Wright State University CORE Scholar

Browse all Theses and Dissertations

Theses and Dissertations

2011

Investigation of Variability in Cognitive State Assessment based on Electroencephalogram-derived Features

Samantha Lokelani Crossen Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

Part of the Biomedical Engineering and Bioengineering Commons

Repository Citation

Crossen, Samantha Lokelani, "Investigation of Variability in Cognitive State Assessment based on Electroencephalogram-derived Features" (2011). *Browse all Theses and Dissertations*. 489. https://corescholar.libraries.wright.edu/etd_all/489

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

Investigation of Variability in Cognitive State Assessment based on Electroencephalogram-derived Features

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering

By

SAMANTHA LOKELANI CROSSEN B.S.B.E., Wright State University, 2009

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

July 1, 2011

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY <u>Samantha Lokelani Crossen</u> ENTITLED <u>Investigation of Variability</u> <u>in Cognitive State Assessment based on Electroencephalogram-derived Features</u> BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF <u>Master of Science in Engineering</u>.

> Ping He, Ph.D. Thesis Director

Thomas Hangartner, Ph.D., Chair Department of Biomedical, Industrial and Human Factors Engineering

Committee on Final Examination

Ping He, Ph.D.

James Christensen, Ph.D.

Yan Liu, Ph.D.

Andrew Hsu, Ph.D. Dean, Graduate School

Abstract

Crossen, Samantha Lokelani. M.S.Egr., Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, 2011. Investigation of Variability in Cognitive State Assessment based on Electroencephalogram-derived Features.

To implement adaptive aiding in modern aviation systems there is a need for accurate and reliable classification of cognitive workload. Using electroencephalogram (EEG)derived features, it has been reported that an Artificial Neural Network (ANN) can achieve 95% or higher classification accuracy on the same day for an individual operator, but only 70% or less on a different day. To gain a further insight into this discrepancy, data from a previous study was utilized to study the classification variability. The EEGderived features were first calculated by spectral power estimation. The variability was then analyzed by performing cognitive workload classification in which different methods of training and testing were used and different classifiers were implemented to compare classification accuracies. The classifiers include an ANN, Adaboost Algorithm, and a t-test method. The results show that when the ANN or Adaboost method is used, the amount of overlapping among training and testing data impacts the classification accuracy significantly. When there is no overlap, all classifiers can only achieve an accuracy of about 70%, with the Adaboost outperforming other classifiers slightly. By allowing some overlap, the accuracy of the ANN or Adaboost method increases significantly. It was concluded that the main source of the classification variability is the inherent variability of the EEG-derived features.

Table of Contents

	Page
1.	Introduction1
2.	Methods and Materials
	2.1. Generation of the EEG Features
	2.2. Use of T-test to Visualize Separability of Workload Conditions
	2.3. Classification of Workload
3.	Experimental Results
	3.1. Statistical Analysis Results
	3.2. Workload Classification Results
	3.3. Classification of Workload Based on Two Features
	3.4. Classification of Workload Based on AR Modeling Results
4.	Discussion
5.	Conclusion
6.	References
7.	Appendix A: Acronyms and Symbols
8.	Appendix B: Feature Rank According to T-Test Statistic
	for 10-second window
9.	Appendix C: Feature Rank According to T-Test Statistic
	for 5-second window47
10	Appendix D: Steps to Perform Classification of Workload by T-Test Values

List of Figures

Pag	<i>g</i> e
1. Theoretical Situation for Separability of Normal and Overload Exemplars	.8
2. Mean Power Plot of a Salient Feature1	4
3. Mean Power Plot of a Non-Salient Feature1	5
4. Visual of Within-Day Variation1	8
5. Consistent Feature Across Trials and Days for Single Subject2	20
6. Inconsistent Feature Across Trials and Days for Single Subject2	20
7. Comparison to Gevins' Claim2	21
8. Visual of Variation of Training2	23
9. Classification Accuracy Training Dependency Plot	24

List of Tables

Table Pag
1. Randomized Sequences of Workload Conditions
2. Rank of Salient Features1
3. Top Ranked Features across Days and Trials for Subject B1
4. List of Consistent Features in Regards to the Sign of the T-Test Value2
5. Comparison of Classification Methods for 10-Second Window Data2
6. Comparison of Classification Methods for 5-Second Window Data2
7. Comparison of Classification Accuracies by Different Windowing Methods2
8. Classification Accuracies from using Features PZ Alpha and FZ Theta2
9. T-Test Classification Accuracies using features from AR Modeling
10. ANN Classification Accuracies using features from AR Modeling

Appendix

Table

	A1. Feature Rank According to T-Test Statistic for 10-second window
39	– Subject A
	A2. Feature Rank According to T-Test Statistic for 10-second window
40	– Subject B
	A3. Feature Rank According to T-Test Statistic for 10-second window
41	– Subject C
	A4. Feature Rank According to T-Test Statistic for 10-second window
42	– Subject D

A5. Feature Rank According to T-Test Statistic for 10-second window	
– Subject E	43
A6. Feature Rank According to T-Test Statistic for 10-second window	
– Subject F	44
A7. Feature Rank According to T-Test Statistic for 10-second window	
– Subject G	45
A8. Feature Rank According to T-Test Statistic for 10-second window	
– Subject H	46
A9. Feature Rank According to T-Test Statistic for 5-second window	
– Subject A	47
A10. Feature Rank According to T-Test Statistic for 5-second window	
– Subject B	48
A11. Feature Rank According to T-Test Statistic for 5-second window	
– Subject C	49
A12. Feature Rank According to T-Test Statistic for 5-second window	
– Subject D	50
A13. Feature Rank According to T-Test Statistic for 5-second window	
– Subject E	51
A14. Feature Rank According to T-Test Statistic for 5-second window	
– Subject F	52
A15. Feature Rank According to T-Test Statistic for 5-second window	
– Subject G	53

A16.	Feature Rank According to T-Test Statistic for 5-second window			
	– Subject H	54		
A17.	Description of the t-test classification method	55		

Acknowledgments

First, I would like to thank Dr. Ping He for encouraging me to go onto graduate school and for always being very supportive throughout my graduate studies. I would like to express thanks to Dr. James Christensen and Dr. Yan Liu who are on my thesis committee. Both Dr. Christensen and Dr. Liu have been very helpful and have given me much advice regarding my thesis work. I would also like to thank Justin Estepp and Jason Monnin, whom I had the chance to work with at Wright-Patterson Air Force Base, for always being there to answer my questions and for all of the encouragement. I am very grateful for The Dayton Area Graduate Studies Institute (DAGSI) for the opportunity they have given me by funding my research.

I would like to thank my family and friends for always being there for me. I would like to especially thank my husband, Nick Klosterman, who has given me unending love and support. Finally, I would like to show much appreciation to John and Christine Crossen, my parents, who have made me who I am today and have given me the faith to conquer anything I put my mind to. Thank you everyone!

1. Introduction

Modern aviation systems are capable of loading their operators with high levels of cognitive demands and as these demands increase, the ability of an operator to successfully complete required tasks may diminish. If there is a method to classify the operator's state of cognitive workload, aviation systems may be able to adjust their demands to better facilitate the available cognitive capabilities of the operator. This entire process, referred to as adaptive aiding, will lead to increased operator performance [1,2]. Accurate and reliable assessment of the operator's cognitive state is, therefore, the key to successful implementation of adaptive automation. The application of inappropriate aiding, resultant from misclassification of cognitive state could result in further decreased task performance [2]. Similarly, excessive aiding could lead to inattentiveness, also leading to decreased performance. An ideal classification system would have a classification accuracy of 100%. Such a perfect classification may be difficult to achieve in real-world applications due to the inherent variability in human physiology measures, but accuracies of 95% or higher are highly desirable for real-world applications.

A number of different classifiers have been used to classify physiological data such as linear discriminant analysis (LDA), support vector machines (SVM), boosting algorithms and artificial neural networks (ANN) [3-6]. The ANN is a popular classifier for discriminating at least two levels of workload conditions and has been developed to classify operator's cognitive workload [6-8]. An ANN is simply a mathematical model with interconnected networks of simple processing elements. These elements can be classified as one of the following three: input, output, or hidden elements [3]. When used as a classifier of cognitive workload, the common inputs to the ANN are features derived from the operator's physiological measures such as an electroencephalogram (EEG) recorded from several electrode placement sites, blink rate, heart rate, and respiration rate. The physiological measure which has received much attention in classifying cognitive workload is the EEG-derived features.

The term electroencephalogram or EEG was introduced by the German psychiatrist Hans Berger, who was the first to systematically analyze the potential fluctuations recorded from the brain. The recorded fluctuating potentials represent a superposition of the volume-conductor fields produced by a variety of active neuronal current generators [9]. The sources generating the field potentials recorded at the scalp are a summation of neuronal elements with complex interconnections. Electrodes are placed on the scalp to measure the potential difference between an electrode and a distant reference electrode. These recordings demonstrate continuous oscillating electric activity within the brain with a magnitude in the range of 100 μ V. The frequency range of an EEG signal is from DC to 100 Hz. Spectral power in the traditional clinical frequency bands (delta [0.5 – 3 Hz], theta [4 – 7 Hz], alpha [8 – 13 Hz], beta [14 – 30 Hz], and gamma [31 – 42 Hz]) have been used to analyze the cognitive state of an operator by using them as features to input into a classifier [7].

EEG signals change prominently between states of alertness, such as being awake or asleep. The EEG signals have been used in clinical settings for monitoring brain function in such studies as assessing sleep disorders [10] and in evaluating the level of awareness during administration of anesthesia [11]. These studies suggest that EEG signal measurements have a high sensitivity to alertness; therefore, EEG-derived features are used to classify cognitive workload. Gevins and Smith explored brain signals that are sensitive to variations in mental effort in a working memory study. It was reported that the magnitude of spectral power in the theta band was enhanced during difficult workload and the magnitude of spectral power in the alpha band was attenuated during difficult workload [12]. There have been other studies that have also found that the theta, alpha, beta and gamma bands are enhanced or attenuated during workload [13,14]. The enhancement or attenuation of the spectral power of EEG during working memory tasks provided the motivation to look at the spectral power of EEG during low and high workload tasks to determine an index of separability.

From the results of previous studies on spectral power of EEG, it has been shown that EEG signal changes are highly predictable during states of alertness [12-14]. Researchers at Wright-Patterson Air Force Base (WPAFB) have developed a three-layer artificial neural network¹ with backpropagation training to act as a classifier that uses EEG-derived features to differentiate between states where the operator is successfully completing assigned tasks and a cognitive overload condition where performance begins to negatively impact mission success [2]. To test the ANN as a classifier, a systematic lab study was conducted at WPAFB that involved 8 subjects, spread across 5 days, with 3 trials each day, each including 3 levels of task difficulty. Power of the EEG was used as features, which was derived by Fast Fourier Transform (FFT). It has been previously reported that classification accuracies of 95% or higher were shown to be achievable

¹ A three-layer artificial neural network contains an input layer, one hidden layer (with the same number of nodes as the input layer), and an output layer containing two nodes.

when classification strategies were specifically designed for an individual operator and tested on the same day [15]. More specifically, the data collected from a particular operator on a particular day were divided into three sets, a training data set, a validation set, and a test data set. A total of 105 features (obtained from 21 electrode sites using 5 frequency bands) were derived from the physiology measures and fed to the ANN for classification. The training data set was used to train the ANN by adjusting its weights and biases, with the validation data set used to check for overfitting. Once trained, the weights and biases of the network were fixed and the ANN acted as a pattern classifier. When it was tested using the test data set from the same operator on the same day, the accuracy of classification could reach 95% or higher. However, when the same trained ANN was tested using the data collected from another operator or from the same operator but on a different day, it was reported that the classification accuracy would drop greatly [15]. In order to achieve a higher accuracy, the ANN needs to be re-trained using the data collected from that individual operator or on that particular day. This change in the classification strategies, in order to maintain high classification accuracy, is referred to as day-to-day and individual variability, and is considered the main obstacle to the realworld application of the current classification system.

It is noticed that the day-to-day variability from the above study is manifested in the overall result of classification that includes an ANN classifier and the set of input features. Since the ANN is trained by a set of input features, the low classification accuracy could be the result of a change in the input features. In order to identify the source of the day-to-day variability, it was decided to directly examine the variability of each EEG-derived feature using the data collected in above-mentioned systematic study.

2. Materials and Methods

To examine classification variability, this study focuses on classifying cognitive workload for an individual subject within the same day; specifically, focusing on an individual subject and classifying workload between trials within the same day. The classifiers used in this study include an Artificial Neural Network (ANN), AdaBoost Algorithm, and a t-test method. Each classifier independently determines which EEGderived features are salient. The ANN and AdaBoost Algorithm determine salient features to use for workload classification but are not transparent to the user. To classify cognitive workload using the t-test method, a t-test was performed to determine the saliency of specific EEG-derived features and these features were utilized to classify workload. A t-test assesses whether the means of two groups are statistically different from each other. The t-test values are used as a measure of the saliency of each of the EEG-derived features. By finding the most salient features that change significantly with workload, this could reduce the number of features needed and in turn reduce the amount of training data and will most likely reduce the time to train the classifier [15]. Considering t-test value analysis and different classifier methods, the final outcome is to find salient features with an effective classifier method.

2.1. Generation of the EEG Features

EEG features generated for this study were obtained from the systematic lab study discussed previously. The data set from the study was collected while study participants performed a variety of tasks using the Multi-Attribute Task Battery (MATB) interactive software developed by NASA [16]. The MATB software simulates tasks analogous to

those a flight crewmember or operator would encounter and these tasks include monitoring, tracking, communication and resource allocation responsibilities that occur simultaneously in a continually changing environment. The demands of each task in MATB were varied so that three levels of difficulty were available. A total of 21 channels were recorded which include 19 channels of EEG at sites positioned according to the standard International 10-20 electrode system plus vertical and horizontal electrooculogram (VEOG and HEOG) [17]. VEOG and HEOG were recorded for artifact correction purposes. Peripheral measures such as eye blink, heart rate, and respiration intervals were also collected but will not be used in this study since the focus is on EEG-derive features. The data was originally sampled at 256 Hz and filtered from 0.05 – 100 Hz. The data was then down sampled to 128 Hz.

Code of	Sequence of	Time sequence for each workload level				
sequence	Workload	(seconds)				
А	L-M-H	30-330	360-660	690-990		
В	L-H-M	30-330	390-690	720-1020		
С	M-L-H	30-330	360-660	720-1020		
D	M-H-L	30-330	360-660	720-1020		
E	H-L-M	30-330	390-690	720-1020		
F	H-M-L	30-330	360-660	690-990		

Table 1. Description of the six different randomized sequences of workload conditions.

Data from the 8 subjects was collected in 5 days spread over the period of one month. The 5 days were separated by 1 day, 1 week, 3 weeks, and 4 weeks. In each of the 5 days, the subject completed 3 trials, each lasted about 17 minutes. During each trial, the subject was presented a randomized sequence of low, medium, and high workload conditions that lasted for 5 minutes each with 'transition' time between workload conditions (Table 1). This transition time consisted of 60 seconds between low/high and high/low conditions and 30 seconds between low/medium, medium/low, medium/high, and high/medium conditions. The data from the low and medium conditions were combined and designated as normal workload condition. Therefore, the output from a classification system would be a binary decision: normal workload or high workload condition. Before data was collected, all subjects were trained on the MATB tasks until performance parameters attained asymptote with minimal errors.

The electrooculogram (EOG) artifacts (electric noise produced by eye movement) in the original data were already removed using MANSCAN software. Spectral analysis was performed using a Fast Fourier Transform (FFT) to create EEG features for input into a classifier. To perform an FFT on continuous biomedical signals, segmentation is needed. Since the EEG signal does not have a natural zero period, a window function is used to segment the signal. Signal from each of the 19 EEG channels was segmented by using a hanning window function by two different methods. These methods included segmenting by using a 10-second window with a 9-second overlap between adjacent windows and by using a 5-second window with a 0-second overlap. From each segment (using both windowing methods), a FFT was performed. The mean log power in each of the five bands during each window, which was defined as a "feature", was then calculated: delta band (0.5 - 3 Hz), theta band (4 - 7 Hz), alpha band (8 - 12 Hz), beta band (13 - 30 Hz), and gamma band (31 - 42 Hz). The mean log power in the five frequency bands was used to obtain more of a normal distribution. Since there are a total of 19 channels at five frequency bands, there will be a total of 95 features at any moment, and the value of each feature is updated every one second or five seconds depending on

the windowing method. For each of the 17-minute trials in which a 10-second window was used to calculate the features, there will be 600 exemplars for each feature during the normal workload condition (sample number $N_N = 600$), and 300 exemplars during the high workload condition (sample number $N_H = 300$). For each of the 17-minute trials in which a 5-second window was used to calculate the features, there will be 120 exemplars for each feature during the normal workload condition (sample number $N_H = 300$). For each of the 17-minute trials in which a 5-second window was used to calculate the features, there will be 120 exemplars for each feature during the normal workload condition (sample number $N_N = 120$), and 60 exemplars during the high workload condition (sample number $N_H = 60$).

