	14.86	14.23	26.75	15.76	61.04
	С	21.89	23.89	18.07	16.81	12.79	NA	24.50	15.45	66.42
	CS	19.02	20.36	15.06	15.57	11.83	11.18	19.69	10.95	54.03
	Post Hoc	Н	D	D	В	D	Н	D	F	D

Table 17: Correlations between Studies, male

As for the female populations, there is again a difference in correlations due to race and vertebral level even more so than the males (shown in Table 18). There are less trends seen in the female group than the male group. One trend is found in the VBHa where the Chinese Singaporean female is significantly smaller than the other two groups, who do have significant correlation in the C3, C5, and C7 vertebrae. Another trend found in the SCW similar to the VBHa where the Chinese

Singaporeans were significantly smaller than the other three, which were all

correlated in all vertebral levels except for C6.

		EPWu	EPW1	EPDu	EPDI	VBHp	VBHa	SCW	SCD	TPW
C3	AA	14.92	15.34	14.22	15.30	13.33	12.51	22.90	16.15	44.55
	C-M	15.37	17.37	14.58	15.12	13.72	12.54	24.19	18.14	49.05
	С	15.71	17.27	14.88	15.61	11.62	NA	23.04	16.15	50.48
	CS	13.79	14.30	13.64	15.02	11.22	10.00	19.36	10.29	41.52
	Post Hoc	Н	G	F	Κ	В	Н	Н	D	L
C4	AA	14.64	16.71	14.55	15.31	12.09	11.14	23.42	13.20	46.88
	C-M	16.07	17.59	14.41	15.44	13.21	12.05	24.12	14.51	50.74
	С	17.22	17.06	15.22	16.03	11.48	NA	24.62	17.63	48.28
	CS	14.69	15.00	14.03	15.29	11.26	9.88	19.38	10.44	44.94
	Post Hoc	М	Н	К	Κ	N	J	Н	J	F
C5	AA	15.70	17.35	14.44	16.04	12.08	11.04	24.51	13.61	48.11
	C-M	16.15	18.06	14.89	16.86	12.64	11.22	25.33	14.66	52.20
	С	17.63	19.35	15.14	17.84	11.42	NA	24.68	17.42	47.42
	CS	14.89	15.89	14.35	15.12	11.29	9.60	20.24	10.26	47.61
	Post Hoc	0	G	K	0	Е	Н	Н	G	Р
C6	AA	16.60	19.03	14.94	15.52	11.69	10.87	24.75	13.70	49.84
	C-M	17.78	20.63	16.46	16.96	12.56	11.38	28.25	15.07	55.19
	С	18.39	22.04	16.51	18.31	10.84	NA	25.62	18.26	49.87
	CS	15.80	19.55	14.57	15.76	11.33	10.40	20.51	10.27	48.41
	Post Hoc	Q	0	L	0	М	R	S	J	Т
C7	AA	19.11	22.07	14.84	15.09	13.22	12.72	24.47	13.46	54.34
	C-M	19.54	24.11	16.93	16.08	14.51	13.25	25.61	15.29	58.49
	С	21.89	23.89	18.07	16.81	12.79	NA	24.50	15.45	66.42
	CS	19.02	20.36	15.06	15.57	11.83	11.18	19.69	10.95	54.03
	Post Hoc	U	F	М	U	Ν	Н	Н	Н	0

Table 18: Correlations between Studies, female

In all measurements in all vertebral levels the Chinese Singaporeans were smaller, not always statistically significant, than the other three races. There is more correlation based on vertebral level and dimensional anatomy than anything else. Utilizing the results from the vertebral analysis on the CT measurements (Tables 14 and 15) a computer program can be created with the user input of some anthropometric measurements. A program has been started for the C3 vertebra and the male population that completes this task, continuation of this can be accomplished through C7 and for the female population. The program requires for the EPW1, VBHa, and SCD to be measured by the user on the CT image of the patient. The flowchart of how the program works is provided below and in Figure 21. This program will output values for all 9 measurements (EPWu, EPW1, EPDu, EPD1, VBHp, VBHa, SCW, SCD, and TPW) as described by the linear mathematical relationships found from the vertebral statistical analysis.

- 1. First the user is asked if they would like to know a measurement for the C3 vertebra, in this example the EPWl.
 - I. No (go to step 2)
 - II. Yes
- A. If this measurement was found previously, the user will be asked if they would like to use with what was found previously or if they would like to calculate it.
 - a. If a measurement can be found multiple ways the user is asked which way they would like to find the measurement. For example the user wants to find the EPWl for the C3 vertebra. The EPWl can be found based on the EPWu, EPDu, or the EPDl. The program then requests if the user would like to calculate the EPWl based on any of these options. The program calculates the answer based on the user input.
 - i. Assuming the user wants to calculate the EPW1 based on the EPDu, and if the EPDu was found previously the user will be asked if they would like to calculate the EPW1 based on the previously found EPDu or on a new measurement; but if EPDu was not found previously it will ask the user to input the measurement so that EPW1 can be found.