2.2. Use of T-test to Visualize Separability of Workload Conditions

If the value of a certain feature is highly correlated to the cognitive workload, it is a salient feature for classification of the cognitive workload. When an ANN is trained, the most salient features are automatically selected to associate with larger weights. However, the saliency of each feature is difficult to quantify and the process of selecting the most salient features is not visible to the user. With an understanding that there is an enhancement or attenuation of spectral power EEG during high workload conditions and by using statistical analysis, a method for quantifying the saliency of each individual feature is possible.

Figure 1. These are plots of normal and overload exemplars for a certain feature. Plot 1 displays a salient feature. Plot 2 displays a feature in which both workload conditions are inseparable.

If the 600 or 120 exemplars (sample number changes depending on windowing method) of a particular feature during the normal condition and 300 or 60 exemplars during the high or overload conditions are plotted, we may get the following two possible plots shown in Figure 1. From here on, these exemplars for high and normal workload conditions will be referred to as "feature values". In Plot 1, the feature values in the normal condition are significantly different from its value in the overload condition, so the feature is salient for the purpose of separating the two conditions. On the other hand, in Plot 2 the feature values in the two conditions. The value for each exemplar for a particular feature in the overload condition is denoted as A (i), for $i = 1, 2, ..., N_0$, and its value for exemplars in the normal condition as B (i), for $i = 1, 2, ..., N_N$. The t-test statistic can be defined as:

$$t = \frac{\bar{A} - \bar{B}}{S\sqrt{(\frac{1}{N_o} + \frac{1}{N_N})}}$$
[1]

Where \overline{A} is the mean of A (i) and \overline{B} is the mean of B (i), and S is defined by:

$$S = \sqrt{\frac{\sum (A(i) - \bar{A})^2 + \sum (B(i) - \bar{B})^2}{N_0 + N_N - 2}}$$
[2]

The t-test statistic defined in Equation (1) is actually the test statistic for comparing two samples means (indicated in Figure 1, Plot 1 and Plot2, by the dashed lines). In the application of obtaining salient features, the absolute value of this t-test statistic is proportional to the saliency of the feature. Therefore, the t-test statistic value is used as

an index of separability of normal workload conditions and high workload conditions in which the variability of the EEG-derived features may be visualized and the saliency of the EEG features can be obtained. After calculating the t-test value for each feature in each trial for each subject, the saliency of different features were compared and the features were ranked according to their saliency value determined from the t-test analysis (from high t-test values to low t-test values). The top ranked salient features are used as the input features for the t-test classification method.

2.3. Classification of Workload

The EEG-derived features are used to classify workload using different classifiers. The three different classifiers that were utilized are: artificial neural network (ANN), AdaBoost Algorithm, and a t-test classification method. More emphasis is placed on using the ANN and AdaBoost Algorithm to perform classification of cognitive workload. The ANN is composed of interconnected networks of simple processing elements, as described earlier, and once trained, the weights and biases of the network were fixed and the ANN acted as a pattern classifier. The AdaBoost (Adaptive Boosting) Algorithm is a boosting² algorithm that was introduced in 1995 [18]. The AdaBoost Algorithm generates a set of classifiers sequentially. A final classifier is formed using a weighted majority voting system: the weight of each classifier depends on its performance on the training set used to build it [19]. The AdaBoost requires a weak base learning algorithm or base classifier and in this study the weak base learning algorithm or base classifier used was a decision stump. A decision stump assigns a case a class label based on a single feature, so it can be considered as a decision tree with a single path. The t-test method utilizes the t-test values to classify workload and is described in further detail in

² Boosting is a general method for improving the accuracy of any given learning algorithm.

the results section. There are advantages and disadvantages to using t-test values and the mean power feature values to perform classification. The t-test classification method itself is transparent; it is a "linear" method that does not have the ability to use combined or joint features, which would be expected to result in low classification accuracies.

An assessment of the methods used for training and testing the classifiers was also performed. Different methods of training and testing were evaluated to see how classification accuracy is dependent upon the way that training and testing data are obtained. Here, the overlapping of samples for training and testing when using a 10second window and 9-second overlap is emphasized. When training and testing come from the same trial and same day, there is a possibility that the samples in the training and testing data sets are not independent. When the training and testing samples are not independent, high classification accuracy is most likely to be achieved. By using a 5second window with no overlap, the training and testing data sets are independent samples. The methods utilized to assess training and testing is as follows:

- 1. Guarantee of no overlapping within the training and testing data sets:
 - Same subject, same day training and testing (2 trials for training and 1 trial for testing).
- 2. Effect of overlapping within the training and testing data sets:
 - Same subject, same day training and testing (combine 3 trials and randomize, use 2/3 of randomized trials for training and the remaining 1/3 for testing).

New generated features have also been examined. The new features generated include the parameters obtained from autoregressive modeling and also power spectrum

11

values obtained from the autoregressive modeling. This was performed to see if new features would improve the workload classification accuracies.

3. Experimental Results

The primary goal was to obtain salient features by performing statistical analysis to separate high workload from normal workload conditions. From the results, obtaining a set of salient features became inconclusive because of day-to-day and within-day variations in the EEG-derived features. Our secondary goal was to compare performance of the ANN, Adaboost Algorithm, and a t-test method that have been trained on all of the 95 EEG-derived features for each individual subjects using different windowing methods. It was found that high classification accuracy was dependent upon the methods of training and testing the classifier and also dependent upon if the testing data was independent from the training data or not. Both of these findings will be discussed further the following sections: statistical analysis results, classification of workload results based on AR modeling.

3.1. Statistical Analysis Results

T-test analysis was used to compare the two sample means of normal and high workload conditions. A high t-test value was considered as a salient feature and represented the ability to separate high and normal workload conditions. By looking at the mean value of the feature values in the high workload condition and normal workload condition there is a possibility that high workload has a lower mean value than normal workload. In this case, the t-test value would have a negative value by using Equation 1; therefore, the absolute value of the t-test value is taken to determine the saliency of that feature. In order to visualize separability of the high and normal workloads, the feature

values from the high, medium, and low workloads were plotted. From the plots, it was observed that in some cases the feature values corresponding to the high and normal workloads were indeed visually separable as seen in Figure 2, but in most cases the feature values from the high workload condition would overlap the feature values from the normal workload condition, as seen in Figure 3. These plots were generated for all subjects, all features, and all trial sessions.

Figure 2. Here is a plot of feature values for the EEG feature T5 Gamma (Subject G, Day 1, Trial 1, and Sequence E) which visually shows the separability of high and normal workload conditions. The t-test value is 52.41. Therefore, this is considered salient feature.

Figure 3. Here is a plot of feature values for the EEG feature CZ Theta (Subject A, Day 1, Trial 2, and Sequence B). The t-test value is 2.8963 and visually the high and normal workloads are not separable. Therefore, this is considered a non-salient feature.

It was also observed from these plots that the feature value data for any workload condition often contained outliners (narrow peaks in the plot from Figure 3). Therefore, in comparing the feature values of the two levels of workload, a t-test on the "medians" of the feature values of high and normal levels of workload was performed:

$$t = \frac{median(A(i)) - median (B(i))}{S\sqrt{(\frac{1}{N_o} + \frac{1}{N_N})}}$$
[3]

Where, as before, the value for each exemplar for a particular feature in the overload condition is denoted as A (i), for $i = 1, 2, ..., N_0$, and its value for exemplars in the

normal condition as B (i), for $i = 1, 2, ..., N_N$. The variables N_O and N_N are total sample numbers in each workload condition and *S* is defined by Equation 2. By evaluating the separability workloads by using the medians of the feature values, possible effects from outliers in the feature value data is reduced.

Table 2. The ranking of features by frequency of the feature being in the top ten features for each trial for every subject for the 10second windowing method (left) and the 5-second windowing method (right).

Feature		Frequency	Feature		Frequency
01	Gamma	38	01	Alpha	61
FP2	Beta	37	O2	Alpha	57
CZ	Theta	34	T4	Alpha	56
O2	Gamma	30	C3	Alpha	55
FP1	Beta	28	CZ	Alpha	52
01	Alpha	28	C4	Alpha	52
01	Beta	28	P4	Alpha	51
FP1	Gamma	25	T5	Alpha	49
01	Theta	25	ΡZ	Alpha	48
FP2	Gamma	23	T3	Alpha	46

Based on the magnitude of the above t-test value, a rank of the 95 EEG features for each trial for each subject was generated. A t-test value was obtained for every subject for each of the 15 trials completed and t-test value tables were produced to obtain saliency rank of EEG features (Appendix B and Appendix C). The top ten ranked features for each subject for each of the 15 trials (total of 1200 "top-ranked" features) were combined and used to find the features that occurred most frequently to acquire a "general" ranking for the most salient features across subjects, days, and trials (Table 2). From the ranking using the 10-second windowing method, features in the beta and gamma bands occurred more frequently in the top ten ranked features for each trial. From the ranking using the 5-second windowing method, features in only the alpha band occurred more frequently in the top ten ranked features for each trial. The difference between the two ranks can be attributed to the different window lengths used. The window used in spectral power estimation creates a spectral average that reduces the variance in the spectral power estimation; therefore, using a larger window reduces that amount of variance. Also, the overlapping used in the 10-second window method creates a great amount of segments which further reduces variance.

Table 3. The ranking of features by frequency of the feature being in the top ten ranked features for each trial for Subject B using the 10-second windowing method (left) and the 5-second windowing method (right).

	Su	bject B			Su	ıbject B	
	Feature	Frequency	Percent		Feature	Frequency	Percent
ΡZ	Gamma	11	7.3	T5	Alpha	13	8.7
01	Gamma	10	6.7	CZ	Alpha	11	7.3
T5	Gamma	9	6.0	ΡZ	Alpha	11	7.3
P4	Gamma	9	6.0	P4	Alpha	11	7.3
T6	Gamma	8	5.3	T4	Alpha	10	6.7
02	Gamma	8	5.3	T6	Alpha	10	6.7
P3	Gamma	6	4.0	P3	Alpha	10	6.7
C3	Beta	5	3.3	01	Alpha	10	6.7
FP1	Beta	4	2.7	C3	Alpha	9	6.0
FP1	Gamma	4	2.7	F4	Alpha	8	5.3

Given that the focus of this study is day-to-day and within trial variability, the most frequent top-ranked EEG-derived features for each individual subjects was additionally obtained. As an example, Table 3 shows the top ten ranked features for Subject B across days and trials using the two different windowing methods. The EEG-derived feature PZ Gamma is the top ranked feature for the 10-second windowing method. The feature PZ Gamma occurred 11 times within the 150 "top-ranked" features (5 Days x 3 Trials x 10 Top Ranked Features) which is only 7.3 % occurrence. Subject B was considered the best subject in regards to the top feature having the highest occurrence value for both windowing methods (10-second window and 5-second window). Thus, from the top ten ranked features, variability of the EEG-derived features is seen across days and across trials for each individual subject.

Figure 4. This is a visual display of within day variability and reversal of workloads.

Analyzing the t-test values and rank of features provided a more careful examination to the claim that same day classification has high classification accuracies. From analyzing the t-test values from day-to-day and trial-to-trial, variability in the t-test value was noticed. This variability is a reversal of high and normal workloads. For example, in one particular trial the median value of high workload was higher than low workload and in a second particular trial (from the same day) the median value of high workload was lower than that of low workload. This suggests that the spectral power of EEG for a particular feature may be attenuated during difficult workload for one trial and then enhanced during difficult workload for a different trial. So, not only is there a day-to-day variation which has been claimed by previous studies for an individual subject, but there is noticeable within-day variation also. A visual of within-day variation can be seen in Figure 4. In this figure, all three plots show the t-test values for three trials of one particular day. The first plot shows all three trials have high t-test values and are all positive; this represents a stable and salient feature. The second plot shows all three trials have low t-test values and are all positive; this represents a stable feature but not a salient feature because of the low value of the t-test. The third plot shows two trials have very high t-test values but the third trial has a low, negative value (which means there was a reversal of high and normal workload); this feature is neither stable nor salient. From the t-test analysis, most of the subject's features exhibited behavior seen in the second and third plots of Figure 4.

After discovering this within-day variation, it was decided to look further into this variation and for each specific EEG feature, the t-test values from the 10-second windowing method were plotted for each trial and each day into a single plot (Figure 5 and Figure 6). Within these plots, the day-to-day variation along with within-day variation could be observed. Throughout the analysis, it was found that mostly all features showed signs of t-test values changing from positive values to negative values between trials and days, which allow one to conclude that there is a reversal of high workload and normal workload. This finding suggests that these features are not salient. For each subject, the plots were analyzed to find the features that are consistently positive or negative and are listed in Table 4. From the list of features that are consistent

in terms of t-test values, it was noticed that the alpha and theta features overlap between subjects for being consistently positive or negative.

Figure 5. Here is an example of the EEG feature CZ Theta from Subject G that shows to be consistent across all 15 sessions. That is, for each of the 5 days and 3 trials, the median value for high workload was greater than the median value of normal workload.

Figure 6. Here is an example of an inconsistent feature, PZ Alpha, from Subject G. This would not be considered a salient feature.

Α	В	С	D	Ε	F	G	Н
None	FP1 - Beta	FZ - Beta	C3 - Alpha	FZ- Theta	None	CZ - Theta	C3 - Alpha
	FP2 - Beta	F4 - Alpha	C4 - Alpha	C3 - Theta		C4 - Theta	C3 - Beta
	FP2 - Gamma	C3 - Alpha	P3 - Alpha	CZ - Theta		PZ - Theta	
	C3 - Theta	CZ - Alpha	P4 - Alpha	C4 - Theta		O1 - Theta	
	PZ - Gamma	C4 - Alpha		P3 - Delta			
	P4 - Gamma	PZ - Alpha		PZ - Alpha			
		P4 - Alpha		P4 - Alpha			
				O1 - Theta			

Table 4. List of features that have consistently positive or negative t-test values analyzed from the t-test value plots for the 10-second windowing method.

Figure 7. Here is a plot to compare to Gevin's claim. After averaging the t-test values across days and across subject it was found that PZ Alpha is attenuated and FZ Theta is enhanced during difficult workloads.

It was interesting that there was a great amount of features in the alpha and theta bands that remained consistently positive or negative across subjects (Table 4). There were also beta and gamma bands that remained consistent. To compare to the study by Gevins and Smith, the t-test values were averaged across days and subjects for the features PZ Alpha and FZ Theta. The average t-test value for PZ Alpha was -1.69 with a standard error of 0.68 and the average t-test value for FZ Theta was 1.82 with a standard error of 0.51 (Figure 7). So these results do support the claim that PZ Alpha is attenuated during high workload levels and FZ Theta is enhanced during high workload levels. Although, considering the overlap of feature values (Figure 3) and the inconsistency of the t-test values across trials and days (Figure 6), the question is whether they should be considered salient.

3.2. Workload Classification Results

The observation of within-day variation led to two different derived methods for classification of workload. First, two trials on the same day were combined for training and validating the classifier and the remaining third trial on that day was used for testing. From this method of training and testing a classifier (a guarantee of no overlapping within the training and testing data sets), low classification accuracy was observed by all of the classifiers with the Adaboost Algorithm to some extent outperforming the other classifiers. In the second method (the effect of overlapping within the training and testing data sets), data from all three trials were combined. Two-thirds of the combined data randomly selected was used for training and validating the classifier and the remaining one-third of the combined data was used for testing. By using this method, the classification accuracies obtained from using the t-test classification method increased from an average classification accuracy of 60% (Method 1) to an average of 68% (Method 2). So by using the second method there was not a significant increase in classification accuracy from using the t-test classification method. Using the second method, high classification accuracy was obtained by the ANN and AdaBoost Algorithm,

and the accuracy values are compatible with that reported by Russell on the same day and same individual [15]. Considering the second method (the effect of overlapping within the training and testing data sets), another process of training and testing the classifier was developed to analyze the effect of overlap on classification accuracies. This process used two trials and varied amounts of data from the third trial to use for training. First, every other feature value in the third trial was used to combine with two trials from the same day for training, therefore, the training data was updated every 1 second (considering the 10-second windowing method, the value of each EEG-derived feature is updated every 1-second because of the 9-second overlap). Next, the training data was updated every two seconds by taking an exemplar for training after every two feature values.

Figure 8. Display of how exemplars are divided into training and test data sets to analyze the dependency of overlap in the training and test data sets.

A visual of how data from the third trial is taken for training can been seen in Figure 8. As the number of feature values between samples taken for training increased (less chance of overlap in the training and test data sets), the classification accuracies decreased (Figure 9). This suggested that indeed classification accuracy is dependent upon the possible "overlap" of feature data in the training and test data sets.

Figure 9. This is a plot of average classification accuracy with standard error bars versus the amount of data included in the training data set.

Knowing that there might be dependence within the training and test data sets, it was suggested to use a 5-second window with no overlap while doing spectral analysis. This way there was a guarantee of no overlapping within the training and test data sets. This pre-processing method was used to re-test the second "training and testing" method in which all three trials were combined and then split into separate training and test data sets. When using a 10-second window with 9-second overlap high classification accuracy was obtained but when using a 5-second window with no overlap it would result in low classification accuracy (Table 5 and Table 6). Therefore, the result of the 5second window with no overlap method suggests that the training and test data sets were not completely independent.

The t-test classification method utilizes the salient feature determined by t-test values to classify workload. To classify workload using the t-test values, the top ten ranked features' of the training data were used for the different classification methods. In the features' mean power plots, similar to the plots shown in Figures 2 and 3, a threshold was developed between the high and normal workloads. The threshold was calculated as follows:

$$Threshold = \frac{median(A(i)) - median(B(i))}{2} + median(B(i))$$
[4]

Where, as before, the value for each exemplar for a particular feature in the overload condition is denoted as A (i), for $i = 1, 2, ..., N_0$, and its value for exemplars in the normal condition as B (i), for $i = 1, 2, ..., N_N$. The variables N_0 and N_N are total sample numbers in each workload condition. This threshold was used to compare to the mean power feature value for each 10 second segment (by using the 10-second windowing method) in the test data set to determine whether it was high or normal workload based on the threshold value. If the 10 second segment was indeed high workload (or normal workload), then the classification for this segment was "correct", otherwise, the classification for this segment was "incorrect." The above process was applied to each 10-second segment. A detailed description of the t-test classification method can be seen

in Appendix D. The percentage of correct classification was then determined to compare to the ANN and AdaBoost Algorithm.

The t-test classification method was only performed using a 10-second window because this is the windowing method that was performed first and since the results were not as satisfactory as the ANN and AdaBoost Method, the t-test method was not used for the 5-second windowing method. Seen by the results, the classification accuracies from the t-test classification method are not as good as the ANN or AdaBoost Algorithm (Table 5). These results are somewhat expected since the ANN can use joint features as the t-test method only considers each feature separately and the AdaBoost Algorithm is a very powerful machine learning algorithm.

Table 5. This table contains classification accuracies from three different classifiers by using a 10-second window with a 9-second overlap when performing spectral power estimation.

Comparison of Classification Methods (Processed with 10 Second Window)							
	ANN Avg. C.A. AdaBoost Avg. C.A. T-Test Method C.A.						
Method 1							
(No Overlap)	61.38 ± 13.48	67.77 ± 10.55	60.54 ± 12.51				
Method 2							
(Overlap)	98.84 ± 0.81	98.63 ± 1.22	68.75 ± 6.17				

Table 6. This table contains classification accuracies from three different classifiers by using a 5-second window with no overlap when performing spectral power estimation.

Comparison of Classification Methods (Processed with 5 Second Window)								
	ANN Avg. C.A. AdaBoost Avg. C.A. T-Test Method C.A.							
Method 1								
(No Overlap)	60.72 ± 13.02	64.52 ± 10.51	Х					
Method 2								
(No Overlap)	76.42 ± 8.59	78.26 ± 7.90	Х					

From the results obtained by the different windowing methods, 10-second window with a 9-second overlap versus 5-second window with no overlap, it is difficult to exactly determine if the significant decrease in classification accuracy by using Method 2 (combine all 3 trials from the same day, randomize and use 2/3 for training and the remaining 1/3 for testing) was a result from the guarantee of no overlap in the training and test data set or if the decrease was from the reduction in window length when performing spectral power estimation. The purpose of windowing the data while performing spectral estimation is to smooth or average the data in the frequency domain to reduce variance. A wider length window gives a better frequency resolution. Therefore, to determine whether the decrease in classification accuracy was a result of a decrease in the length of the window or if it was from no overlap in the training and test data sets, a window of 5 seconds with 4 second overlap was used to compare to the 5 second window with no overlap by using Method 2 to train and test the classifier. The results can be seen in Table 7. The classification accuracies from using a 5-second window with a 4-second overlap was still significantly higher than the classification accuracies from using a 5-second window with no overlap. These results suggest that the classifiers are sensitive to the overlap of data in the training and test data sets.

Method 2												
	ANN Avg. C.A. AdaBoost Avg. C											
5 Second Window with 4 Second Overlap	93.74 ± 2.57	92.55 ± 3.93										
5 Second Window with No Overlap	76.42 ± 8.59	78.26 ± 7.90										

Table 7. This table contains classification accuracies from the ANN and AdaBoost Algorithm for using two different windowing methods.

3.3. Classification of Workload based on Two Features

From the study performed by Gevins and Smith, it was found that the features PZ Alpha and FZ Theta were stable enough to determine workload [12]. From the t-test analysis, it was seen that some Alpha and Theta bands were considered to have consistent t-test values across trials, which is no sign of reversal in workloads (Table 4). A saliency rank of features (Table 2) was obtained in which the feature PZ Alpha was listed but it cannot be concluded that the top ranked features are "salient" features since workload classification accuracy is so low, around 70%. Therefore, it was decided to perform the t-test classification method using only two features suggested by Gevins and Smith instead of the top ten ranked features (ranked by the absolute value of the t-test value). By doing this, the classification accuracies were comparable to the previous methods but it was noticed that the standard deviation was lower (Table 8).

	T-test Method using top ten ranked features	T-test using only PZ Alpha & FZ Theta	ANN
A	46.13 ± 14.36	58.30 ± 7.57	51.48 ± 11.60
B	63.44 ± 13.67	60.11 ± 5.01	63.50 ± 10.11
С	62.78 ± 9.73	64.30 ± 5.64	59.76 ± 9.40
D	61.12 ± 7.11	60.36 ± 6.17	50.94 ± 9.07
E	64.20 ± 12.14	67.46 ± 3.44	75.97 ± 12.55
F	60.01 ± 11.65	62.15 ± 4.81	60.14 ± 12.20
G	67.42 ± 8.99	63.75 ± 4.79	71.34 ± 11.27
Н	61.08 ± 9.53	62.32 ± 6.10	59.54 ± 12.01

Table 8. Average classification accuracies with standard deviations for each Subject.

3.4. Classification of Workload based on AR Modeling Results

Most of workload classification studies use mean power of the five EEG bands as the features to feed into a classifier. In order to calculate the mean power, short-time Fourier Transform (FFT) is used which is a common power spectral estimation method and was the method used in this study. Since the FFT method requires a large amount of data for appropriate frequency resolution, it is applied to windowed data sets. It is well-known that window-based power spectrum calculation has many problems such as spectral leakage [20-22].

An alternative method for calculating power spectrum is based on autoregressive (AR) modeling which does not use windowing methods and can reduce spectral leakage and improve frequency resolution [22]. It has been reported that AR power spectrums display the frequency content of signals more clearly than FFT power spectrums and the results from AR spectrums can be used for clinical diagnosis, for example, epilepsy [21,22]. Using AR modeling, there are two approaches that can be considered for workload classification:

- 1. Use AR parameters to calculate the power spectrum and calculate mean power of the five EEG bands to obtain similar features as before to input into a classifier.
- 2. Directly use the AR parameters as features to input into a classifer.

To calcuate the AR parameters, the function "arburg" in Matlab was used. This function estimates the AR parameters via Burg's method where a 10th order AR model was utilized. Considering the first approach, 95 features will be generated as before with the FFT method. For the second approach, since a 10th order model was used, there will be

ten AR parameters for each EEG channel which results in 190 features. To train and test the classifiers Method 2 (combine all 3 trials from the same day, randomize and use 2/3 for training and the remaining 1/3 for testing) was used and the results can be seen in Table 9 and Table 10. The new features generated by AR modeling did not significantly improve workload classification accuracy.

T-Test Classification MethodInput FeaturesAverage Classification AccuracyWindow-based Spectral Analysis 60.10 ± 12.43 AR Spectral Analysis 60.75 ± 12.54

Table 9. Comparison of classification accuracies from the t-test classification method depending on method of processing input features.

Table 10.	Comparison	of classification	accuracies from	the ANN
classifier	depending on	the method of p	rocessing input f	features.

ANN Classifier										
Input Features	Average Classification Accuracy									
Window-based Spectral Analysis	61.67 ± 13.35									
AR Spectral Analysis	61.65 ± 13.52									
AR Parameters	60.86 ± 13.18									

4. Discussion

The two main observations from this study are as follows: (1) the observation of within-day variability by use of a t-test and (2) the improvement of classification accuracy when there is an overlapping of features in the training and test data sets. The within-day variability was quantified by t-test statistical analysis of the mean spectral power data of the EEG signal, while improvement of classification accuracy was found by workload classification pre-processing methods.

The main advantage of using a t-test is that it is a linear method that allows the user to visualize the saliency or separability of the high and normal workload conditions. From the t-test analysis, for most of the EEG-derived features, there was a significant overlap between the feature values of the two workload conditions. As a result, these features are not considered as salient features and are, therefore, not ideal for classifying the workload level. Through the examination of the fifteen t-test values of a particular EEG-derived feature for a particular subject (three trials per day, a total of five days), it was noticed that for many features, not only does the t-test value change across different days, but it also changes significantly across the three trials within the same day. The reason for the change in t-test value is not known. The change in t-test value could be either a result of the change in the median value of the distribution or a change in variance, therefore, future analysis needs to be performed to determine whether the median value or variance of each high and normal workload distributions are changing which causes a change in t-test values

changed within a single day led us to further explore the statement in Russell's report that "within-day classification accuracy was very high [15]." To examine this statement, different methods obtaining input features and different methods of training and testing the classifiers were devised.

Two methods of training and testing the classifiers were utilized. The first method used feature data from two trials for network training and validation, and then tested the trained classifier on the data from the third trial. This method does not include any data from the test trial for training. The second method combined feature data from all three trials; randomly selected 2/3 from the mixture for training and validation, and then tested on the remaining 1/3 data. In this method, the training set includes data from all trials. The results were very interesting: the second method produced very high classification accuracy (95 - 97%) but the first method in average produced a very low accuracy (50 - 97%)65%). The second method for training and testing a classifier for workload classification produces high classification accuracies, but this method cannot be used in real-time applications: one can only use the past data to train a classifier and apply it to future acquired data. Also, while performing workload classification the features were made to be completely independent by processing the features with a 5-second window and no overlap. When performing classification using the 5-second window processed features, the classification accuracy is significantly degraded and this suggests inherent variability in the EEG-derived features. The ANN and AdaBoost Algorithm are both very powerful classifiers which are seen from our results. Both classifiers are sensitive to the overlapping of data in the training and test data sets and to data from the same trial producing high classification accuracies.

5. Conclusion

The classification accuracies of classifying cognitive workload did not meet the goal of 95% classification accuracy. From the results, a classification accuracy of 76-78% was achieved using Method 2 in which all trials were combined and randomized to obtain training and test data sets, however, this approach is not practical in real-time applications. Overall, a much clearer picture of the variability in cognitive state assessment has been created – that is the inherent variability in the feature values used in It is possible that the current EEG features used for workload classification. classification do not have enough information to classify workload or there is too great of a variability within-day and day-to-day to utilize these features for classification purposes. The results indicate that there is too much variation in the mean power of EEG across different subjects, different days of the same subject, or even different trials within the same day, and there is too much overlap between the values of this feature corresponding to the two levels of workload. As a result, the classification accuracy cannot be improved significantly even if one can find a more powerful classifier (to replace ANN, AdaBoost, etc.).

There are many new directions for physiology-based operator functional state assessment, a few of which is to investigate new features that will be more stable and more uniquely correlated with the workload level, improve current feature data input into the classifiers by normalization processes and find other classification methods. One method that is under serious consideration is to investigate the functional connectivity between different cortical activation sources reconstructed from high-density EEG. On the whole, this study is an improvement in the knowledge of brain function and is one step closer to finding a practical method for classification of workload in modern aircraft systems.

References

- [1] G.F. Wilson, "An Analysis of mental workload in pilots during flight using multiple psychophsiological measures," *The International Journal of Aviations Psychology*, vol. 12, pp. 3-18, 2002.
- [2] G.F. Wilson, "Pilot workload, operator functional state and adaptive aiding," *Operator Functional State*, 2003.
- [3] P.L. Craven et al., "Cognitive Workload Gauge Development: Comparison of Realtime Classification Methods," in *Foundations of Augmented Cognition*. New York: Springer, 2006.
- [4] D. Garrett, D.A. Peterson, C.W. Anderson, and M.H. Thaut, "Comparison of linear, nonlinear, and feature selection methods for EEG signal classification.," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 11, no. 2, pp. 141-144, 2003.
- [5] S. Sun, C. Zhang, and D. Zhang, "An experimental evaluation of ensemble methods for EEG signal classification," *Pattern Recognition Letters*, vol. 28, pp. 2157-2163, 2007.
- [6] T.I. Laine, K.W., Jr. Bauer, J.W. Lanning, C.A. Russell, and G.F. Wilson, "Selection of input features across subjects for classifying crewmember workload using artificial neural networks," *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans*, vol. 32, pp. 691-704, 2002.
- [7] G.F. Wilson and C.A. Russell, "Real-time assessment of mental workload using psychophysiological measures and artificial neural networks," *Human Factors*, no. 45, pp. 635-643, 2003.
- [8] K.A. Greene et al., "Selection of psychophysiological features for classifying air traffic controller workload in neural networks," *Smart Engineering System Design*, vol. 2, pp. 315-330, 2000.
- [9] John W. Clark, Jr., "The Origin of Biopotentials," in *Medical Instrumentation: Application and Design*, Third Edition ed., John G. Webster, Ed. United States: John Wiley & Sons, Inc., 1998, pp. 156-175.

- [10] M.A. Carskadon and A. Rechtschaffen, "Monitoring and staging human sleep," in *Principles and Practice of Sleep Medicine*, 2nd ed. Philadelphia: W.B. Saunders & Co, 1989, pp. 943-960.
- [11] E.R. John et al., "Invariant reversible QEEG effects of anesthetics," *Consciousness and Cognition*, vol. 10, pp. 165-183, 2001.
- [12] Alan Gevins and Michael E. Smith, "Neurophysiological measures of cognitive workload during human-computer interaction," *Theoretical Issues in Ergonomics Science*, vol. 4, no. 1-2, pp. 113-131, 2003.
- [13] C.J. Stam, "Brain dynamics in theta and alpha frequency bands and working memory performance in humans," *Neuroscience Letters*, vol. 286, pp. 115-118, 2000.
- [14] G.F. Wilson, C.R. Swain, and P. Ullsperger, "EEG power changes during a multiple level memory retention task," *International Journal of Psychophysiology*, vol. 32, pp. 107-118, 1999.
- [15] C.A. Russell, "Investigating the effects of day-to-day variations of psychophysiological measures in cognitive load classification," United States Air Force Research Laboratory, Technical Report 2002.
- [16] J.R. Comstock and R.J. Arnegard, "The multi-attribute task battery for human operator workload and strategic behavior research," 1992.
- [17] H.H. Jasper, "The ten-twenty electrode system of teh International Federation," *Clinical Neurophysiology*, vol. 10, pp. 371-375, 1958.
- [18] Y. Freund and R.E. Schapire, "A Short Introduction to Boosting," vol. 14, no. 5, pp. 771-780, 1999.
- [19] E. Bauer and R. Kohavi, "An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants," *Machine Learning*, vol. 36, pp. 105-142, 1999.
- [20] M. Akin and M.K. Kiymik, "Application of Periodogram and AR Spectral Analysis to EEG Signals," *Journal of Medical Systems*, vol. 24, no. 4, pp. 247-256, 2000.
- [21] O. Faust, R.U. Acharya, A.R. Allen, and C.M. Lin, "Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques," *ITBM-RBM*, vol. 29, pp. 44-52, 2008.