- Utilizing the previous answer of calculating the EPWl based on the EPDu if there are other measurements that can be found based off the EPDu they will also be found here. For example in the C3 vertebra if EPDu is input the EPDl can be found so if EPDu is given it will calculate EPDl as well.
- 2. The user is asked if they would like to find the next measurement, until it reaches the end of the available measurements
- 3. An output of the image is created along with an output file containing the measurements found along with the mean and standard deviation of the measurements.

Figure 21: Flow chart of how step II works

CONCLUSION

The analysis of the vertebral anthropometrics in the cervical spine for the Chinese Singaporean race resulted in 600 total comparisons being completed in each vertebral body from C3-C7, resulting in 3000 comparisons in total being done. In this analysis it was found that there were 27 significant correlations in the C3 vertebra, 28 in the C4 vertebra, 25 in the C5 vertebra, 28 in the C6 vertebra, and 20 in C7 vertebra which is a total of 128 relationships found from C3 to C7. This results in only about 4.267% of the 3000 comparisons being significant. For the Caucasian analysis, there were a total of 2760 comparisons from C3-C7 of these only 133 were found to be significant, 35 in the C3 vertebra, 26 in C4, 28 in C5, 18 in C6, and 26 in the C7 vertebra. This results in only about 4.82% of the 2760 comparisons being significant. An important result of these findings is the new mathematical models developed between the different dimensional anatomy with respect to both race, and gender. The results of these findings can also help to improve spine modeling.

The analysis of the CT measurements showed more significant differences with respect to gender rather than race (African American/Caucasian), and there to be significant difference in age for the measurements of the endplate. The vertebral analysis (resembling what was completed for Chinese Singaporeans and Caucasians) resulted in a total of 68 total relationships for the male population (18.89%), and 82 significant correlations for the female population. Out of the total of 360 comparisons that were completed, this results in 18.89% and 22.78% significant correlations for the male and female population respectively. It is important to

79

mention that the sample size of the subjects involved is not large enough to draw conclusions about the population.

A mathematical model for the moment of inertia of the vertebral body was developed, and results corresponded to what was found in previous literature. This will assist in the understanding of moment and force transmission through the body, along with how it resists bending.

With the differences that were found based on age and gender, it is important to take them into consideration while completing device design. While patient specific design of a device would be ideal, this is not logical because of cost issues. Thus gender and age considerations must be taken into account.

This analysis is being used in current research to produce more accurate cervical spine models for spinal implants and risk assessment. The results of the analysis will help uncover the connected between certain diseases with specific spinal alignments and why a subjects' spine was more susceptible to failure. Lastly this analysis will clarify the functionality of the cervical spine.

REFERENCES

- B.L.Riggs, H.W.Wahner, E.Seeman, K.P.Offord, W.L.Dunn, R.B.Mazess, K.A.Johnson, and L.J. Melton III. "Changes in Bone Mineral Density of the Proximal Femur and Spine with Aging." <u>Journal of Clinical Investigation</u> 70 (1982): 716-723.
- C. Barrey, F. Cotton, J. Jund, P. Mertens, and G. Perrin. "Transpedicular screwing of the seventh cervical vertebra: anatomical considerations and surgical technique." <u>Surgical Radiologic Anatomy</u> 25 (2003): 354-360.
- D. Liguoro, B. Vandermeersch, and J. Guerin. "Dimensions of cervical vertebral bodies according to age and sex." <u>Surgical Radiologic Anatomy</u> 16 (1994): 149-155.
- de Jager M., Sauren A., Thunnissen J., Wismans J., A Three-Dimensional Head-Neck Model: Validation for Frontal and Lateral Impacts, in Proceedings of the 38th Stapp Car Crash Conference, pp. 93-109, 1994.
- Donald R. Jason, MD, JD and Kathy Taylor, MA. "Estimation of Stature from the Length of the Cervical, Thoracic, and Lumbar Segments of the Spine in American Whites and Blacks." Journal of Forensic Sciences 40.1 (1995): 59-62.
- Douglas C. Montgomery, and George C. Runger. <u>Applied Statistics and Probability for</u> <u>Engineers.</u> 4th Ed. Hoboken: John Wiley & Sons, Inc, 2007.
- Ferdinand P. Beer, E. Russell Johnston, Jr, and Elliot R. Eisenberg. <u>Vector Mechanics for</u> <u>Engineers: Statics.</u> 7th Edition. New York: McGraw-Hill, 2004.
- Francis, Carl C. "Dimensions of the cervical vertebrae." Anat Rec 122 (1955): 603-609.
- Glenn Gamst, Lawrence S. Meyers, A.J. Guarino. <u>Analysis of Variance Designs: A</u> <u>conceptual and Computational Approach with SPSS and SAS.</u> New York: Cambridge University Press, 2008.
- Inc., SAS Institute. JMP, Version 9. Cary, 1989-2011.
- Inc., SAS Institute. SAS 9.2. Cary, 2002-2008.
- Jan J.P van Schaik, Henk Verviest, and Frans D.J van Schaik. "Morphometry of Lower Lumbar Vertebrae as Seen on CT Scans: Newly Recognized Characteristics." <u>American Journal of Roentgenology</u> 145 (1985): 327-335.
- Job M. Kibii, Rualing Pan, and Phillip V. Tobias. "Morphometric Variations of the 7th Cervical Vertebrae of Zulu, White, and Colored South Africans." <u>Clinical</u> <u>Anatomy</u> 23 (2010): 399-406.