[22] I. Guler, M.K. Kiymik, M. Akin, and A. Alkan, "AR spectral analysis of EEG signals by using maximum likelihood estimation," *Computers in Biology and Medicine*, vol. 31, pp. 441-450, 2001.

Appendix A – Acronyms and Symbols

LDA	Linear Discriminant Analysis
SVM	Support Vector Machine
ANN	Artificial Neural Network
EEG	Electroencephalogram
MATB	Multi-Attribute Task Battery
NASA	National Aeronautics and Space Administration
WPAFB	Wright-Patterson Air Force Base
EOG	Electrooculogram
FFT	Fast Fourier Transform
t	T-test statistic
A (i)	Feature values for overload condition
B (i)	Feature values for normal condition
Ā	Mean of feature values for the overload condition
B	Mean of feature values for the normal condition
No	Number of exemplars for overload condition
N _N	Number of exemplars for normal condition
S	Pooled variance
AR	Autoregressive

Appendix B – Tables including Feature Rank According to T-Test Statistic for 10second window

Table A1. Feature rank according to t-test statistic for 10-second windowing method for all trials for Subject A.

	A11A		11A	A12B			A13C				A	21E	A22F		
Rank	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	02	Alpha	-14.388	C4	Theta	10.722	FP2	Beta	-29.716	F4	Delta	-7.217	01	Alpha	-13.702
2	02	Gamma	-11.242	FP2	Beta	5.815	FP2	Gamma	-25.235	02	Alpha	-6.801	01	Beta	-12.347
3	02	Beta	-10.467	ΡZ	Theta	5.807	CZ	Theta	17.114	FP2	Delta	-5.933	01	Gamma	-12.119
4	FP2	Delta	9.623	P4	Theta	4.654	FP1	Beta	-16.286	Т3	Alpha	-5.880	ΡZ	Theta	-11.054
5	FP2	Beta	8.823	01	Alpha	4.597	01	Beta	11.707	C3	Alpha	-5.590	Т5	Beta	-10.045
6	P4	Beta	-6.927	F4	Alpha	4.501	01	Gamma	11.100	C3	Delta	-5.139	Т5	Gamma	-9.876
7	ΡZ	Beta	-6.771	01	Gamma	4.050	CZ	Delta	10.000	FP2	Alpha	-4.882	P3	Beta	-9.326
8	P4	Gamma	-6.195	CZ	Beta	-3.789	F8	Beta	-9.820	P4	Delta	-4.818	P3	Gamma	-9.322
9	ΡZ	Gamma	-5.267	Т3	Delta	-3.545	FZ	Alpha	9.731	FP1	Alpha	-4.735	ΡZ	Beta	-8.854
10	CZ	Beta	-5.154	01	Beta	3.206	FP1	Gamma	-9.424	01	Beta	4.676	Т5	Alpha	-8.602
		A	23E		A	31B		A	32A		A33E		A		1C
Rank	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	01	Alpha	-5.325	02	Alpha	31.162	FP2	Beta	14.548	FP2	Beta	-28.544	01	Alpha	18.903
2	02	Delta	-4.753	02	Beta	26.525	FP1	Beta	10.942	FP1	Beta	-13.562	01	Beta	14.227
3	CZ	Delta	-4.503	01	Alpha	-26.322	F4	Alpha	8.658	FP2	Gamma	-13.263	01	Gamma	11.359
4	02	Beta	-4.424	02	Gamma	21.923	FZ	Alpha	8.014	01	Alpha	12.751	01	Theta	11.123
5	FZ	Alpha	4.205	01	Beta	-16.297	FP2	Gamma	7.724	F8	Delta	11.298	ΡZ	Alpha	10.770
6	CZ	Theta	3.581	01	Gamma	-15.705	F4	Delta	7.649	01	Beta	11.259	Р3	Alpha	10.626
7	FP1	Gamma	3.377	FP2	Beta	14.088	CZ	Theta	7.249	C3	Delta	10.657	P3	Beta	9.630
8	FP1	Delta	-3.231	CZ	Theta	11.911	F4	Theta	6.409	01	Gamma	9.940	P4	Alpha	8.469
9	01	Gamma	-3.101	02	Theta	11.249	01	Alpha	5.616	F4	Delta	9.265	Т5	Beta	7.766
10	C3	Theta	2.789	Т5	Alpha	-9.783	CZ	Alpha	5.177	Т5	Alpha	9.050	P3	Gamma	7.727
		A	42F		A	3D		A	51B		AS	52C		A	53F
Rank	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	01	Alpha	-14.118	01	Beta	-7.588	01	Alpha	-12.610	ΡZ	Beta	11.418	Т3	Alpha	-10.515
2	01	Beta	-11.698	01	Gamma	-7.173	01	Beta	-10.087	CZ	Beta	10.283	Т5	Beta	-9.944
3	01	Theta	-9.757	ΡZ	Gamma	-6.424	CZ	Theta	9.925	ΡZ	Gamma	9.261	FP2	Beta	-9.683
4	01	Gamma	-8.798	CZ	Gamma	-5.913	01	Gamma	-9.612	CZ	Gamma	9.150	CZ	Beta	-9.530
5	FP1	Delta	-7.378	01	Alpha	-5.798	02	Beta	-8.776	FZ	Beta	9.079	Т3	Beta	-9.389
6	Т5	Beta	-7.046	Р3	Beta	-5.426	02	Alpha	-8.630	Р3	Beta	8.802	FZ	Beta	-8.940
7	Т5	Gamma	-6.623	ΡZ	Beta	-5.281	02	Gamma	-7.192	Т5	Beta	8.173	Р3	Beta	-8.163
8	FP2	Beta	-5.936	Р3	Gamma	-5.266	ΡZ	Theta	5.568	P4	Beta	7.325	01	Delta	-7.976
9	Р3	Beta	-5.330	FZ	Gamma	-5.129	F3	Delta	-5.456	FZ	Alpha	7.096	ΡZ	Beta	-7.410
10	02	Theta	-5.281	CZ	Beta	-4.668	P4	Delta	-4.793	Р3	Gamma	7.093	Т3	Gamma	-7.352

	B11E		B12F			B13D			B21B				B22A		
Rank	Feature	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	
1	FP1 Beta	15.755	FP2	Delta	10.971	01	Gamma	17.946	ΡZ	Gamma	19.386	ΡZ	Delta	13.159	
2	PZ Gam	na 13.213	02	Gamma	10.155	Т5	Gamma	17.809	C3	Beta	-11.704	Τ4	Delta	10.876	
3	FZ Delta	11.141	FP1	Delta	9.976	Р3	Gamma	14.734	FP1	Gamma	9.749	C3	Alpha	-8.630	
4	T5 Gam	na 10.763	F4	Delta	-8.385	ΡZ	Gamma	13.695	FZ	Theta	9.371	Τ6	Delta	8.598	
5	FP2 Beta	9.987	FP2	Beta	8.346	P4	Gamma	13.284	CZ	Beta	-8.985	F8	Delta	8.402	
6	P3 Gam	na 9.833	C3	Beta	-7.803	FP1	Beta	13.129	01	Gamma	8.352	C3	Beta	-6.530	
7	P4 Gam	na 9.667	CZ	Delta	-7.468	FP2	Beta	11.771	CZ	Theta	8.160	P4	Alpha	-6.519	
8	FP2 Alph	u 9.438	ΡZ	Gamma	7.215	O2	Gamma	11.524	Р3	Gamma	7.849	C4	Alpha	-6.348	
9	FP1 Alph	9.155	Т3	Delta	-6.884	Τ6	Gamma	11.514	C3	Gamma	7.806	FP2	Alpha	5.947	
10	FP1 Gam	na 8.669	FP1	Beta	6.875	CZ	Gamma	11.170	P4	Delta	7.303	FP1	Gamma	5.560	
		B23E		B	31C		B	32F		B.	33D		B4	1B	
Rank	Feature	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	
1	FP2 Gam	na 11.802	FZ	Beta	13.926	C3	Delta	-11.867	F3	Delta	10.175	Т5	Gamma	18.744	
2	FP2 Beta	11.590	F4	Beta	13.810	P3	Delta	-11.770	C3	Theta	7.678	P3	Gamma	16.583	
3	C3 Beta	-9.372	C4	Beta	13.127	02	Delta	-11.200	Τ6	Gamma	7.381	F8	Gamma	16.454	
4	FP2 Delta	7.946	Т5	Beta	12.852	P4	Delta	-10.066	ΡZ	Gamma	6.856	ΡZ	Gamma	14.105	
5	C3 Delta	-7.599	Τ6	Gamma	11.706	F3	Delta	-9.123	P4	Gamma	6.659	P4	Gamma	14.028	
6	C3 Alph	u -7.241	Р3	Delta	11.498	FZ	Delta	-7.550	01	Gamma	6.405	C4	Gamma	13.816	
7	T5 Delta	-7.165	CZ	Theta	11.348	ΡZ	Delta	-7.460	FZ	Gamma	6.171	01	Gamma	13.178	
8	O1 Gam	na 6.820	Т5	Gamma	11.213	Т5	Delta	-6.128	CZ	Gamma	6.107	CZ	Gamma	13.158	
9	O2 Gam	na 6.800	F3	Beta	10.886	FP2	Delta	-6.065	02	Theta	6.070	F4	Gamma	12.195	
10	T3 Delta	-6.626	F4	Theta	10.716	ΡZ	Alpha	5.708	Т5	Gamma	5.898	Τ4	Gamma	12.146	
		B42C		В	43F		B	51A		B	52B		BS	3C	
Rank	Feature	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	
1	P4 Gam	na 27.852	02	Gamma	18.944	01	Gamma	8.932	FP1	Gamma	12.514	01	Gamma	20.125	
2	T6 Gam	na 27.174	Τ6	Gamma	18.128	Т5	Gamma	7.998	02	Gamma	12.394	Τ6	Gamma	19.764	
3	O2 Gam	na 26.203	01	Gamma	16.162	Т3	Gamma	7.454	Τ6	Gamma	11.160	02	Gamma	18.912	
4	T5 Gam	na 25.449	F8	Gamma	-15.129	01	Theta	7.299	01	Gamma	10.740	P4	Gamma	17.679	
5	P3 Gam	na 24.868	P4	Gamma	13.494	F8	Delta	7.284	P4	Gamma	9.091	ΡZ	Gamma	17.249	
6	T4 Gam	na 24.600	Т5	Gamma	13.114	O2	Gamma	7.084	ΡZ	Gamma	8.825	Р3	Gamma	15.089	
7	O1 Gam	na 23.981	F8	Beta	-12.637	Τ6	Gamma	7.046	01	Theta	8.445	CZ	Theta	13.951	
8	PZ Gam	na 23.728	C3	Beta	-12.296	ΡZ	Gamma	6.619	FP1	Beta	7.811	Т5	Gamma	13.819	
9	C4 Gam	na 23.154	P4	Delta	-9.198	F7	Gamma	-6.328	02	Theta	7.551	C3	Theta	12.718	
10	F4 Gam	na 22.782	ΡZ	Gamma	9.119	P4	Gamma	6.300	02	Beta	7.466	CZ	Gamma	12.484	

Table A2. Feature rank according to t-test statistic for 10-second windowing method for all trials for Subject B.

		CI	1B		C	2A		C	13E		C	22F	C2		C23D	
Rank	Feat	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	
1	FZ A	Alpha	-13.347	P3	Delta	-12.019	Т3	Alpha	-11.143	02	Theta	-12.199	C4	Theta	-4.856	
2	P4 /	Alpha	-12.033	Р3	Alpha	-7.490	P4	Theta	-9.970	F8	Theta	-9.770	Τ4	Beta	-3.834	
3	P3 /	Alpha	-11.625	ΡZ	Alpha	-7.290	P4	Alpha	-9.951	P4	Theta	-9.578	C4	Alpha	-3.335	
4	ТЗ 4	Alpha	-11.213	01	Alpha	-6.193	ΡZ	Theta	-8.779	01	Theta	-9.563	Т3	Beta	-3.303	
5	PZ .	Alpha	-11.201	Τ4	Delta	-6.096	01	Theta	-8.473	Τ4	Theta	-8.952	C3	Theta	-3.077	
6	01	Alpha	-11.197	C3	Delta	5.717	C4	Theta	-8.431	Т3	Theta	-8.720	CZ	Theta	-2.926	
7	F4 4	Alpha	-11.174	O2	Alpha	-5.668	02	Theta	-8.373	C4	Theta	-8.691	C4	Beta	-2.732	
8	F3 4	Alpha	-10.907	Τ6	Delta	5.476	ΡZ	Alpha	-8.156	ΡZ	Theta	-8.553	C4	Delta	-2.719	
9	CZ .	Alpha	-10.877	C3	Alpha	-5.450	Р3	Alpha	-7.942	Р3	Theta	-8.430	Τ4	Gamma	-2.701	
10	C3 4	Alpha	-10.594	Т3	Alpha	-5.327	Р3	Theta	-7.887	Τ6	Theta	-8.262	Τ4	Alpha	-2.683	
		C3	31B		C	32C		C	33F		C	41A		С	42B	
Rank	Fea	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	
1	CZ Z	Alpha	-11.558	Τ4	Gamma	30.235	P4	Delta	-10.677	P4	Delta	16.112	Р3	Theta	10.575	
2	C4 4	Alpha	-10.575	FP2	Gamma	26.463	F4	Delta	-10.180	C4	Delta	8.085	ΡZ	Theta	9.785	
3	C3 4	Alpha	-10.016	FP2	Beta	23.973	Т5	Beta	9.931	ΡZ	Theta	8.041	P4	Theta	8.431	
4	F8 1	Delta	9.673	FP1	Gamma	19.202	02	Delta	-8.845	F4	Gamma	-7.158	Т5	Theta	8.321	
5	T4 4	Alpha	-9.149	Τ4	Beta	16.742	FP2	Beta	-8.090	P4	Theta	6.238	C3	Alpha	-8.306	
6	ТЗ 4	Alpha	-9.098	FP1	Beta	16.398	Р3	Beta	7.647	CZ	Beta	-5.961	O2	Theta	7.542	
7	P4 1	Beta	-8.100	Т3	Beta	15.698	01	Beta	7.357	F4	Delta	5.762	CZ	Theta	7.082	
8	CZ I	Beta	-7.996	01	Delta	15.697	FP2	Alpha	-6.955	Р3	Theta	5.601	01	Theta	6.903	
9	FP2 I	Beta	7.830	Т3	Gamma	12.755	C4	Alpha	-6.047	C3	Gamma	-5.471	CZ	Alpha	-6.621	
10	CZ 7	Theta	7.649	Р3	Theta	10.398	Τ4	Beta	-5.857	Р3	Gamma	-5.432	FZ	Alpha	-6.057	
		C4	I3C		C	51E		C	52F		C	53D				
Rank	Feat	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value				
1	PZ I	Delta	14.574	P4	Alpha	-12.774	Т5	Gamma	20.149	FP1	Gamma	9.487				
2	C4 1	Delta	14.373	01	Theta	-12.730	Р3	Gamma	17.489	C4	Alpha	-7.983				
3	T4 1	Delta	12.739	C4	Alpha	-12.137	FZ	Alpha	-14.754	ΡZ	Delta	-7.954				
4	02 1	Delta	11.815	Т3	Theta	-10.473	02	Gamma	14.701	P4	Alpha	-7.297				
5	F4 1	Delta	11.035	CZ	Alpha	-10.313	01	Gamma	13.955	ΡZ	Alpha	-7.082	ļ			
6	FP2 (Gamma	9.114	C3	Theta	-10.096	CZ	Alpha	-13.527	P3	Alpha	-6.829	ļ			
7	FP2 I	Delta	8.927	Р3	Alpha	-9.979	C3	Alpha	-13.403	01	Alpha	-6.370	ļ			
8	01 1	Delta	8.371	FP2	Alpha	-9.938	F3	Alpha	-13.221	FP1	Beta	6.317	1			
9	FP2 1	Beta	8.126	ΡZ	Alpha	-9.661	FP1	Alpha	-12.916	F3	Theta	6.092	ļ			
10	01	Alpha	7.700	02	Alpha	-9.515	Т3	Gamma	12.647	Т3	Alpha	-6.061				

Table A3. Feature rank according to t-test statistic for 10-second windowing method for all trials for Subject C.

		D1	1C			D13D		D21B			D2	2C	D23F		
Rank	Feat	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	P3 A	Alpha	-9.626	Τ4	Gamma	-21.807	P4	Gamma	-8.277	FP1	Beta	11.115	FP2	Beta	-10.614
2	CZ A	Alpha	-9.547	P4	Beta	-21.048	Τ6	Gamma	-8.050	FP1	Gamma	6.735	P3	Delta	-8.854
3	PZ A	Alpha	-9.238	P4	Gamma	-20.927	P4	Beta	-7.688	01	Alpha	-6.404	FP1	Beta	-8.826
4	P4 A	Alpha	-7.852	CZ	Beta	-20.275	FZ	Gamma	-7.646	02	Alpha	-5.832	FP1	Alpha	-8.269
5	PZ C	Gamma	-7.722	Т3	Beta	-20.154	F8	Theta	-7.587	FP2	Beta	5.694	FP2	Gamma	-7.392
6	FP1 A	Alpha	-7.530	ΡZ	Beta	-20.087	F8	Delta	-7.447	ΡZ	Alpha	-4.657	FP2	Alpha	-7.010
7	FP1 E	Beta	-7.524	Τ4	Beta	-20.074	CZ	Gamma	-7.165	Р3	Delta	4.640	CZ	Alpha	-6.387
8	CZ C	Gamma	-7.352	FZ	Gamma	-19.096	F8	Gamma	-7.124	T 6	Theta	4.562	FP1	Gamma	-6.158
9	FZ A	Alpha	-7.319	CZ	Gamma	-19.043	CZ	Beta	-7.083	FZ	Theta	4.547	ΡZ	Alpha	-6.134
10	P4 C	Gamma	-6.877	Τ6	Beta	-18.676	ΡZ	Beta	-7.039	01	Theta	-4.398	01	Alpha	-5.722
		D3	31A		D	32B		D3	33C		D	41E		D	42F
Rank	Feat	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	F7 I	Delta	8.016	Р3	Alpha	-12.218	Τ4	Beta	-11.473	01	Alpha	-11.341	F3	Alpha	-13.628
2	FP2 A	Alpha	6.057	FP2	Alpha	-12.149	02	Gamma	-11.349	F3	Alpha	-10.293	Т5	Gamma	-12.950
3	ТЗ Т	Гheta	-5.025	Τ6	Alpha	-11.839	P4	Beta	-11.014	FZ	Alpha	-9.840	T 6	Alpha	-12.085
4	P3 A	Alpha	-4.844	P4	Alpha	-11.216	P4	Gamma	-10.663	Р3	Alpha	-9.018	CZ	Alpha	-11.947
5	T5 A	Alpha	-4.838	ΡZ	Alpha	-10.327	Τ6	Gamma	-10.567	Т5	Alpha	-8.928	P3	Alpha	-11.710
6	FP1 T	Гheta	4.704	FP1	Alpha	-10.307	ΡZ	Gamma	-10.315	FP2	Alpha	-8.714	01	Alpha	-11.648
7	CZ I	Delta	4.417	Т5	Alpha	-9.349	02	Beta	-10.194	ΡZ	Theta	-8.703	FZ	Alpha	-11.558
8	F7 E	Beta	-4.385	CZ	Alpha	-8.970	Τ4	Gamma	-10.167	C3	Alpha	-8.552	C3	Alpha	-11.531
9	FP1 A	Alpha	4.317	FP2	Beta	-8.907	Τ6	Beta	-10.051	CZ	Alpha	-8.524	T 5	Alpha	-11.448
10	F4 1	Гheta	4.183	C4	Alpha	-8.482	ΡZ	Beta	-9.960	ΡZ	Alpha	-8.368	F7	Gamma	-11.263
		D4	3D		D	51B		D	52A		D	53E			
Rank	Feat	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value			
1	T4 C	Gamma	11.603	Τ4	Gamma	-7.549	C3	Delta	9.522	Τ4	Beta	-13.473			
2	T4 E	Beta	11.000	F8	Delta	-7.205	Т3	Delta	6.669	P4	Gamma	-12.962			
3	T4 1	Гheta	9.697	Τ4	Beta	-6.941	Т5	Delta	6.355	Τ4	Gamma	-12.244			
4	FZ 1	Гheta	9.678	Р3	Gamma	-6.737	FP1	Beta	5.423	P4	Beta	-11.330			
5	T4 A	Alpha	8.157	Т5	Gamma	-6.040	F7	Delta	5.070	ΡZ	Gamma	-11.251			
6	F4 1	Гheta	7.896	ΡZ	Theta	-5.402	FP1	Gamma	4.760	ΡZ	Beta	-11.036			
7	P4 1	Гheta	7.453	Т3	Alpha	-5.293	F8	Delta	4.480	Τ6	Beta	-10.719			
8	01 A	Alpha	-6.602	C3	Gamma	-5.291	FZ	Delta	4.419	CZ	Beta	-10.469]		
9	F8 A	Alpha	6.379	C3	Beta	-5.271	Т5	Alpha	4.228	Τ6	Gamma	-10.391]		
10	F8 1	Гheta	5.582	Р3	Beta	-5.257	ΡZ	Gamma	-3.922	CZ	Gamma	-10.225			

Table A4. Feature rank according to t-test statistic for 10-second windowing method for all trials for Subject D.

	E	11B	E	12C	E	13F	E	21A	E22B		
Rank	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	
1	PZ Theta	10.386	FP1 Delta	-11.033	CZ Beta	-11.700	O2 Theta	13.055	C4 Alpha	12.626	
2	O1 Theta	9.364	FP2 Delta	-10.846	C3 Beta	-10.499	CZ Theta	12.172	O2 Theta	11.406	
3	O2 Theta	8.690	T4 Alpha	-8.534	F8 Delta	-10.311	C4 Theta	10.671	F7 Delta	-7.947	
4	P4 Theta	8.471	F3 Theta	6.950	O2 Gamma	-9.559	PZ Theta	9.707	T4 Delta	-7.031	
5	CZ Theta	8.271	FZ Theta	6.924	T3 Alpha	-9.015	C3 Theta	9.658	C4 Delta	-6.634	
6	P3 Theta	7.287	P4 Alpha	-6.880	F3 Beta	-8.535	F8 Delta	9.039	PZ Delta	-6.459	
7	C3 Theta	6.792	PZ Beta	-6.611	PZ Beta	-8.485	O1 Theta	8.770	P3 Delta	-6.382	
8	F8 Delta	-5.818	F4 Theta	5.781	C4 Delta	-8.330	T6 Delta	8.253	T6 Delta	-6.163	
9	C4 Theta	5.799	F7 Delta	-5.759	F3 Alpha	-8.285	FZ Theta	8.014	O1 Theta	5.819	
10	FZ Theta	5.081	F4 Delta	-5.555	P4 Delta	-8.259	F3 Theta	7.878	C3 Theta	5.746	
	E	23C	E	32B	E	33C	Е	41B	Е	42A	
Rank	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	
1	O2 Theta	14.924	P4 Theta	8.544	F8 Gamma	12.741	T3 Gamma	24.387	T3 Gamma	38.854	
2	O1 Theta	14.497	O2 Theta	8.448	F8 Beta	9.255	T3 Beta	19.078	T3 Beta	33.874	
3	O1 Gamma	10.763	O1 Theta	6.934	FP2 Gamma	9.022	O2 Gamma	17.640	T5 Gamma	26.509	
4	FZ Alpha	-10.499	PZ Theta	6.428	F7 Gamma	9.001	O2 Beta	14.856	O1 Gamma	22.333	
5	FP2 Alpha	-9.032	CZ Theta	4.596	FP1 Gamma	8.928	O1 Beta	13.710	O1 Beta	19.395	
6	T6 Alpha	-8.571	C4 Theta	3.535	P4 Alpha	-8.041	O2 Delta	-12.615	T5 Beta	18.140	
7	F3 Alpha	-8.505	F7 Gamma	3.319	C3 Gamma	7.513	T3 Alpha	12.088	T4 Gamma	17.416	
8	F4 Alpha	-8.429	C3 Theta	2.878	O1 Theta	7.373	CZ Theta	11.594	O2 Gamma	16.161	
9	CZ Alpha	-7.684	FZ Theta	2.501	F7 Beta	6.877	O1 Gamma	10.914	T4 Beta	15.522	
10	CZ Theta	7.641	P3 Theta	2.461	C4 Alpha	-6.462	T5 Beta	10.618	PZ Gamma	14.603	
	E	43E	Е	51C	Е	52F	Е	53D			
Rank	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value			
1	O1 Gamma	33.694	O2 Alpha	-11.723	O1 Gamma	18.588	O1 Gamma	16.507			
2	O1 Beta	29.693	P4 Alpha	-11.490	O1 Theta	17.568	P4 Theta	10.604			
3	T5 Beta	27.143	O1 Alpha	-10.139	C4 Alpha	17.301	O1 Beta	9.872			
4	T4 Beta	26.887	F3 Alpha	-9.695	T4 Gamma	16.945	T3 Gamma	9.715			
5	T6 Beta	25.279	O1 Beta	-9.479	O1 Beta	14.630	PZ Theta	9.568			
6	T4 Gamma	24.966	FZ Alpha	-9.248	C3 Theta	14.527	O2 Gamma	9.353			
7	T6 Gamma	22.290	CZ Delta	-9.248	T4 Beta	14.396	CZ Theta	9.137	ļ		
8	T 5 Gamma	21.906	T6 Delta	-9.120	C4 Theta	14.301	CZ Alpha	-8.738			
9	P4 Gamma	16.513	FP1 Alpha	-8.702	CZ Theta	14.148	T6 Alpha	-8.618			
10	F3 Delta	-14.344	C3 Delta	-8.355	O2 Theta	14.044	T3 Beta	8.506			

Table A5. Feature rank according to t-test statistic for 10-second windowing method for all trials for Subject E.

	F	12C	F	13F	F	21E	F	22F	F23D		
Rank	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	
1	F7 Delta	14.347	O1 Alpha	22.171	O2 Beta	22.740	CZ Alpha	17.022	O2 Alpha	12.626	
2	F4 Delta	13.872	O2 Alpha	21.024	O2 Gamma	21.669	O2 Alpha	15.370	PZ Theta	12.371	
3	O2 Beta	13.821	O2 Gamma	20.105	O2 Alpha	15.870	C4 Alpha	13.283	C4 Alpha	12.326	
4	O2 Gamma	12.140	O2 Beta	19.311	C4 Alpha	11.908	F4 Alpha	13.074	C4 Theta	12.306	
5	O2 Alpha	10.879	C4 Alpha	18.246	CZ Alpha	9.080	FZ Alpha	11.233	P4 Theta	10.153	
6	P4 Beta	9.809	O1 Beta	16.797	O1 Alpha	8.670	F7 Delta	-7.135	CZ Theta	9.542	
7	PZ Delta	9.549	O1 Gamma	15.647	C4 Delta	-6.909	CZ Theta	6.827	C3 Theta	8.407	
8	T6 Gamma	9.546	F4 Alpha	14.887	F4 Alpha	5.920	F7 Beta	-6.387	FP1 Delta	-7.868	
9	F7 Theta	9.425	CZ Alpha	12.206	PZ Alpha	5.798	FZ Delta	-6.061	P4 Alpha	7.657	
10	PZ Beta	9.326	PZ Alpha	12.197	P4 Alpha	5.688	C4 Theta	6.031	F3 Delta	-7.581	
	F.	31B	F.	32A	F.	33E	F	41C	F	42F	
Rank	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	
1	O1 Gamma	16.240	T3 Beta	-23.020	O1 Alpha	-15.981	T4 Delta	12.999	FP1 Beta	41.671	
2	O1 Beta	12.981	T3 Gamma	-21.820	O1 Beta	-14.456	PZ Delta	12.138	FP2 Beta	40.184	
3	O2 Beta	12.240	T3 Alpha	-13.663	O2 Beta	-13.743	FP2 Beta	-12.101	FP2 Gamma	38.481	
4	O1 Alpha	10.818	T5 Theta	-12.554	O1 Gamma	-13.670	O2 Delta	12.034	FP1 Gamma	36.874	
5	O2 Gamma	9.663	C3 Gamma	-10.611	O2 Gamma	-11.989	CZ Delta	11.646	FP1 Alpha	14.640	
6	T3 Beta	-9.443	F4 Alpha	-10.460	T3 Beta	-11.487	O2 Gamma	11.158	FP2 Alpha	12.978	
7	F3 Alpha	-7.409	F7 Beta	-10.308	O2 Alpha	-11.018	T6 Theta	11.116	T4 Alpha	-10.888	
8	T3 Gamma	-7.026	FZ Theta	-9.936	T3 Gamma	-10.746	C4 Delta	10.422	CZ Beta	-8.662	
9	T3 Delta	-6.684	F3 Theta	-9.629	P3 Beta	-10.623	T3 Delta	9.757	T4 Beta	-8.288	
10	F7 Gamma	-5.975	F3 Beta	-9.380	T4 Beta	-10.143	O2 Beta	9.553	T3 Delta	-7.803	
	F	43D	E	51B	F	52C	F	53F			
Rank	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value			
1	T3 Gamma	7.916	O2 Alpha	8.306	FP2 Beta	22.049	O2 Beta	16.512			
2	FZ Alpha	7.320	F7 Beta	-8.109	FP1 Beta	16.863	O2 Gamma	15.922			
3	T3 Beta	6.961	F7 Alpha	-8.050	FP2 Gamma	12.042	O2 Alpha	14.695			
4	FP2 Delta	-6.149	T3 Beta	-7.842	FP1 Gamma	11.893	P4 Gamma	14.032			
5	F4 Alpha	5.417	O2 Beta	7.575	F3 Delta	-7.151	PZ Beta	12.829			
6	O2 Gamma	4.921	T3 Gamma	-7.571	FZ Gamma	-5.601	P4 Beta	12.649			
7	CZ Alpha	4.825	C3 Beta	-7.085	CZ Gamma	-5.004	T6 Gamma	12.385	ļ		
8	O2 Theta	-4.301	T4 Beta	-6.932	F7 Beta	-4.590	O1 Beta	10.887	ļ		
9	O1 Theta	-4.279	FZ Beta	-6.772	F4 Delta	-4.534	PZ Gamma	10.257	ļ		
10	FP1 Beta	4.157	F8 Beta	-6.626	F4 Beta	-4.511	CZ Beta	8.909	J		

Table A6. Feature rank according to t-test statistic for 10-second windowing method for all trials for Subject F.

	G11E		G12F			G13D			G21B			G22A		
Rank	Features	T-Test Value	Fe	atures	T-Test Value									
1	T5 Gamma	52.174	Т5	Beta	55.489	FP2	Beta	-30.260	01	Theta	13.140	FP2	Beta	-15.623
2	T5 Beta	40.369	Т5	Gamma	44.050	FP2	Gamma	-23.415	CZ	Theta	11.991	FP2	Gamma	-11.515
3	T6 Gamma	31.171	Τ6	Beta	40.492	Τ4	Gamma	-15.889	02	Theta	10.442	Т3	Gamma	-10.564
4	FP2 Beta	-29.560	Τ6	Gamma	36.226	FP1	Beta	-14.738	CZ	Beta	-10.187	P4	Delta	-10.128
5	FP2 Gamma	-21.804	Τ4	Gamma	31.559	FP1	Gamma	-13.718	FP2	Gamma	-10.167	FZ	Alpha	7.587
6	T6 Beta	20.383	Τ4	Beta	31.186	CZ	Beta	-13.306	FP2	Beta	-9.684	FZ	Theta	7.562
7	FP1 Beta	-13.290	P4	Gamma	27.232	Τ4	Beta	-12.481	C3	Theta	9.443	F3	Theta	7.327
8	C3 Theta	12.551	02	Gamma	27.047	Т3	Beta	-11.804	Р3	Theta	8.729	Т3	Beta	-7.104
9	T3 Gamma	12.504	01	Gamma	25.269	CZ	Theta	11.688	C4	Theta	8.120	C4	Theta	7.000
10	CZ Theta	10.605	P4	Beta	22.614	Т3	Gamma	-11.547	P4	Delta	-7.500	C3	Theta	6.995
	G	23E		G	31C		G	32F	(33D		G4	1B
Rank	Features	T-Test Value	Fe	atures	T-Test Value									
1	CZ Theta	12.916	FP2	Beta	-38.535	FP2	Beta	18.718	01	Theta	12.187	T 6	Gamma	31.811
2	T4 Delta	-12.676	FP2	Gamma	-30.830	FP2	Gamma	13.490	C4	Theta	11.959	Т5	Gamma	27.406
3	F3 Theta	12.393	CZ	Theta	16.838	Τ4	Beta	13.249	CZ	Theta	11.024	Τ6	Beta	24.559
4	F4 Theta	10.547	ΡZ	Theta	15.822	CZ	Theta	12.253	C3	Theta	10.875	Т5	Beta	23.011
5	CZ Delta	-9.990	FP1	Gamma	-15.601	C3	Theta	11.038	Р3	Theta	8.919	F8	Beta	-22.313
6	C3 Theta	9.935	01	Theta	15.275	FZ	Theta	10.331	F4	Theta	8.738	FP2	Beta	-21.502
7	PZ Delta	-8.966	FP1	Beta	-15.250	01	Theta	9.595	FZ	Theta	8.409	FP2	Gamma	-17.526
8	T3 Beta	7.670	02	Theta	15.168	F3	Theta	9.087	Т3	Theta	8.094	F8	Gamma	-15.325
9	C4 Theta	7.289	C4	Theta	15.071	F4	Theta	8.905	ΡZ	Theta	7.799	P4	Alpha	8.005
10	FP2 Beta	-6.887	Т3	Beta	-14.128	FP1	Delta	-8.608	F7	Theta	7.631	P3	Alpha	7.011
	G	42C		G	43F		G	51A		G	52B		G	53C
Rank	Features	T-Test Value	Fe	atures	T-Test Value									
1	O1 Gamma	13.687	FP2	Beta	-24.087	02	Gamma	14.530	01	Theta	11.687	F8	Gamma	-13.849
2	PZ Gamma	12.105	FP2	Gamma	-19.149	02	Beta	13.074	FP1	Beta	-7.460	F8	Alpha	-13.502
3	O2 Gamma	11.548	CZ	Theta	14.084	02	Alpha	11.513	FP2	Gamma	-6.701	Т3	Gamma	11.903
4	P3 Beta	11.522	Τ6	Beta	13.474	01	Theta	10.781	CZ	Theta	6.329	FP1	Gamma	-11.578
5	O1 Beta	10.655	FZ	Theta	12.879	FP1	Beta	-10.346	FP1	Gamma	-6.214	F3	Gamma	-10.513
6	FP2 Beta	-10.384	Τ6	Gamma	12.576	ΡZ	Theta	9.178	P4	Theta	5.756	F4	Gamma	-10.344
7	P3 Gamma	9.879	F4	Beta	-11.174	02	Theta	8.684	FP2	Delta	-5.722	FZ	Gamma	-9.910
8	O2 Theta	9.021	C4	Theta	10.693	CZ	Beta	-8.266	ΡZ	Theta	5.592	F4	Beta	-9.878
9	CZ Gamma	8.888	F4	Gamma	-10.582	FP2	Beta	-7.770	ΡZ	Alpha	5.577	Р3	Gamma	-9.306
10	T5 Beta	8.879	01	Theta	10.516	Р3	Theta	7.063	FZ	Alpha	5.521	F8	Beta	-8.405