- KenethS. Saladin PhD, and Leslie Miller M.S.N. <u>Anatomy & Physiology: The Unity of</u> <u>Form and Function.</u> Third Ed. New York: McGraw-Hill, 2004.
- Liu YK, Clark CR, Krieger KW. "Quantitative geometry of young human male cervical vertebrae." <u>Mechanism of Head and Spine Trauma</u> (1986): 417-431.
- M. Nissan, and I. Gilad. "The cervical and lumbar vertebrae-an anthropometric model." <u>Engineering in Medicine</u> 13.3 (1984): 111-114.
- Manohar M. Panjabi, PhD, Joanne Duranceau, MS, Vijay Goel, PhD, Thomas Oxland, MASc, and Koichiro Takata, MD. "Cervical Human Vertebrae: Quantitative Three-Dimensional Anatomy of the Middle and Lower Regions." <u>Spine</u> 16.8 (1991): 861-869.
- Moira Davenport, MD. <u>Cervical Spine Fracture in Emergency Medicine</u>. Ed. MD Rick Kulkarni. 30 April 2010. 11 July 2011 http://emedicine.medscape.com/article/824380-overview#showall>.
- Nancy E. Tatarek, PhD. "Variation in the human cervical neural canal." <u>The Spine</u> <u>Journal</u> 5 (2005): 623-631.
- Paul C. Ivancic, and Manohar M. Panjabi. "Cervical Spine Loads and Intervertebral Motions During Whiplash." <u>Traffic Injury Prevention</u> 7 (2006): 389-399.
- Peter V. Scoles MD, Anne E. Linton BS, Bruce Latimer PhD, Matthew E. Levy BA, and Ben F. Digiovanni BA. "Vertebral Body and Posterior Element Morphology: The Normal Spine in Middle Life." <u>Spine</u> 13.10 (1988): 1082-1086.
- Raj D. Rao, Satyajit V. Marawar, Brian D. Stemper, Narayan Yoganandan, and Barry S. Shender. "Computerized Tomographic Morphometric Analysis of Subaxial Cervical Spine Pedicles in Young Asymptomatic Volunteers." <u>The Journal of</u> <u>Bone & Joint Surgery</u> 90 (2008): 1914-1921.
- S.H. Tan, E.C. Teo, and H.C. Chua. "Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans." <u>European Spine</u> <u>Journal</u> 13 (2004): 137-146.
- S.H.Zhou, I.D.McCarthy, A.H.McGregor, R.R.H.Coombs, S.P.F.Hughes. "Geometrical dimensions of the lower lumbar vertebrae-analysis of data from digitised CT images." <u>European Spine Journal</u> 9 (2000): 242-248.
- Shiu-Bii Lien, Nien-Hsien Liou, and Shing-Sheng Wu. "Analysis of anatomic morphometry of the pedicles and the safe zone for through-pedicle procedures in the thoracic and lumbar spine." <u>European Spine Journal</u> 16 (2007): 1215-1222.

Steven C. Ludwig MD, David L. Kramer MD, Richard A. Balderston MD, Alexander R.

Vaccaro MD, Kevin F. Foley MD, and Todd J. Albert MD. "Placement of Pedicle Screws in the Human Cadaveric Cervical Spine." <u>Spine</u> 25.13 (2000): 1655-1667.

- Tibbetts, G.L. "Estimation of Stature from the Vertebral Column in American Blacks." Journal of Forensic Sciences 26.4 (1981): 715-723.
- Youssef Masharawi, Khalil Salame, Yigal Mirovsky, Smadar Peleg, Glad Dar, Nili Steinberg, and Israel Hershkovitz. "Vertebral Body Shape Variation in the Thoracic and Lumbar Spine: Characterization of Its Asymmetry and Wedging." <u>Clinical Anatomy</u> 21 (2008): 46-54.