Table A7. Feature rank according to t-test statistic for 10-second windowing method for all trials for Subject G.

	Н	H11B		12A	Н	13E	H	21C	H22F		
Rank	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	
1	FP1 Beta	21.817	C4 Beta	-15.048	O1 Gamma	39.528	FP1 Beta	-25.373	FP1 Beta	30.315	
2	FP1 Gamma	17.828	O1 Gamma	12.857	O1 Beta	38.417	FP2 Beta	-22.261	FP1 Gamma	22.122	
3	FP2 Beta	13.716	F4 Beta	-11.417	O2 Beta	36.683	O1 Gamma	18.635	FP2 Beta	21.536	
4	FP1 Alpha	13.459	O1 Beta	10.788	O2 Gamma	35.634	C4 Alpha	-16.536	C4 Alpha	11.241	
5	FP2 Gamma	12.077	FZ Beta	-9.194	FP1 Beta	21.768	FP1 Gamma	-16.428	FP2 Gamma	11.051	
6	P3 Beta	-11.548	P4 Alpha	-9.193	FP2 Beta	19.462	O1 Beta	14.672	C3 Alpha	-9.683	
7	CZ Beta	-11.331	C4 Alpha	-9.072	P4 Gamma	15.325	FP2 Gamma	-14.213	PZ Alpha	-8.599	
8	T5 Beta	-11.230	T5 Delta	8.691	FP2 Gamma	15.263	C4 Beta	-13.679	P3 Delta	-8.365	
9	C3 Beta	-10.571	T4 Alpha	-8.562	T6 Gamma	15.053	T4 Alpha	-12.582	P3 Alpha	-8.272	
10	F7 Delta	-9.326	CZ Beta	-8.523	FP1 Gamma	14.984	F8 Beta	-11.555	F3 Alpha	-8.143	
	Н	23D	Н	31B	Н	32C	Н	33F	Н	41A	
Rank	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	
1	O1 Alpha	-9.059	CZ Alpha	-12.557	FP1 Delta	10.046	CZ Beta	-10.359	O1 Gamma	19.728	
2	CZ Theta	9.043	P4 Alpha	-9.444	FP2 Delta	9.084	T3 Alpha	-9.904	O1 Beta	16.928	
3	F4 Delta	-8.678	C3 Alpha	-8.815	FP1 Beta	9.057	FZ Gamma	-9.503	CZ Theta	16.348	
4	C3 Theta	8.362	FZ Alpha	-8.731	O1 Alpha	-7.495	F3 Gamma	-9.265	P4 Theta	15.226	
5	O2 Alpha	-7.491	F3 Alpha	-8.479	F7 Theta	-6.426	CZ Gamma	-9.147	O2 Theta	14.041	
6	F3 Delta	-6.192	FZ Delta	-8.399	C3 Theta	5.546	C4 Beta	-8.957	O2 Beta	13.269	
7	T5 Alpha	-5.264	T4 Alpha	-7.599	T3 Alpha	-5.435	FZ Beta	-8.874	O1 Alpha	13.230	
8	P3 Alpha	-5.122	PZ Alpha	-6.977	T3 Gamma	-5.394	C3 Beta	-8.797	T5 Gamma	13.227	
9	C4 Alpha	-5.012	C4 Alpha	-6.901	T6 Delta	5.197	FP1 Gamma	-8.720	PZ Theta	11.648	
10	C3 Beta	-4.978	F4 Alpha	-6.714	T6 Theta	5.090	P3 Gamma	-8.245	C3 Theta	10.962	
	Н	42B	Н	43C	Н	51E	Н	52F	Н	53D	
Rank	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	Features	T-Test Value	
1	O1 Delta	10.523	O1 Beta	21.825	C4 Beta	-10.726	C4 Beta	-12.180	C4 Beta	-9.910	
2	T6 Delta	9.837	O1 Gamma	21.752	FP1 Beta	-9.624	C3 Beta	-11.592	C3 Beta	-9.195	
3	O2 Delta	9.191	O1 Delta	21.401	F8 Delta	-9.238	O1 Beta	-10.483	PZ Beta	-8.974	
4	FP1 Beta	8.249	O2 Beta	20.329	C3 Beta	-8.551	CZ Beta	-8.936	CZ Theta	7.994	
5	CZ Theta	6.422	O2 Gamma	18.711	P3 Alpha -7.279 F		P3 Alpha	-8.612	P3 Beta	-7.961	
6	F7 Alpha	-6.380	O1 Alpha	18.321	FZ Beta	-7.237	T5 Beta	-8.560	C3 Theta	7.944	
7	F3 Alpha	-6.260	O2 Alpha	17.450	FP1 Gamma	-7.175	P3 Beta	-8.506	CZ Beta	-7.737	
8	T3 Beta	-6.074	O1 Theta	17.173	T4 Delta	-7.048	O1 Gamma	-8.438	PZ Gamma	-7.407	
9	T3 Alpha	-6.047	FZ Alpha	13.228	T6 Beta	-6.792	T5 Alpha	-8.211	P3 Gamma	-7.155	
10	FP1 Gamma	5.804	FZ Theta	10.678	CZ Beta	-6.454	T6 Delta	-8.087	T 5 Gamma	-7.027	

Table A8. Feature rank according to t-test statistic for 10-second windowing method for all trials for Subject H.

Appendix C - Tables including Feature Rank According to T-Test Statistic for 5-second window

	A11A			Al	2B		A1	3C		Až	A21E A		Až	22F	
Rank	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	02	Gamma	-8.813	C3	Delta	-4.461	FP2	Beta	-11.969	Τ4	Delta	-5.821	01	Gamma	-11.293
2	02	Beta	-6.948	Т5	Delta	-4.391	FP2	Gamma	-10.746	P4	Delta	-4.799	01	Beta	-11.213
3	02	Alpha	-6.312	F7	Gamma	-3.406	FP1	Beta	-6.328	FP2	Delta	-4.741	P3	Delta	-9.844
4	FP1	Delta	-5.562	C4	Theta	3.194	01	Beta	4.795	F4	Delta	-4.511	01	Alpha	-9.701
5	FP2	Beta	4.660	F7	Delta	-3.029	CZ	Delta	4.705	02	Delta	-3.941	ΡZ	Delta	-8.401
6	P4	Gamma	-4.651	Р3	Delta	-2.820	F3	Theta	4.581	Т3	Delta	-3.911	F7	Delta	-8.084
7	ΡZ	Beta	-4.616	P4	Theta	2.780	FP1	Gamma	-4.546	F8	Beta	3.808	Т5	Gamma	-8.052
8	FP2	Delta	4.438	F7	Beta	-2.577	F8	Beta	-4.526	Т3	Alpha	-3.498	F7	Gamma	-7.654
9	FZ	Delta	-3.912	Т5	Theta	-2.552	F7	Gamma	-4.365	C3	Delta	-3.471	P3	Gamma	-7.346
10	CZ	Delta	-3.902	CZ	Delta	-2.526	01	Gamma	4.325	CZ	Beta	-3.195	Т5	Beta	-7.132
		A	23E		A3	31B		A	32A		A	33E		A4	1C
Rank	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	Т3	Beta	2.930	01	Gamma	-17.883	FP2	Beta	8.964	FP2	Beta	-13.953	01	Beta	9.987
2	F4	Delta	-2.772	01	Beta	-17.329	FP2	Gamma	6.802	FP2	Gamma	-11.436	01	Gamma	9.249
3	CZ	Delta	-2.736	01	Alpha	-15.634	F7	Delta	-6.625	C3	Delta	10.489	01	Alpha	9.020
4	Т3	Gamma	2.627	02	Beta	14.897	Τ6	Gamma	5.584	FZ	Delta	8.705	Т5	Gamma	7.784
5	02	Delta	-2.611	02	Alpha	14.851	FP1	Beta	5.319	02	Delta	8.432	Т5	Beta	7.704
6	C4	Delta	-2.490	Т5	Gamma	-13.720	F4	Gamma	4.433	FP1	Beta	-8.344	P3	Gamma	6.339
7	FP1	Gamma	2.401	02	Gamma	13.636	FZ	Gamma	4.414	Т5	Delta	8.302	01	Theta	6.244
8	01	Alpha	-2.320	Т5	Beta	-12.625	Τ6	Beta	4.413	F7	Gamma	-6.478	F8	Delta	5.925
9	FP1	Delta	-2.273	Р3	Gamma	-9.745	CZ	Gamma	4.351	F4	Delta	6.468	Р3	Beta	5.884
10	F7	Delta	-2.251	P3	Beta	-8.380	F4	Alpha	4.348	F8	Delta	6.257	F4	Delta	4.508
		A	42F		A4	3D		AS	51B		A5	2C		A	53F
Rank	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	01	Delta	-9.755	CZ	Gamma	-7.204	01	Beta	-6.277	FZ	Gamma	7.264	01	Delta	-11.693
2	01	Beta	-7.384	C3	Gamma	-7.033	01	Gamma	-5.684	CZ	Gamma	6.895	F8	Delta	-8.377
3	02	Delta	-7.332	Т5	Beta	-7.008	01	Delta	-5.312	P4	Delta	-6.453	02	Delta	-6.954
4	Т5	Gamma	-7.224	ΡZ	Gamma	-6.681	02	Gamma	-5.291	Τ4	Gamma	6.277	F7	Delta	-6.346
5	Т5	Beta	-7.221	Т3	Gamma	-6.634	P4	Delta	-5.198	Т5	Beta	6.182	ΡZ	Delta	-6.248
6	F7	Delta	-7.136	Т5	Gamma	-6.558	01	Alpha	-5.023	Т3	Gamma	6.016	Τ4	Delta	-5.679
7	FP2	Gamma	-6.934	Р3	Gamma	-6.511	02	Beta	-5.001	C3	Gamma	5.953	Т3	Delta	-5.668
8	Т3	Beta	-6.906	Т3	Beta	-6.335	C4	Delta	-4.752	CZ	Beta	5.907	Р3	Delta	-5.446
9	Τ6	Delta	-6.742	Р3	Beta	-6.323	CZ	Theta	4.426	ΡZ	Gamma	5.777	Т5	Delta	-5.313
10	01	Gamma	-6.731	CZ	Beta	-6.058	Р3	Delta	-4.102	C3	Beta	5.692	Т3	Gamma	-5.273

Table A9. Feature rank according to t-test statistic for 5-second windowing method for all trials for Subject A.

	B11E			B	12F		B	13D		B21B E		B2	B22A		
Rank	Featur	es	T-Test Value	Fe	atures	T-Test Value	Fe	eatures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	PZ Gan	nma	4.717	C3	Beta	-5.258	Т5	Gamma	7.639	ΡZ	Gamma	6.589	Τ4	Delta	6.200
2	P3 Gan	nma	4.655	ΡZ	Gamma	5.163	01	Gamma	7.625	P3	Gamma	5.128	ΡZ	Delta	6.171
3	T5 Gan	nma	4.545	Τ6	Gamma	4.952	ΡZ	Gamma	6.371	Т5	Gamma	4.755	CZ	Delta	5.720
4	T6 Del	ta	4.472	Т3	Gamma	4.767	CZ	Gamma	6.077	P4	Delta	4.664	F8	Delta	5.662
5	FP1 Bet	a	4.367	Τ4	Gamma	4.501	Τ4	Gamma	5.886	CZ	Theta	4.644	FZ	Delta	4.846
6	C3 Bet	a	-4.358	CZ	Gamma	4.407	Р3	Gamma	5.882	01	Gamma	4.403	F4	Delta	4.164
7	F4 Gan	nma	-4.194	02	Gamma	4.326	F4	Gamma	5.664	C3	Gamma	4.322	Τ6	Delta	4.063
8	T4 Gan	nma	3.694	P4	Gamma	4.106	P4	Gamma	5.586	C3	Beta	-4.263	02	Delta	3.917
9	CZ Gan	nma	3.681	C4	Gamma	4.021	Т3	Gamma	5.480	F7	Delta	4.147	C3	Beta	-3.572
10	FP2 Bet	a	3.668	Р3	Gamma	3.977	FZ	Gamma	5.100	P3	Theta	4.139	F3	Delta	3.325
		B2	23E		B3	91C		B	32F		B.	33D		B4	1B
Rank	Featur	es	T-Test Value	Fe	atures	T-Test Value	Fe	eatures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	C3 Bet	a	-5.054	C4	Gamma	7.468	FZ	Delta	-7.766	Τ4	Gamma	5.509	Т5	Gamma	6.984
2	T3 Gan	nma	-4.843	Т5	Delta	7.288	Р3	Delta	-7.219	F3	Delta	5.226	Τ4	Gamma	5.785
3	P3 Del	ta	-4.703	F4	Gamma	7.032	C3	Delta	-7.166	Τ6	Gamma	5.202	F8	Gamma	5.504
4	T5 Del	ta	-4.676	Т5	Gamma	6.939	F3	Delta	-7.037	P4	Gamma	5.132	P3	Gamma	5.290
5	P4 Del	ta	-4.147	Τ6	Gamma	6.362	P4	Delta	-6.694	Т5	Gamma	4.335	01	Gamma	4.675
6	O1 Gan	nma	4.023	C4	Alpha	5.904	ΡZ	Delta	-6.619	C4	Gamma	4.263	F4	Gamma	4.581
7	T3 Del	ta	-3.969	CZ	Delta	5.416	CZ	Delta	-6.381	CZ	Gamma	4.253	P4	Gamma	4.193
8	FP2 Gan	nma	3.896	F4	Beta	5.218	Т5	Delta	-6.269	ΡZ	Gamma	3.817	C4	Gamma	4.150
9	CZ Del	ta	-3.807	CZ	Theta	5.048	C4	Delta	-6.069	F4	Gamma	3.741	ΡZ	Gamma	4.085
10	FP2 Bet	a	3.579	FZ	Delta	4.904	02	Delta	-5.029	01	Gamma	3.627	Τ6	Gamma	3.707
		B4	2C		B	43F		B	51A		B	52B		BS	3C
Rank	Featur	es	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	T5 Gan	nma	11.093	02	Gamma	7.251	Τ6	Gamma	5.621	C3	Gamma	6.041	01	Gamma	7.865
2	O1 Gan	nma	10.386	Τ6	Gamma	6.620	Т5	Gamma	5.277	FP1	Gamma	5.259	T 6	Gamma	7.505
3	O2 Gan	nma	10.229	F8	Gamma	-6.222	Τ4	Gamma	5.059	02	Gamma	5.093	Р3	Gamma	7.301
4	T6 Gan	nma	10.203	01	Gamma	5.545	Т3	Gamma	4.821	Τ4	Gamma	4.696	ΡZ	Gamma	7.081
5	P3 Gan	nma	8.810	Т5	Gamma	5.131	01	Gamma	4.792	01	Gamma	4.665	Т5	Gamma	7.062
6	P4 Gan	nma	8.629	F7	Beta	-4.763	FZ	Gamma	4.743	F3	Gamma	4.384	02	Gamma	6.849
7	T4 Gan	nma	8.619	C3	Beta	-4.748	F4	Gamma	4.393	Р3	Gamma	4.228	Τ4	Gamma	6.808
8	F4 Gan	nma	8.514	F7	Gamma	-4.439	P4	Gamma	4.122	FZ	Gamma	4.165	FZ	Gamma	6.584
9	PZ Gan	nma	7.678	P4	Gamma	4.159	C3	Gamma	4.118	Т5	Gamma	4.055	P4	Gamma	6.540
10	C4 Gan	nma	7.479	C4	Delta	-4.078	ΡZ	Gamma	3.746	CZ	Gamma	3.972	CZ	Gamma	6.198

Table A10. Feature rank according to t-test statistic for 5-second windowing method for all trials for Subject B.

	C11B			CI	12A		С	13E		C	C22F		С	23D	
Rank	Fea	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	CZ .	Alpha	-6.400	P3	Delta	-8.130	Т3	Delta	-9.183	C4	Delta	-8.678	Т4	Gamma	-9.763
2	FZ .	Alpha	-6.154	01	Delta	-6.319	T6	Delta	-8.743	P4	Delta	-8.256	C4	Gamma	-9.431
3	ТЗ.	Alpha	-6.012	F7	Gamma	5.455	C4	Gamma	-8.219	Τ4	Delta	-7.740	Т3	Gamma	-7.982
4	F4 .	Alpha	-5.933	F7	Beta	4.877	C3	Delta	-7.796	CZ	Delta	-7.478	Τ6	Gamma	-6.936
5	02	Alpha	-5.790	Τ4	Delta	-4.708	F7	Delta	-6.762	F4	Delta	-7.009	CZ	Gamma	-6.857
6	C3 .	Alpha	-5.359	P3	Alpha	-4.047	Τ4	Gamma	-6.219	ΡZ	Alpha	-6.861	P4	Gamma	-6.822
7	РЗ .	Alpha	-5.188	C3	Delta	3.524	ΡZ	Alpha	-5.943	P3	Alpha	-6.332	Р3	Gamma	-6.768
8	PZ .	Alpha	-5.157	02	Delta	-3.403	C4	Alpha	-5.796	P4	Alpha	-6.328	F4	Gamma	-6.679
9	F3 .	Alpha	-4.929	01	Alpha	-3.335	F8	Delta	-5.795	Τ6	Delta	-6.157	Τ4	Beta	-6.602
10	P4 .	Alpha	-4.869	02	Alpha	-3.278	P4	Alpha	-5.674	C4	Alpha	-6.156	Т5	Gamma	-6.582
		C3	31B		C3	32C		C	33F		C	41A		С	42B
Rank	Fea	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	ТЗ.	Alpha	-5.054	Τ4	Gamma	12.761	P4	Delta	-7.864	P4	Delta	6.151	Т5	Gamma	4.716
2	F4 1	Delta	-4.108	FP2	Gamma	10.752	F4	Delta	-6.484	F4	Gamma	-5.102	ΡZ	Theta	4.337
3	CZ .	Alpha	-4.080	Τ4	Beta	10.144	FP2	Beta	-5.934	F3	Gamma	-4.496	CZ	Delta	-3.978
4	P4 1	Beta	-4.061	FP2	Beta	9.566	Т5	Beta	5.729	C3	Gamma	-4.487	F3	Delta	-3.873
5	T4 1	Delta	-3.778	FP1	Gamma	7.721	02	Delta	-5.158	P3	Gamma	-4.254	P4	Delta	-3.756
6	ТЗ (Gamma	-3.563	01	Delta	7.260	FP2	Gamma	-4.806	CZ	Gamma	-4.109	Р3	Theta	3.544
7	F3 1	Delta	-3.527	FP1	Beta	6.988	F8	Delta	-4.317	Т3	Gamma	-4.042	FP 1	Beta	3.500
8	C3 .	Alpha	-3.519	Т3	Beta	5.823	01	Beta	3.832	ΡZ	Beta	-3.750	F8	Delta	3.431
9	C4 .	Alpha	-3.390	Т3	Gamma	5.208	01	Gamma	3.803	P4	Gamma	-3.738	Τ6	Theta	3.254
10	CZ I	Delta	3.344	ΡZ	Delta	4.809	ΡZ	Delta	-3.789	C4	Alpha	-3.698	C3	Theta	3.207
		C4	I3C		C	51E		C	52F		C	53D			
Rank	Fea	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value			
1	FP2	Delta	6.780	C4	Alpha	-5.280	Т5	Gamma	10.772	FP1	Gamma	6.072			
2	PZ 1	Delta	6.701	01	Theta	-5.106	02	Gamma	8.430	C4	Alpha	-4.183			
3	01	Delta	6.455	Р3	Alpha	-4.980	01	Gamma	8.153	C3	Delta	-3.708			
4	01	Gamma	-5.749	C3	Alpha	-4.905	P3	Gamma	7.459	01	Delta	-3.284			
5	T4 1	Delta	5.664	P4	Alpha	-4.887	CZ	Alpha	-6.506	P4	Alpha	-3.088			
6	02	Gamma	-5.546	CZ	Alpha	-4.876	C4	Alpha	-6.453	F3	Beta	-3.049			
7	C4 1	Delta	5.424	01	Alpha	-4.671	Т3	Gamma	6.338	FZ	Delta	-2.983			
8	FP2	Gamma	5.359	FP2	Alpha	-4.449	ΡZ	Alpha	-5.758	Т5	Delta	2.929			
9	T4 (Gamma	-5.134	02	Alpha	-4.406	ΡZ	Gamma	5.460	FP1	Beta	2.884			
10	T3 1	Delta	5.131	02	Theta	-4.401	C3	Alpha	-5.322	01	Alpha	-2.796			

Table A11. Feature rank according to t-test statistic for 5-second windowing method for all trials for Subject C.

	D11C			D	13D		Dź	21B		D2	D22C		D23F		
Rank	Fea	atures	T-Test Value	Fe	atures	T-Test Value									
1	01	Delta	6.705	Τ4	Gamma	-17.124	F8	Gamma	-11.544	Τ6	Beta	-4.233	Р3	Delta	-8.852
2	ΡZ	Delta	5.974	Τ4	Beta	-16.034	F8	Beta	-10.396	P3	Delta	4.062	FP1	Delta	-7.264
3	F3	Gamma	-5.869	C4	Gamma	-15.703	Τ4	Gamma	-10.004	ΡZ	Delta	-3.864	Т5	Delta	-6.753
4	F3	Beta	-5.585	FZ	Gamma	-15.098	F4	Gamma	-9.795	02	Delta	-3.828	Τ6	Delta	-6.408
5	Т5	Gamma	-5.559	CZ	Gamma	-15.002	Т3	Gamma	-9.778	Τ6	Gamma	-3.814	C3	Delta	-6.406
6	Р3	Alpha	-5.424	P4	Gamma	-14.417	C4	Gamma	-8.865	02	Beta	-3.568	FP2	Delta	-5.818
7	CZ	Gamma	-5.371	C4	Beta	-14.237	FZ	Gamma	-8.775	F4	Delta	3.320	FP2	Gamma	-5.500
8	FZ	Gamma	-5.214	F4	Gamma	-14.082	Τ4	Beta	-8.386	FP1	Beta	3.008	FP2	Beta	-5.451
9	FP 1	Gamma	-5.186	F8	Gamma	-13.999	CZ	Gamma	-8.120	02	Alpha	-2.872	F3	Delta	-5.359
10	P4	Alpha	-5.137	F8	Beta	-13.438	Т3	Beta	-7.916	FP1	Gamma	2.872	Τ4	Delta	-5.266
		D	31A		D	32B		D3	3C		D	41E		D	42F
Rank	Fea	atures	T-Test Value	Fe	atures	T-Test Value									
1	F7	Delta	7.377	FP2	Gamma	-6.523	02	Gamma	-6.989	P4	Gamma	-9.780	F3	Delta	-13.730
2	FP2	Delta	5.761	Τ6	Delta	-6.230	FZ	Gamma	-6.848	Τ4	Gamma	-9.309	F7	Delta	-11.040
3	02	Delta	5.360	FP2	Beta	-6.057	02	Beta	-6.726	ΡZ	Gamma	-8.971	FZ	Delta	-10.496
4	CZ	Delta	5.333	FP1	Alpha	-5.959	CZ	Gamma	-6.709	01	Gamma	-8.599	Τ4	Delta	-9.697
5	C4	Delta	4.973	C4	Alpha	-5.824	ΡZ	Beta	-6.700	Т5	Gamma	-8.560	02	Theta	9.520
6	P3	Delta	4.323	Р3	Alpha	-5.704	ΡZ	Gamma	-6.661	CZ	Gamma	-8.478	FP2	Delta	-9.471
7	F4	Delta	4.314	FP1	Gamma	-5.547	Τ6	Gamma	-6.649	Τ6	Gamma	-8.403	C3	Delta	-8.881
8	01	Delta	3.923	FP1	Beta	-5.502	P4	Gamma	-6.496	Τ4	Beta	-8.307	FZ	Gamma	-8.667
9	P4	Delta	3.792	P4	Alpha	-5.430	01	Gamma	-6.450	C4	Gamma	-8.234	CZ	Gamma	-8.645
10	FZ	Delta	3.349	Τ6	Alpha	-5.372	01	Beta	-6.421	Т5	Beta	-8.166	F3	Gamma	-8.261
		D4	43D		D	51B		D	52A		D	53E			
Rank	Fea	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value			
1	Τ4	Beta	6.441	F8	Delta	-7.159	Т3	Delta	5.691	Τ4	Gamma	-9.557			
2	Τ4	Gamma	6.017	Τ4	Gamma	-7.149	C3	Delta	4.400	ΡZ	Gamma	-9.171			
3	F8	Beta	5.185	Τ4	Beta	-6.228	FZ	Delta	4.208	P4	Gamma	-9.022			
4	F8	Gamma	4.609	C3	Alpha	-4.729	01	Delta	4.040	Т4	Beta	-8.632			
5	FZ	Delta	-4.436	01	Delta	4.492	Τ4	Gamma	-3.524	CZ	Gamma	-8.500			
6	F3	Delta	-4.337	Τ4	Alpha	-4.252	Т5	Delta	3.240	Р3	Gamma	-8.265			
7	Τ4	Theta	4.204	F4	Beta	-4.126	Τ4	Beta	-3.147	ΡZ	Beta	-8.028			
8	Τ4	Alpha	4.153	Т3	Alpha	-3.931	Τ6	Delta	3.146	C4	Gamma	-7.455			
9	F8	Alpha	4.116	FZ	Gamma	-3.525	FP1	Gamma	2.754	01	Gamma	-7.393			
10	F8	Theta	3.865	FZ	Beta	-3.352	FP1	Beta	2.681	Р3	Beta	-7.081			

Table A12. Feature rank according to t-test statistic for 5-second windowing method for all trials for Subject D.

	E11B			El	2C		E	13F		E2	21A I T.Test Value Features			2B	
Rank	Fea	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	P4	Delta	-6.691	FP1	Delta	-5.731	Т3	Gamma	-9.489	Т3	Gamma	6.558	Τ4	Delta	-8.208
2	02	Delta	-5.341	FP2	Delta	-5.068	F3	Gamma	-8.947	Τ4	Gamma	6.014	ΡZ	Delta	-6.686
3	F8	Delta	-4.971	Τ4	Gamma	-4.751	C3	Gamma	-8.915	Τ4	Delta	6.006	Τ6	Delta	-5.620
4	01	Theta	4.759	F7	Delta	-4.349	C3	Beta	-8.771	F8	Delta	5.792	P3	Delta	-5.290
5	Т3	Delta	-4.717	F4	Delta	-3.960	Т3	Beta	-8.317	Τ6	Delta	5.661	C4	Alpha	5.212
6	ΡZ	Theta	4.328	Τ4	Beta	-3.498	F7	Beta	-8.207	Т3	Beta	4.980	Т5	Delta	-5.135
7	ΡZ	Delta	-4.324	C4	Delta	-3.385	F7	Gamma	-8.105	F7	Gamma	-4.867	01	Beta	4.891
8	P4	Theta	4.266	C3	Alpha	-3.331	F3	Beta	-7.091	F7	Beta	-4.327	F8	Delta	-4.606
9	C4	Theta	4.257	C4	Gamma	-3.095	Т3	Alpha	-6.205	02	Theta	4.298	01	Gamma	4.462
10	02	Theta	4.154	02	Delta	3.007	P4	Delta	-6.109	F4	Delta	4.187	C4	Delta	-4.272
		E2	3C		E	2B		E3	3C		E4	1B		E4	2A
Rank	Fea	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	F7	Delta	-5.863	02	Theta	4.000	F7	Gamma	10.977	Т3	Gamma	11.216	Т3	Beta	15.107
2	FZ	Alpha	-4.945	F7	Gamma	3.752	F8	Gamma	10.724	Т3	Beta	10.995	Т3	Gamma	13.336
3	F7	Gamma	-4.495	CZ	Theta	3.269	C3	Gamma	10.039	01	Beta	6.822	Т5	Gamma	12.275
4	01	Gamma	4.432	ΡZ	Theta	3.110	F3	Gamma	9.303	02	Gamma	6.637	Т5	Beta	11.367
5	FP1	Beta	-4.247	F7	Beta	3.058	F7	Beta	9.079	02	Beta	6.484	Τ4	Gamma	9.000
6	Т3	Gamma	-4.213	C4	Delta	-2.968	FZ	Gamma	8.364	Т5	Beta	6.365	Р3	Gamma	8.971
7	F3	Alpha	-4.207	F3	Gamma	2.963	F8	Beta	8.338	Т5	Gamma	5.686	Τ4	Beta	8.885
8	FP1	Gamma	-4.185	01	Gamma	2.941	FP1	Gamma	8.073	02	Delta	-4.897	ΡZ	Gamma	8.429
9	F4	Alpha	-4.162	C3	Delta	-2.851	Т3	Gamma	8.059	FP2	Delta	4.474	01	Gamma	7.737
10	02	Theta	4.153	02	Gamma	2.780	FP2	Gamma	8.017	FP1	Delta	4.287	O2	Gamma	6.976
		E	3E		E5	1C		E	52F		ES	3D			
Rank	Fea	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value			
1	Τ4	Beta	14.608	C3	Delta	-10.343	Τ4	Gamma	9.361	F8	Gamma	-6.800			
2	Τ4	Gamma	13.938	Т3	Delta	-7.747	01	Gamma	9.085	01	Gamma	6.727			
3	Т5	Beta	13.242	Τ4	Delta	-7.376	Τ4	Beta	8.139	Т3	Beta	6.272			
4	Т5	Gamma	12.228	Τ6	Delta	-6.711	02	Delta	-7.278	F7	Gamma	-6.200			
5	Τ6	Beta	11.674	CZ	Delta	-6.489	ΡZ	Delta	-7.192	Т3	Gamma	6.136			
6	Τ6	Gamma	11.110	F3	Alpha	-5.602	Τ4	Delta	-6.873	F8	Beta	-5.607			
7	01	Beta	9.689	CZ	Beta	-4.774	01	Beta	6.817	F4	Gamma	-5.154			
8	01	Gamma	9.555	Р3	Delta	-4.638	F3	Gamma	-6.786	C3	Gamma	-5.123			
9	Т3	Gamma	9.347	FP1	Alpha	-4.591	C4	Alpha	6.580	F7	Beta	-5.085			
10	Т3	Beta	9.155	P4	Delta	-4.428	F8	Delta	-6.562	02	Gamma	4.936			

Table A13. Feature rank according to t-test statistic for 5-second windowing method for all trials for Subject E.

	F12C			FI	1 3 F		F	21E	F22F		F23D				
Rank	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	F7	Delta	11.112	01	Alpha	10.539	02	Gamma	10.532	02	Beta	8.694	F7	Gamma	-8.782
2	F4	Delta	6.716	ΡZ	Beta	10.521	02	Beta	10.119	02	Alpha	8.030	F7	Beta	-8.324
3	Τ6	Delta	5.524	P4	Beta	10.076	02	Alpha	7.475	02	Gamma	7.492	T 6	Delta	-7.349
4	F7	Theta	5.433	Τ6	Beta	9.927	01	Gamma	5.596	F3	Delta	-6.825	F7	Alpha	-5.702
5	F3	Delta	5.409	02	Alpha	9.667	01	Beta	5.351	F4	Alpha	6.764	C4	Alpha	5.432
6	02	Gamma	4.968	Τ6	Gamma	9.636	P4	Gamma	5.166	F7	Beta	-6.726	F3	Beta	-5.248
7	ΡZ	Beta	4.906	02	Beta	9.415	Τ6	Gamma	5.124	CZ	Alpha	6.589	02	Alpha	5.111
8	02	Beta	4.605	ΡZ	Gamma	9.178	01	Alpha	4.417	C4	Alpha	6.111	FP1	Delta	-5.043
9	P4	Gamma	4.569	01	Beta	9.043	F7	Beta	-4.152	F3	Gamma	-5.827	Т5	Delta	-5.030
10	02	Alpha	4.554	P4	Gamma	8.971	C4	Alpha	4.002	ΡZ	Delta	-5.507	F3	Gamma	-4.974
		F3	31B		F3	2A		F.	33E		F4	1C		F4	12F
Rank	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	01	Beta	7.330	Т3	Beta	-12.354	01	Beta	-7.855	02	Delta	10.145	FP1	Beta	18.133
2	01	Gamma	6.848	Т3	Gamma	-11.536	01	Gamma	-7.394	Τ4	Delta	10.139	FP2	Beta	18.011
3	Т3	Gamma	-5.813	F7	Beta	-10.333	Т3	Gamma	-7.393	ΡZ	Delta	9.898	FP2	Gamma	17.123
4	Т3	Beta	-5.349	C3	Beta	-10.006	Т3	Beta	-7.098	C4	Delta	9.327	FP1	Gamma	15.857
5	Т3	Delta	-4.843	C3	Gamma	-9.806	01	Alpha	-6.431	CZ	Delta	8.086	Τ4	Gamma	-10.353
6	01	Alpha	4.834	F3	Beta	-9.317	02	Beta	-5.259	02	Gamma	7.970	C3	Gamma	-10.114
7	02	Beta	4.679	F3	Gamma	-8.577	01	Delta	-5.145	01	Delta	7.734	C4	Gamma	-9.641
8	C3	Beta	-4.386	Τ4	Gamma	-8.394	02	Gamma	-4.982	Р3	Delta	7.733	Τ4	Beta	-9.615
9	02	Gamma	4.347	F7	Gamma	-8.121	Т5	Gamma	-4.920	F8	Delta	7.691	F8	Gamma	-8.553
10	F7	Gamma	-3.952	Τ4	Beta	-7.958	F4	Delta	-4.898	Т3	Delta	6.884	FP2	Alpha	8.448
		F4	3D		FS	1B		F5	2C		F	53F			
Rank	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value			
1	Т3	Beta	4.423	Т3	Gamma	-6.134	FP2	Beta	10.428	Τ6	Gamma	9.436			
2	FP2	Delta	-4.147	Т3	Beta	-5.416	Т3	Delta	-8.535	02	Beta	9.323			
3	Т3	Gamma	3.540	C3	Delta	4.998	C4	Delta	-8.407	Τ6	Beta	8.832			
4	F3	Delta	-3.485	Τ4	Beta	-4.601	Τ4	Delta	-8.326	02	Gamma	8.132			
5	Т3	Alpha	3.267	02	Gamma	4.419	ΡZ	Delta	-7.958	01	Beta	7.887			
6	F8	Delta	-3.107	C3	Gamma	-4.319	F4	Delta	-7.385	P4	Gamma	7.563]		
7	FP1	Gamma	3.104	F4	Delta	4.102	Т5	Delta	-7.383	P4	Beta	7.420			
8	C3	Gamma	2.672	Τ4	Gamma	-3.997	FP2	Gamma	7.373	Р3	Beta	7.056			
9	O2	Theta	-2.622	01	Alpha	3.754	FP1	Beta	7.209	ΡZ	Beta	7.045]		
10	Т3	Delta	-2.616	CZ	Delta	3.586	P4	Delta	-6.988	Τ4	Gamma	7.004			

Table A14. Feature rank according to t-test statistic for 5-second windowing method for all trials for Subject F.

	G11E			G	12F		Gi	13D	G21B		Gź	G22A			
Rank	Fea	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	Т5	Gamma	15.086	Т5	Beta	18.716	FP2	Beta	-12.113	Τ4	Delta	-5.897	FP2	Beta	-9.080
2	Т5	Beta	14.645	Т5	Gamma	17.446	Τ4	Gamma	-11.712	Т5	Gamma	5.548	P4	Delta	-8.052
3	FP2	Beta	-13.393	Τ6	Beta	17.392	FP2	Gamma	-10.202	FP2	Gamma	-5.116	FP2	Gamma	-6.219
4	Τ6	Gamma	11.105	Τ6	Gamma	17.000	Т3	Gamma	-8.313	Τ6	Gamma	4.763	T 6	Delta	-5.788
5	FP2	Gamma	-9.933	Τ4	Beta	12.761	Τ4	Beta	-8.118	01	Theta	4.350	Т3	Gamma	-5.597
6	FP1	Beta	-9.528	Τ4	Gamma	11.915	Т3	Beta	-7.297	CZ	Theta	4.219	Τ4	Delta	-5.493
7	Τ6	Beta	9.091	02	Gamma	11.506	FP1	Gamma	-6.443	Т5	Beta	4.199	Т3	Beta	-5.101
8	FP1	Gamma	-8.325	F8	Gamma	-11.317	C3	Gamma	-5.852	CZ	Beta	-4.083	F7	Gamma	4.615
9	Т3	Gamma	7.197	P4	Gamma	11.192	CZ	Beta	-5.827	P4	Delta	-3.991	F7	Beta	3.966
10	Т3	Beta	5.052	01	Gamma	10.823	C3	Beta	-5.648	C3	Gamma	-3.695	FZ	Theta	3.867
		Gź	23E		G	31C		G	32F		G	33D		G4	1B
Rank	Fea	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	Τ4	Delta	-8.312	FP2	Beta	-20.704	02	Delta	-7.702	Т5	Delta	-6.344	Τ6	Gamma	12.669
2	ΡZ	Delta	-6.513	FP2	Gamma	-15.824	FP1	Delta	-7.480	F8	Delta	6.080	Т5	Gamma	12.182
3	CZ	Delta	-6.100	Т3	Gamma	-10.902	Т5	Gamma	7.321	C4	Theta	4.800	F8	Beta	-10.405
4	F8	Delta	-5.265	Т3	Beta	-9.831	Τ6	Gamma	7.309	C3	Theta	4.371	T 6	Beta	10.149
5	01	Delta	-4.292	Τ4	Gamma	-9.577	Т5	Delta	-7.218	C4	Beta	-3.960	Т5	Beta	9.507
6	F4	Delta	-4.155	C3	Gamma	-9.347	Р3	Delta	-6.995	F4	Theta	3.696	F8	Gamma	-9.115
7	T 5	Gamma	4.001	Τ4	Beta	-8.096	Т5	Beta	6.823	02	Delta	-3.682	FP2	Beta	-8.311
8	C3	Theta	3.912	F4	Gamma	-7.356	Τ4	Gamma	6.606	01	Theta	3.625	FP2	Gamma	-6.005
9	Т3	Gamma	3.907	FP1	Gamma	-6.896	Τ4	Beta	6.577	FZ	Theta	3.614	CZ	Delta	-4.801
10	Τ6	Gamma	3.809	CZ	Theta	6.799	ΡZ	Delta	-5.857	FP2	Beta	-3.185	P4	Delta	-4.559
		G4	2C		G	43F		G	51A		G	52B	<u> </u>	G	53C
Rank	Fea	tures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	Т5	Gamma	8.491	FP2	Beta	-10.269	Τ4	Gamma	-6.138	Р3	Delta	-6.262	02	Gamma	-12.117
2	ΡZ	Gamma	8.299	Τ6	Gamma	9.432	Т3	Gamma	-5.346	FZ	Delta	-5.859	F4	Gamma	-10.325
3	O2	Gamma	7.836	Τ6	Beta	8.597	FP1	Beta	-4.968	FP1	Delta	-5.246	F3	Gamma	-10.092
4	T6	Gamma	7.475	FP2	Gamma	-8.207	FP1	Gamma	-4.733	Т3	Delta	-4.658	F7	Gamma	-9.619
5	Т5	Beta	7.460	C3	Gamma	-7.849	C4	Gamma	-4.460	Τ4	Delta	-4.447	C4	Gamma	-9.110
6	01	Gamma	7.319	F4	Gamma	-7.096	F4	Gamma	-4.064	ΡZ	Delta	-4.378	F8	Gamma	-9.052
7	P4	Gamma	7.071	C4	Gamma	-6.561	F8	Delta	-3.775	FP2	Delta	-4.363	FZ	Gamma	-8.834
8	FZ	Gamma	6.931	CZ	Theta	5.821	FP2	Beta	-3.660	C4	Delta	-3.833	P4	Gamma	-8.422
9	P3	Gamma	6.779	C4	Theta	5.318	F4	Delta	-3.654	C3	Delta	-3.566	P3	Gamma	-8.315
10	F7	Gamma	6.611	F7	Gamma	-4.824	02	Gamma	3.630	F7	Gamma	3.563	C3	Gamma	-7.757

Table A15. Feature rank according to t-test statistic for 5-second windowing method for all trials for Subject G.

	H11B			H	12A		H	13E	H21C		H22F			
Rank	Features	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	FP1 Gamma	6.741	01	Gamma	6.777	01	Gamma	13.435	FP1	Beta	-13.540	FP1	Beta	12.544
2	FP1 Beta	6.484	C4	Alpha	-6.070	01	Beta	12.046	FP2	Beta	-11.896	FP1	Gamma	10.025
3	F7 Delta	-5.556	P4	Alpha	-6.025	02	Beta	11.473	FP2	Gamma	-10.244	FP2	Beta	9.550
4	FP2 Beta	5.263	C4	Beta	-5.687	02	Gamma	10.145	FP1	Gamma	-10.031	FP2	Gamma	7.675
5	FP1 Alpha	4.586	01	Beta	4.794	FP2	Beta	7.439	01	Gamma	8.130	01	Delta	-6.439
6	P3 Beta	-4.522	F4	Beta	-4.171	FP1	Beta	7.197	C4	Alpha	-7.476	C4	Alpha	6.348
7	FP2 Gamma	4.299	ΡZ	Alpha	-3.978	FP2	Gamma	6.658	C4	Delta	6.850	Р3	Delta	-6.256
8	F8 Gamma	3.823	Т5	Delta	3.939	FP1	Gamma	6.466	F8	Beta	-6.603	02	Beta	5.978
9	C3 Beta	-3.806	Τ4	Alpha	-3.926	FP1	Alpha	5.910	ΡZ	Delta	6.146	02	Gamma	5.562
10	CZ Beta	-3.396	F8	Beta	-3.708	Т5	Gamma	5.882	C4	Beta	-6.011	Τ6	Delta	-4.783
	Н	23D		H.	31B		H.	32C		H.	33F		H4	1A
Rank	Features	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	F4 Delta	-6.277	F4	Delta	-7.046	Τ6	Delta	7.516	F3	Delta	4.446	01	Beta	6.284
2	F3 Delta	-4.705	Τ6	Delta	-6.579	FP2	Delta	4.931	Т3	Gamma	-4.385	01	Gamma	6.113
3	CZ Delta	-3.906	F8	Delta	-6.511	FP1	Delta	4.490	C3	Beta	-4.381	F8	Delta	5.840
4	FZ Delta	-3.382	Τ4	Delta	-6.350	02	Delta	4.026	Т3	Beta	-4.333	T 5	Gamma	5.298
5	C3 Beta	-3.378	C4	Delta	-5.836	C3	Delta	3.521	CZ	Beta	-4.307	02	Beta	4.935
6	T4 Delta	-3.365	C3	Delta	-5.809	Τ4	Delta	3.520	Т3	Alpha	-4.004	02	Delta	4.840
7	O1 Alpha	-3.151	FZ	Delta	-5.160	ΡZ	Delta	3.185	C3	Gamma	-3.746	T 6	Theta	4.656
8	CZ Beta	-3.082	CZ	Alpha	-5.038	Т3	Gamma	-3.134	C3	Alpha	-3.680	CZ	Theta	4.274
9	F3 Beta	-2.946	P4	Alpha	-4.343	C4	Beta	-3.118	F3	Beta	-3.644	01	Alpha	4.149
10	F8 Gamma	-2.939	Τ4	Alpha	-4.243	FP1	Beta	2.808	Р3	Gamma	-3.317	02	Theta	4.118
	H	42B		\mathbf{H}^{2}	43C		H	51E		H	52F		Hŝ	3D
Rank	Features	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value	Fe	atures	T-Test Value
1	O1 Delta	6.519	01	Beta	8.877	01	Delta	-8.638	Τ6	Delta	-8.921	C3	Beta	-5.161
2	O2 Delta	6.424	01	Gamma	8.029	Τ4	Delta	-7.364	F8	Delta	-8.319	T 6	Delta	-4.455
3	PZ Delta	5.255	02	Alpha	7.516	C3	Delta	-7.054	C4	Delta	-7.352	P3	Beta	-4.254
4	P3 Delta	5.142	01	Delta	7.281	F8	Delta	-6.469	Τ4	Delta	-6.634	Τ4	Delta	-4.236
5	F7 Beta	-4.937	02	Beta	6.258	Т5	Delta	-5.659	F7	Delta	-5.619	CZ	Beta	-4.081
6	FP1 Beta	4.667	01	Alpha	5.851	Т3	Delta	-5.601	P4	Delta	-5.467	02	Delta	-3.909
7	F7 Alpha	-4.564	02	Gamma	5.084	FP1	Beta	-4.921	C4	Beta	-5.356	FP1	Delta	-3.894
8	F7 Gamma	-4.432	P4	Delta	-5.048	FP1	Gamma	-4.747	C3	Beta	-5.014	C4	Beta	-3.608
9	FP2 Delta	4.315	01	Theta	4.994	C4	Beta	-4.364	Р3	Beta	-4.247	ΡZ	Gamma	-3.581
10	C4 Delta	4.263	FZ	Delta	4.975	P4	Delta	-4.254	Т5	Beta	-4.202	F7	Delta	-3.414

Table A16. Feature rank according to t-test statistic for 5-second windowing method for all trials for Subject H.

Appendix D - Steps to Perform Classification of Workload by T-Test Values

- 1. Run MATLAB code that combines two of the trials for one day. Develop a threshold between the high workload and normal workload (ex. $\frac{H}{L}$ or $\frac{L}{H}$). Also, produce a ranking of the features from the two trials.
- Run MATLAB code that uses data from one trial (the third trial not used in step 1). Analyze one ten second segment for one feature and determine whether it is high workload or normal workload based on the threshold determined from step 1.
- 3. Perform step 2 for the top ten ranked features obtained in step 1 (Table A17).

Feature	Threshold Value	10 Second Segment (H or N dependent on threshold value)						
F1	High if > 0.8 Low if <0.8	Н						
F2	High if <1.2 Low if >1.2	Н						
. ↓	. ↓	↓ ↓						
F10	High if <2 Low if >2	N						

Table A17. This is the process to implement the t-test classification method.

- 4. The ten second segments that were determined as "high" are given the value "1 x a^{N-1}" where "N" is the rank of the feature and "a" is a weighted value between 0.5~0.9 (to be determined). For those segments that were determined as "normal" are given the value "-1 x a^{N-1}".
- 5. (still work on a particular segment of 10-second) Sum all of the weighted values for the top ten features. If that summed value is <u>positive (or negative)</u>, then it is <u>classified</u> as High Workload (or Normal Workload). If this 10-second segment

is indeed High Workload (or Normal Workload), then the <u>classification</u> for this segment is Correct, otherwise, the classification for this segment is Incorrect.

- 6. The above process will be applied to each 10-second segment; each of them will either be Correct or Incorrect. The percentage of correct classification for trial #3 can then be determined (total # of correct)/(total # of correct + total # of incorrect)
- 7. Compare this percentage with the classification accuracies from the ANN.